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Abstract: Dry eye syndrome (DES) is a dynamic, chronic disease of the ocular surface and ocular
appendages caused by inflammation. The most common symptoms include redness, itching, and
blurred vision, resulting from dysfunction of the meibomian glands and impaired tear-film produc-
tion. Factors contributing to the development of DES include environmental elements, such as UV
radiation, and internal elements, such as hormonal imbalances. These factors increase oxidative
stress, which exacerbates inflammation on the surface of the eye and accelerates the development of
DES. In recent years, the incidence of DES has risen, leading to a greater need to develop effective
treatments. Current treatments for dry eye are limited and primarily focus on alleviating individual
symptoms, such as reducing inflammation of the ocular surface. However, it is crucial to understand
the pathomechanism of the disease and tailor treatment to address the underlying causes to achieve
the best possible therapeutic outcomes. Therefore, in this review, we analyzed the impact of oxidative
stress on the development of DES to gain a better understanding of its pathomechanism and examined
recently developed nanosystems that allow drugs to be delivered directly to the disease site.
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1. Introduction

Dry eye syndrome (DES) is a chronic, multifactorial disease that affects the surface of
the eye, characterized by progressive inflammation leading to inadequate or abnormal tear-
film production [1,2]. It is among the most prevalent conditions affecting the ocular surface,
particularly prevalent in individuals aged over 50 years and more frequently observed in
women [3]. Factors contributing to its prevalence include compromised immunity and
various underlying systemic, hereditary, and autoimmune diseases, as well as the use of
multiple medications concurrently [1,4,5].

Corneal neurosensory abnormalities are a prominent feature of dry eye syndrome,
arising from disturbances in corneal innervation. The cornea is the most densely innervated
tissue in the human body, facilitating rapid transmission of sensory information to higher
brain centers [6]. Common symptoms associated with these abnormalities include eye
redness, itching, a burning sensation, blurred vision, sensitivity to light, and the feeling of
a foreign body in the eye [6]. In severe cases of DES, vision loss can also occur [1,6].

Current treatments for diseases affecting the anterior segment of the eye rely heavily
on eye drops. Despite the availability of potent medications, many of them fail to achieve
the desired therapeutic outcomes due to limited bioavailability. Moreover, frequent dosing
requirements contribute to increased treatment costs. Although intraocular injections offer
improved bioavailability, their high patient burden limits their current use. Consequently,
efforts have been focused on developing novel drug delivery systems that enhance bioavail-
ability and are non-toxic. These systems utilize nanomaterials, in situ forming gels, and
combinations thereof [7–9].

Nanomaterials are characterized by their small size and dynamic properties, which
confer high bioavailability due to their physicochemical features such as shape, size, and
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structure. There are various types of nanomaterials including polymers, carbohydrates,
and metallic and non-metallic nanomaterials. By modifying their synthesis methods, it is
possible to control these properties to enhance their biological effects [10–12].

In this review, we will initially focus on the most common causes and pathophysi-
ology of dry eye syndrome, highlighting the role of oxidative stress in its development.
Subsequently, we will discuss state-of-the-art treatments aimed at reducing oxidative stress,
with a specific emphasis on the use of nanomaterials.

2. Common Causes and Pathophysiology of Dry Eye Syndrome

There are numerous factors contributing to the development of DES, categorized
into environmental (external stimuli) and internal (internal physiological factors) factors
(Table 1). Key environmental factors include UV radiation, dry and windy climates, and air
pollution [1,4,5]. Internal factors encompass hormonal imbalances, autoimmune conditions,
nerve damage, and gastrointestinal dysfunction. Each of these conditions plays a role in
the pathogenesis of dry eye syndrome [13,14].

Table 1. The examples of mechanisms of action of internal factors on the development of dry eye syndrome.

Etiology How It Leads to DES References

Hormonal imbalance

Androgens have been demonstrated to regulate the lacrimal glands’ fluid
and protein secretion by steroid-specific receptors in epithelial cells.
The effect of the lack of androgens is dysfunction of the lacrimal glands and
deficiency of tears.

[15–18]

Gut dysbiosis

Gut dysbiosis stimulates the migration of CD103 or CXCR1 dendritic cells, or
monocytes/macrophages, to the surface of the eye.
This contributes to the activation of T lymphocytes to secrete
pro-inflammatory cytokines on the surface of the eye and lacrimal glands.

[19,20]

Autoimmunity

Activated CD8 T cells are associated with the death of lacrimal gland
epithelial cells, reducing tear production.
CD4 T cells, as the main immune effectors, interact with macrophages,
causing inflammation and peripheral neuropathy of the lacrimal glands.

[21,22]

Nerve damage

Nerve damage causes a decrease in the sensitivity threshold of sensory
neurons or their excessive excitation.
This is related to malfunctioning ion channels affecting the generation and
propagation of action potentials.

[23,24]

The eye surface is a complex structure composed of multiple tissues that interact with
the circulatory, nervous, and hormonal systems to maintain proper eye function, including
tear-film secretion [25]. The primary causes of DES are deficiency in the lipid layer and
dysfunction of the meibomian glands [26].

Meibomian glands are sebaceous glands located in the eyelids; they secrete meibum,
which reduces surface tension and stabilizes the tear film. The most common dysfunction
of the meibomian glands involves obstruction of their openings and reduced efficiency in
delivering the oily component of the tear film, namely meibum. This dysfunction leads to
accelerated tear evaporation, diminished expansion of the tear film, inflammation, and an
increase in reactive oxygen species (ROS) levels, all of which exacerbate dry eye syndrome.
Obstructed meibomian glands may also contribute to the development of micro-injuries on
the eye’s surface due to frequent blinking [2,27].

The tear film is considered the antioxidant defense system in the anterior segment of
the eye. It is composed of three layers: a lipid layer (outer layer), a water layer (middle
layer), and a mucous layer (inner layer) (Table 2) [28]. This film contains various antioxidant
enzymes, such as superoxide dismutase and glutathione peroxidase, which are crucial for
maintaining the homeostasis of the ocular surface. It acts as a protective barrier between the
external and internal environments of the eye, guarding against infections and mechanical
damage while providing nourishment and oxygenation to the eye structures. However,
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factors such as aging, certain medications, or a poor diet can disrupt the function and
composition of the tear film (Figure 1). This disruption leads to inflammation and the
production of hyperosmolar tears [29–32].

Table 2. The structure of the tear film [5,28,33–36].

Type of Layer Composition Function

Lipid layer
(outer layer)

Non-polar wax esters (25.2%, e.g., fatty
esters, fatty alcohols), phospholipids
(4.5%), fatty acids (3.5%), and cholesterol
(free and esters 66.8%)

Delaying the evaporation of tears
Uniform distribution of the tear film
Maintaining a smooth eye surface

Aqueous layer
(middle layer)

Proteins (lysozyme, lactoferrin),
metabolites (includes peptides, lipids,
amino acids, nucleic acids, carbohydrates,
vitamins), inorganic salts (NaCl), glucose,
oxygen, and electrolytes (magnesium,
bicarbonate, calcium, urea)

Flushing out impurities and toxins
Moisturizing and protecting the surface of the eye
Calcium ions are essential for cell adhesion, aiding in the
stabilization and integrity of the ocular surface by
facilitating cell-to-cell and cell-to-matrix interactions.
Magnesium ions, meanwhile, act as coenzymes in various
protective processes on the eye surface, including
stabilization of cellular membranes and modulation of
oxidative stress responses.

