
Citation: Li, S.; Lin, Z.; Yang, Y.; Ning,

R. A High-Performance FPGA PRNG

Based on Multiple Deep-Dynamic

Transformations. Entropy 2024, 26, 671.

https://doi.org/10.3390/e26080671

Academic Editor: Boris Ryabko

Received: 22 June 2024

Revised: 20 July 2024

Accepted: 21 July 2024

Published: 7 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A High-Performance FPGA PRNG Based on Multiple
Deep-Dynamic Transformations
Shouliang Li †, Zichen Lin † , Yi Yang and Ruixuan Ning *

School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China;
lishoul@lzu.edu.cn (S.L.); linzch21@lzu.edu.cn (Z.L.); yy@lzu.edu.cn (Y.Y.)
* Correspondence: ningrx21@lzu.edu.cn; Tel.: +86-137-0546-0515
† These authors contributed equally to this work.

Abstract: Pseudo-random number generators (PRNGs) are important cornerstones of many fields,
such as statistical analysis and cryptography, and the need for PRNGs for information security (in
fields such as blockchain, big data, and artificial intelligence) is becoming increasingly prominent,
resulting in a steadily growing demand for high-speed, high-quality random number generators. To
meet this demand, the multiple deep-dynamic transformation (MDDT) algorithm is innovatively
developed. This algorithm is incorporated into the skewed tent map, endowing it with more complex
dynamical properties. The improved one-dimensional discrete chaotic mapping method is effectively
realized on a field-programmable gate array (FPGA), specifically the Xilinx xc7k325tffg900-2 model.
The proposed pseudo-random number generator (PRNG) successfully passes all evaluations of the
National Institute of Standards and Technology (NIST) SP800-22, diehard, and TestU01 test suites.
Additional experimental results show that the PRNG, possessing high novelty performance, operates
efficiently at a clock frequency of 150 MHz, achieving a maximum throughput of 14.4 Gbps. This
performance not only surpasses that of most related studies but also makes it exceptionally suitable
for embedded applications.

Keywords: random number generator; chaotic map; FPGA implementation; multiple deep-dynamic
transformation (MDDT); pseudo-random number generator (PRNG); NIST SP800-22; diehard tests;
TestU01; high-speed computing; embedded systems; cybersecurity; nonlinear dynamics

1. Introduction

Random number generators (RNGs) are systems that generate sequences of numbers
that exhibit statistical independence and lack correlation, achieved through hardware and
software methods. RNGs are classified into three primary types: pseudo-random number
generators (PRNGs), true random number generators (TRNGs), and hybrid random number
generators (HRNGs) [1–3]. These random numbers are essential in various applications,
including computer simulations, numerical analysis, statistical analysis, Monte Carlo
methods, IoT security, and cryptography [4–7].

As one of the aforementioned types of RNGs, pseudo-random number generators
(PRNGs) are commonly utilized in the field of cryptography and contemporary security
engineering, appreciated for their straightforward implementation and cost efficiency.
Embedded systems, especially those integrated into the Internet of Things (IoT), depend on
PRNGs for securing data through encryption. At the same time, devices in these application
scenarios often face stringent resource and energy constraints, making the development
of a fast and low-power-consumption PRNG particularly important. A low resource-
consumption PRNG can effectively reduce the energy consumption of a device and extend
battery life while maintaining a high operating efficiency, which is essential to ensure the
reliability and efficiency of systems that run for long periods of time. To generate pseudo-
random numbers, chaotic systems are often employed in PRNGs due to their complex

Entropy 2024, 26, 671. https://doi.org/10.3390/e26080671 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26080671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0002-8143-4726
https://orcid.org/0009-0009-1448-6439
https://doi.org/10.3390/e26080671
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26080671?type=check_update&version=1


Entropy 2024, 26, 671 2 of 18

behaviors that originate from deterministic processes, including recursive functions and
sensitivity to initial conditions, enhancing the randomness of outputs. Diverse chaotic maps,
such as logistic maps, Bernoulli shift maps, tent maps, and zigzag maps, are employed to
enhance PRNGs, each contributing a distinct level of randomness and intricacy. However,
the digital implementation of these chaotic systems frequently culminates in pseudo-
chaotic orbits characterized by brief periods and notable correlations, primarily due to
the limitations of finite precision and rounding errors present in both fixed-point and
floating-point arithmetic.

Despite their deterministic nature, PRNGs are widely adopted in cryptography and
other security-related fields because they are straightforward to implement and inexpen-
sive to generate. They are used for generating and distributing encryption keys, creating
initialization vectors, producing prime numbers and passwords, preventing side-channel
attacks, and facilitating authentication protocols. Although PRNGs are finite state machines
driven by deterministic algorithms, which means their outputs are not entirely random,
their practicality and low cost make them advantageous. However, deterministic algo-
rithms mean that if the algorithm is known, subsequent outputs can be predicted based
on any given state, which limits their use in cryptographic algorithms that need to ensure
unpredictability and security [8–10].

To enhance the randomness and security of PRNGs, chaotic systems are utilized not
only as initial seeds but also as dynamic entropy sources throughout the generation process.
The inherent sensitivity to initial conditions and unpredictability of chaotic systems make
them excellent candidates for improving PRNG performance. Additionally, chaotic systems
are characterized by low power consumption and high-frequency operation, making them
particularly suitable for chaotic PRNG research using ASIC/FPGA technologies [11–13].

In the realm of pseudorandom number generator (PRNG) development, numerous
researchers have historically leveraged chaotic maps to achieve significant success across
various evaluations. Kocarev et al. pioneered a PRNG design utilizing chaotic maps that
met all international standards [4]. Merah et al. advanced this field by creating an FPGA-
based PRNG employing the Chua chaotic system, which passed all tests and exhibited
promising applications in image encryption [14]. Furthering these efforts, Avaroglu et al. de-
veloped a hybrid PRNG that enhanced an AES-based structure with a chaotic 3D Sprott 94 G
system implemented on an FPGA [15]. Meranza-Castillón et al. proposed an FPGA-based
Henon map chaotic PRNG, which passed all statistical tests and achieved a throughput
of 9 Mbps, demonstrating its viability in chaotic software/hardware encryption applica-
tions [12]. Rezk et al. explored PRNG designs based on 3D Lorenz and Lü chaotic systems
on the FPGA platform, successfully passing all NIST statistical tests [16]. Patidar et al.
introduced an innovative PRNG structure based on a chaotic map that excelled in both
NIST and diehard tests [17]. Ahadpour et al. unveiled a new PRNG design rooted in
chaotic logistics, passing all evaluations [18]. Elmanfaloty et al. examined PRNG designs
based on 1D chaotic systems, which also met all international testing standards [19].

