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Abstract: As an appealing approach for discovering novel leads, the key advantage of
de novo drug design lies in its ability to explore a much broader dimension of chemical
space, without being confined to the knowledge of existing compounds. So far, many
generative models have been described in the literature, which have completely redefined
the concept of de novo drug design. However, many of them lack practical value for
real-world drug discovery. In this work, we have developed a graph-based generative
model within a reinforcement learning framework, namely, METEOR (Molecular Explo-
ration Through multiplE-Objective Reinforcement). The backend agent of METEOR is
based on the well-established GCPN model. To ensure the overall quality of the generated
molecular graphs, we implemented a set of rules to identify and exclude undesired sub-
structures. Importantly, METEOR is designed to conduct multi-objective optimization, i.e.,
simultaneously optimizing binding affinity, drug-likeness, and synthetic accessibility of the
generated molecules under the guidance of a special reward function. We demonstrate in a
specific test case that without prior knowledge of true binders to the chosen target protein,
METEOR generated molecules with superior properties compared to those in the ZINC
250k data set. In conclusion, we have demonstrated the potential of METEOR as a practical
tool for generating rational drug-like molecules in the early phase of drug discovery.

Keywords: molecular generative model; de novo drug design; multi-objective optimiza-
tion; GCPN

1. Introduction
Virtual screening of compound libraries has been a widely adopted approach in

structure-based drug discovery for finding novel lead compounds. However, the potential
exploration of molecules with desired properties is severely curtailed by the limited size
of available compound libraries (~109) [1]. This constraint pales in comparison with the
vast chemical space of “drug-like” compounds, which is estimated to range from 1023 to
1060 [2]. To bridge this gap, de novo drug design offers another approach to delving into
the chemical space beyond existing compounds. Conventional de novo design methods
typically rely on a pre-defined fragment library to construct molecular structures in a
stepwise manner. Such a building-up process is relatively time-consuming, and yet the
structural diversity among the generated molecular structures is in principle limited by
the fragment library employed therein. Moreover, conventional de novo design methods
often produce molecular structures that are challenging to synthesize due to extensive
enumeration [3,4]. All these obstacles have hindered the wide application of de novo
design to practical drug discovery efforts.
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In recent years, generative models, a type of unsupervised training model, have
emerged as invaluable tools in various scientific domains [5]. Such models have been
able to generate new samples by comprehending the essential probability distribution
underlying the given training samples. Generative models quickly found their applications
in the realm of chemistry, where they were typically trained on large compound libraries
to capture the intrinsic probability distribution embedded in the molecular structures. By
drawing samples from the learned distribution, novel molecular structures were generated,
which effectively expanded the accessible chemical space. It has been demonstrated that
even a tiny fraction, for example, 0.1%, of a compound library, when used to train a
generative model, could cover a significant portion of the chemical space spanned by the
entire library [6]. Thus, generative models hold great promise in expanding the arsenal
for drug discovery. Particularly for de novo drug design, generative models can not only
create new molecules but also to craft molecules of specific interest.

Reinforcement learning presents an approach for achieving targeted molecule gen-
eration [7]. Within the framework of reinforcement learning, an agent engages with an
environment through a sequence of actions. The agent iteratively refines its policy to
maximize cumulative rewards across the action sequence, guided by the environment’s
feedback. In the context of de novo drug design employing reinforcement learning, an
environment is tailored to provide rewards to the agent based on the properties of the gen-
erated molecules. Previous studies have demonstrated the utility of reinforcement learning
in biasing generative models toward the creation of molecules with desired optimized
properties [8–18].

However, many of the current generative models exhibit certain limitations when
being evaluated in real-world drug discovery scenarios. For example, some models aim at
overly contrived objectives, such as maximization of log P without any limit [8,9,12,17,19].
Some other models focus exclusively on the binding affinity against a specific tar-
get [10,11,14–16]. However, a successful drug discovery process is multi-objective in
nature, where one has to consider and evaluate multiple properties of the candidates simul-
taneously [20–23]. Therefore, we believe that a generative model with practical value for
de novo drug design has to be trained in a multi-objective manner.

