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A square nonlinear system

Σ :

ẋ = a(x) + b(x)u

y = c(x)

where u, y ∈ R
m, and x ∈ R

n are local coordinates for an

n-dimensional state space manifold X , is passive if there exists a

storage function H : X → R with H(x) ≥ 0 for every x, such that

H(x(t2)) − H(x(t1)) ≤

∫ t2

t1

uT (t)y(t)dt

for all solutions (u(·), x(·), y(·)) and all time instants t1 ≤ t2.

The system is lossless if ≤ is replaced by =.
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If H is differentiable then ’passive’ is equivalent to

(Willems, Hill-Moylan)

∂T H
∂x

(x)a(x) ≤ 0

c(x) = bT (x)∂H
∂x

(x)

and in the lossless case ≤ is replaced by =.

If additionally H(x∗) = 0 and H(x) > 0 for every x 6= x∗, then it

follows that x∗ is a stable equilibrium (which can never be

asymptotically stable in the lossless case).
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A linear system

ẋ = Ax + Bu

y = Cx

with equilibrium x∗ = 0 is passive if there exists a quadratic storage

function H(x) = 1
2xT Qx with Q = QT ≥ 0 satisfying the LMIs

AT Q + QA ≤ 0, C = BT Q



Beyond passivity: port-Hamiltonian systems, NOLCOS 2007 Pretoria 5

From passive systems to port-Hamiltonian systems

Every linear passive system with H(x) = 1
2xT Qx, satisfying

kerQ ⊂ kerA

can be rewritten as a port-Hamiltonian system

ẋ = (J − R)Qx + Bu

y = BT Qx,

with respect to the Hamiltonian H(x) = 1
2xT Qx.

The matrix J = −JT specifies the internal interconnection

structure of the system.

The matrix R = RT ≥ 0 specifies the energy-dissipation (due to

dampers, viscosity, resistors, etc.). In the lossless case R = 0.

Conversely, every port-Hamiltonian system with Q = QT ≥ 0 is

passive.
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Mutatis mutandis ’most’ nonlinear lossless systems can be written

as a port-Hamiltonian system

ẋ = J(x)∂H
∂x

(x) + g(x)u

y = gT (x)∂H
∂x

(x)

with J(x) = −JT (x). Here

ẋ = J(x)
∂H

∂x
(x)

is the internal Hamiltonian dynamics known from physics, which in

classical mechanics can be written as

q̇ = ∂H
∂p

(q, p)

ṗ = −∂H
∂q

(q, p)

with the Hamiltonian H the total (kinetic + potential) energy.
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Similarly, most nonlinear passive systems can be written as a

port-Hamiltonian system (with dissipation)

ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)u

y = gT (x)∂H
∂x

(x)

with R(x) = RT (x) ≥ 0 specifying the energy dissipation

d

dt
H = −

∂T H

∂x
(x)R(x)

∂H

∂x
(x) − uT y



Beyond passivity: port-Hamiltonian systems, NOLCOS 2007 Pretoria 8

However, in (network) modelling it is the other way arounda:

one derives the system in port-Hamiltonian form, and if the

Hamiltonian H ≥ 0 then it is the storage function of a passive

system.

The matrix J(x) corresponds to the internal power-conserving

structure of physical systems:

• Oscillation between potential and kinetic energy components.

• Kinematic constraints in mechanical systems.

• Kirchhoff’s laws

• Transformers, gyrators, etc.

Main message of this talk: start with port-Hamiltonian models

instead of passive models, because more can be done this way,

and one stays closer to the ’physics’ of the controlled system.
aSee e.g. the website of the EU-project Geoplex: www.geoplex.cc
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Example: Electro-mechanical systems
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ṗ

ϕ̇
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0 0 − 1
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∂H
∂q

∂H
∂p

∂H
∂ϕ









+









0

0

1









V, I =
∂H

∂ϕ
(q, p, φ)

Coupling electrical and mechanical domain via the Hamiltonian H.
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Example: Mechanical systems with kinematic constraints

Constraints on the generalized velocities q̇:

AT (q)q̇ = 0.

This leads to constrained Hamiltonian equations

q̇ = ∂H
∂p

(q, p)

ṗ = −∂H
∂q

(q, p) + A(q)λ + B(q)u

0 = AT (q)∂H
∂p

(q, p)

y = BT (q)∂H
∂p

(q, p)

with H(q, p) total energy, and λ the constraint forces.