Despite the successes of these studies in various tests, limitations remain regarding
period, throughput, and resource utilization. Recent research highlights these constraints:
Luis Gerardo de la Fraga [20] proposed a Brownian system-based method with adequate
occupancy for embedded development but limited throughput to 1085 Mb/s. Yinzhe
Liu developed a random number algorithm based on the discrete chaotic system method,
reaching a throughput of 10 Gb/s, but with high computational unit consumption, using
4694 LUTs [21]. In comparison, our approach achieves a throughput that is more than
1.4 times that of what Liu et al. reported, with lower resource occupancy.

In this study, we develop a random number generator (RNG) based on chaotic map-
ping with multiple deep-dynamic transformations. This multiple deep-dynamic transfor-
mation (MDDT) algorithm, first proposed by us, goes beyond the traditional tilted tent
mapping by replacing fixed division operations with dynamic shifts and basic arithmetic
operations such as addition, subtraction, and XOR. This innovation significantly simplifies
the complexities associated with traditional multiplication and division operations. Further-



Entropy 2024, 26, 671 3 of 18

more, in the FPGA implementation, chaotic maps do not employ multiplication or division
operations, which results in hardware utilization remaining highly competitive, consuming
less than 1% of total resources. This level of hardware consumption not only retains a
competitive edge in FPGA implementation but also ensures an impressive throughput of
14.4 Gbps/s, which allows our PRNG to stand out in a field crowded with numerous stud-
ies. This achievement unequivocally demonstrates the superior performance of our design.
The PRNG implementation has successfully passed the most famous international bench-
marks, including those set by the National Institute of Standards and Technology (NIST)
SP800-22, diehard, and TestU01 test suites. This validates the effectiveness of the design.

The organization of this paper is as follows: We first outline the prevalent challenges
in modern pseudo-random number generation and subsequently highlight the advantages
of chaotic systems. Subsequently, in the ensuing chapters, we expound upon our theoretical
algorithm, incorporating dynamical analysis and parameter scrutiny. The fourth chapter is
dedicated to showcasing the algorithm’s implementation and performance optimization on
FPGA. Moving forward, in the fifth chapter, we validate the efficacy of our design through
experimental validation and comparative analysis vis-à-vis alternative methodologies.
Finally, we engage in a discourse regarding the advantages inherent in our proposed
algorithm and offer a succinct summary of the paper’s findings.

2. One-Dimensional Nonlinear Dynamic Transformation in Cross-Coupled
Chaotic Systems

This section introduces a novel one-dimensional (1D) nonlinear dynamic transforma-
tion within cross-coupled chaotic systems. The system generates random numbers through
an innovative algorithm grounded in the skew tent map, tailored specifically for FPGA
implementation. To elucidate the chaotic behavior, we conduct an in-depth analysis of
its nonlinear dynamics, employing various methods such as Lyapunov exponents (LEs),
bifurcation diagrams, phase portraits, and entropy measures.

2.1. Basic Model

In this study, we utilize the skew tent map as the core mathematical framework. The
skew tent map, defined by its two distinct piecewise linear segments, offers simplicity
and computational efficiency, making it highly applicable to fields such as randomness
generation, cryptography, and various security-related applications. A notable feature of
our model is its flexibility for further refinement; the skew tent map can be replaced with
other chaotic maps, presenting an intriguing avenue for future research aimed at boosting
performance. The mathematical formulation of the Tent function is as follows:

xn+1 = fp(xn) =

{ xn
p , if 0 ≤ x < p

1−xn
1−p , if p ≤ x ≤ 1

(1)

The parameter p is constrained within the range (0, 1). While the addition of sim-
ple coupling and associated subsequent processing functions to tilted tent diagrams can
generate random numbers, their shortcomings in terms of nonlinear dynamic behavior,
input range restriction, and periodicity, as well as the complexity of division, limit their
application to FPGAs and other embedded scenarios [19]. To overcome these limitations,
we propose an innovative dynamic algorithm system designed to enhance randomness
generation capabilities, specifically optimized for FPGA performance.

Our methodology introduces a dynamic system designed to construct a one-dimensional
nonlinear dynamic transformation coupled chaotic map, designated as 1d-dtts. This map is
characterized by two interdependent branches, where the output of one branch serves as
the input for the other, subsequently feeding back into its own input. The mathematical
representation is articulated as follows:



Entropy 2024, 26, 671 4 of 18



pn+1 =

{ pn
q , if 0 < pn < q

1−Pn
1−q , if q < pn < 1

xn+1 =


[
(xn⊕Pn)×2num1

z + p′n
]

mod 1, if 0 < xn < pn

[
(1−(xn⊕p′n))
(1−z)×2num2 + pn

]
mod 1, if pn < xn < 1

(2)

In this set of equations, z and q are controlled parameters, both within the range of
(0, 1). num1 and num2 are dynamic transformation factors. In practical computations,
num1 is specifically determined by the last n digits of p. In our FPGA explanation, we will
analyze in detail the selection of n because these parameters primarily contribute to the
randomness in FPGA computations. num1 and num2 are related as follows:

num2 = 2n − num1 (3)

Moreover, we further improve randomness by adopting a coupled exchange method.
Here, p and x have coupled exchange counterparts, p′ and x′. After coupling, we further
optimize the algorithm in FPGA to make the efficiency of coupled computation superior
to that of independently computing twice, effectively increasing throughput. We will
elaborate on this in subsequent discussions. Hence, the final random number generated in
a single computation is actually x = concat(x1, x′1).

The multi-depth characteristic of the algorithm is reflected in the calculation of z in the
update logic of x, while the dynamic transformation characteristic is manifested through
the participation of different p and x values in each iteration.