Accordingly, we have developed such a molecular generative model, namely, ME-
TEOR (Molecular Exploration Through multiplE-Objective Reinforcement). METEOR is
integrated with a reinforcement learning framework, which allows the rapid design of
molecules with desirable drug-likeness and synthetic accessibility, as well as binding affin-
ity to a user-defined target protein. In METEOR, we employ the Graph Convolutional
Policy Network (GCPN) originally proposed by You et al. [8] as the fundamental archi-
tecture to construct the backend generative model. We evaluated several graph traversal
algorithms [24] in terms of their efficiency in molecular structure generation. We also
introduced chemical rules to detect improper substructures, thereby substantially elevating
the quality of the molecular structures generated. Importantly, we introduced a special
reward function to promote multi-objective optimization, combining considerations of
binding affinity to the target protein, drug-likeness, and synthetic accessibility. Here, bind-
ing affinity to the target protein was evaluated by PLANET, a GNN-based deep learning
model developed by our group [25]. Finally, we showcased the potential application of
METEOR to real-world drug discovery with a retrospective example.

2. Results and Discussion
2.1. Comparison of Generative Models Based on Different Algorithms

The several generative models developed in our study were trained on the ZINC
250k data set in order to generate valid molecular graphs. To evaluate the performance of
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these models in this aspect, metrics encompassing validity, uniqueness, and novelty were
considered. These metrics were assessed based on a sample of 50,000 molecules generated
by each model.

The validity of the generated molecules remained at 100% across all models (Table 1),
which should be attributed to the step-by-step valency check enabled during graph gen-
eration. In contrast to SMILES-based models, which might encounter validity issues due
to syntax problems, graph-based generative models benefit from a more natural repre-
sentation of molecular structures, ensuring high validity. However, a validity check by
RDKit does not guarantee drug-like molecular structures (Figure S1 in the Supporting
Information). Thus, we have implemented additional chemical rules in the molecular
generation environment in our model to filter out undesired substructures, including cumu-
lative alkenes and peroxyl bonds, double or triple bonds in three or four-membered rings,
bridged rings formed with aromatic rings, and large rings. Our analysis indicated that
these additional substructure detections led to the elimination of approximately 40% of the
impractical structures generated by GCPNorigin. Moreover, the breadth-first model (BFM)
was observed to have a problem with ring closure (Figure S2 in the Supporting Information).
This problem arose due to the divergent nature of breadth-first graph generation, where the
generative model tended to generate molecular graphs with incomplete rings, which may
be closed later after several inconsecutive actions. In contrast, GCPN and the depth-first
model (DFM) in principle can generate molecular graphs with rings in a more practical and
complete manner.

Table 1. Metrics of 50,000 molecules generated by several generative models.

Models
Validity Uniqueness Novelty

RDKit Pattern Completeness Molecule Scaffold Molecule Scaffold

GCPN (origin) 1.000 0.592 0.993 1.000 a 0.666 a 1.000 a 0.928 a

GCPN (ours) 1.000 1.000 0.960 1.000 0.737 1.000 0.953
DFM 1.000 1.000 0.987 0.912 0.626 0.999 0.914
BFM 1.000 1.000 0.677 0.776 0.454 1.000 0.925

a: Molecules containing improper substructures are viewed as invalid.

Among our evaluation metrics, uniqueness reflects the fraction of non-duplicate
molecules, while novelty reflects the fraction of generated molecules not presented in
the training set. Our results show that BFM exhibits the lowest performance in terms
of uniqueness and novelty (Table 1). By analyzing BFM-generated molecules, we have
observed that the graph generation process is prone to terminate prematurely and produce
simple and duplicate structures. In order to evaluate the scaffold uniqueness and novelty
presented by the molecules in the ZINC 250k data set, we extracted the Bemis–Murcko
scaffolds for all of them. Our results revealed that GCPNours and DFM achieve similar
metrics, while the performance of BFM is limited by its preference for molecules with
simple structures.