By elimination of the constraints and constraint forces one derives

a port-Hamiltonian model as before.

Can be extended to general multi-body systems.
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Aside In modelling one often arrives at models with constraints,

leading to DAEs and/or models with Lagrange multipliers. The

theory of port-Hamiltonian systems can be naturally extended to

such cases by replacing the matrix J(x) (defining a Poisson

structure) by a Dirac structure.

Main theorem: Any power-conserving interconnection of

port-Hamiltonian systems is again a port-Hamiltonian system (with

respect to a Dirac structure).
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Example: distributed-parameter port-Hamiltonian systems

u1

y1

y2

u2

a b

Figure 1: Transmission line

Telegrapher’s equations define the boundary control system

∂Q
∂t

(z, t) = − ∂
∂z

I(z, t) = − ∂
∂z

φ(z,t)
L(z)

∂φ
∂t

(z, t) = − ∂
∂z

V (z, t) = − ∂
∂z

Q(z,t)
C(z)

u1(t) = V (a, t), y1(t) = I(a, t)

y2(t) = V (b, t), u2(t) = I(b, t)

In this case, J(x) is replaced by the differential operator ∂
∂z

.
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Use of passivity for control

• The standard feedback interconnection of two passive systems

is again passive, with storage function being the sum of the

individual storage functions.

• Passive systems, with the minimum of the storage function

being a stable equilibrium, can be asymptotically stabilized by

additional damping, provided an observability condition is

met:
d

dt
H ≤ uT y

together with the additional damping u = −y leads to

d

dt
H ≤ − ‖ y ‖2

(Jurdjevic-Quinn)
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Beyond control via passivity: what can we do if the desired

set-point is not a minimum of the storage function ??

Recall the proof of stability of the equilibrium (ω∗
1 , 0, 0) of the Euler

equations for the angular velocities ω1, ω2, ω3 of a rigid body

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω3ω1

I3ω̇3 = (I1 − I2)ω1ω2

The total energy K = 1
2I1ω

2
1 + 1

2I2ω
2
2 + 1

2I3ω
2
3 has a minimum at

(0, 0, 0). Stability of (ω∗
1 , 0, 0) is shown by taking as Lyapunov

function a suitable combination of the total energy K and another

conserved quantity, namely the total angular momentum

C = I1ω1 + I2ω2 + I3ω3
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In general, for any Hamiltonian dynamics

ẋ = J(x)
∂H

∂x
(x)

one may search for a special type of conserved quantities C, called

Casimirs, as being solutions of

∂T C

∂x
(x)J(x) = 0

Then d
dt

C = 0 for every H, and H + C are candidate Lyapunov

functions.
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Set-point stabilization problem:

Consider a (lossless) Hamiltonian plant system P

ẋ = J(x)∂H
∂x

(x) + g(x)u

y = gT (x)∂H
∂x

(x)

where the desired set-point x∗ is not a minimum of the

Hamiltonian H, while the Hamiltonian dynamics ẋ = J(x)∂H
∂x

(x) does

not possess useful Casimirs.

How to (asymptotically) stabilize x∗ ?
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Strategy: Consider a controller port-Hamiltonian system

C :

ξ̇ = Jc(ξ)
∂Hc

∂ξ
(ξ) + gc(ξ)uc, ξ ∈ Xc

yc = gT (ξ)∂Hc

∂ξ
(ξ)

via the standard feedback interconnection

u = −yc, uc = y

cc

P

C

u

u

y

y
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Then the closed-loop system is the port-Hamiltonian system





ẋ

ξ̇



 =





J(x) −g(x)gT
c (ξ)

gc(ξ)g
T (x) Jc(ξ)









∂H
∂x

(x)

∂Hc

∂ξ
(ξ)





with state space X × X c, and total Hamiltonian H(x) + Hc(ξ).

Main idea: design the controller system in such a manner

that the closed-loop system has useful Casimirs !
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Thus we look for functions C(x, ξ) satisfying

[

∂T C
∂x

(x, ξ) ∂T C
∂ξ

(x, ξ)
]





J(x) −g(x)gT
c (ξ)

gc(ξ)g
T (x) Jc(ξ)



 = 0

such that

V (x, ξ) := H(x) + Hc(ξ) + C(x, ξ)

has a minimum at (x∗, ξ∗) for some (or a set of) ξ∗ ⇒ stability.

