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Abstract

In the interest of conservation, the importance of having a large habitat available for a species is widely known. Here, we introduce a
lattice-based model for a population and look at the importance of fluctuations as well as that of the population density, particularly with
respect to Allee effects. We examine the model analytically and by Monte Carlo simulations and find that, while the size of the habitat is
important, there exists a critical population density below which the probability of extinction is greatly increased. This has large
consequences with respect to conservation, especially in the design of habitats and for populations whose density has become small. In
particular, we find that the probability of survival for small populations can be increased by a reduction in the size of the habitat and

show that there exists an optimal size reduction.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Extinction is becoming a greater and greater issue all
over the world and is a cause of extreme concern. It has
been estimated that anthropogenic extinctions are resulting
in the loss of a few percent of the current world’s biosphere,
which is of magnitude 3—4 times the natural background
rate (May et al., 1995). The World Conservation Union
(IUCN), through its Species Survival Commission (SCC)
develops criteria to assess the extinction rate for plants and
animals all over the world. This enables them to keep a so-
called Red List (www.redlist.org) of species which are
threatened with extinction in order to promote their
conservation. The list currently shows over 16,000 threa-
tened species around the world—a 45% increase in the
figure from the year 2000.

It has been shown by examining both discrete (Escudero,
2005) and continuous (Skellam, 1951) populations that, at
least analytically speaking, there exists a critical habitat
size L. above which survival of a population is assured.
However, since individuals in a population are often reliant
on each other for long-term survival, we intuitively expect
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that, even for L> L., a sufficiently large population would
be needed for growth.

In real populations, the positive correlation between size
and per capita growth rate of a population is known as the
Allee effect (Allee, 1931), which has recently received much
interest (e.g. Dennis, 2002; Hurford et al., 2006; Johnson
et al., 2000). If the Allee effect is strong enough, the per
capita growth rate may even be negative for small
population sizes and so the effect has been examined with
respect to extinction (see for example Amarasekare, 1998;
Courchamp et al.,, 1999; Stephens et al., 1999, and
references therein). Often, the analytical approaches made,
such as stochastic differential equations (e.g. Dennis, 1989),
discrete-time Markov-chains (e.g. Allen et al., 2005) or
diffusion processes (e.g. Dennis, 2002), take a macroscopic
view of the population, examining population size or
density. However, many ecological interactions, such as
breeding, resource competition or predation, occur at
scales much smaller than that of the entire population.
Additional insight can therefore be gained by examining
the many interactions of the individuals which result in the
observed macroscopic behaviour. A method of taking the
microscopic processes into account is through lattice
models, which have been widely used in ecology (see for
example Tainaka, 1988; Durrett and Levin, 1998; Itoh
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et al., 2004). In particular, space is explicitly defined as a
variable and so much additional insight can be given,
especially to the effects of the habitat size on the
population.

Here, we introduce a simple lattice model, incorporating
the processes of birth, death and diffusion, which display
Allee effects. We attempt to keep the model as general as
possible, not aiming to model a particular species, rather to
show the general behaviour of species which rely on others
for growth. After defining the model in the next section, we
examine the fluctuations in the population density that are
present in the Monte Carlo (MC) simulations in Section 3.
The displayed Allee effects are studied in Section 4,
particularly with respect to a sudden decrease in popula-
tion. Finally, our conclusions are discussed in Section 5.

2. The model

We have a d-dimensional square lattice of linear length L
where each site is either occupied by a single individual (1)
or is empty (0). A site is chosen at random. If the site is
occupied, the individual dies with probability p, leaving
the site empty. If the individual does not die, a neighbour-
ing site is randomly chosen. If this site is empty, the
individual moves there. If occupied however, a second
neighbouring site is chosen. If this second site is empty,
reproduction occurs with probability p,.! The parents
remain at their original sites with the new individual
occupying the second chosen site. If the second chosen site
is occupied, no reproduction takes place in order to prevent
over-crowding of the population. We therefore have the
following reactions for an individual 4.

ApspA, A+A—34 and A— ¢, 2.1)

where ¢ represents an empty site.