2.2. Lyapunov Exponent

The Lyapunov exponent quantifies the mean exponential rate at which adjacent trajec-
tories in phase space diverge, serving as a critical metric for assessing chaotic dynamics.
The presence of multiple positive Lyapunov exponents indicates the intricate nature of
a chaotic system’s behavior. Specifically, a system is deemed chaotic if it possesses two
or more positive Lyapunov exponents and displays bounded, non-divergent trajectories.
For a one-dimensional dynamical system characterized by xi+1 = f (xi), the analytical
determination proceeds as follows:

λ = lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣ f ′(xi)

∣∣. (4)

However, due to the nonlinearity of our equation and in accordance with the original
definition, we calculate it by defining the derivative, as shown in the following equation:

λ = lim
n→∞

lim
∆d→0

1
n

n+1

∑
i=0

ln
∣∣∣∣ f (xi + ∆d)− f (xi)

∆d

∣∣∣∣ (5)

Figure 1 presents the Lyapunov exponents (LEs) of the MDDT system. Since the
MDDT system has two parameters, q and z, a three-dimensional plot is used. Evidently,
the proposed system exhibits Lyapunov exponents greater than 0 for any combination
of the two parameters ranging from 0 to 1 and remains stably above 10 in most regions,
indicating robust dynamical properties. By selecting p as the independent variable, we
ensure a precise and reliable reflection of x’s variations. This choice is justified by the strong
correlation and the ability to maintain the integrity of the mathematical evaluation.



Entropy 2024, 26, 671 5 of 18

Figure 1. Lyapunov exponents of the MDDT system (3D), where the color of the figure represents the
value of the angle.

2.3. Bifurcation and Trajectory

The chaotic behavior of such systems can be effectively demonstrated through bifurca-
tion diagrams and chaotic trajectories. The bifurcation diagram depicts the system’s output
values as a function of a varying parameter, while the chaotic trajectory illustrates the
dynamic path of the system’s output over successive iterations, given a fixed initial value.

Figure 2 presents the bifurcation diagram of the MDDT system. Utilizing a three-
dimensional representation, it showcases the random distribution of the output in response
to changes in two control parameters, thereby indicating the extensive range of chaotic
parameter choices. This extensive range underscores the inherent difficulty in influencing
the randomness of the system.

Figure 2. Bifurcation Diagram of the MDDT System (3D).



Entropy 2024, 26, 671 6 of 18

Figure 3a demonstrates the chaotic trajectories within our system, emphasizing both
the uniform distribution and the superior randomness of these trajectories. Furthermore,
a comparative analysis of the trajectory plots of MMDT and the skewed tent map, as illus-
trated in Figure 3b, is presented. The equation for the skewed tent map is as follows:

f (x) = xn+1 =

{ xn
p if x ∈ R, x ∈ (0, p]

1−xn
1−p if x ∈ R, x ∈ (p, 1)

(6)

It clearly shows a distinct pattern: our trajectories are evenly spread throughout the
entire space, exhibiting minimal correlations. In stark contrast, the trajectory plots of the
skewed tent map are characterized by strong correlations and a lack of randomness.

Regarding the choice of z = 0.45 and p = 0.61 in Figure 3a, it is mainly based on
the data analysis of Figure 1. It can be observed that when the z value is between 0.2
and 0.8, and the p-value is similarly between 0.2 and 0.8, the system has a significantly
higher Lyapunov exponent, which suggests that the system exhibits a more strongly chaotic
behavior. Therefore, the choice of specific values within this parameter range provides a
certain degree of flexibility, while ensuring that the main dynamic properties of the model
are not affected. Meanwhile, p = 0.499 in Figure 3b is chosen to demonstrate the chaotic
trajectory of the slanted tent algorithm itself. In the original slanted tent mapping, when
the p-value is very close to 0.5, its chaotic properties can be demonstrated more clearly, thus
proving its validity and characterization as a chaotic system [19]. This parameter choice not
only focuses on theoretical validation but also facilitates the observation and comparison
of behavioral differences between different chaotic mappings.

Figure 3. (a) Chaotic trajectories of the MDDT system (z = 0.45, p = 0.61); (b) chaotic trajectories of
the skew tent system (p = 0.499).

2.4. Entropy Analysis

To quantify the nonlinear dynamical characteristics of chaotic systems, various forms
of entropy can be utilized. Sample entropy (SE), an approximate entropy measure, is exten-
sively employed to evaluate the irregularity or complexity of time series data. A higher
SE value indicates a greater degree of unpredictability in the dynamic behavior. Permuta-
tion entropy (PE), another significant metric, effectively gauges the complexity of chaotic
time series, especially when dynamic and observational noise is present. PE employs
permutations to evaluate the irregularity of reconstructed subsequences.

Figure 4 provides a comparative analysis of the multiple deep-dynamic transformation
(MDDT) map and skew tent chaotic map using different entropy measures. For consis-
tency, the system parameters of all chaotic maps are aligned with those used in the prior



Entropy 2024, 26, 671 7 of 18

comparative experiments, with the parameter z held constant and p varied within the
MDDT system.

Figure 4a illustrates that the sample entropy (SE) produced by the multiple deep-
dynamic transformation (MDDT) system surpasses that of the skew tent chaotic map,
suggesting that the MDDT system generates a more complex time series. However, there is
a significant reduction in the complexity of the MDDT time series around a value of 0.5,
indicating that points near 0.5 should be avoided for optimal results.

Figure 4. (a) Sample entropy: MDDT (z = 0.45) vs. skew tent map; (b) permutation entropy: MDDT
(z = 0.45) vs. skew tent map.

Figure 4b reveals that the permutation entropy (PE) of the MDDT system approaches
1, while the PE of the skew tent system generally forms a tent-like shape. This comparison
indicates that the MDDT system exhibits a higher degree of complexity.

3. Design of PRNG on FPGA

The hardware resource consumption is significantly influenced by the implementa-
tion method. For instance, the LUT resource consumption for implementing division is
substantially higher than that for a shift approximation scheme. Simultaneously, the shift
approximation scheme offers reduced latency. During computation, higher data represen-
tation precision enhances chaotic characteristics [22] and increases the output rate, albeit at
the cost of greater hardware resource consumption. In this implementation, the compu-
tational depth of X is set to 24 bits, and the computational depth of P is set to 48 bits to
balance hardware consumption and throughput.

Regarding the selection of the bit width, we conducted a series of experiments to de-
termine the optimal computational bit width that produces sufficient randomness. The fol-
lowing table analyzes the tests on bit width with its final performance (In actual hardware
algorithm design, arithmetic bit widths greater than 16 bits have been split into four groups
for synchronized arithmetic, e.g., 24 bits are dynamically shifted in accordance with four
groups of 6-bit wide sections):

From Table 1, it is clear that the 24-bit computational bit width and the [0:3] displace-
ment range can satisfy both the randomness requirement and the clock constraints, which
is the optimal solution based on the experimental data.