To gain a deeper understanding of the chemical space covered by the molecules
generated by these several generative models, we performed UMAP projection on the
molecules generated by GCPNours and DFM, as well as 50,000 molecules randomly selected
from the ZINC 250k data set. Here, UMAP analysis was performed with the umap-learn
Python package [26]. Molecules were represented by their the extended-connectivity
fingerprints (ECPF4) fingerprints hashed to 1024 bits. The resulting binary vectors were
then reduced to 250 dimensions using principal component analysis before being projected
onto two dimensions. The results are illustrated in Figure 1. One can see that both the
outcomes given by GCPNours and DFM effectively span the chemical space represented by
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the training set (i.e., ZINC 250k), indicating their comparable ability to generate diverse
molecule structures.
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2.2. Test Case: De Novo Design with METEOR

As discussed above, GCPNours and DFM demonstrated a remarkable advantage over
BFM, this test attempted to evaluate the performance of METEORGCPN and METEORDFM

within the realm of reinforcement learning. We then wanted to examine their performance
in a real de novo drug design scenario. The objective here was to design ligand molecules
targeting glucocerebrosidase (GBA), simultaneously optimizing essential properties includ-
ing drug-likeness, synthetic accessibility, and binding affinity to the target.

To investigate the effect of multi-objective optimization, we examined the three desired
features (i.e., drug-likeness, synthetic accessibility, and binding affinity) of the molecules
generated at the initial round and the final round of reinforcement learning (Figure 2).
Firstly, a notable improvement in the predicted binding affinity can be observed if compar-
ing the molecules generated by METEORDFM, METEORGCPN, and those from ZINC 250k.
Regarding the QED value, a significant fraction of the molecules generated by METEORDFM

and METEORGCPN (77.6% and 83.8%, respectively) exceeded the QED threshold of 0.6.
Nevertheless, no notable improvement in the QED value was observed after reinforcement
learning. This is because the ZINC 250k data set as a whole already exhibits a high level
of QED value, leaving very limited room for further improvement. Regarding the SAS-
core value, the majority of ZINC 250k molecules fall within the range of (1.5, 5.0). After
reinforcement learning, SAScore of the generated molecules concentrated at the range of
(2.5, 3.5) with a more focused distribution. Furthermore, both models generated fewer
molecules that were predicted to be challenging for synthesis as compared to the ZINC
250k molecules. Considering all three features together, the distribution of the unweighted
sum of three feature rewards shifted to the right as compared to the distribution of the
ZINC 250k molecules. To conclude, both METEORDFM and METEORGCPN were able to
generate novel molecules with improved predicted binding affinity under the constraints
of drug-likeness and synthetic accessibility.
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molecules generated at the last round of reinforcement learning (red lines: METEORGCPN; blue
lines: METEORDFM; green lines: ZINC 250k).

2.3. METEORGCPN: Has a Larger Action Space as Well as a Higher Learning Efficiency

Incorporating the depth-first graph traversal algorithms in DFM eliminates the need
to decide the starting atom for adding a new bond. This modification reduces the action
space of METEORDFM and theoretically streamlines reinforcement learning. However,
the learning curve demonstrated that METEORGCPN can be trained at a higher level of
stability and efficiency than METEORDFM in reinforcement learning (Figure 3a,b). After
50 rounds of reinforcement learning, METEORGCPN received a mean total reward of around
1.25, whereas the mean total reward of METEORDFM at the same point was approximately
0.85. Despite the smaller action space of METEORDFM, the full trajectory for METEORDFM

for generating a molecular graph is roughly twice as long as that of METEORGCPN. This
inequality accounts for the different efficiency of METEORDFM and METEORGCPN. For
example, over a three-day period of reinforcement learning, METEORGCPN generated
around 2.7 million molecules across 212 rounds, whereas METEORDFM generated around
1.8 million molecules over 138 rounds. Given the same amount of training time, the
additional training iterations achieved by METEORGCPN make it possible to uncover
molecules with improved properties. Moreover, GCPN’s inherent capability of determining
when to terminate the graph expansion allows METEORGCPN to assess the attributes of
the existing molecular structure. This capability empowers METEORGCPN to judiciously
halt the expansion of a graph when the current structure exhibits particularly favorable
attributes. This explains why METEORGCPN generated molecules with superior synthetic
accessibility in comparison to METEORDFM.