Mucin layer
(inner layer)

Immunoglobulins, urea, inorganic salts,
glucose, and proteins

Ensuring even lubrication of the eye
Lowering surface tension and increasing the stability of
the tear film
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Micro-injuries to the corneal epithelium have significant implications for the adhe-
sion of mucins to the eye surface. Mucins, glycoproteins responsible for lubrication and 
minimizing friction during blinking, play a crucial role. Without adequate mucins, the 
cornea becomes hydrophobic, impairing the ability of the tear film’s aqueous components 
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tear film, triggering immune system activation and the onset of chronic inflammation 
[1,33]. 

Figure 1. Schematic of dysregulated tear film during DES and normal tear film.

Micro-injuries to the corneal epithelium have significant implications for the adhe-
sion of mucins to the eye surface. Mucins, glycoproteins responsible for lubrication and
minimizing friction during blinking, play a crucial role. Without adequate mucins, the
cornea becomes hydrophobic, impairing the ability of the tear film’s aqueous components
to function effectively. This leads to increased tear evaporation and destabilization of the
tear film, triggering immune system activation and the onset of chronic inflammation [1,33].

Disturbances in the tear film, dysfunction of the meibomian glands, environmental
factors, and internal factors are among the numerous causes contributing to the develop-
ment of dry eye syndrome. It is essential to note that the treatment approach for DES varies
based on the specific symptoms and underlying pathophysiology [28].

3. Oxidative Stress

Oxidative stress has been extensively studied for centuries, highlighting its profound
connection with disruptions in oxidation–reduction (redox) homeostasis. This imbalance
triggers redox reactions integral to nearly all metabolic processes, resulting in the over-
production of free radicals. These radicals encompass reactive nitrogen species (RNS),
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reactive oxygen species (ROS), reactive sulfur species (RSS), reactive carbonyl species
(RCS), and reactive selenium species (RSeS). Among these, RNS and ROS are particularly
significant, as their excess inhibits antioxidant mechanisms crucial for maintaining bodily
equilibrium. Consequently, oxidative stress is implicated in the development of various
disorders, including neurodegenerative diseases, degenerative conditions, cancers, and
ocular diseases [37–39].

3.1. Oxidative Stress Classification

Due to the wide array of compounds involved in oxidative stress pathogenesis, its
complexity, and the lack of a reliable technique for assessing ROS levels, there is currently
no universally accepted classification of oxidative stress. Efforts are ongoing to develop a
standardized method for assessing ROS levels and establishing a classification framework.
Initial steps have been taken toward this goal, proposing classifications based on intensity
and time course. Intensity-based classification aims to quantify the concentration of ROS-
modified molecules and the activity of antioxidant enzymes, allowing differentiation
between toxic oxidative stress and physiological levels (Table 3). However, experimental
validation of this classification framework is still lacking [38,40].

Table 3. The classification of oxidative stress according to intensity.

Intensity Classification Characteristics

Basal oxidative stress
Very low intensity of oxidative stress
No apparent symptoms
Oxidative–redox homeostasis

Low-intensity oxidative stress Slight increase in the level of ROS modifiable molecules
Increased activity of antioxidant enzymes

Strong oxidative stress Disturbed balance between oxidants and antioxidants
Significant predominance of oxidants

Very strong oxidative stress Maximum level of modifiable ROS particles
Minimal activity of antioxidant enzymes

Classification based on the time course considers the duration of persistently elevated
ROS levels triggered by factors such as oxidative stress inducers, accompanied by alter-
ations in gene expression aimed at neutralizing oxidative stress (Table 4). Chronic oxidative
stress is categorized into at least two subtypes: sustained ROS levels persistently higher
than baseline or intermittent ROS levels occasionally exceeding the normal range [38,40].

Table 4. The classification of oxidative stress according to time course.

Time-Course Classification Characteristics

Acute oxidative stress
Short-term increase in ROS levels, with change of conditions
(e.g., use of an oxidative stress inducer)
Highly effective antioxidant defense, restoring homeostasis
Presumed lack of stimulation of the expression of
ROS-neutralizing genes

Chronic oxidative stress
Long-term elevated levels of ROS, with change in conditions
(e.g., use of an oxidative stress inducer)
Strong stimulation of the expression of ROS-neutralizing
genes, due to weakened antioxidant defence

3.2. Role of Oxidative Stress in the Development of Dry Eye Disease

Under physiological conditions, free radicals are produced in moderate amounts to
support immune functions and participate in cellular respiration [41]. However, when
produced in excess, they can cause significant cellular damage.
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Cell membranes are particularly susceptible to damage due to their high lipid content.
Reactive oxygen species react with iron, initiating lipid peroxidation. This process disrupts
the integrity of cell membranes, interferes with signaling pathways, triggers inflammatory
responses, and can even lead to apoptosis [42,43].

Additionally, ROS induce various types of oxidative damage to DNA and RNA,
altering gene expression and disrupting intercellular information transfer, thereby compro-
mising organ and tissue functionality. DNA dysfunction can also impact protein expression
and modification, impairing numerous enzymatic reactions and signal transduction path-
ways [41,44].

The eye, positioned and structured as it is, is highly vulnerable to cellular damage due
to the compounded impact of external reactive oxygen species on its anterior segment and
diminished antioxidant defenses. External sources of ROS encompass direct exposure to
oxygen, light, and ultraviolet radiation. These factors disrupt oxidation processes, leading
to molecular alterations in ocular structures and consequently contributing to the onset of
oxidative stress-related eye conditions such as dry eye syndrome [37].

4. Nanomaterials and Drug Delivery to the Eye

Nanocarriers are composed of particles ranging in size from 10 to 1000 nm and possess
specific surface charges. These diverse sizes enable numerous applications in the biomedical
field. The surface charge plays a crucial role in retaining nanocarriers at targeted locations.
Zeta potential (ZP) serves as an indicator of the physical stability of these nanosystems.
A ZP value around ±20 mV is optimal for electrostatic attachment to the corneal surface
This parameter is crucial for maintaining the stability of nanodispersions. When particles
possess high Zeta potential with the same charge, they repel each other due to repulsive
forces, which prevents their aggregation [45].

In ophthalmic delivery, the cornea and conjunctiva surfaces typically carry a negative
charge. Therefore, cationic nanoparticles can be attracted to these surfaces through electro-
static interactions. This attraction facilitates the adherence and retention of nanoparticles
on the ocular tissues, improving drug-delivery efficiency [45].

The retention of cationic nanoparticles on negatively charged eye tissues facilitates
localized drug delivery to the anterior segment of the eye. In contrast, when cationic
nanoparticles are injected intravitreally, they disperse and accumulate throughout the
vitreous, while anionic particles have the capability to diffuse into the retina. The ability
of nanocarriers to deliver therapeutics to specific sites within the eye is attributed to their
nanoscale size and surface properties [45].

Nanomedicines encompass polymer–drug conjugates and nanoparticle systems, which
share similarities due to the extensive advancements in drug delivery technologies [45].

According to World Health Organization statistics, at least 2.2 billion people suffer
from visual impairment or blindness, with approximately half of these cases being pre-
ventable [46]. This statistic highlights the critical need for advanced drug delivery strategies
in ocular therapies to address and potentially reduce preventable visual impairments.

Traditionally, drugs are delivered to the eye through local or systemic routes. These in-
clude a variety of delivery systems such as eye drops (solutions, suspensions, and emulsions),
in situ gelling formulations, eye pads, contact lenses, punctal plugs, intraocular injections,
and implants, all designed to enhance the effectiveness of drug delivery to the eyes [47].