Remark: The set of such achievable closed-loop Casimirs C(x, ξ)

can be fully characterized.

Subsequently, one may add extra damping (directly or in the

dynamics of the controller) to achieve asymptotic stability.
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Example: the ubiquitous pendulum

Consider the mathematical pendulum with Hamiltonian

H(q, p) =
1

2
p2 + (1 − cos q)

actuated by a torque u, with output y = p (angular velocity).

Suppose we wish to stabilize the pendulum at a non-zero angle q∗

and p∗ = 0.

Apply the nonlinear integral control

ξ̇ = y = p

u = −yc = −∂Hc

∂ξ
(ξ)

which is a port-Hamiltonian system with Jc = 0.
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Casimirs C(q, p, ξ) are found by solving

[

∂C
∂q

∂C
∂p

∂C
∂ξ

]









0 1 0

−1 0 −1

0 1 0









= 0

leading to Casimirs C(q, p, ξ) = K(q − ξ), and candidate Lyapunov

functions

V (q, p, ξ) =
1

2
p2 + (1 − cos q) + Hc(ξ) + K(q − ξ)

with the functions Hc and K to be determined.
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For a local minimum, determine K and Hc such that

Equilibrium assignment

sin q∗ + ∂K
∂z

(q∗ − ξ∗) = 0

−∂K
∂z

(q∗ − ξ∗) + ∂Hc

∂ξ
(ξ∗) = 0

Minimum condition









cos q∗ + ∂2K
∂z2 (q∗ − ξ∗) 0 −∂2K

∂z2 (q∗ − ξ∗)

0 1 0

−∂2K
∂z2 (q∗ − ξ∗) 0 ∂2K

∂z2 (q∗ − ξ∗) + ∂2Hc

∂ξ2 (ξ∗)









> 0

Many possible solutions.
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Example: stabilization of the shallow water equations

The dynamics of the water in a canal can be described by

∂t





h

v



 +





v h

g v



 ∂z





h

v



 = 0

with h(z, t) the height of the water at position z, and v(z, t) its

velocity (and g the gravitational constant).

By recognizing the total energy

H(h, v) =

∫ b

a

Hdz =

∫ b

a

1

2
[hv2 + gh2]dz

this can be written (similarly to the telegrapher’s equations) as a

port-Hamiltonian system
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∂h
∂t

(z, t) = − ∂
∂z

∂H
∂v

(h, v)

∂v
∂t

(z, t) = − ∂
∂z

∂H
∂h

(h, v)

with four boundary variables

hv|a,b

−( 1
2v2 + gh)|a,b,

denoting respectively the mass flow and the Bernoulli functiona.

Two of these variables can be taken as inputs and two as outputs.

(Note that the product hv · ( 1
2v2 + gh) again equals power.)

aDaniel Bernoulli, born in 1700 in Groningen as son of Johann Bernoulli, pro-

fessor in Mathematics at the local university and founder of the Calculus of Vari-

ations.
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Suppose we want to control the water level h to a desired

height h∗.

The obvious ’physical’ controller is to add to one side of the canal

an infinite water reservoir of height h∗, corresponding to the

port-Hamiltonian ’source’ system

ξ̇ = uc

yc = ∂Hc

∂ξ
( = gh∗)

with Hamiltonian Hc(ξ) = gh∗ξ, by the feedback interconnection

uc = y = hvb, yc = −u = (
1

2
v2 + gh)|b

This yields a closed-loop port-Hamiltonian system with total

Hamiltonian
∫ l

0

1

2
[hv2 + gh2]dz + gh∗ξ
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By mass balance,
∫ b

a

h(z, t)dz + ξ + c

is a Casimir for the closed-loop system. Thus we may take as

Lyapunov function

V (h, v, ξ) := 1
2

∫ b

a
[hv2 + gh2]dz + gh∗ξ − gh∗(

∫ b

a
h(z, t)dz + ξ) + 1

2g(b − a)(h∗)2

= 1
2

∫ b

a
[hv2 + g(h − h∗)2]dz

showing stability of the equilibrium (h∗, v∗ = 0, ξ∗), with ξ∗ arbitrary.
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Set-point stabilization of port-Hamiltonian systems with

dissipation (R 6= 0)

Surprisingly, the presence of dissipation may pose a problem !