In addition, a notable disparity was observed between the total reward and the
unpenalized reward acquired by both METEORGCPN and METEORDFM (Figure 3c,d). This
gap primarily arose from the property penalty at the early training phase (Figure 3e,f).
In METEOR, property penalty (Equation (5)) was the driving force for multi-objective
optimization on binding affinity to the protein, drug-likeness, and synthetic accessibility.
Computing rewards by a weighted sum across three property rewards reinforced the
optimization to be conducted toward all three properties.
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Figure 3. Several key features of METEORDFM (left) and METEORGCPN (right) observed during the
reinforcement learning process. (a,b): Three property rewards; (c,d): Total and unpenalized rewards;
(e,f): Three penalty factors. Here, each line plots the mean value of a certain feature computed over
all molecules generated at each round of roll-out.

The complexity penalty was computed primarily by counting heavy atoms. This
penalty was introduced to balance the bias along structure generation, where larger
molecules tend to receive higher predicted binding scores by PLANET. Moreover, larger
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molecules often contain challenging moieties for chemical synthesis, such as chiral centers.
The similarity penalty was introduced to encourage METEOR to explore the chemical space
preventing it from becoming confined to local maxima. During the initial training rounds, a
relatively modest similarity penalty was observed among the molecules generated by both
METEORDFM and METEORGCPN due to the presence of limited high-scoring molecules
recorded in the memory stack. At the 40th round or so, the influence of similarity penalties
became more obvious (Figure 3e,f). Here, both METEORDFM and METEORGCPN were
able to explore the full chemical space covered by the ZINC 250k data set throughout the
training process without being trapped in certain restricted regions (Figure 4).
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In conclusion, both METEORDFM and METEORGCPN are able to generate molecules
with optimized properties. The major distinction between METEORDFM and METEORGCPN

lies in their efficiency.

2.4. The Practical Value of METEOR in De Novo Drug Design

In this study, we evaluated the practical value of METEOR in de novo drug design
by using GBA as a test case. The quality of the molecules generated by METEOR was
reflected by analyzing their similarity to true binders of GBA collected from ChEMBL. If
using an ECFP4 Tanimoto coefficient of 0.6 as the threshold, 15 molecules generated by
METEORDFM shared similar structures to true binders to GBA. As for METEORGCPN, this
number was 17. A few such examples are given in Figure 5. One can see that the generated
molecules shared an almost identical scaffold as a certain GBA binder. This observation
demonstrated that METEOR is able to generate drug-like molecules with potential value.

It should be mentioned though that as a whole, a substantial proportion of the true
GBA binders considered in our study have a QED value below 0.5 or SAScores over
3.5 (Figure S3 in the Supporting Information). However, the majority of the molecules
generated by METEOR had optimized QED values and SAScores that do not stay at this
range (Figure 2). Thus, in this particular test cast, this gap resulted in rather limited matched
pairs between the outcomes of METEOR and true GBA binders.

Moreover, we employed the GLIDE module in the Schrödinger software, a widely used
conventional molecule docking method, to evaluate the binding affinity of the molecules
generated by METEOR with the target protein. Prior to the molecular docking job, the
molecules generated during the reinforcement learning process in METEOR were filtered
based on the following criteria: (1) an QED value above 0.6, (2) an SAScore lower than 3.0,
and (3) a predicted binding affinity value greater than 7.0 (in -log units). The molecules
meeting all requirements were then docked into the binding pocket on GBA. To make a



Molecules 2025, 30, 18 8 of 16

comparison, all ZINC 250k molecules were also docked into the binding pocket on GBA
through the same protocol.
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As shown in Figure 6, the molecules generated by either METEORGCPN or METEORDFM

on average had better GLIDE binding scores than those ZINC 250k molecules, even though
even though the optimization of binding affinity in METEOR was guided by a different
scoring function PLANET. The 1% percentile of docking scores was −6.20, −6.83, and
−6.57 for molecules from ZINC 250k, METEORDFM, and METEORGCPN, respectively. Note
that besides binding affinity to the target protein, the molecules generated by METEOR
were also optimized in terms of drug-likeness and synthetic accessibility. Therefore, it is
reasonable to expect that more promising active hits can be discovered through application
of METEOR rather than a conventional virtual screening of the ZINK 250k data set.
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3. Methods
3.1. The Backend Molecule Generative Models

