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Abstract: Liver disease is a global health problem that affects the well-being of tens of thousands of
people. Dihydroquercetin (DHQ) is a flavonoid compound derived from various plants. Furthermore,
DHQ has shown excellent activity in the prevention and treatment of liver injury, such as the inhibition
of hepatocellular carcinoma cell proliferation after administration, the normalization of oxidative
indices (like SOD, GSH) in this tissue, and the down-regulation of pro-inflammatory molecules (such
as IL-6 and TNF-α). DHQ also exerts its therapeutic effects by affecting molecular pathways such as
NF-κB and Nrf2. This paper discusses the latest research progress of DHQ in the treatment of various
liver diseases (including viral liver injury, drug liver injury, alcoholic liver injury, non-alcoholic liver
injury, fatty liver injury, and immune liver injury). It explores how to optimize the application of
DHQ to improve its effectiveness in treating liver diseases, which is valuable for preparing potential
therapeutic drugs for human liver diseases in conjunction with DHQ.
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1. Introduction

The liver is an indispensable organ for the maintenance of life activities of the organism
and is the leading site for anabolism, catabolism, and energy metabolism [1]. Liver injury
is a condition in which hepatocyte damage to the liver occurs due to various causes, which
in turn affects normal liver function. Globally, about 2 million people die from liver disease
every year (data provided by the Institute for Health Metrics and Evaluation, University
of Washington and Department of Surgery, University of Texas Southwestern, 2014) [2,3].
Liver injury occurs due to several factors, the most common of which are infectious,
including hepatitis A, B, C, D, and E [4,5]. In addition, other factors such as drugs, alcohol,
fat, and autoimmune can trigger liver injury. Liver injury can be categorized into viral
liver injury, drug liver injury, alcoholic liver injury, fatty liver injury, and autoimmune liver
injury. Liver injury, if not controlled in a timely and reasonable manner, can lead to the
occurrence of serious diseases such as cirrhosis and even liver cancer [6,7]. Therefore, it is
crucial to fully understand liver diseases and find safe and effective treatment methods to
prevent their occurrence and development.

In recent years, natural medicinal plants have shown promising potential in protecting
against liver injury, with flavonoids standing out as a particularly noteworthy area of
research [8–10]. Pardede et al. [11] demonstrated the hepatoprotective effect of the active
compound rutin on Tert-butyl Hydroperoxide (tBHP)-induced Hep G2. Kondeva et al. [12]
found that flavonoids extracted from many species of the genus Astragalus effectively
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inhibited the release of lactate dehydrogenase (LDH) and reduced the production of malon-
dialdehyde (MDA), thereby preventing liver injury. The effects of flavonoid structures on
hepatotoxicity were analyzed using a QSAR model with LDH activity and MDA production
as indicators. The analysis results showed that the presence of aromatic hydroxyl groups in
flavonoids increased the number of non-hydrogen bonded aromatic carbon atoms attached
to them. The negative regression coefficients in the model reveal that the higher the number
of such aromatic carbon atoms, the lower the toxicity of the compounds to the liver. At
the same time, the lipophilicity of flavonoids increases with the decrease in the number of
hexose units. The positive regression coefficients in the model confirm the idea that the
more lipophilic a compound is, the more toxic it is to the liver. In summary, flavonoids
may have this hepatoprotective property due to the variety of functional groups contained
in their glycosidic structure or glycosyl portion, and these different functional groups
confer specific bioactivities (Figure 1). Dihydroquercetin (DHQ), as a natural and highly
active flavonoid, is more widely distributed in plants, including tiger balm, mulberry,
grape, elderberry, mistletoe bark, and wood bean root. Nevertheless, it is mainly derived
from the roots of larch in alpine regions [13]. Like other flavonoids, DHQ possesses a
wide range of bioactivities. It can be used to treat many causes of liver disease as well as
anti-inflammatory [14,15], antiviral [16], antidiabetic [17], and other factors. Therefore, it is
widely used in medicine and other fields and has a large potential for development.