Conventional topical drug administration plays a crucial role in treating eye diseases,
but it suffers from low drug availability. Less than 5% of the total dose administered
via eye drops reaches the inner tissues of the eye. The small surface area of the eye
limits the volume of liquid formulation that can be applied to about 30 µL. Moreover,
most of the drug is quickly removed from the ocular surface due to lacrimal turnover,
blinking, and nasolacrimal drainage (Figure 2) [47]. This necessitates frequent instillation
of eye drops throughout the day, which can cause inflammation of the ocular surface and
temporary blurred vision. Moreover, long-term frequent use of topical medications can lead
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to discomfort and damage to the ocular surface. Conversely, invasive intraocular injection
surgery increases patient reluctance due to potential side effects and complications [48,49].
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Conventional ophthalmic therapy faces numerous anatomical barriers, making it
challenging to effectively deliver drugs to the ocular surface. Recent advancements in
bioadhesive gelation systems in situ and nanotechnology-based drug delivery systems
are increasingly sought after to overcome these challenges. Nanocarrier-based therapeutic
delivery systems have been developed to facilitate sustained and targeted drug delivery to
both the anterior and posterior segments of the eye, thereby reducing side effects [48,49].

The utilization of nanomaterials for drug delivery to the eye enhances the efficacy of
therapies for eye diseases (Figure 3) [47,49].
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4.1. Polymer Nanomaterials

Polymeric nanomaterials encompass various types such as polymeric nanoparticles
(NPs), polymeric micelles, dendrimers, polymer hydrogels, and polymer nanofibers. These
materials can be engineered with specific properties tailored to their intended applications [50].
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4.1.1. Polymeric Nanoparticles

Polymer nanoparticles are categorized into nanospheres, which are solid spheres
formed from cross-linked polymers and nanocapsules, which have a small liquid core
surrounded by a polymer membrane. In nanospheres, the drug is either adsorbed on the
surface or trapped within the particle, whereas in nanocapsules, the drug can be adsorbed
on the surface of the capsule or encapsulated within the liquid core [51]. These nanoparticles
are composed of synthetic polymers such as polylactic acid, poly-L-lysine, polyglycolic
acid, and polyethylene glycol or natural polymers like gelatin, chitosan, heparin, starch,
and CS [50,51]. They are known for their enhanced bioavailability, adhesion, and prolonged
residence time [49].

Poly(Lactic and Co-Glycolic Acid) Nanoparticles (PLGA NP) Encapsulating Xanthohumol

PLGA nanoparticles (NPs) serve as safe carriers for delivering hydrophobic molecules
to the ocular surface. Ghosh et al. [52] demonstrated that PLGA NPs encapsulating xan-
thohumol, a natural compound found in hops known for enhancing the endogenous
antioxidant response and directly neutralizing reactive oxygen species (ROS) as a polyphe-
nol chalcone, reduced oxidative DNA damage in corneal epithelial cells in vivo in a mouse
model of dry eye syndrome induced by drying stress and scopolamine. This study con-
firmed the cytoprotective effect of xanthohumol-encapsulating PLGA NPs against oxidative
stress-induced damage in human corneal epithelial cells (HCE-T) in vitro [52].

After PLGA NPs release xanthohumol into the cell, the α,β-unsaturated ketone struc-
ture of xanthohumol allows it to covalently bind to a cysteine residue in the cytosolic
repressor protein Kelch-like ECH-associated protein 1 (Keap1). This binding prevents
Keap1 from targeting the nuclear factor erythroid 2-related factor 2 (Nrf2) for degradation
via the proteasome pathway. As a result, Nrf2 is stabilized and translocates to the nucleus,
where it binds to antioxidant-responsive element (ARE) sequences in the genome. This
binding activates the transcription of antioxidant genes, thereby enhancing the cellular
antioxidant response (Figure 4) [53].
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responsive element; HO-1—heme oxygenase 1; NQO1—NAD(P)H:quinone oxidoreductase 1; Trx1—
thioredoxin 1; TrxR1—thioredoxin reductase 1; ROS—reactive oxygen species). Parts of the figure
were drawn using pictures from Servier Medical Art, licensed under Creative Commons Attribution
4.0 International.
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Poly(Catechin) Capped-Gold Nanoparticles (Au@Poly-CHNPs) Carrying Amfenac [AF; A
Nonsteroidal Anti-Inflammatory Drug (NSAID)]

Au@Poly-CH NPs are composed of catechin (CH), gold nanoparticles, and amfenac
(AF). Gold nanoparticles are synthesized through a redox reaction between tetrachloroauric
(III) acid (HAuCl4) and catechin, where gold forms the core and catechin forms the shell [54].
Amfenac (2-amino-3-benzobenzeneacetic acid) is a nonsteroidal anti-inflammatory drug
(NSAID) and the active metabolite of nepafenac. AF effectively inhibits the activity of
both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes [55]. This novel
treatment developed by Li et al. [56] aims to mitigate damage to ocular surface tissue in
dry eye syndrome by concurrently addressing cyclooxygenase-induced inflammation and
ROS-induced oxidative stress (Figure 5). Researchers have demonstrated that Au@Poly-CH
nanoparticles exhibit notable activity in scavenging superoxide anions [56].
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Antioxidant and anti-inflammatory effects of these nanoparticles were tested on a
rabbit model of dry eye syndrome and assessed using DCFH-DA for oxidative stress and
prostaglandin E2/VEGF assays for inflammation, respectively. Hematoxylin and eosin
(H&E) staining revealed improvements in corneal normality and thickness compared to
the control group, with a significant increase in the number of goblet cells. These findings
suggest that Au@PolyCH nanoparticles loaded with nonsteroidal anti-inflammatory drugs
represent a promising multifunctional nanocomposite for treating DES [56,57].

PLGA Nanoparticles Loaded with Cyclosporine A (CsA) and Cyclosporine A Lipid
Nanocapsules (CsA-LNC)

Topical 0.05% cyclosporine A (CsA), formulated as a mixture of immiscible compo-
nents and surfactants including castor oil, glycerin, polysorbate 80, is the first artificial
therapeutic tear approved by the Food and Drug Administration (FDA) for the treatment
of DES. Currently, CsA eye drops are primarily formulated in oily preparations [58,59].
Cyclosporine A, a potent immunosuppressive drug, exerts several effects including the
prevention of opening transition pores of mitochondrial permeability, thereby inhibiting
the release of cytochrome c and reducing apoptosis (Figure 6) [60,61]. CsA also plays a role
in inhibiting apoptosis of conjunctival goblet cells and lacrimal lobular cells by regulating
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mucin synthesis and secretion [59]. Furthermore, the mechanism of action of cyclosporine
A involves the inhibition of calcineurin activation [61].

Calcineurin translocates into the nucleus where it binds to the nuclear factor of ac-
tivated T cells (NFAT), thereby modulating immune responses and inflammation. This
complex is responsible for the transcription of pro-inflammatory cytokines in the nucleus
of the cell, such as interleukins (IL-2, IL-3, IL-4, IL-5), tumor necrosis factor alpha (TNF-α),
and transforming growth factor beta (TGF-β). These cytokines play crucial roles in immune
responses, inflammation, and tissue remodeling processes [61].

CsA enters the cytoplasm of lymphocytes and binds to cyclophilin (CyP). This complex
inhibits calcineurin (Cn), preventing the transcription of cytokine genes, particularly IL-2,
which is crucial for T cell replication. Therefore, cyclosporine A is a potent inhibitor of T
cell proliferation [61]. Additionally, CsA blocks the expression of immune mediators such
as IL-1β, TNF-α, and especially IL-6, thereby inhibiting the recruitment of T lymphocytes
and their immune response [62].