The initial parameters are set to (X1, X2, P1, P2) = (0× 6666, 0× 9999, 0× 3FFF, 0× F3FF),
with zeros padding the unused bits. To simplify complex arithmetic operations and reduce
latency, fixed division in the intricate P update logic is replaced by an approximate shift
implementation. Since the X update logic involves subtraction, addition, and dynamic
shifting, it will consume a lot of combinational logic on the FPGA, especially the dynamic
shifting in the X update logic, which is the most time-consuming step, and in order to
satisfy the timing constraints at higher frequencies, it often requires multiple clock cycles



Entropy 2024, 26, 671 8 of 18

to complete, and in order to take into account the throughput of the random number
generation, it is often necessary to make the arithmetic operation complete within a single
clock cycle, thus Therefore, relevant optimizations are necessary. Therefore, the X update
logic is segmented to ensure normal operation at high frequencies. To maintain effective
chaotic performance with smaller bit-width segmented operations, this implementation
employs two similar X calculation modules for coupled calculations. The X update im-
plementation introduces cross-coupling concerning P, with the output from the opposite
side of the previous iteration being used as the new X input coupling. Additionally, cross-
coupling concerning X itself is introduced in the output processing splicing part, as shown
in Figure 5.

Table 1. Calculated bit width of x and dynamic displacement width range selection and its result analysis.

Computational Bit
Width\Dynamic
Displacement Range

8 Bits 16 Bits 24 Bits 48 Bits 96 Bits 128 Bits

[0:1] Fails NIST tests Fails NIST tests Fails NIST tests Fails NIST tests Fails NIST tests Fails NIST tests

[0:3] Meets clock, fails
throughput speed Fails NIST tests

Meets clock,
randomness, high
throughput

High delay, fails clock Fails NIST tests Fails NIST tests

[0:7] Shifts exceed width Fails NIST tests Shifts exceed width Fails NIST tests High delay, fails clock Fails NIST tests
[0:15] Shifts exceed width Shifts exceed width Shifts exceed width Shifts exceed width High delay, fails clock Fails NIST tests

Figure 5. Schematic diagram of the data exchange of the random number part of the FPGA.

This modification of splitting and re-combining the x-module arithmetic process is
actually an optimization of the dynamic shifts in the original MDDT algorithm. The x-
module part of the original MDDT algorithm shows good nonlinear characteristics in
the algorithmic analysis when only one dynamic shift is used. The FPGA hardware
implementation version adopts splitting the X into four segments, and then performs the
dynamic shift operation synchronously, and then splices them together afterward, which is
essentially a bit-width-reduced version of the nonlinear processing of the dynamic shifts
of the X-part of the original MDDT algorithm by combining four of the original MDDT
algorithm’s X-part into one x-module. In essence, the bit-width-reduced version of the
four original MDDT algorithms for the nonlinear processing of the dynamic displacement
of the X part is integrated into the optimized hardware version of the X module, i.e., the
one nonlinear transformation of the X part of the original version is changed into four
nonlinear transformations, and splicing is carried out after the completion of the dynamic
displacement of the X part to keep the bit-width of the X module as 24 bits, and then
continue the rest of the original MDDT algorithm. Obviously, this optimization not only
does not weaken the performance of the FPGA hardware implementation version of the



Entropy 2024, 26, 671 9 of 18

random number generator, but also reduces the actual operational bit-width, improves the
operational efficiency through the use of synchronous shifts, reduces resource consumption
and clock delay, increases the maximum clock frequency under the FPGA design timing
constraints, and enhances the performance of the random numbers it generates. This is
demonstrated in the following output random number test section, where the random
numbers generated by the FPGA hardware version of the random number generator
successfully pass the NIST test and other tests, with good performance in all indicators.

3.1. Calculation and Update Logic of X

The two update modules, X1 and X2, operate simultaneously. During the initial
initialization, the inputs are the initial seeds X1 and X2. During normal operation, the inputs
are the lower 24 bits of the opposite side’s output, as illustrated in Figure 5. The P update
modules, P1 and P2, are also required as inputs to participate in the calculations of X2 and
X1 in a cross-coupled manner, as shown in Figure 6. The lower 2 bits of P are also necessary
for calculating dynamic shifts. To reduce latency, the complex conditional subtraction
and dynamic shift in the X update are divided into four 6-bit wide parts for parallel
processing. Upon completion, these parts are concatenated into a 24-bit value in a fixed
order, performing a dynamic shift first, followed by a 24-bit wide XOR with the coupled P.

Figure 6. Hardware design structure of the X update logic implemented on FPGA.

The formula for the shift width is shown in Equation (7):

SAR = (1 << 2)− P[1:0] (7)

where SAR represents the number of shift bits. Since SAR uses unsigned integers, the range
of SAR is [1, 4]. This range is chosen considering that the calculation width of X after
splitting is 6 bits, and the maximum bit shift cannot exceed the width of a single part
after splitting.

3.1.1. Calculation and Update Logic of X1

The update logic for X1 is a crucial part of our FPGA implementation. This algorithm,
described in Algorithm 1, takes the current value of X1 along with the parameters P1 and
P2 as inputs and produces the next value of X1. The process involves bit manipulation
operations and conditional logic based on the relationship between X1 and P1.



Entropy 2024, 26, 671 10 of 18

Algorithm 1: Update logic for X1 on FPGA
Input: Parameters P1, P2, Current value X1
Output: Updated value X1next

Step 1: Calculate the number of right shifts SAR1
SAR1 ← 4− P1[1:0]

if X1 ≤ low 24 bits of P1 then
Split X1 into four 6-bit parts
for n = 1 to 4 do

X1part(n) ← (X1part(n) ⊕ P1[6n−1:6n−6])≪ P1[1:0]

Concatenate parts in order: X1← {X1part4, X1part3, X1part2, X1part1}
X1next ← P2[23:0] + (X1≪ P1[1:0])

else
Split X1 into four 6-bit parts
for n = 1 to 4 do

X1part(n) ← (64− (X1part(n) ⊕ P1[6n−1:6n−6])) >> SAR1

Concatenate parts in order: X1← {X1part4, X1part3, X1part2, X1part1}
X1next ← P2[23:0] + (X1 >> SAR1)

return X1next

3.1.2. Calculation and Update Logic of X2

Similar to the update logic for X1, the algorithm for updating X2 is another key element
in our FPGA design. Algorithm 2 outlines this process, which takes the current value of X2
and the parameters P1 and P2 as inputs to calculate the next value of X2. The algorithm
uses similar bit manipulation techniques and conditional logic as the X1 update, but with
different parameter interactions.