In this review, scientific databases such as X-MOL, PubMed, Web of Science, and
Google Scholar were searched from 1990 to the present to find out the online scientific liter-
ature on the preventive and curative effects of DHQ on liver injury and the improvement of
DHQ bioavailability. The keywords searched were dihydroquercetin, taxifolin, liver injury,
and biological availability. Based on this review, this paper summarizes the mechanism
of action of DHQ in liver injury and the research progress in recent years in terms of five
aspects: pharmacological liver injury, alcoholic liver injury, non-alcoholic liver injury, fatty
liver injury, and immune liver injury. We also reviewed the technical means to improve the
biological availability of DHQ to provide theoretical support for the broad application of
DHQ in the future.
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2. Mechanism of Action of DHQ in Protection against Liver Injury
2.1. Ameliorative Effects on Drug-Induced Liver Injury

Drug-Induced Liver Injury (DILI) is a condition in which liver function is impaired
during drug use due to the drug itself, its metabolites, or an individual’s abnormal sensitiv-
ity and decreased tolerance to the drug, also known as drug-induced liver disease [18]. This
injury can present with acute or chronic hepatitis symptoms, and liver function usually
resolves spontaneously after the discontinuation of the drug in mild cases. Regardless,
in severe cases, DILI can be life-threatening and requires urgent treatment [19]. It is note-
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worthy that DILI does not discriminate between populations and may occur in people
with otherwise healthy livers or affect people with severe disease. DILI is complex and
difficult to predict. Therefore, monitoring changes in liver function during drug ther-
apy and recognizing and managing drug-related liver injury promptly are essential for
patient safety.

2.1.1. Ameliorative Effects of Acetaminophen (APAP)-Induced Liver Injury

Acetaminophen (APAP) has been one of the widely used antipyretic and analgesic
drugs worldwide since 1950 [20,21]. The drug is generally considered safe at the recom-
mended dose (no more than 4 g per day) [22]. However, if this dosage limit is exceeded,
an overdose can cause severe liver damage and may even progress to acute liver failure
(ALF), a potential risk that should not be ignored [23–25]. Research has indicated that the
metabolic processes of drugs and their effects on diverse intracellular signaling pathways
play a central role in the mechanism of drug-induced hepatotoxicity, especially perturba-
tions involving mitochondrial function, which are of particular importance [23]. When
widespread necrosis occurs in the liver, the ensuing sterile inflammatory response is a
crucial component of the body’s attempt to restore and repair damaged tissue. However,
this inflammatory response acts as a double-edged sword: on the one hand, it is an integral
part of tissue repair; on the other hand, if it is not regulated correctly, it may exacerbate
the pre-existing damage and result in a more complex pathological state [26]. This is a
controversial area. Despite this, a more profound comprehension of these inflammatory
pathways is expected to facilitate the discovery of new therapeutic targets, which are
especially important during the transition from the injury phase to the regeneration phase.

Chen et al. [27] first investigated the protective effect of DHQ against APAP-induced
liver injury in a mouse model. Mice were injected intraperitoneally with a certain amount of
APAP to establish the model. One hour later, they were treated with different concentrations
(0, 20, 40 mg/kg) of DHQ. The high dose of DHQ was able to effectively inhibit the mRNA
expression of the TLR4 gene and down-regulate the mRNA levels of pro-inflammatory
factors TNF-α and IL-6. It significantly restored the reduction of antioxidant enzyme
activities induced by APAP at both the mRNA and protein levels. The expression of Bcl-
2 and pro-caspase-3 was increased. In contrast, the expression of Bax was suppressed,
suggesting its positive effects in attenuating oxidative stress and inflammatory responses
and inhibiting hepatocyte apoptosis, thus effectively reducing APAP-induced liver injury.

Hu et al. [28] investigated the effect of DHQ on APAP-induced hepatotoxicity in mice.
They found that 80 mg/kg of DHQ alone effectively inhibited the expression of CYP2E1
in the liver tissue of mice. In addition, DHQ reversed the APAP-induced decrease in L-02
cell viability and reduced the accumulation of intracellular ROS levels. Glutamate cysteine
ligase (GCL), a key rate-limiting enzyme for synthesizing glutathione, is essential for en-
hancing the body’s resistance to oxidative stress. GCLC and GCLM are the catalytic and
regulatory subunits of GCL, respectively [29–31]. Following DHQ treatment, the antioxi-
dant function was achieved by upregulating the expression of GCLC, thereby preventing
APAP-induced liver injury.