The GCPN model extends an existing molecular graph by adding new chemical
bonds one after another (Figure 7). During this process, four decisions need to be made
at each step: (1) determining the starting atom (“focus atom”) to which the new bond is
added, (2) selecting the end atom of the new bond, (3) specifying the type of the new bond,
and (4) deciding whether to terminate graph expansion [8]. The first decision significantly
expands the action space of GCPN, leading to numerous possibilities within each existing
subgraph. To address this complexity, we introduced two models: DFM and BFM, each
employing a distinct graph traversal algorithm (Figure 7). In both models, the “focus atom”,
defined by the respective graph traversal algorithm, serves as the starting point for adding
a new bond. In alignment with DFM and BFM, the final task in GCPN, i.e., determining
whether to terminate graph generation, is replaced by marking the current focus atom as
“finished”. Graph generation terminates when all nodes have been marked.
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Individual atom nodes were encoded using vectors with a dimension of 20, consisting
of one-hot encoded element type, atom degree, and membership in rings of varying sizes
from 3 to 7. These initial vectors were then embedded into a latent space (h0) with a size of
64 dimensions. To extract features from the input graphs, we utilized the graph convolution
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network (GCN) architecture [27–29]. The entire molecular graph was partitioned into three
distinct subgraphs based on different bond orders. One module with three separate graph
convolution layers with a hidden size of 64, each with learnable parameters W l

i , were
employed on the three subgraphs, as denoted in Equation (1).

hl =
b

∑
i=1

(
ReLU

(
∼
D

− 1
2

i
∼
A .

i

∼
D

− 1
2

i h(l−1)W l
i

))
, b ∈ {1, 2, 3} (1)

A .
i

is the ith slice bond-conditioned adjacent matrix,
∼
A .

i
= A .

i
+ I;

∼
Di is the ith slice

bond-conditioned degree matrix with self-loop.
In our implementation, we utilized three such modules to extract the underlying features

from the molecular graphs. The extracted latent features were subsequently utilized to make
informed decisions within the model. The configuration of task layers in GCPN remained
consistent with the original literature [8]. In the case of DFM and BFM, when selecting ending
atom for the chemical bond to be added, nodes marked as “finished” were overlooked. The
probability of each action P(at) was calculated as shown in Equation (2):

P(at) =
(

1 − I
(

afinish
t

))
∏j P

(
aj

t

)
+ I
(

afinish
t

)
P
(

afinish
t

)
(2)

Each action step at is composed of three sub-tasks aj
t, i.e., selecting the end atom of

the new bond, specifying type of the new bond, and whether to mark the focus atom as
“finished”. I

(
afinish

t
)

equals 0 if the focus atom is not decided to be marked, else I
(
afinish

t
)

equals 1.
To enhance stability and performance in reinforcement learning, a commonly em-

ployed strategy involves pre-training a generative model using an established compound
database [30]. In our study, we employed the widely-used ZINC 250k data set, comprising
structurally diverse “drug-like” molecules that have been synthesized in reality. Structures
of these molecules were examined to eliminate those containing rings with eight or more
members. The remaining molecules were considered as the ground truth and served as
expert training data. For GCPN pre-training, a randomly sampled connected subgraph
G’ from a molecule graph G was viewed as the state st. Any action at added an atom or
a bond in G but not in G’ could be viewed as an expert action during the trajectory of
generating a ground-truth molecule. The training objective was to maximize the possibility
P(at) of GCPN to take expert action at at state st. This training approach was similar
to that previously reported [8]. For both DFM and BFM, the molecular structures from
the filtered ZINC 250k data set were transformed into expert trajectories by randomly
selecting a starting node and traversing the graphs in a depth-first or breadth-first manner,
respectively. The resulting expert actions at consisting of the trajectories were collected for
pre-training DFM and BFM. The objective in expert training for all models can be expressed
as shown in Equation (3):

Lexpert(θ) = − 1
T

T

∑
t

logP(at) (3)

The Adam optimizer with a learning rate of 0.0001 was applied. After 1,000,000
training steps, GCPN, DFM, and BFM with converged loss were obtained as pre-trained
generative models.