Algorithm 2: Update logic for X2 on FPGA
Input: Parameters P1, P2, Current value X2
Output: Updated value X2next

Step 1: Calculate the number of right shifts SAR2
SAR2 ← 4− P2[1:0]

if X2 ≤ low 24 bits of P2 then
Split X2 into four 6-bit parts
for n = 1 to 4 do

X2part(n) ← (X2part(n) ⊕ P2[6n−1:6n−6])≪ P2[1:0]

Concatenate parts in order: X2← {X2part4, X2part3, X2part2, X2part1}
X2next ← P1[47:24] + (X2≪ P2[1:0])

else
Split X2 into four 6-bit parts
for n = 1 to 4 do

X2part(n) ← (64− (X2part(n) ⊕ P2[6n−1:6n−6])) >> SAR2

Concatenate parts in order: X2← {X2part4, X2part3, X2part2, X2part1}
X2next ← P2[47:24] + (X2 >> SAR2)

return X2next



Entropy 2024, 26, 671 11 of 18

3.2. Implementation of P Update Logic on FPGA

P simulates the standard skew tent map update logic but carefully selects appropriate
divisors. By using shifts instead of division, resource usage and latency are reduced.
The implementation logic is illustrated in Figure 7.

Figure 7. Implementation of P update logic on FPGA.

P Update

The update logic for the two P modules is identical, hence, P(n) is used in the calcula-
tion formulas, where n ranges from 1 to 2.

If P(n) is less than 45% of the maximum value that it can represent, a skew tent-like
logic is applied to calculate P, specifically multiplying P(n) by 2.46875. This approximates
division by 0.45 using shifts, as shown in Figure 7.

Conversely, if P(n) is greater than 45% of the maximum value it can represent, a skew
tent-like logic is applied to calculate P. This process involves subtracting P(n) from the
maximum value represented by 48 bits and then multiplying the result by 1.8125 using
shifts. This technique approximates division by 0.55, thereby effectively reducing resource
consumption and latency. The number 1.8125 is chosen to simulate in the hardware design
an effect similar to that of dividing by 0.55 (i.e., the result of 1− 0.45), essentially using
multiplication instead of division. Performing the division operation directly in hardware
typically involves higher complexity and cost. For efficiency and practicality, the effect
of division is approximated by a combination of displacements. The selection process is
based on careful considerations. We first consider the combination of displacements to
achieve the desired computational result, i.e., to simulate the operation of dividing by 0.55.
It is found that multiplying by 1.8125 (which is actually a combination of 1 [P itself] + 0.25
[P shifted 2 bits to the right] + 0.5 [P shifted 1 bit to the right] + 0.0625 [P shifted four bits to
the right]) better approximates this effect. Although this method has some errors compared
to the direct division operation, this error is acceptable in most application scenarios.

3.3. Calculation of Final 96-Bit Random Number Output on FPGA

The final 96-bit random number output is derived by concatenating two 48-bit outputs,
out1 and out2, as shown in Equation (8):

Result = {out1, out2} (8)

Both out1 and out2 are obtained by XORing the corresponding X and P values. The fol-
lowing sections describe the logic for calculating out1 and out2.



Entropy 2024, 26, 671 12 of 18

3.3.1. Calculation Logic for out1

As shown in Figure 8, the 24-bit X2 is concatenated with the computed X1next, and the
resulting 48-bit value is XORed with P1 to obtain out1. The calculation formula is given by
Equation (9):

out1 = {X1, X2next} ⊕ P1 (9)

Figure 8. Calculation logic for out1 and out2.

3.3.2. Calculation Logic for out2

As shown in Figure 8, the 24-bit X1 is concatenated with the computed X2next, and the
resulting 48-bit value is XORed with P2 to obtain out2. The calculation formula is given by
Equation (10):

out2 = {X2, X1next} ⊕ P2 (10)

Through the above series of operations, the FPGA implementation achieves effi-
cient utilization of all computation results under a smaller bit-width calculation premise.
The high-speed self-oscillating property of P and the multi-module coupling maintain a
high unpredictability of the generated sequence, enabling the output of a 96-bit random
number per clock cycle with only 24-bit wide X and 48-bit wide P calculations.

4. Experimental Result

This section outlines the implementation of the PRNG on the Xilinx Kintex-7 xc7k325tffg900-
2 evaluation kit and assesses its throughput based on the timing report. It can be confirmed
that the system is stable, as both the worst negative slack (WNS) and total negative slack
(TNS) are positive. Table 2 illustrates the WNS for the three most critical paths at a frequency
of 150 MHz, thereby demonstrating that the system is stable at this frequency.

Table 2. WNS of the three most critical paths at 150 MHz.

Name Slack (ms) Total Delay (ms) Details

PATH1 0.102 6.437 1.064 (Logic) + 5.267 (Net)
PATH2 0.112 6.436 1.169 (Logic) + 5.373 (Net)
PATH3 0.161 6.455 1.278 (Logic) + 5.167 (Net)

Our multiple deep-dynamic transformation (MDDT) random number system begins
with four seed values: X1, X2, P1, and P2. These seeds undergo deep-dynamic transforma-
tions synchronized with the system clock. The 96-bit output is generated in just one clock
cycle per iteration, resulting in a throughput of 14.4 Gbps at a core frequency of 150 MHz.
Table 3 presents the FPGA hardware consumption of our system, which utilizes only 0.67%
of the FPGA’s resources while achieving high throughput.



Entropy 2024, 26, 671 13 of 18

Table 3. Comparison of entropy sources and FPGA implementations.