C(x) is a Casimir for the Hamiltonian dynamics with dissipation

ẋ = [J(x) − R(x)]
∂H

∂x
(x), J = JT , R = RT ≥ 0

iff

∂T C

∂x
[J − R] = 0 ⇒

∂T C

∂x
[J − R]

∂C

∂x
= 0 ⇒

∂T C

∂x
R

∂C

∂x
= 0 ⇒

∂T C

∂x
R = 0

and thus C is a Casimir iff

∂T C

∂x
(x)J(x) = 0,

∂T C

∂x
(x)R(x) = 0

The physical reason for the dissipation obstacle is that with a

passive controller only equilibria where no energy-dissipation takes

place may be stabilized.
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Similarly, if C(x, ξ) is a Casimir for the closed-loop port-Hamiltonian

system then it must satisfy

[

∂T C
∂x

(x, ξ) ∂T C
∂ξ

(x, ξ)
]





R(x) 0

0 Rc(ξ)



 = 0

implying by semi-positivity of R(x) and Rc(x)

∂T C
∂x

(x, ξ)R(x) = 0

∂T C
∂ξ

(x, ξ)Rc(ξ) = 0

This is the dissipation obstacle, which implies that one cannot

shape the Lyapunov function in the coordinates that are directly

affected by energy dissipation.

Remark: For shaping the potential energy in mechanical systems

this is not a problem since dissipation enters in the differential

equations for the momenta.
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To overcome the dissipation obstacle

Suppose one can find a mapping C : X → R
m, with its (transposed)

Jacobian matrix KT (x) := ∂C
∂x

(x) satisfying

[J(x) − R(x)]K(x) + g(x) = 0

Construct now the interconnection and dissipation matrix of an

augmented system as

Jaug :=





J JK

KT J KT JK



 , Raug :=





R RK

KT R KT RK





By construction

[KT (x) | −I]Jaug = [KT (x) | −I]Raug = 0

implying that the components of C are Casimirs for the

Hamiltonian dynamics
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ẋ

ξ̇



 = [Jaug − Raug]





∂H
∂x

(x)

∂Hc

∂ξ
(ξ)





Furthermore, since [J(x) − R(x)]K(x) + g(x) = 0

Jaug − Raug =





J − R [J − R]K

KT [J − R] KT JK − KT RK





=





J − R −g

[g − 2RK]T KT JK − KT RK





Thus the augmented system is a closed-loop system for a different

output !
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Port-Hamiltonian systems with feedthrough term take the form

ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)u

y = (g(x) + 2P (x))T ∂H
∂x

(x) + [M(x) + S(x)]u,

with M skew-symmetric and S symmetric, while





R(x) P (x)

P T (x) S(x)



 ≥ 0
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The augmented system is thus the feedback interconnection of the

nonlinear integral controller

ξ̇ = uc

yc = ∂Hc

∂ξ
(ξ)

with the plant port-Hamiltonian system with modified output with

feedthrough term

ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)u

ymod = [g(x) − 2R(x)K(x)]T ∂H
∂x

(x) + [−KT (x)J(x)K(x) + KT (x)R(x)K(x)]u

Remark: In electrical circuits the conversion from y to ymod has the

interpretation of Thévenin-Norton equivalence.
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Generalization to feedback interconnection with

state-modulation.

Recall that KT (x) := ∂C
∂x

(x) is a solution to

[J(x) − R(x)]K(x) + g(x) = 0. This can be generalized to

[J(x) − R(x)]K(x) + g(x)β(x) = 0

with β(x) an m × m design matrix.