3.2. The Molecule Generation Environment

Within the context of molecular graph generation under a reinforcement learning
framework, the molecule generation environment plays two essential roles, i.e., state
transition dynamics and reward assignment.
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3.2.1. State Transition Dynamics

The molecule generation environment plays a pivotal role in executing the actions
taken by the agent, ensuring adherence to specified rules. One fundamental rule incorpo-
rated into the environment is the valency check, preventing actions that exceed an atom’s
maximal valency [8]. It is noteworthy that substructures adhering to the basic valency rule
may not be “drug-like”. Therefore, the environment in our model detects and then filters
out the following “non-drug-like” substructures: (a) cumulative alkenes and peroxyl bonds;
(b) double or triple bonds in a three- or four-membered ring; (c) bridged ring formed with
aromatic rings; and (d) large rings with eight or more members, as detected in the smallest
set of smallest rings in a molecular graph. Substructure detection is performed after each
agent action through SMARTS matching (see Figure S4 in the Supporting Information).
Only actions that pass both the valency check and substructure examination will be adopted
by the environment to update the current molecule subgraph. Note that implementation of
the above chemical rules reflects the knowledge of “drug-likeness” accumulated in the liter-
ature [31–33]. There are of course different perceptions of “drug-likeness”, but the several
rules listed above are relatively straightforward to be encoded in a computer program. In
particular, macrocyclic structures are not allowed in our model, although some marketed
drugs do consist of such structures [34]. From a practical view, macrocyclic structures are
normally introduced at the stage of lead optimization to impose conformational constraints.
Considering that our model will be employed primarily as an “idea generator” at the stage
of lead discovery, ignoring macrocyclic structures is an acceptable trade-off for the sake of
technical convenience.

3.2.2. Reward Assignment

The behavior of agents is steered by the rewards from the molecule generation envi-
ronment, which can be categorized into two components: step reward and final reward.
A zero-step reward is assigned to each step, except for two specific actions: (a) When a
new ring is formed, a small step reward of 0.02 is assigned to encourage ring formation.
(b) When an improper action is canceled by the molecular generation environment, a step
reward of −0.2 is given to discourage such actions. The step reward serves to guide the
agent’s behavior and reduce the occurrence of improper actions. The final reward com-
prises several domain-specific rewards assigned based on different properties, including
drug-likeness, synthetic accessibility, and predicted bio-activity. The final reward is calcu-
lated as the weighted sum of these rewards, further adjusted by a penalty factor. Reward
functions related to specific properties utilize a linear scaling function that maps values
between a lower bound and an upper bound, as described in Equation (4):

Rprop =


1.0 Sprop ≥ Shigh

prop ;
Sprop−Slow

prop

Shigh
prop−Slow

prop
, Slow

prop < Sprop < Shigh
prop;

0.0 Sprop ≤ Slow
prop .

(4)

This type of function is chosen based on the assumption that it is not necessary to
optimize certain properties beyond desired ranges. For example, it is not necessary to
further optimize the synthetic accessibility of a molecule with an SAScore lower than 2.0
because it is already good enough at this level.

Generated molecules are evaluated by the following three properties:
(a) Drug-likeness of a molecule is assessed by the QED index originally proposed by

Hopkins et al. [33]. This index has a range (0.0, 1.0).
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(b) Synthetic accessibility of a molecule is evaluated by SAScore, which has a range
[1.0, 10.0]. SAScore is a rule-based tool for estimating synthetic accessibility, and its output
is determined by the summation of fragment scores and a complexity penalty [35].

(c) Binding affinity to the target protein is predicted by PLANET, a graph neural
network model developed in our group [25]. PLANET operates on two-dimensional
molecular graphs as inputs and thus skips the exhaust molecular docking process. Its
ultra-fast speed is suitable for processing generated molecules in a large number.