Studies have demonstrated that nanoparticles offer sustained drug release at the
injection site and within ocular tissues, persisting for an extended period after uptake
by epithelial cells. This interaction ensures optimal contact of the drug preparation with
the ocular mucous membrane. CsA-loaded PLGA nanoparticles have shown significant
potential as effective drug delivery systems [63].

The lipid nanoconstruct (LNC) consists of a lipid core surrounded by a cohesive
coating with a tensile effect, serving as a versatile carrier for the nanoencapsulation or
nano-association of drugs. Studies have demonstrated that CsA-LNCs effectively inhibit
IL-2 production, thereby suppressing T lymphocyte activation. CsA-LNCs also promote
corneal epithelial regeneration and exhibit anti-inflammatory effects in the cornea. Topical
administration of CsA-LNCs has been shown to be more effective in treating dry eye
syndrome (DES) compared to CsA emulsion, attributed to the higher bioavailability of
CsA-LNCs in DES target tissues than CsA emulsion [64].
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Figure 6. Mechanism of action of cyclosporine A. (1) Binds with cyclophilin (CyP) complex and
inhibits dephosphorylation of nuclear factor of activated T (NFAT) cells, by inhibiting calcineurin (Cn)
activation and the subsequent release of interleukin 2. (2) Inhibits nuclear factor κB (NFκB) activation
by inhibiting the phosphorylation, ubiquitination, and subsequent degradation by the proteosome
of inhibitor-of-kappaB (IκBα) bound to NF-κB and the subsequent release of pro-inflammatory cy-
tokines. (3) Induces T cell apoptosis, caspase activation, and mitochondrial permeability transition
pore (MPTP) opening. (4) Inhibits intrinsic mitochondrial pathway, caspase activation, and apopto-
sis [61,65]. Parts of the figure were drawn using pictures from Servier Medical Art, licensed under
Creative Commons Attribution 4.0 International.
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Polyglycolic Acid-Loaded Tetrandrine Nanoparticles

Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from the Chinese plant
Stephania tetrandra S.Moore [66]. It possesses various pharmacological effects, including
anti-inflammatory properties, promotion of cell apoptosis, antiaggregation effects, blocking
of Ca2+ channels, immunosuppressive effects, and scavenging of free radicals. However,
due to its low solubility in water, TET has limited bioavailability in the eye and short
retention time in the cornea [67,68].

Commercial formulations of TET, when administered topically, increase tear volume,
leading to rapid drainage of excess fluid through the nasolacrimal duct, resulting in more
than 85% of the administered dose being lost before reaching the corneal surface. Therefore,
there is a critical need to develop an effective ocular delivery system that enhances corneal
targeting and increases drug concentration on the corneal surface, thereby improving
therapeutic efficacy [68].

Polyglycolic acid-loaded tetrandrine nanoparticles (Tet-ATS@PLGA) in a rabbit model
of dry eye syndrome were examined. Artificial tear substitutes (ATSs) were also employed
to lubricate the cornea and reduce tear evaporation [69]. Studies demonstrated that Tet-
ATS@PLGA nanoparticles had a Zeta potential of 23.58 ± 0.78 mV, which enhances their
adaptation to the negatively charged environment of the ocular surface following modifica-
tion. Furthermore, this nanodrug effectively induced apoptosis in inflammatory corneal
epithelial cells, leading to inhibition of the expression of vascular endothelial growth factor
(VEGF), interleukin-1β (IL-1β), prostaglandin E2 (PGE2), and tumor necrosis factor-α
(TNF-α). This positive effect contributed to the recovery of corneal epithelial thickness.
Although the lacrimal gland in DES rabbits did not fully recover after 2 weeks of treatment
(with the amount of tears secreted still lower than in healthy rabbits), there was significant
improvement observed. Additionally, tetrandrine also contributed to reducing intraocular
pressure [68].

In conclusion, Tet-ATS@PLGA nanoparticles represent a promising new approach for
the treatment of dry eye syndrome.

Grape Seed Nanochats

The study published by Wang et al. [70] introduces GSP nanoparticles (GSP NPs) syn-
thesized from grape seeds using polymerization in the presence of the enzyme horseradish
peroxidase (HRP) and hydrogen peroxide. They investigated the antioxidant effects of
these nanoparticles on DES using an experimental mouse model where benzalkonium
chloride was locally applied to induce tear-film cracking and drying (Figure 7).

1 
 

 

Figure 7. Production of GSP nanoparticles and the effect of antioxidants on free radicals. (H2O2—
hydrogen peroxide; HRP—horseradish peroxidase; HOO−—hydroperoxyl radical; GSP NPs—grape
seed nanoparticles).
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Grape seeds are a concentrated source of polyphenolic compounds, including pro-
cyanidin, catechin, epicatechin, gallocatecol, and gallic acid, noted for their excellent
biocompatibility and bioavailability [71]. Polyphenols act as potent antioxidants, effectively
reducing the production of free radicals through the Fenton reaction [72]. Their structure
allows for the delocalization of electrons, enabling them to capture radicals and inhibit
the initiation stage of chain oxidation, thus preventing lipid oxidation [73]. Additionally,
polyphenols can act as radical scavengers by transferring a hydrogen atom from their
active hydroxyl groups to free radicals, resulting in the formation of a phenolic radical
and a stable quinone structure. These phenolic radicals can further react with other free
radicals to enhance their antioxidant effect [74]. It has been demonstrated that eye drops
containing grape seed polyphenol nanoparticles effectively control oxidative stress levels
and reduce apoptosis rates in the corneal epithelial and conjunctival cells of mice with dry
eye syndrome [70].

Gelatin-Based Nanoparticles

Gelatin is a natural polymer derived from collagen and has gained significant atten-
tion in recent years due to its favorable properties, including its structure, non-toxicity,
biodegradability, and multifunctionality. Gelatin is produced through the partial hydrolysis
of collagen using bases, heat, and acids. It contains the amino acid sequence arginine-
glycine-aspartic acid, which facilitates modification of cell adhesion. Given its structural
characteristics and the abundance of functional groups, gelatin’s structure and function
can be modified by adjusting factors such as temperature, gelatin concentration, and the
energy required to form secondary structures. This versatility enables gelatin to be used
for targeted drug delivery to cells and tissues. By varying the cross-linking density of
gelatin particles, different drug release profiles can be achieved, allowing for personalized
treatment tailored to the severity of dry eye syndrome [75–77].

Several techniques have been developed to produce gelatin-based nanomaterials for
drug delivery systems (DDSs), including mechanical methods (such as emulsion and spray
drying) and physicochemical methods (such as precipitation and desolvation). Regardless
of the technique used, a common step involves the use of chemical cross-linking agents
(such as formaldehyde, glutaraldehyde, and genipin) to achieve the desired degradation
profiles for DDSs [78,79].

In the study, gelatin was combined with cinnamic acid to create a photocross-linked
hydrogel (GelCA). Cinnamic acid contains carboxyl groups that facilitate chemical cross-
linking with gelatin lysine residues through amide bonds. Additionally, the phenyl group
in cinnamic acid enhances the affinity of GelCA for the adsorption of lipophilic molecules,
thereby supporting the development of effective drug delivery systems [75,80,81].