Zai et al. [32] investigated the protective effect of DHQ against APAP-induced hep-
atocyte injury with different concentrations (12.5–100 µM). It was discovered that DHQ
attenuated APAP-induced cell proliferation inhibition and lactate dehydrogenase (LDH)
release in a dose-dependent manner and was able to block APAP-induced cell necrosis and
extracellular signal-regulated kinase-c-Jun-N-terminal kinase (ERK-JNK) stress responses.
In addition, DHQ improved cellular ROS levels in a dose-dependent manner. Mitochon-
drial dysfunction is a crucial factor in generating high levels of reactive oxygen species
(ROS), and an initial increase in ROS will further exacerbate mitochondrial damage [33].
The results showed that APAP treatment resulted in the loss of mitochondrial membrane
potential (MMP), followed by the reversal of ROS accumulation and mitochondrial dysfunc-
tion. DHQ also initiated the Janus kinase 2/signal transducer and activator of transcription
3 (JAK2/STAT3) cascade phosphorylation process, thereby regulating the expression of
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anti-apoptotic Bcl-2 family proteins. In addition, DHQ induces autophagy, mediating
its protective effect on hepatocytes. Notably, this protective effect can be reversed by
intervening with chloroquine (CQ) and inhibiting the autophagic process.

2.1.2. Ameliorative Effects against Carbon Tetrachloride (CCl4)-Induced Liver Injury

During CCl4-induced hepatic fibrosis, free radicals and cytokines released from dam-
aged hepatocytes activate HSCs and initiate fibrogenesis [34]. The characteristics of CCl4-
induced histological and biochemical changes reflect the pattern of human liver fibrosis
and cirrhotic disease. In addition, some of the mechanisms of CCl4 induction have been
demonstrated [35,36].

Liu et al. [37] treated CCl4-induced acute liver injury in mice with different concen-
trations (20, 40, and 80 mg/kg) of DHQ, and the present study demonstrated that DHQ
inhibited hepatic stellate cell (HSC) activation and extracellular matrix production by reg-
ulating the PI3K/AKT/mTOR and TGF-β1/Smads pathways. Additionally, DHQ was
found to attenuate CCl4-induced oxidative stress and apoptosis, suggesting its potential as
an effective hepatoprotective agent.

2.1.3. Ameliorative Effects against Other Drug-Induced Liver Injury

Cyclophosphamide (CP), as a potent anticancer drug and immunosuppressant, has
demonstrated significant clinical efficacy [38–40]. Meanwhile, it is associated with numer-
ous adverse effects, especially causing hepatic impairment [41]. Althunibat et al. [42] inves-
tigated the potential protective role of DHQ by a mouse model of CP-induced hepatotoxicity.
NF-κB p65 activation and pro-inflammatory cytokines are key factors in CP-induced liver
injury. It was shown that DHQ treatment reduced NF-κB p65 protein expression and signif-
icantly lowered the levels of TNF-α, IL-1β and IL-6 while effectively inhibiting the process
of apoptosis through the up-regulation of the expression of the anti-apoptotic protein Bcl-2
and the reduction in the levels of the pro-apoptotic proteins Bax and caspase-3. Together,
these findings support the anti-inflammatory and protective effects of DHQ in attenuating
CP-induced liver injury.

As a pesticide ingredient of natural origin, rotenone has been recognized as an envi-
ronmental pollutant. It has been reported in the literature to cause organ function damage,
exhibiting potentially toxic effects [43–45]. After using rotenone to cause liver injury, Akin-
moladun et al. [46] found that liver function indices after treatment with DHQ (0.25, 0.5, and
1 mg/kg) showed significant improvement, including bilirubin level, γ-glutamyltransferase,
alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase activities,
and total protein concentration. The levels/activities of hepatic oxidative stress indicators
showed that DHQ could effectively attenuate the hepatic injury induced by rotenone and
exert its protective effects by enhancing the antioxidant mechanism and reducing the level
of oxidative stress.