Refs. Types Entropy Source FPGA Chip System Type Throughput
(Mb/s)

Max. Clock
Frequency (MHz)

Post
Processing

[1] Pseudo BM Spartan 3E Discrete 7.38 36.9 XOR
[16] Pseudo Lorenz+Lu Virtex-V Continuous 1875.58 78.149 Reconfigured
[19] Pseudo 3D multi-scroll Spartan-3E Discrete 289 37.89 -
[21] Pseudo TL-COTDCM Kintex-7 Discrete 10,283.52 120.51 -
[22] TRUE MCS+LM Kintex-7 Continuous 0.125 59.492 XOR
[23] Pseudo DE Zybo Z7–20 Discrete 169.31 105.82 -
[24] TRUE SPCS Virtex-6 Continuous 58.7 293.82 XOR
[25] Pseudo FWMHS+BM ZYNQ-XC7Z020 Continuous 62.5 135.04 XOR
[26] TRUE P3DS Virtex-6 Continuous 464.89 464.89 XOR
[27] Pseudo 5D-FFRK Zynq-7000 Discrete 6780 113 -
[28] Pseudo TL-LCHM Kintex-7 Discrete 9480 158 -
ours Pseudo MDDT Kintex-7 Discrete 14,400 150 -

The clock frequency in the FPGA implementations of all the algorithms involved in
the comparison does not reach the limit of the FPGA development boards used, and the
hardware resources consumed do not reach the limit of the FPGA development boards; at
the same time, the random number generation algorithms and hardware implementations,
once determined, the demand for hardware resources (e.g., Slices, LUTs, FFs, DSPs, etc.) is
fixed, so the algorithms’ consumption of hardware resources is determined by the algorithm
design itself, independent of the specific development board. Therefore, the consumption of
hardware resources by the algorithm is determined by the algorithm design itself, indepen-
dent of the specific development board, the main purpose of this comparison is to highlight
the performance difference of the algorithm itself rather than the difference in hardware.

Our design offers several clear advantages. Firstly, the MDDT operates as a discrete
chaotic map, capable of producing complex outputs without requiring post-processing,
thus conserving significant hardware resources. Secondly, our design employs simple
shift-add-XOR logic, facilitating normal operation at high frequencies while minimizing
resource usage and avoiding the need for DSPs.

The FPGA resource utilization comparison across different systems is illustrated in
Figure 9. By utilizing straightforward shift operations, our proposed PRNG achieves high-
frequency operation while consuming only 878 LUTs and 558 flip-flops (FFs). Like our
implementation, studies such as [19,24,25] do not provide details on DSP consumption.

Figure 9. Hardware resource utilization for various random number generators [1,16,19,21,23,24,26–28].



Entropy 2024, 26, 671 14 of 18

Table 4 presents a comprehensive comparison of our PRNG with other existing PRNGs.
While the SPCS PRNG [24] and P3DS PRNG [26] operate at higher frequencies, they exhibit
significantly lower throughput compared to ours. Although the TL-LCHM PRNG [28]
operates at a similar frequency, our throughput surpasses it by more than 1.5 times. The BM
PRNG [1] and Lorenz+Lu PRNG [16], despite focusing on low resource consumption, lag
in throughput. Remarkably, our design, devoid of DSP usage, achieves higher overall
generation speed and random number generation speed per LUT compared to the BM
PRNG [1] and Lorenz+Lu PRNG [16]. Specifically, our overall generation speed and per
LUT random number generation speeds are 7.67 times and 4.3 times that of the Lorenz+Lu
PRNG [16], respectively. Compared to the 5D-FFRK random number generator [27], our
design exhibits a 1.6-fold increase in output speed per unit frequency while utilizing only
36.8% of the Slices, 43.5% of the LUTs, and 16.1% of the FFs.

Table 4. FPGA resource utilization for the proposed PRNG.

Resource Type Look-Up Tables (LUTs) Flip-Flops (FFs) Slices

Utilization Count 878 558 339
Percentage Usage 0.43% 0.14% 0.67%

Power analysis was conducted using the Xilinx® Power Estimator (XPE)-2019.2.2.
The total power consumption of the MDDT is estimated to be 218 mW at a throughput of
14.4 Gbps, resulting in an energy efficiency of approximately 15.28 pJ/b. This efficiency
is notably superior to the 61.964 pJ/b reported for the TL-COTDCM PRNG [21] and the
34.2 pJ/b reported for the TL-LCHM [28].

5. Evaluation of Randomness
5.1. Histogram

To evaluate the statistical attributes of random sequences generated, histograms are
employed. A PRNG is deemed statistically excellent if the standard deviation in the
histogram distribution of the random numbers is very small. We analyzed a chaotic
sequence of 96 bits with a length of 1,000,000 to determine its distribution characteristics.
As depicted in Figure 10a, the distribution of these sequences corroborates our mathematical
assessments. Figure 10b illustrates the histogram of the output bits, where the range of
96 bits is segmented into 200 equal parts on the x-axis. This histogram displays a notably
irregular distribution, suggestive of an absence of discernible patterns.

Figure 10. (a) Randomn − Randomn+1 trajectory points. (b) Histogram of random bitstreams.



Entropy 2024, 26, 671 15 of 18

5.2. TestU01 Evaluation

TestU01 is a widely utilized test suite providing an extensive range of tests for eval-
uating random bit generators. This suite includes generic and versatile statistical testing
tools [28]. For our evaluation, we employed two specific test batteries: the Rabbit and
Alphabit tests. The Rabbit test battery comprises 39 subtests, while the Alphabit test bat-
tery consists of 17 subtests, each applied to sequences of 232 bits. Additionally, for each
24-fold increase in sequence length, an additional Rabbit test is required for comprehensive
acceptance testing.

Table 5 displays the results of the battery tests, demonstrating that all tests pass even
for sequences as long as 232 bits. This is significantly longer than the 228-bit length reported
in [21].

Table 5. Results of battery tests for various lengths of random bits.

Sequence Length Rabbit Test Results Alphabit Test Results

228 40/40 17/17
229 40/40 17/17
230 40/40 17/17
231 40/40 17/17
232 40/40 17/17

5.3. NIST Statistical Test Suite

The NIST SP800-22 test suite comprises multiple statistical tests designed to evaluate
the randomness of binary sequences [29]. By scrutinizing various non-randomness patterns,
it serves as a benchmark for detecting deviations from randomness. Typically, a significance
level of α = 0.01 is employed, with p-values greater than or equal to 0.01 considered
acceptable. The randomness of the test data is confirmed when the proportion falls within
the confidence interval of [0.9805607, 0.9994392]. The outcomes of the NIST statistical tests
are outlined in Table 6, where “*” signifies the test’s average result. For a significance level
of 0.01 and a sample size of 1000 sequences, each statistical test requires a minimum passing
rate of around 980. Similarly, for a sample size of 618 binary sequences, this threshold is
approximately 606. Notably, our pseudo-random number generator (PRNG) successfully
cleared all NIST SP800-22 statistical tests.

Table 6. Results of NIST SP800-22 Test, N = 1000 sequences of length 1 Mb.