A penalty factor is also implemented to influence the agent model’s behavior by
scaling the sum of property rewards. This factor is determined based on three aspects:

(a) Complexity penalty (Pcomplexity). The complexity penalty is assigned based on the
number of heavy atoms in the designed molecule, defined as a linear scaling function akin
to Equation (4). The lower and upper bounds for the number of heavy atoms are set to
10 and 40, respectively. Additionally, for molecules with more than two chiral centers, a
penalty factor of 0.5 will multiply Pcomplexity.

(b) Property penalty (Pprop). Since the reward is the sum of three property rewards,
it is possible for an agent to receive a high reward from a molecule that possesses two
excellent properties but one extremely poor property. The property penalty is applied as
follows (Equation (5)):

Pprop = ∏prop min
(
1.0, Rprop/0.2

)
(5)

(c) Similarity penalty (Psimilarity). Agents trained in reinforcement learning tend to
generate highly-scored molecules. However, once a local maximum is reached, agents
often struggle to explore other areas, leading to a phenomenon known as “policy collapse”.
Inspired by the work of Blaschke et al. [14], we devised a similarity penalty to encourage
agents not only to focus on specific favorable regions in the chemical space yielding high
scores but also to explore various areas within the space. Our algorithm for calculating the
similarity penalty differs from that of Blaschke though. For example, all halogen atoms are
ignored here to prevent our model from generating molecular structures with differences
merely in the number and position of halogen atoms. This is important since at the stage of
lead discovery, sufficient diversity in the structural scaffold is much desired, where terminal
halogen atoms are not part of a structural scaffold. In fact, halogen atoms are often added
to optimize bioactivity at a later stage of drug discovery. Subsequently, a mapping between
the current molecule and those generated before the preceding twenty rounds of roll-out is
performed. If a successful mapping is found, a zero-penalty factor is assigned. Molecules
passing this mapping step proceed to subsequent similarity calculation. A stack is used to
retain favorable molecules, that is, those generated over the preceding 10 rounds of roll-out
with a final property reward surpassing 70% of the possible maximum. Tanimoto similarity
coefficients between the ECFP4 of the transformed molecule and all stored high-quality
molecules are calculated. Psimilarity is determined based on the maximal Tanimoto similarity
coefficient, as outlined in Equation (6):

Psimilarity


0.0 Success Mapping OR Tanimoto ≥ 0.7 ;

1 − (Tanimoto − 0.4)/0.3, 0.4 < Tanimoto < 0.7 ;
1.0 Tanimoto ≤ 0.4 .

(6)

The final reward (Rfinal) is the weighted sum of all property rewards scaled by overall
penalty (Equation (7)):

Rfinal =
i

∑ αiRi ×
j

∏ Pj (7)

Here, i and j denote for different types of molecular properties and penalty factors,
respectively.
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3.2.3. Reinforcement Learning

Policy gradient-based methods are widely adopted in reinforcement learning. In our
model, Proximal Policy Optimization (PPO) is adopted [36]. The learning objective can be
written as Equation (8):

Lθk

PPO(θ) = − ∑
(st ,at)

min

(
Pθ(at|st)

Pk
θ (at|st)

Aθk
(at, st), clip

(
Pθ(at|st)

Pk
θ (at|st)

, 1 − ε, 1 + ε

)
Aθk

(at, st)

)

Aθk
(at, st) =

Tn

∑
t=t′

γTn−t′Rfinal + Rstep − b (8)

In the objective function, γ represents the discount factor, and its value is experimen-
tally set to 0.98. The clip value, denoted as ε, is set to 0.1. The superscript k denotes for
the generative model obtained after the last round of training. The estimated advantage
function Aθk

(at, st) incorporates a learnable value function b. The value function takes the
same molecular graph embedding obtained from the GCN layers and maps it to a scalar
representing the estimated expected reward. The probability of an action taken by the
generative model with parameter θ under state st, denoted as Pθ(at|st), is calculated using
Equation (2).