The same scheme as above works if we extend the standard

feedback interconnection u = −yc, uc = y to the state-modulated

feedback

u = −β(x)yc, uc = βT (x)y

Furthermore, K(x) is a solution for some β(x) iff

g⊥(x)[J(x) − R(x)]K(x) = 0

(In fact, β(x) := −(gT (x)g(x))−1gT (x)[J(x) − R(x)]K(x) does the job.)
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Further possibilities to generate Lyapunov functions

Recall that the set of storage functions H of a passive system

generally has a minimal and maximal element (Willems, 1972):

Sa(x) ≤ H(x) ≤ Sr(x), for all x.

where the available storage Sa(x) at x is given as

Sa(x) = sup
u,T≥0

−

∫ T

0

uT (t)y(t)dt

while the required supply Sr(x) to reach x at t = 0 starting from x0

equals

Sr(x) = inf
u,T≥0,x(−T )=x0

∫ 0

−T

uT (t)y(t)dt

In the lossless case Sa = Sr, and thus H is unique.
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Let H̃ be a different storage function, then there exist J̃(x) and

R̃(x) such that

[J(x) − R(x)]
∂H

∂x
(x) = [J̃(x) − R̃(x)]

∂H̃

∂x
(x)

Hence, the same story as before can be repeated for the new data.

Remark: An effective characterization of the class of possible

storage functions H̃, together with a characterization of the

achievable Casimirs corresponding to J̃(x) and R̃(x) seems to be

lacking currently.
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State feedback interpretation of Casimir generation in the

plant-controller state space: Shaping the Hamiltonian H

Restrict (without much loss of generality) to Casimirs of the form

C(x, ξ) = ξj − Gj(x)

It follows that for all time instants

ξj = Gj(x) + cj , cj ∈ R

Suppose that in this way all control state components ξi can be

expressed as function

ξ = G(x)

of the plant state x. Then the dynamic feedback reduces to a

state feedback, and the Lyapunov function H(x) + Hc(ξ) + C(x, ξ)

reduces to the shaped Hamiltonian

H(x) + Hc(G(x))
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A direct state feedback perspective:

Interconnection-Damping Assignment (IDA)-PBC control

A direct way to generate candidate Lyapunov functions Hd is to

look for state feedbacks u = ûIDA(x) such that

[J(x) − R(x)]
∂H

∂x
(x) + g(x)ûIDA(x) = [Jd(x) − Rd(x)]

∂Hd

∂x
(x)

where Jd and Rd are newly assigned interconnection and damping

structures.

Remark: For mechanical systems IDA-PBC control is equivalent to

the theory of Controlled Lagrangians (Bloch, Leonard, Marsden,

..).
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For Jd = J and Rd = R (so-called Basic IDA-PBC this reduces to

[J(x) − R(x)]
∂(Hd − H)

∂x
(x) = g(x)ûBIDA(x)

and thus in this case, there exists an ûBIDA(x) if and only if

g⊥(x)[J(x) − R(x)]
∂(Hd − H)

∂x
(x) = 0

which is the same equation as obtained for stabilization by Casimir

generation with a state-modulated nonlinear integral controller !

Conclusion: Basic IDA-PBC ⇔ State-modulated Control by

Interconnection.

For further connections: see the paper.
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Conclusions

• Unified framework for modeling, analysis, simulation, and

control of nonlinear multi-physics systems.

• Inclusion of distributed-parameter components. Merging with

semi-group approach to infinite-dimensional systems, and

boundary control of PDEs.

• Control by interconnection and Casimir generation, IDA-PBC

control.

◦ Suggests new control paradigms for nonlinear systems:
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Example: Energy transfer control

Consider two port-Hamiltonian systems Σi

ẋi = Ji(xi)
∂Hi

∂xi

(xi) + gi(xi)ui

yi = gT
i (xi)

∂Hi

∂xi

(xi), i = 1, 2

Suppose we want to transfer the energy from the port-Hamiltonian

system Σ1 to the port-Hamiltonian system Σ2, while keeping the

total energy H1 + H2 constant.
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This can be done by using the output feedback




u1

u2



 =





0 −y1y
T
2

y2y
T
1 0









y1

y2





It follows that the closed-loop system is energy-preserving.

However, for the individual energies

d

dt
H1 = −yT

1 y1y
T
2 y2 = −||y1||

2||y2||
2 ≤ 0

implying that H1 is decreasing as long as ||y1|| and ||y2|| are

different from 0. On the other hand,

d

dt
H2 = yT

2 y2y
T
1 y1 = ||y2||

2||y1||
2 ≥ 0

implying that H2 is increasing at the same rate. Has been

successfully applied to tracking control of mechanical systems

(Duindam & Stramigioli).
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THANK YOU !