A time step is defined as the number of lattice sites and
so is equal to approximately one update per site. This
ensures that, in contrast to the total number of updates, the
number of updates per site per time step remains
independent of the lattice size. Despite an individual in
the population being able to move, die or give birth in a
single time step, simulations show that, as we would hope,
the processes of birth and death occur with much less
frequency than that of dispersal.

We use nearest neighbours and, throughout most of the
paper, periodic boundary conditions. Although more
unrealistic than, say, reflective, periodic boundary condi-
tions allow for better comparison with analytical results,
since periodic systems remain homogenous. We later,
however, examine some results with reflective boundary
conditions.

In order to justify some of the finer details of this
modelling approach, we carried out tests, changing specific
properties of the model. In particular, we investigated the
consequences of the order in which the processes of birth,

"'We note that the birth rate is actually given by p(1-p,) and not p, only.

death and diffusion were carried out and also the effect of
the shape of the lattice sites and hence the number of
neighbouring sites. The latter was examined by simply
viewing next-nearest neighbour sites rather than just
nearest neighbour sites. We expect neither detail to make
any significant difference to the dynamics due to the
coarse-grained level at which we view the system. This was
indeed confirmed by simulations where, in both cases, the
changes made to the model made no qualitative difference
to the behaviour of the system.

Unlike other similar models such as the contact process
(Harris, 1974), here, two individuals must meet in order to
reproduce, whereas one individual can die by itself. The
resulting density dependence of the population for survival
leads to observed Allee effects which we examine in
detail later.

We analytically examine our model by deriving the so-
called mean field (MF) equation (e.g. Opper and Saad,
2001) for the density of occupied sites p(f). Assuming the
particles are spaced homogeneously in an infinite system
we have
B — D1 = pdp 71 = p(0) = pap0)

(1)

The first term is the proliferation term and so is
proportional to p?, the probability that the individual does
not die, (1-p,), the probability that the next randomly
chosen site to give birth on is empty, (1-p) and finally the
probability that it gives birth if this is the case, p,. The
second term represents annihilation of an individual and so
is proportional to both p and p,, the probability that the
chosen individual dies.

Clearly the MF approach is limited in its applicability to
real systems due to the false assumption of infinite lattice
size and its neglect of spatial inhomogeneity. While MC
simulation results of the model will clearly give us a
more realistic insight into how a real system may behave,
Eq. (2.2) does give us a good indication of what we may
observe. In fact, we find very good qualitative agreement
between the MF predictions and the MC results in
subsequent sections.

When examining extinction through MC simulations, it
is important to note that, in contrast to MF, extinction will
always occur in a finite lattice. Survival probabilities in the
infinite time limit are therefore zero for p,;>0. With that in
mind, when we discuss the probability of survival accord-
ing to the MC results, we mean the probability of survival
up to some ¢ = fyux.

2.2)

2.1. Phase transition

Due to the conflict between the growth and decay
processes in the model, we expect that, with certain values
of p, and p,, extinction of the population would occur.
Indeed, many models displaying such a conflict (see for
example Vespignani et al., 2000; Dammer and Hinrichsen,
2003; Oborny et al., 2005; Peters and Neelin, 2006) show a
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critical parameter value separating an active state and an
inactive or absorbing state that, once reached, the system
cannot leave. As the rate of decay increases, the so-called
order parameter (often the density of active sites) decreases,
becoming zero at a critical point, marking a change in
phase or phase transition. In our case, the absorbing state
would represent an empty lattice and so extinction of the
population.
Eq. (2.2) has three steady states,

_ ; 1 4p,
= =—|1x4/1——°——"—.
Po=0. Pu 2 ( pi(1 —Pd)>

For 4p,> py(1-p,), p, are imaginary, resulting in p, being
the only real stationary state. Keeping p, constant from
now on, we then have that our critical death rate is given by
P4, = Pp/(4+ p,) which separates the active phase repre-
senting survival and the absorbing state of extinction.