It has been demonstrated that GelCA alters its viscosity when exposed to UV radiation,
transforming into a slightly elastic material that is resistant to stretching and mechanical
damage. The study utilized three types of GelCA hydrogels: GelCA alone, GelCA combined
with polydopamine (PDA@GelCA) nanoparticles, and GelCA combined with curcumin-
loaded polydopamine nanoparticles (Cur@PDA@GelCA) [82]. Cur@PDA@GelCA exhibits
excellent adhesive and antioxidant properties, while PDA@GelCA possesses antioxidant
and anti-inflammatory properties, making it beneficial for treating diseases associated with
oxidative stress and inflammation [83].

The effectiveness of scavenging free radicals and purifying the hydrogels was evalu-
ated. The GelCA hydrogel demonstrated a free radical-scavenging efficiency of approxi-
mately 16.7%. It was found that increasing the concentration of nanoparticles enhanced
both the ROS-scavenging efficiency and the purification effectiveness. At a nanoparti-
cle concentration of 80 µg/100 µL of hydrogel, the ROS-scavenging efficiency improved
to 72.1% and 91.9%, respectively. Additionally, these hydrogels were shown to protect
retinal cells from oxidative stress-induced damage, with no evidence of tissue atrophy
post-application, indicating excellent biocompatibility and non-toxicity [79,84].
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The impressive properties of gelatin-based nanomaterials suggest their potential as a
future solution for treating oxidative stress-related diseases such as dry eye syndrome.

4.1.2. Hydrogels

Hydrogels are composed of polymer chains capable of binding large amounts of water.
These polymers can be natural, semi-synthetic, or synthetic, including substances like
methylcellulose, chitosan, and hyaluronic acid (HA). Their three-dimensional structure
is key to their potential, as it facilitates the binding of various medicinal substances, en-
abling targeted drug delivery. Additionally, the physical properties of hydrogels can be
adjusted by altering temperature, ionic strength, or pH, which controls the rate of degra-
dation and supports prolonged drug release on the eye surface. Due to these properties,
hydrogels are extensively utilized in ophthalmology as materials for eye drops, contact
lenses, implants, eye patches, and platforms that carry reactive oxygen species-scavenging
substances [85–87].

Soft Hydrogel Based on Hyaluronic Acid

A soft hydrogel based on hyaluronic acid was developed through the chemical cross-
linking of a hyaluronic acid polymer modified with vinylsulfone (VS) and thiol (SH) groups.
HA was chosen for its ubiquitous presence in the body and its versatile effects, as discussed
earlier in the article. The study demonstrated that this hydrogel possesses high elasticity
and viscosity similar to traditional eye drops, while also being comfortable to use without
causing discomfort post-application [88,89].

The effectiveness of soft hydrogels in treating dry eye disease (DES) was evaluated in
a study conducted on dogs. The hydrogel was administered using an eye-drop applicator
twice daily, alongside ongoing cyclosporine treatment. The study found that dogs not
responding to cyclosporine alone experienced reduced symptoms with the addition of the
soft hydrogel. Improvements included increased tear production, reduced conjunctival
hyperemia, decreased corneal inflammation, and overall enhancement in the structure of
the eye surface. These benefits are attributed to the hydrogel’s high biocompatibility and
its capability for prolonged drug release [89,90].

The soft hydrogel based on HA, due to its prolonged action, enables less frequent ap-
plication without increasing the risk of aggravating the disease, thereby reducing treatment
costs. An additional key benefit is the stabilization of the corneal tear film. Cross-linked
hyaluronic acid, in comparison to its non-cross-linked counterpart, exhibits superior rhe-
ological properties and a viscosity that more closely resembles the natural condition of
the eye surface. Considering all these factors, this formulation represents a promising
advancement in the treatment of dry eye [90,91].

Thermosensitive Hydrogels

Thermosensitive hydrogels, such as those based on poly(N-isopropylacrylamide)
(PNIPAM), are notable for their ability to alter physical properties with temperature changes.
PNIPAM, which contains both hydrophilic and hydrophobic groups, transitions to a sol
state below 32 ◦C, facilitating targeted drug release through minor temperature adjustments
at the desired site. Despite its many benefits, PNIPAM-based hydrogels have notable
drawbacks, including poor mechanical strength, limited drug-loading capacity, and low
biodegradability. To overcome these limitations, it is suggested to blend PNIPAM with
other polymers such as hyaluronic acid and carboxymethyl chitosan, which can enhance
the mechanical properties and overall functionality of the hydrogel [92].

One of the applications of thermosensitive hydrogels is the targeted transport and
release of drugs to hard-to-reach areas, such as the deeper layers of the eye. These hydro-
gels work by initially binding the drug; upon administration, they respond to temperature
changes, altering their structure and state, which triggers the release of the encapsulated
drug. Studies have shown that using thermosensitive hydrogels can achieve drug concen-
trations at the target site that are 100 times higher than those obtained through systemic
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drug administration. This delivery mechanism offers a less invasive alternative to tra-
ditional treatment methods, such as surgery. Ongoing research aims to enhance this
technology, which already shows significant promise in treating conditions like dry eye
syndrome [93–95].

Reactive Oxygen Species-Scavenging Hydrogels

Reactive oxygen species are a primary factor in the development of dry eye syndrome
and other conditions related to oxidative stress [37,38]. In cases of dry eye syndrome,
excessive ROS can cause irreversible damage to the retina and dysfunction of the meibomian
glands, often exacerbating the disease and leading to persistent symptoms. Although the
natural antioxidant defense system can reduce some of the excess ROS, it is often insufficient,
prompting the search for new methods of ROS elimination [37,41,96].

ROS-scavenging hydrogels have become widely used in medical applications, aiding
in wound healing, bone regeneration, and the treatment of eye diseases. These hydro-
gels provide antioxidant substances that effectively scavenge ROS, offering therapeutic
benefits [96,97].

Nanoparticles encapsulated within hydrogel capsules can be either organic (e.g.,
phenol or aniline) or inorganic (e.g., cerium oxide, iron oxide, or manganese oxide). The
action mechanism of these inorganic nanoparticles involves altering the redox potential
by changing the oxidation state of the metals, which facilitates the removal of ROS from
inflamed areas. By selecting different types of inorganic nanoparticles to incorporate into
the hydrogels, it is possible to tailor the final therapeutic effects to specific needs [86,98,99].

Organic hydrogels, such as those containing phenolic groups derived from substances
like dopamine, curcumin, or gallic acid, eliminate ROS through electron and proton transfer.
Their potent antioxidant properties help protect cells from the damaging effects of ROS,
thereby accelerating the regeneration of damaged tissues. Additionally, some of these
hydrogels are enhanced with antibacterial agents, further aiding in the elimination of
potential biological pathogens [86,100,101].

Hydrogels offer numerous advantages, including biocompatibility, flexibility, mechan-
ical stability, and non-toxicity. By modifying their composition, it is possible to tailor their
properties for optimal therapeutic effects. This versatility enables their widespread use
across various medical and scientific research applications [86,102].

Lysine-Carbonized Mucoadhesive Nanogels

Lysine-carbonized nanogels (Lys-CNG), which are drug-free, carbonized nanomateri-
als, were studied for use in DES. These nanogels are produced from lysine hydrochloride
through thermal polymerization and carbonization, transforming lysine into nitrogen-
doped, cross-linked polymers. Pyrolysis of lysine hydrochloride was performed at temper-
atures of 240, 260, or 280 ◦C, resulting in Lys-CNG-240, Lys-CNG-260, and Lys-CNG-280,
with Zeta potential values of 11.4, 22.8, and 37.3 mV, respectively. ZP analysis suggests
that the cationic Lys-CNG-260 enhances mucosal adhesion and was found to be the most
effective at reducing corneal epithelial damage in a rabbit model of DES [103].