Pazopanib, a tyrosine kinase inhibitor, is commonly used for the treatment of metastatic
renal cell carcinoma and advanced soft tissue sarcoma, and it induces varying degrees of
hepatotoxicity [41,47,48]. AkAgunduz et al. [49] explored the effect of DHQ (50 mg/kg) on
pazopanib-induced hepatotoxicity. It not only attenuated pazopanib-induced liver injury at
the histopathological level but also showed positive improvement in biochemical indexes
and effectively inhibited the further development of oxidative hepatotoxicity. These dis-
coveries emphasize the value of DHQ as a potential adjuvant therapy in attenuating the
hepatotoxicity of the chemotherapeutic drug pazopanib and provide a theoretical basis for
further preclinical and clinical studies.

Cisplatin, a widely used platinum-based chemotherapeutic agent, has been used in
the treatment of a wide range of cancer types, including gastric and ovarian cancers [50–52].
Although it has demonstrated significant efficacy against these malignant tumors and the
efficacy is usually enhanced with the elevated drug dose, its non-selective mechanism of
action also poses a severe challenge to patients [53,54]. With increasing therapeutic doses,
cisplatin inevitably produces toxic effects on several organs and physiological systems, such



Molecules 2024, 29, 3537 6 of 16

as hepatotoxicity and nephrotoxicity, limiting its clinical application [55,56]. Kurt et al. [57]
investigated the effect of DHQ on cisplatin-induced oxidative liver injury in rats using bio-
chemical methods. After treatment with DHQ (50 mg/kg), the reduction in serum alanine
aminotransferase (AST) and alanine aminotransferase (ALT) levels and the normalization of
other biochemical indices were observed. The intervention of DHQ effectively reduced the
degree of oxidative stress and thus exerted a protective effect on the liver.

2.2. Ameliorative Effects on Alcoholic Liver Injury

Excessive alcohol consumption has varying chances of leading to the development of
different kinds of alcohol-related liver disease (ALD), including a range of diseases such as
asymptomatic hepatic steatosis, hepatic fibrosis, and cirrhosis (Figure 2) [58–62]. Alcohol
metabolite toxicity reduces liver compensatory capacity, interferes with homeostasis, and
makes the liver vulnerable [63]. Critical aspects in the development of ALD include (1) ag-
ing and gender differences; (2) aging and gender differences; (3) infiltration of neutrophils
and bone marrow-derived macrophages; (4) alcohol metabolism and fatty acid synthesis;
and (5) iron deposition and ROS production (Figure 3).
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In order to explore the pathogenesis of ALD, interventional therapy, and to understand
the effects of alcohol metabolism on the microenvironment of liver tissues, Ding et al. [8]
explored the potential protective effects of different concentrations of DHQ (20, 40, and
80 mg/kg) against acute alcoholic liver injury in mice. The experimental results showed that
the treatment of DHQ decreased alanine aminotransferase (ALT) and increased aspartate
aminotransferase (AST) while contributing to the increase in superoxide dismutase (SOD),
glutathione (GSH) and malondialdehyde (MDA). Histopathologic examination showed
that alcohol-induced hepatocellular injury and inflammatory invasion were reduced after
treatment with DHQ. These findings support the role of DHQ as a hepatoprotective agent,
which contributes to the amelioration of alcoholic liver injury through its antioxidant,
anti-inflammatory, and direct protective effects on hepatocytes. Meanwhile, Western blot
analysis and real-time fluorescence quantitative PCR (rt-PCR) results showed that DHQ was
able to reduce the level of tumor necrosis factor-α (TNF-α), block the activation pathway
of nuclear factor-κB (NF-κB) in the liver, and effectively reverse the alcohol-induced. The
process of alcohol-induced apoptosis was effectively reversed by adjusting the expression
of PI3K/Akt signaling pathway and its downstream apoptosis-related factors.
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2.3. Ameliorative Effects on Fatty Liver Injury