NIST Test p-Value Passing Proportion

Frequency 0.220159 992/1000
Block frequency 0.128132 994/1000

Cumulative sums * 0.567838 992/1000
Runs 0.574903 991/1000

Longest run 0.205531 990/1000
Rank 0.991468 993/1000
FFT 0.967382 990/1000

Non-overlapping template * 0.504044 990/1000
Overlapping template 0.234373 987/1000

Universal 0.607993 991/1000
Approximate entropy 0.564639 993/1000
Random excursion * 0.586345 612/618

Random excursion variant * 0.209342 614/618
Serial * 0.0711915 993/1000

Linear complexity 0.214439 990/1000

5.4. Diehard Statistical Test Suite

The diehard test suite, composed of 15 independent statistical tests, is utilized to
analyze files consisting of millions of 32-bit integers [30]. These tests generate a series of



Entropy 2024, 26, 671 16 of 18

statistical p-values, and a uniform distribution of these values between 0 and 1 indicates
randomness. To enhance result reliability, it is advisable to conduct the tests multiple times
using different sets of integers. For our evaluation, we generated a 500 MB binary file
employing a method akin to TestU01. As illustrated in Table 7, all diehard tests were suc-
cessfully passed, suggesting that our output sequence exhibits commendable randomness.

Table 7. Results of diehard tests for the proposed PRNG, sequences of 500 M BITS.

Diehard Test p-Value Result

Birthdays 0.71158168 PASSED
Operm5 0.09298933 PASSED

Rank 6× 8 0.6927688 PASSED
Rank 32× 32 0.39556777 PASSED

Bitstream 0.10464763 PASSED
OPSO 0.9359973 PASSED
DNA 0.46640039 PASSED

Count 1s string 0.02640681 PASSED
Count 1s byte 0.02178915 PASSED

Parking lot 0.6565555 PASSED
2d sphere 0.7759774 PASSED
3d sphere 0.96829087 PASSED
Squeeze 0.95464699 PASSED

Sums 0.04541152 PASSED
Runs up 0.81875048 PASSED

Runs down 0.59606009 PASSED
Craps 0.67008209 PASSED

6. Conclusions

We engineered a PRNG employing MDDT of chaotic systems, specifically imple-
mented on an FPGA. This design is aimed at achieving high throughput, exceptional ran-
domness, and efficient utilization of hardware resources. The complex nonlinear dynamics
intrinsic to chaotic systems confer a substantial degree of randomness to the generated
sequences. Experimental data demonstrate that substituting conventional division oper-
ations with shift and slice operations markedly improves hardware utilization efficiency.
This PRNG is capable of generating up to 14.4 Gbps of random output at a maximum stable
clock frequency of 150 MHz, eliminating the need for post-processing. Additionally, it
consumes less than 0.7% of FPGA resources, even when producing a 96-bit stream. The gen-
erated output bits have undergone extensive evaluation through a multitude of established
statistical tests, consistently demonstrating a high degree of randomness. Consequently,
this PRNG is well-suited for contemporary industrial applications, including confidential
computing and image encryption.

Author Contributions: Conceptualization, Z.L., S.L. and R.N.; funding acquisition, S.L. and Y.Y.;
methodology, Z.L., S.L. and R.N.; project administration, S.L. and Y.Y.; resources, S.L.; software,
Z.L. and R.N.; supervision, S.L. and Y.Y.; validation, Z.L. and R.N.; visualization, Z.L. and R.N.;
writing—original draft, Z.L. and R.N.; writing—review and editing, Z.L., S.L. and Y.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by the Gansu Provincial Science and Technology Plan
Project Foundation (No. 22YF7GA006), the Fundamental Research Funds for the Central Universities
of China (No. lzujbky-2022-pd12), and the Natural Science Foundation of Gansu Province, China
(Nos. 21JR1RA252 and 22JR5RA492). All authors have read and agreed to the published version of
the manuscript.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors gratefully acknowledge the anonymous reviewers for their con-
structive comments.



Entropy 2024, 26, 671 17 of 18

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. de la Fraga, L.G.; Torres-Pérez, E.; Tlelo-Cuautle, E.; Mancillas-López, C. Hardware implementation of pseudo-random number

generators based on chaotic maps. Nonlinear Dyn. 2017, 90, 1661–1670. [CrossRef]
2. Garipcan, A.M.; Erdem, E. Implementation and performance analysis of true random number generator on FPGA environment

by using non-periodic chaotic signals obtained from chaotic maps. Arab. J. Sci. Eng. 2019, 44, 9427–9441. [CrossRef]
3. Tuna, M.; Fidan, C.B. A Study on the importance of chaotic oscillators based on FPGA for true random number generating

(TRNG) and chaotic systems. J. Fac. Eng. Archit. Gazi Univ. 2018, 33, 469–486.
4. Kocarev, L.; Jakimoski, G. Pseudorandom bits generated by chaotic maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003,

50, 123–126. [CrossRef]
5. García-Martínez, M.; Campos-Cantón, E. Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 2015,

82, 2119–2131. [CrossRef]
6. Palacios-Luengas, L.; Pichardo-Méndez, J.; Díaz-Méndez, J.; Rodríguez-Santos, F.; Vázquez-Medina, R. PRNG based on skew tent

map. Arab. J. Sci. Eng. 2019, 44, 3817–3830. [CrossRef]
7. Elhoseny, M.; Ramírez-González, G.; Abu-Elnasr, O.M.; Shawkat, S.A.; Arunkumar, N.; Farouk, A. Secure medical data

transmission model for IoT-based healthcare systems. IEEE Access 2018, 6, 20596–20608. [CrossRef]
8. Avaroglu, E.; Tuncer, T.; Özer, A.B.; Türk, M. A new method for hybrid pseudo random number generator. Inf. MIDEM 2014,

44, 303–311.
9. Sunar, B.; Martin, W.J.; Stinson, D.R. A provably secure true random number generator with built-in tolerance to active attacks.

IEEE Trans. Comput. 2006, 56, 109–119. [CrossRef]
10. Yalçin, M.E.; Suykens, J.A.; Vandewalle, J. True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I

Regul. Pap. 2004, 51, 1395–1404. [CrossRef]
11. Bakiri, M.; Guyeux, C.; Couchot, J.F.; Oudjida, A.K. Survey on hardware implementation of random number generators on FPGA:

Theory and experimental analyses. Comput. Sci. Rev. 2018, 27, 135–153. [CrossRef]
12. Meranza-Castillón, M.; Murillo-Escobar, M.; López-Gutiérrez, R.; Cruz-Hernández, C. Pseudorandom number generator based

on enhanced Hénon map and its implementation. AEU-Int. J. Electron. Commun. 2019, 107, 239–251. [CrossRef]
13. Rezk, A.A.; Madian, A.H.; Radwan, A.G.; Soliman, A.M. Multiplierless chaotic pseudo random number generators. AEU-Int. J.