Lysine influences the Nrf2 signaling pathway, which is dependent on the mitogen-
activated protein kinase p38 (p38 MAPK/Nrf2). It increases Nrf2 levels and boosts the
expression of antioxidant enzyme genes, thereby neutralizing oxidative stress [104,105].

Carbon nanomaterials, known for their free radical-scavenging activities, act as both
electron donors and acceptors [106]. This dual functionality allows them to serve as
either antioxidants or pro-oxidants. Their functional groups, namely carboxyl and amine,
contribute to the antioxidation process by transferring a hydrogen atom, an electron,
or both [107]. Some studies have shown that antioxidant activity is linked to the sp2
carbon network, which involves the formation of radical adducts, spin delocalization,
and radical destruction [106]. Additionally, doping heteroatoms into nanomaterials is an
effective strategy to enhance electron transfer, thereby improving nanozyme-mimicking
activity [108].
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Research indicates that Lysine-carbonized nanogels (Lys-CNG) possess antioxidant
and anti-inflammatory properties, and their strong mucoadhesive properties increase re-
tention time on the eye surface. This extended contact reduces the frequency of drug
administration needed, demonstrating high biocompatibility with corneal epithelial cells
both in vitro and in vivo. Lys-CNG is thus recognized as having significant potential as a
long-term therapeutic agent for DES [103]. Moreover, carbon-based nanomaterials effec-
tively remove ROS from mammalian cells and living tissues while reducing inflammatory
responses with relatively few side effects, making them highly biocompatible and excellent
candidates for nanodrugs in the treatment of eye diseases [109].

4.1.3. Nanoemulsions

Nanoemulsions (NEs) are a stable, lipid-based form often used as artificial tears.
Thanks to their properties that mimic the natural tear film, artificial tears help reduce tear
evaporation from the eye surface, thus aiding in the regeneration of the damaged lipid
layer [110]. NEs consist of water and oil in various combinations, allowing them to be
either oil dispersed in water or water dispersed in oil. These formulations also include
cationic surfactants. Due to their small size, nanoemulsions can easily penetrate barriers,
facilitating rapid delivery of medications to the sites affected by the disease [111].

The water phase of the nanoemulsion hydrates the eye by enhancing the water layer
of the tear film. The oil phase, once released, helps reduce tear evaporation by integrating
with the lipid layer. Additionally, surfactants in the NE stabilize its structure and increase
the bioavailability of the drug [112].

Cyclosporine A Nanoemulsion

Cyclosporine A is an anti-inflammatory drug used long-term to enhance tear produc-
tion in the treatment of dry eye syndrome. CsA is traditionally available in an emulsion
that includes castor oil and glycerin to improve its solubility [113]. However, due to
adverse reactions such as burning and itching, adherence to medical recommendations
for CsA emulsion has been challenging. Consequently, 0.05% CsA has been formulated
into nanoemulsions that are non-toxic, non-irritating, and user-friendly. Studies have
shown that CsA nanoemulsions offer improved stability, bioavailability, and treatment
efficacy [114,115].

Studies have shown that 0.05% cyclosporine nanoemulsion, due to its small particle
size, achieves better absorption than traditional cyclosporine emulsions. Consequently,
the drug can penetrate deeper into the eye structures and remain effective for a longer
duration. It was found that the use of CsA nanoemulsion reduces inflammation in the
lacrimal gland, enhances the stability of the tear film, and increases the volume of tears
produced. This increase is attributed to a rise in the number of goblet cells and enhanced
mucin secretion [58]. Moreover, compared to CsA emulsion, nanocyclosporine demon-
strated noticeable improvements in patient conditions as early as after four weeks of use,
whereas traditional cyclosporine required up to twelve weeks to show similar effects. This
accelerated effectiveness may be attributed to the reduced adverse reactions associated
with nanocyclosporine, which facilitates more consistent and comfortable usage of the
preparation [114,115].

Nanoemulsion of Propylene Glycol and Hydroxypropyl Guar (PG-HPG)

Hydroxypropyl guar (HPG) serves as a viscosity-increasing and thickening agent in
eye drops. When combined with borate, it enhances the retention of active soothing agents
like propylene glycol. Additionally, antibacterial agents are incorporated to mitigate the
risk of contamination during production, and sorbitol is used to optimize the viscosity of
the drops. These drops are specifically designed for individuals with DES caused by lipid
or water deficiencies (Figure 8) [116].
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The PG-HPG nanoemulsion works by forming a protective barrier on the surface
epithelium through an HPG/borate mesh. This mesh facilitates the secretion of lipids into
the tear film, maintaining its function even when the eye’s pH is stabilized [116].

The anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) is released to
fill the lipid gaps caused by dry eye syndrome. This action helps reconstruct the eye’s
structure, reducing friction between blinks and maintaining the stability of the tear film.
By ensuring an adequate lipid level, it also reduces inflammation triggered by oxidative
stress, thus preventing disease progression [117]. Furthermore, studies indicate that PG-
HGP nanoemulsion is also beneficial for contact lens wearers, extending the duration of
comfortable lens use by alleviating eye dryness [118].

The release of the anionic phospholipid DMPG in PG-HPG nanoemulsion eye drops
has been shown to effectively treat patients with DES, without the risk of adverse reactions.
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Many symptoms of DES are alleviated after just 28 days of use, allowing for the restoration
of ocular surface health and controlling the progression of the disease [119,120].

4.1.4. Nanopreparation: Polyphosphobetaine Functionalized with p(MPC-Co-DMA) Catechols

A catechol-functionalized polyphosphobetaine copolymer, p(MPC-co-DMA), com-
posed of 2-methacryloxyethylphosphorylcholine (MPC) and dopamine methacrylamide
(DMA) monomers, was synthesized through random free radical copolymerization [121].
In this copolymer, DMA forms a hydrophobic core while MPC contributes hydrophilic
coatings [122]. The polymer, p(MPC), is zwitterionic, containing equal numbers of cationic
and anionic functional groups. This structure allows water molecules to form a permanent
hydration layer around the polymer, attracted by ionic solvation to the charged functional
groups [123]. Due to its hydrophilic nature, p(MPC) effectively retains water on the cornea,
thereby reducing dehydration of the eye [124].

P(MPC) is engineered to mimic the structure of human biomembranes, which min-
imizes adverse bodily reactions [125]. The DMA monomer plays a key role in scaveng-
ing reactive oxygen species, thereby extending the retention time on the ocular surface
and prolonging the copolymer’s therapeutic effects [121]. The ROS-scavenging ability of
p(DMA-co-MPC) is largely due to the hydroquinone groups present in the DMA compo-
nents. Studies on ROS removal in vitro using p(DMA-co-MPC) demonstrated significant
efficacy: at a 4.0 mg/mL concentration in a 1:1 molar ratio, more than 95% of O2•– radicals
were eliminated, and at 2.0 mg/mL, 83% removal efficiency was achieved for O2•–. When
the concentration was increased to 4.0 mg/mL, nearly all OH• radicals were removed. This
indicates that the antioxidant capacity of p(DMA-co-MPC) is directly proportional to its
DMA content [122].