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent types of
chronic liver disease worldwide, affecting approximately one-quarter of the general popu-
lation, with a particular predilection for patients with obesity and type 2 diabetes mellitus
(T2DM) [66–68]. The scope of the disease is broad, encompassing both non-alcoholic sim-
ple fatty liver disease (NAFL) and the more severe non-alcoholic steatohepatitis (NASH).
Notably, patients with NASH have a significantly higher risk of developing advanced liver
fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC) [69–71]. The pathomechanism
of NASH is complex (Figure 4), involving the interplay of metabolic stress and inflamma-
tory response. Given this, therapeutic strategies for NASH need to focus on stopping the
progression of the condition to hepatocellular carcinoma, and it is therefore critical to assess
whether therapies are effective in blocking this process.
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Lee et al. [73] explored the effect of DHQ on free fatty acid (FFA)-induced insulin
resistance in the liver. FFA treatment inhibited cellular glucose uptake, whereas DHQ
at concentrations of 25 and 50 µM was able to reverse this effect and promote glucose
uptake. In addition, DHQ upregulated the expression levels of key proteins involved in
insulin signaling—p-PI3K, p-IRS1, p-AKT, p-AMPK and p-ACC—in FFA-treated hepato-
cytes. It was also noted that FFA treatment led to a rise in miR-195 expression, but DHQ
treatment significantly reduced it dose-dependently. The modulation of miR-195 levels
by the transfection of miR-195 mimics and inhibitors, respectively, further confirmed that
DHQ enhanced the expression of p-IRS1, p-PI3K, p-AMPK, p-AKT, and p-ACC through
this pathway, thus revealing the mechanism by which DHQ alleviates FFA-induced liver
damage by modulating miR-195 expression. These findings provide new perspectives for
understanding the molecular mechanisms of DHQ in ameliorating fatty liver-associated
insulin resistance.

Inoue et al. [74] DHQ at different concentrations (0.05 and 3%) used in the treatment
of a NASH mouse model significantly prevented the development of hepatic steatosis,
chronic inflammation and liver fibrosis. The mechanism of action includes a direct effect
on hepatocytes, i.e., the inhibition of lipid accumulation [75]. FGF21 is a potent inducer of
thermogenic genes in brown adipose tissue [76]. mRNA expression of FGF21 was increased
in the liver and brown adipose tissue by DHQ treatment and significantly increased brown
adipocyte-specific genes, and mature brown adipocyte secreted factors (FGF21 and IL-6) of
mRNA expression. These results suggest that DHQ acts through a dual mechanism: directly
regulating brown adipocyte function while promoting FGF21 expression in the liver. When
exploring the effects of DHQ on hepatic steatosis in depth, the researchers found that the up-
regulated expression of genes associated with lipogenesis (SREBP1c, FAS, SCDc1, and ACC
and inflammatory genes (TNFα, Il-1β, and EMR1 (F4/80)) was significantly suppressed
in the high-dose DQH-treated group. The histological examination further revealed the
presence of small, dysplastic nodules characterized by atypical hepatocellular hyperplasia
with enlarged nuclei and deepened pigmentation in non-tumorigenic NASH liver samples.
DHQ treatment significantly reduced the mRNA expression of genes associated with
inflammation and fibrosis in liver tumor lesions without affecting CD206, a representative
marker of tumor-associated macrophages. In summary, the study by Inoue et al. not only
provides strong evidence for the therapeutic effects of DHQ in successive stages of NASH
but also provides insight into the novel mechanisms of DHQ action.