3.3. Performance Evaluation
3.3.1. Evaluation in Terms of Generating Valid Molecular Structures

We assessed the performance of several pre-trained generative models, including
the GCPNorigin (only enabling valency check during graph generation), the GCPNours,
DFM, and BFM (all three utilizing full substructure check, including valency check and
improper substructure detection, see Figure S4 in the Supporting Information). Each pre-
trained model was assigned the task of generating 50,000 molecules for evaluating validity,
uniqueness, and novelty as follows:

Validity =
Number of valid graphs

Number of generated graphs

Uniqueness =
Number of unique and valid graphs

Number of valid graphs

Novelty =
Number of unique and valid graphs not in the training set

Number of unique and valid graphs

Valid graphs were typically measured with respect to valency and bonds using RDKit’s
molecular structure parser.

3.3.2. Evaluation in Terms of Generating Useful Hits on a Specific Target Protein

To evaluate the effectiveness of METEOR in generating useful hits in a de novo drug
design scenario, we chose GBA as the target protein, which is included in the popular
LIT-PCBA benchmark for testing virtual screening methods [37]. The crystal structure
of GBA used in our test is obtained from the Protein Data Bank (PDB entry 2V3D) [38].
Two pre-trained generative models, namely, GCPNours and DFM, served as backends of
METEOR (denoted as METEORGCPN and METEORDFM, respectively, hereafter). Major
adjustable parameters in these models are in Equation (4), where the lower bound of QED,
SAScore, and binding affinity was set to 0.2, 3.5, and 5.5, respectively, and the upper bound
was set to 0.8, 2.0, and 8.5, respectively.

Our test was performed on a server equipped with two NVIDIA GeForce 2080Ti GPU
cards (11 GB memory), two Intel(R) Xeon(R) Silver 4210 CPUs @ 2.20 GHz, and 128 GB of
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RAM. After three days of reinforcement learning with 10 parallel processes, all generated
molecules were assessed in two aspects: Firstly, a total of 452 true binders of GBA were
curated from ChEMBL, which were identified by a “Target ChEMBL ID” of CHEMBL2179
and a “pChEMBL value” greater than 5.0 (for example, Kd or Ki value < 10 µM). Pairs of
molecules with an ECFP4 Tanimoto coefficient over 0.6 were defined as similar. The total
number of molecules generated by METEOR that were similar to true binders to GBA was
counted and analyzed. Secondly, the molecules generated by METEOR, filtered based on
QED value, SAScore, and binding affinity, were docked into the binding pocket of GBA by
using GLIDE in the standard precision (SP) mode in the Schrödinger software. To make a
comparison, the molecules in the ZINC 250k data set were docked into the binding pocket
of GBA following the same protocol.

4. Conclusions
In this work, we have developed a deep learning mode, called METEOR, for potential

application in de novo drug design. Compared to many other generative models already
described in the literature, METEOR has several distinct technical features.

Firstly, the backend agent of METEOR is based on the well-established GCPN model.
We have evaluated several graph traversal algorithms within a reinforcement learning
framework. Our findings indicate that depth-first graph generation (DFM) outperforms
breadth-first graph generation (BFM). Its outcomes closely align with those of the original
GCPN model in terms of validity, uniqueness, and novelty. This observation supports
the potential value of both METEORGCPN and METEORDFM in de novo drug design. As
demonstrated in the test case of GBA, without prior knowledge of true binders, both models
are able to generate molecules with superior properties compared to those in the ZINC
250k data set.

Secondly, in order to ensure the overall validity of the generated molecular structures,
we have implemented a set of chemical rules in METEOR to eliminate undesired substruc-
tures. In fact, if these rules are not enabled, a significant portion (~40%) of the generated
molecule structures would be undesirable. This demonstrates the importance of integrating
chemical knowledge into molecular structure generation, which has become a new trend in
this field (for example, see a new generative model published recently [39]).

Last, and very importantly, unlike many other generative models that focus on a single
objective, METEOR is designed to generate molecules with optimized traits regarding
binding affinity, drug-likeness, and synthetic accessibility. These several properties are all
indispensable for a successful candidate in the early phase of drug discovery. This makes
METEOR better suited for practical applications to drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules30010018/s1, Figure S1: Examples of valid but un-
wanted molecular structures; Figure S2: Examples of molecules with “ring closure” issue; Figure S3:
Distribution of QED, SAScore and PLANET binding scores of the known GBA binders collected from
ChEMBL; Figure S4: Valency check and improper substructure detection implemented in different
generative models.
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