The combination of MPC’s lubricating effects and DMA’s radical-scavenging ability
enables the nanoagent to effectively alleviate both tear-film hyperosmolarity and corneal
inflammation. Research indicates that after a single application of p(MPC 1-co-DMA 1)
at a 1 mg/mL dosage, significant inhibition of cell apoptosis and the expression of pro-
inflammatory factors such as IL-6 and TNF-α can be observed within four days. These
properties underscore the potential of this nanoformulation as a promising bioactive eye
drop for DES treatment (Figure 9) [121].
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Figure 9. Scope of action of p(MPC-co-DMA) in dry eye therapy.
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4.1.5. Carbohydrate-Based Nanomaterials (Charged Polysaccharides—Glycosaminoglycans)

Carbohydrates are naturally occurring biomolecules involved in numerous metabolic
processes, including enzyme transport, cell migration, immune responses, and intercellular
interactions. Their structural diversity and unique properties such as low toxicity, biodegrad-
ability, and hydrophilicity have made them ideal for synthesizing nanocarriers [126].

These nanomaterials, which can be derived from complex polymers or monosaccha-
rides, gain enhanced utility through chemical modifications. Additionally, the abundant
hydroxyl groups in polysaccharides facilitate non-covalent bioadhesion with tissues, which
improves drug targeting. Consequently, carbohydrate-based nanomaterials are utilized
in various fields including tissue engineering, modern drug delivery systems, and energy,
with promising potential for biomedical applications [127].

Hyaluronic Acid

Hyaluronic acid is a large, linear polysaccharide composed of repeating units of N-
acetyl-D-glucosamine and D-glucuronic acid, which are linked by β-1,3 or β-1,4 glycosidic
bonds (Figure 10). It is synthesized by most cells at various stages of the cell cycle, mak-
ing it ubiquitous throughout the body. HA plays critical roles in numerous biological
functions, including cell proliferation, differentiation, tissue regeneration, and remodeling
processes [128].

Molecules 2024, 29, x FOR PEER REVIEW 18 of 27 
 

 

utilized in various fields including tissue engineering, modern drug delivery systems, and 
energy, with promising potential for biomedical applications [127]. 

Hyaluronic Acid 
Hyaluronic acid is a large, linear polysaccharide composed of repeating units of N-

acetyl-D-glucosamine and D-glucuronic acid, which are linked by β-1,3 or β-1,4 glycosidic 
bonds (Figure 10). It is synthesized by most cells at various stages of the cell cycle, making 
it ubiquitous throughout the body. HA plays critical roles in numerous biological func-
tions, including cell proliferation, differentiation, tissue regeneration, and remodeling 
processes [128]. 

 
Figure 10. The schematic structure of hyaluronic acid. 

HA is found in high concentrations in soft connective tissues and is also naturally 
present in the tear film, outer cornea, and vitreous humor. Its properties and biological 
effects can be tailored by altering its molecular weight or concentration, was well as 
through chemical modifications. For instance, low molecular weight HA exhibits pro-in-
flammatory properties and lower viscosity, whereas high molecular weight HA is charac-
terized by anti-inflammatory properties and greater viscosity [129]. Given its anti-aging, 
anti-proliferative, immunomodulating, and tissue-repairing properties, HA is increas-
ingly viewed as pivotal to the future of the biomedical industry, including ophthalmology 
[130,131]. 

Hyperosmolarity of the tear film is a primary factor in the development of dry eye 
syndrome, leading to ocular surface damage, inflammation, and pain [132]. HA, with its 
high content of hydroxyl groups that attract water molecules, significantly enhances the 
properties of the tear film. Literature reviews indicate that treating DES with hyaluronic 
acid increases the viscosity of the tear film, prolongs its retention on the eye surface, en-
sures its even distribution, and reduces the risk of mechanical trauma. It also positively 
affects the health of the meibomian glands [130,132]. 

The ability to modify the physicochemical properties of HA allows for customization 
of eye-drop formulations to achieve optimal therapeutic effects [130]. This is supported 
by a study on the complex formed between HA nanoparticles and MitoQ nanoparticles. 
The research focused on the impact of temperature on the formation of the HA/MitoQ 
nanoparticle complex and its subsequent biological effects. Using elevated temperatures 
increased the interactions between the nanoparticles, enhancing the antioxidant activity 
of the complex. Moreover, when compared to free MitoQ, the HA/MitoQ complex 

Figure 10. The schematic structure of hyaluronic acid.

HA is found in high concentrations in soft connective tissues and is also naturally
present in the tear film, outer cornea, and vitreous humor. Its properties and biological
effects can be tailored by altering its molecular weight or concentration, was well as through
chemical modifications. For instance, low molecular weight HA exhibits pro-inflammatory
properties and lower viscosity, whereas high molecular weight HA is characterized by anti-
inflammatory properties and greater viscosity [129]. Given its anti-aging, anti-proliferative,
immunomodulating, and tissue-repairing properties, HA is increasingly viewed as pivotal
to the future of the biomedical industry, including ophthalmology [130,131].

Hyperosmolarity of the tear film is a primary factor in the development of dry eye
syndrome, leading to ocular surface damage, inflammation, and pain [132]. HA, with its
high content of hydroxyl groups that attract water molecules, significantly enhances the
properties of the tear film. Literature reviews indicate that treating DES with hyaluronic
acid increases the viscosity of the tear film, prolongs its retention on the eye surface, ensures
its even distribution, and reduces the risk of mechanical trauma. It also positively affects
the health of the meibomian glands [130,132].
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The ability to modify the physicochemical properties of HA allows for customization
of eye-drop formulations to achieve optimal therapeutic effects [130]. This is supported
by a study on the complex formed between HA nanoparticles and MitoQ nanoparticles.
The research focused on the impact of temperature on the formation of the HA/MitoQ
nanoparticle complex and its subsequent biological effects. Using elevated temperatures
increased the interactions between the nanoparticles, enhancing the antioxidant activity of
the complex. Moreover, when compared to free MitoQ, the HA/MitoQ complex demon-
strated superior therapeutic effects in treating dry eye syndrome (DES). Specifically, it
reduced the accumulation of ROS and alleviated DES symptoms more effectively [133].

Another notable example is the use of gelatin gallate and epigallocatechin nanoparti-
cles decorated with hyaluronic acid (GEH) as eye drops. Studies on their in vitro biocompat-
ibility and therapeutic effects on the corneal epithelium were conducted. It was observed
that GEH primarily accumulated in the cytoplasm of the corneal epithelium and on the eye
surface, demonstrating its effectiveness in drug delivery to the eye. Furthermore, GEH not
only avoided causing undesirable changes but also effectively reduced the symptoms of
dry eye syndrome [134].

These examples underscore the therapeutic potential of HA, showcasing its healing
capabilities and the beneficial effects it can produce. Moreover, the positive impact of HA
nanoparticles on the well-being of patients suffering from dry eye syndrome has been
confirmed. The accumulating evidence supports the promising role of HA nanoparticles in
both nanomedicine and the targeted therapy of DES [133,134].

4.1.6. Metallic and Non-Metallic Nanomaterials

Due to the blood–retina barrier, which regulates the transport of molecules through
the eye, and natural phenomena such as tearing or blinking, traditional treatment methods
often fail to deliver satisfactory therapeutic effects. Attempts have been made to use
intraocular injections to bypass this barrier, but the approach has not been widely adopted
due to numerous side effects [10].

In response to these challenges, nanoparticles have gained significant attention in
recent years. Their small size, specific shapes, and stability make them particularly promis-
ing for medical applications, offering potential new pathways for the treatment of eye
diseases [11].