2.4. Ameliorative Effects against Autoimmune Hepatitis

Autoimmune hepatitis is a severe health challenge affecting a large number of patients
worldwide. The cases of the disease increased abruptly in 2014 (Table 1), and disease
progression is often accompanied by a poor prognosis [77]. In this context, DHQ, through
its potent antioxidant properties and anti-inflammatory effects, can significantly alleviate
the symptoms of acute or severe (fulminant) hepatitis, offering new hope for interven-
ing in this type of autoimmune liver disease [78]. Zhao et al. [79] found that DHQ at
a dose of 30 mg/kg significantly ameliorated cutin A (Con A)-induced liver injury in
mice. Specifically, DHQ was able to significantly enhance the survival rate of mice while
effectively reducing the serum levels of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST), indicators of liver function. Given that oxidative stress and pro-
inflammatory mediators released by macrophages play a vital role in the development
of immune-mediated hepatitis [80], DHQ demonstrated the ability to significantly inhibit
interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) mRNA expression and
their secretion. This mechanism of action involves the enhancement of nuclear factor
E2-related factor 2 (Nrf2) expression, which is not only increased in the cytoplasm but also
shifted to the nucleus, thereby significantly elevating heme oxygenase-1 (HO-1) expression
in a time- and dose-dependent manner. The protective effect of DHQ on Con A-induced
hepatic injury may be due to the activation of Nrf2/1. The protective mechanism of DHQ
against Con A-induced liver injury may lie in the activation of the Nrf2/HO-1 pathway to
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remove oxidative stress and increase HO-1 activity, as well as the modulation of MAPK
signaling in macrophages to inhibit the release of inflammatory mediators, thereby effec-
tively alleviating immune-mediated liver injury. Together, these findings emphasize the
effectiveness and mechanism of DHQ as a potential therapeutic tool in response to specific
models of liver injury.

Chen et al. [81] identified that the immunomodulatory effects of DHQ on DHQ
(5 mg/kg) effectively ameliorated Con A-mediated immune, hepatic injury by reducing the
expression of pro-inflammatory mediators and inhibiting the infiltration of CD4+/CD8+ T
cells in the liver. In addition, DHQ may also provide HepG2 cells with protective effects
against TNF-α/ActD-induced apoptosis by modulating the caspase pathway and NF-
κB signaling pathway, thus demonstrating its dual benefits in immunomodulation and
cytoprotection.

Table 1. Studies on the incidence and prevalence of autoimmune hepatitis [82]. (The data are
reprinted with permission).

Incidence/100,000 Rrevalence/100,000 Ref. Year Cases

0.8 —— [83] 1997 496
3.0 —— [84] 2007 200

0.85 10.7 [85] 2008 473
1.68 23.9 [78] 2014 1721
1.1 18.3 [86] 2014 1313
2.0 24.5 [87] 2010 138

0.67 11.0 [88] 2013 100
1.37 11.61 [89] 2004 13
—— 42.9 [90] 2002 77

3. Improvement of DHQ Bioavailability

Drug bioavailability is an essential aspect of pharmacology that affects the effectiveness
of drug therapy [91]. Although a large number of studies have amply demonstrated the
great potential of DHQ for clinical applications, in fact, systematic studies on the stability
of natural products are quite limited [92]. Previous studies have pointed out that DHQ
undergoes polymerization when electrolyzed in a neutral environment (pH 7.0) [93], which
undoubtedly poses a challenge to the stable use of the drug. In addition, despite its high
water solubility, the oral bioavailability of DHQ is unsatisfactory, being only about 36%,
especially in the form of lipid-based drug delivery [94,95]. Of more significant concern,
DHQ may also be broken down by microbial communities in the gut [96], further affecting
its bioavailability. Given all these limitations, finding effective methods to enhance the
bioavailability of DHQ has become a key aspect in driving the development of novel drug
delivery systems. This requires an in-depth investigation of the chemical and biological
properties of DHQ, but also innovative drug formulation techniques to ensure that the
compound is absorbed and utilized more stably and efficiently after entry into the body,
thus fully exploiting its potential therapeutic benefits (Figure 5).