Electron. Commun. 2020, 113, 152947. [CrossRef]
14. Merah, L.; Ali-Pacha, A.; Said, N.H.; Mamat, M. A pseudo random number generator based on the chaotic system of Chua’s

circuit, and its real time FPGA implementation. Appl. Math. Sci. 2013, 7, 2719–2734. [CrossRef]
15. Avaroğlu, E.; Koyuncu, I.; Özer, A.B.; Türk, M. Hybrid pseudo-random number generator for cryptographic systems. Nonlinear

Dyn. 2015, 82, 239–248. [CrossRef]
16. Rezk, A.A.; Madian, A.H.; Radwan, A.G.; Soliman, A.M. Reconfigurable chaotic pseudo random number generator based on

FPGA. AEU-Int. J. Electron. Commun. 2019, 98, 174–180. [CrossRef]
17. Patidar, V.; Sud, K. A novel pseudo random bit generator based on chaotic standard map and its testing. Electron. J. Theor. Phys.

2009, 6, 327–344.
18. Ahadpour, S.; Sadra, Y.; ArastehFard, Z. A novel chaotic encryption scheme based on pseudorandom bit padding. arXiv 2012,

arXiv:1201.1449.
19. Elmanfaloty, R.A.; Abou-Bakr, E. Random property enhancement of a 1D chaotic PRNG with finite precision implementation.

Chaos Solitons Fractals 2019, 118, 134–144. [CrossRef]
20. de la Fraga, L.G.; Ovilla-Martínez, B. Generating pseudo-random numbers with a Brownian system. Integration 2024, 96, 102135.

[CrossRef]
21. Yang, Z.; Liu, Y.; Wu, Y.; Qi, Y.; Ren, F.; Li, S. A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos. Chaos

Solitons Fractals 2023, 167, 113039. [CrossRef]
22. Karakaya, B.; Gülten, A.; Frasca, M. A true random bit generator based on a memristive chaotic circuit: Analysis, design and

FPGA implementation. Chaos Solitons Fractals 2019, 119, 143–149. [CrossRef]
23. de la Fraga, L.G.; Ovilla-Martínez, B. A chaotic PRNG tested with the heuristic Differential Evolution. Integration 2023, 90, 22–26.

[CrossRef]
24. Koyuncu, I.; Özcerit, A.T. The design and realization of a new high speed FPGA-based chaotic true random number generator.

Comput. Electr. Eng. 2017, 58, 203–214. [CrossRef]
25. Yu, F.; Li, L.; He, B.; Liu, L.; Qian, S.; Huang, Y.; Cai, S.; Song, Y.; Tang, Q.; Wan, Q.; et al. Design and FPGA implementation of a

pseudorandom number generator based on a four-wing memristive hyperchaotic system and Bernoulli map. IEEE Access 2019,
7, 181884–181898. [CrossRef]

26. Koyuncu, İ.; Tuna, M.; Pehlivan, İ.; Fidan, C.B.; Alçın, M. Design, FPGA implementation and statistical analysis of chaos-ring
based dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 2020, 102, 445–456. [CrossRef]

27. Nguyen, N.T.; Bui, T.; Gagnon, G.; Giard, P.; Kaddoum, G. Designing a pseudorandom bit generator with a novel five-dimensional-
hyperchaotic system. IEEE Trans. Ind. Electron. 2021, 69, 6101–6110. [CrossRef]

http://doi.org/10.1007/s11071-017-3755-z
http://dx.doi.org/10.1007/s13369-019-04027-x
http://dx.doi.org/10.1109/TCSI.2002.804550
http://dx.doi.org/10.1007/s11071-015-2303-y
http://dx.doi.org/10.1007/s13369-018-3688-y
http://dx.doi.org/10.1109/ACCESS.2018.2817615
http://dx.doi.org/10.1109/TC.2007.250627
http://dx.doi.org/10.1109/TCSI.2004.830683
http://dx.doi.org/10.1016/j.cosrev.2018.01.002
http://dx.doi.org/10.1016/j.aeue.2019.05.028
http://dx.doi.org/10.1016/j.aeue.2019.152947
http://dx.doi.org/10.12988/ams.2013.13242
http://dx.doi.org/10.1007/s11071-015-2152-8
http://dx.doi.org/10.1016/j.aeue.2018.10.024
http://dx.doi.org/10.1016/j.chaos.2018.11.019
http://dx.doi.org/10.1016/j.vlsi.2023.102135
http://dx.doi.org/10.1016/j.chaos.2022.113039
http://dx.doi.org/10.1016/j.chaos.2018.12.021
http://dx.doi.org/10.1016/j.vlsi.2023.01.001
http://dx.doi.org/10.1016/j.compeleceng.2016.07.005
http://dx.doi.org/10.1109/ACCESS.2019.2956573
http://dx.doi.org/10.1007/s10470-019-01568-x
http://dx.doi.org/10.1109/TIE.2021.3088330


Entropy 2024, 26, 671 18 of 18

28. L’ecuyer, P.; Simard, R. TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS)
2007, 33, 1–40. [CrossRef]

29. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; US Department of Commerce,
Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001; Volume 22.

30. De Micco, L.; Antonelli, M.; Rosso, O.A. From continuous-time chaotic systems to pseudo random number generators: Analysis
and generalized methodology. Entropy 2021, 23, 671. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.3390/e23060671

	Introduction
	One-Dimensional Nonlinear Dynamic Transformation in Cross-Coupled Chaotic Systems
	Basic Model
	Lyapunov Exponent
	Bifurcation and Trajectory
	Entropy Analysis

	Design of PRNG on FPGA
	Calculation and Update Logic of X
	Calculation and Update Logic of X1
	Calculation and Update Logic of X2

	Implementation of P Update Logic on FPGA
	Calculation of Final 96-Bit Random Number Output on FPGA
	Calculation Logic for out1
	Calculation Logic for out2


	Experimental Result
	Evaluation of Randomness
	Histogram
	TestU01 Evaluation
	NIST Statistical Test Suite
	Diehard Statistical Test Suite

	Conclusions
	References