Various methods are employed to synthesize them, including chemical reduction,
synthesis reaction, electrochemical, and sonochemical techniques. By tweaking these
synthesis methods, it is possible to tailor the properties of nanoparticles to enhance their
biological effectiveness. Factors such as chemical charge, size, shape, and solubility can be
adjusted [10,11].

Types of nanoparticles include metal oxide nanoparticles, metal nanoparticles, doped
nanoparticles, and metal-organic frameworks. Some metal nanoparticles can have undesir-
able effects, such as stimulating inflammatory processes through excessive ROS production.
However, not all metal nanoparticles behave detrimentally; some, like gold and cerium
oxide nanoparticles, are known for their therapeutic effects [135].

Selenium and Copper

Selenium is a trace element essential for numerous physiological processes in the body,
including antioxidant defense, thyroid hormone production, and redox homeostasis. It
exists in various forms such as selenocysteine, selenium-methyl-selenocysteine, selenome-
thionine, selenate, and selenite, each with distinct bioavailability and properties. However,
it is crucial to maintain selenium concentrations within the reference range to prevent
cytotoxic effects. Therefore, strict monitoring of selenium levels is essential to ensure its
beneficial effects without risking toxicity [136].

Selenium nanoparticles (SeNPs) have gained attention for their selective toxicity
toward cancer cells, while sparing the body’s normal physiological cells. Extensive research
has highlighted the potential therapeutic effects of SeNPs in various fields, including
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oncology, neurology, and metabolic disorders. These nanoparticles have also demonstrated
the ability to interact with a wide range of chemical compounds, leveraging their adsorption
capacity for broader medical applications. This versatility extends to ophthalmology, where
SeNPs may offer new treatment possibilities [137].

Copper is an essential element that plays a crucial role in numerous enzymes, including
superoxide dismutase, tyrosinase, and lysine oxidase [138]. Copper-based nanomaterials
exhibit higher antimicrobial activities compared to silver-based nanoparticles, making
them particularly effective in medical applications. Additionally, the distinctive porous
structure of copper nanoparticles facilitates surface modifications with other compounds,
significantly broadening their potential uses in medicine [139].

This thesis is supported by an experiment involving F127 hydrogel containing copper
selenide nanoparticles, used in a new formulation of eye drops for treating DES [138].
The study by Ou et al. [138] showed that selenium nanoparticles have strong antioxidant,
anti-inflammatory and anti-apoptotic properties. These nanoparticles were specifically
effective in scavenging reactive oxygen species, thereby reducing oxidative stress, which is
a primary contributor to the development of DES. Consequently, the treatment significantly
slowed the apoptosis of corneal and retinal cells.

The study utilized a kit where molybdenic acid forms a complex with hydrogen per-
oxide. This setup allowed for the precise measurement of the rate at which copper selenide
nanoparticles capture hydrogen peroxide. The primary mechanism of action for Cu2-
xSeNP involves modulating the p38MAPK and NRF2 signaling pathways. These findings
suggest that these nanoparticles could be effective in treating dry eye syndrome, although
additional research is needed to fully assess their suitability for this application [138].

Cerium Oxide

Cerium oxide nanoparticles, or nanoceria, are among the most commonly discussed
nanozymes in medical literature [140]. A nanozyme is a type of nanomaterial designed to
mimic the action of enzymes, which are often implicated in the development of various
disorders. Nanoceria’s unique feature is its dual valence states of +3 and +4, which facilitate
electron movement. This property underscores its capability to effectively scavenge reactive
oxygen species [140,141].

Studies have demonstrated that nanoceria possess anti-inflammatory, anti-apoptotic,
and antioxidant properties and are effective in protecting against retinal dysfunction.
Common formulations include nanoceria coated with glycolic chitosan, embedded in
hydrogels, or incorporated into contact lenses [142].

The small size of cerium oxide nanoparticles enables them to penetrate deeper layers of
the eye, enhancing defense mechanisms and aiding in the repair of damaged eye structures.
This capability highlights their potential use in treating diseases associated with oxidative
stress, including various ophthalmological conditions [142].

Glycol chitosan (GC) is a water-soluble, non-toxic, and biocompatible derivative of
chitosan. When combined with nanoceria to create glycol chitosan cerium nanoparticles
(GCCNPs), the resulting composite exhibits enhanced antioxidant and healing properties,
making it especially beneficial for treating dry eye syndrome. GCCNP offers greater
solubility than cerium oxide alone and is free from side effects [141].

Current treatments for DES focus on alleviating symptoms, restoring the normal
tear-film composition, and reducing inflammation. Leveraging the properties of GC and
nanoceria, researchers have dissolved cerium in GC to assess its impact on the ocular
structure affected by DES. Experimental results show that GCCNP stabilizes the tear
film, stimulates cell proliferation, provides antioxidant effects, and preserves the normal
structure of the eye [141].

Cerium oxide nanocrystals attached to stem cell exosomes represent a novel therapeu-
tic strategy for diseases linked to excessive ROS activity. Eye drops formulated with these
nanocrystals on exosomes (MSCExo-Ce) leverage the regenerative, anti-inflammatory, and
ROS-scavenging properties of both components. Research has shown that MSCExo-Ce
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effectively scavenges ROS from affected areas, reducing inflammation and promoting
tissue repair. These promising results lay the groundwork for further studies in developing
advanced therapies for the treatment of DES [143].

5. Therapeutic Contact Lenses to Remove Excess Reactive Oxygen Species from the
Surface of the Eye

Therapeutic contact lenses encapsulated with polymer nanoparticles are produced
through a two-step process: first, the drug-containing nanoparticles are synthesized, and
then these nanoparticles are embedded into the contact lens matrix [144].

Specifically, water-soluble contact lenses incorporating cerium nanoparticles (CeNP-
CLs) was developed using polyhydroxyethyl methacrylate (PHEMA) as the matrix. Addi-
tionally, 1-vinyl-2-pyrrolidinone (NVP) and methacrylic acid (MAA), a negatively charged
compound, were included. The electrostatic interaction between the negatively charged
MAA and the positively charged CeNPs enhances the stability of the nanoparticles within
the lens, preventing unwanted release. Notably, CeNPs are known to mimic the enzymatic
activities of catalase and superoxide dismutase, contributing to their therapeutic effects [96].

Cerium-based materials due to the presence of dual valence states Ce3+ and Ce4+ have
the ability to reduce ROS [145].

Research has demonstrated that increasing the concentration of cerium nanoparticles
(CeNP) in cerium nanoparticle-loaded contact lenses (CeNP-CLs) correlates directly with
the rate of ROS removal from the ocular surface. While CeNP-CLs are effective in reducing
extracellular ROS, they do not impact intracellular ROS. Nevertheless, they can significantly
reduce damage to the corneal epithelium and endothelium. Furthermore, CeNP-CLs
display properties—including transparency, dimensions, and elasticity—comparable to
commercially available contact lenses, making them promising candidates for the treatment
of dry eye syndrome [96].

6. Conclusions

Dry eye syndrome is one of the most prevalent eye conditions, yet current treatments
often fall short due to rapid drug clearance from the ocular surface and low bioavailability.
As a result, there is a growing interest in alternative drug delivery methods. Nanomaterials,
in particular, show promise as drug delivery systems, offering enhanced retention on the
ocular surface and improved targeting of the anterior segment of the eye.

Extensive research is underway to optimize nanocarriers for increased effectiveness,
focusing on extending their contact time, improving bioavailability, and ensuring precise
drug delivery. Notably, some polymer nanomaterials have already received FDA approval,
while others are currently undergoing clinical trials, underscoring their potential and the
expanding focus on their development.
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