The development of innovative materials is leading a revolution in medicine, signifi-
cantly advancing the progress of drug manufacturing [97]. Xiong and other scholars [98]
have exhaustively elaborated in their study a cutting-edge strategy that utilizes metal-
organic frameworks (MOFs) cross-linked with cyclodextrins to significantly enhance the
efficiency of chemotherapeutic drug-targeted delivery and uptake to localized lesions. This
technological breakthrough opens up new possibilities for precision medicine. In another
study, Song et al. [99] introduced a novel class of organic mineral matrix materials, such as
liposomal dispersions prepared using natural clay. These novel materials not only ensured
the stability of the formulation but also broadened the solubility range of the drug, pro-
viding an innovative solution for the delivery of difficult-to-solve drugs. Ding et al. [100]
explored the hepatoprotective mechanism of DHQ liposomes by in vivo experiments after
preparing DHQ liposomes using a thin-film dispersion method. The results showed that
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DHQ liposomes (50 mg/kg) significantly inhibited LPS/D-galactose-induced acute hepatic
injury in mice through antioxidant effects. A review article by V. Ambrogi [101], on the
other hand, looked at the functional expansion of traditional materials from an entirely
new perspective. Taking calcium carbonate as an example, this classic material, which
has been traditionally used as pH-responsive fillers, is now being utilized and revitalized
through the exploration of the application of different crystal forms. Calcium carbonate is
being developed as a novel carrier matrix for drug molecules [102], and utilizing its unique
physical and chemical properties, these matrices can effectively enhance the bioavailability
of drugs, bringing revolutionary thinking to drug design and delivery technologies. These
recent advances in material science undoubtedly provide strong support for improving
drug therapeutic efficacy, reducing side effects and developing novel drug release systems.
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4. Prospects and Outlook

In Russia, DHQ is added to more than 250 products, of which 142 are food supple-
ments and 40 are food products, and no adverse reactions have been reported during
the 15–20 years of use and sale of their products [104]. DHQ has been included in the
Russian Pharmacopoeia for hepatoprotection, the treatment of diabetes, atherosclerosis,
and so on. Some patients have been taking 600 mg per day for two weeks, with no adverse
reactions. Meanwhile, on 13 December 2016, a panel of experts from the European Union
Food Safety Authority EFSA reviewed the composition of the DHQ extract provided by
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Ametis JSC. It stated that it was adequately characterized and had no safety concerns, and
no genotoxicity was found. A 90-day subchronic rat study according to OECD standards
showed no adverse effects at the highest dose (1500 mg/kg body weight) [99,105]. Thus,
the aim of this paper is to review the mechanism of action of the natural flavonoid DHQ in
the prevention and treatment of various experimental liver injuries and its recent findings.
As a crucial organ in the human body, the liver undertakes the core functions of synthesis,
metabolism and detoxification. Therefore, the effective prevention and treatment of liver
injury have been a hot issue in the field of medical research. The review shows that DHQ is
particularly effective in combating chemical, pathological, immune, and pharmacological
liver injuries and that DHQ exerts its effects in protecting the liver from injury through
a variety of mechanisms, including the attenuation of oxidative stress and inflammation,
the modulation of lipid metabolism, antiviral activity, and immunomodulation. These
mechanisms of action involve multiple key signaling pathways and their targets, such as
TLR and IκB in the NF-κB signaling pathway; ERK, p38, and JNK in the MAPK pathway;
GSK3β and mTOR in the Akt pathway; HO-1, NQO1, and Keap1 in the Nrf2 pathway; and
JAK and IFN in the STAT pathway, which demonstrates the multidimensional protective
effects of DHQ at the molecular level (Figure 6). Although DHQ has demonstrated a wide
range of potential applications in experimental studies for the prevention and treatment
of liver injury, its low oral bioavailability has become a significant bottleneck limiting its
clinical application. For this reason, several strategies to enhance the bioavailability of
DHQ are also discussed in the paper, aiming to provide theoretical and technical support
for the subsequent DHQ-based clinical trial studies and to promote the conversion of
pharmaceutical preparations containing DHQ as the main active ingredient for clinical
treatment. In the future, by profoundly exploring the potential clinical value of DHQ in
different types of liver injury, as well as further clarifying the specific targets of its action,
we can not only lay a solid foundation for the clinical application of DHQ but also provide
valuable insights and directions for the development of novel therapeutic drugs for liver
diseases, which is expected to make breakthroughs in the field of preventing and treating
liver diseases.
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