As previously mentioned, we find at least good
qualitative support for our MF analysis through numerical
simulations. Fig. 1(a) shows the critical values of p; and p,
separating the regions with one and three real stationary
states according to both the MF equation and MC
simulations for 1, 2 and 3 dimensions. We see convincing
agreement between our analytical and numerical results,
particularly in higher dimensions. The MC simulations
were carried out on an initially fully occupied lattice with
linear sizes L = 1000, 32 and 10 for each dimension,
respectively, and we observed whether extinction occurred
during 10° time steps. For each p,, the simulation was
repeated 500 times. If a single run survived, p; was
increased, whereas if extinction occurred in all runs, p,
was reduced. Using the same initial seed for the random
number generator, an iterative procedure produced a
critical value with accuracy +2~'". This iterative procedure
was then repeated five times with different seeds and the
average taken. Only a small number of repeats was needed
since the largest variance of the values obtained was of the
order of 107%. From the figure we find that to 3 d.p. for
py=0.5, p; =0.073, 0.098 and 0.105 in 1, 2 and 3
dimensions, respectively. Due to the finite size of the
lattices and the finite time used for the above simulations,
the actual critical death rates are likely to differ slightly
from those given and more accurate techniques would have
to be used to obtain them (see Hinrichsen, 2000, for
examples of such techniques).

With p(t=0)=1, as p, is increased, the steady-state
population density decreases, becoming zero at p, as
shown in Fig. 1(b), marking the phase transition. We see
that the steady-state population density appears to change
continuously in 1 dimension, whilst discontinuously in 2
and 3 dimensions in agreement with the MF results. We
call such phase transitions continuous and first-order,
respectively. In both cases, the phase transition is marked
by a very rapid decrease in population density.

Aside from a decrease in population density, we expect
to observe other phenomena that are highly significant to
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Fig. 1. (a) Values of p, for different p, and (b) the steady-state
population densities with p, = 0.5 according to the MF (line) and 1
(+),2 (x) and 3 (e) dimensional MC simulations.

the population as p, is approached. In particular, for
continuous phase transitions, fluctuations in the popula-
tion density Ap are known to diverge as p, — p,
according to

Ap~ (Ppa, —pa)"

for some critical exponent y (see again Hinrichsen, 2000). A
population at risk from extinction due to a super-critical
death rate will therefore display, not only a decrease in
population density, but an increase in fluctuations (see also
Oborny et al., 2005).

Many models displaying such a continuous absorbing
phase transition are known to behave very similarly close
to the critical point. This has allowed for the grouping
together of those models which share the same properties
into universality classes. Critical exponents such as y, for
example, will be identical for all models belonging to the
same universality class. It has recently been shown that in 1

2.4)



462 A. Windus, H.J. Jensen | Theoretical Population Biology 72 (2007) 459-467

dimension, this model belongs to by far the largest
universality class of models displaying absorbing phase
transitions, called directed percolation (Windus and Jensen,
2007). Due to the size of this universality class, many other
similar models will display the same behaviour close to
criticality. These include models requiring different num-
bers of individuals for birth and death. The behaviour seen
here in 1 dimension close to criticality is true then for a
number of models different from our own, including the
previously mentioned contact process or the pair contact
process with diffusion (Carlon et al., 2001).

Extinction however may also occur for reasons other
than having a super-critical death rate. We investigate the
roles of fluctuations and that of Allee effects in the next
two sections, where we examine simulations in the sub-
critical or active phase and use the constant value p, = 0.5.

3. Fluctuations

One of the main weaknesses of the MF approach is the
absence of fluctuations in the population density. In reality,
and indeed from MC results, we expect extinction due to
fluctuations in the population density to occur when the
order of the fluctuations approaches the mean population
density. Empirically, demographic stochasticity (that is,
chance events of mortality and reproduction) is known to
be greater in smaller populations (Lande et al., 2003) than
in larger ones. From our MC results, population and
habitat size are positively correlated. This is true also, on
average, in nature. We therefore expect extinction due
to fluctuations to occur for smaller lattice (and there-
fore population) sizes as has been suggested (e.g. Pimm,
1991; Escudero et al., 2004) and indeed observed (e.g.
Diamond, 1984).

We see in Fig. 2(a) that, numerically, the fluctuations in
the population density Ap decrease with the number of
lattice sites N through a power law with exponent —0.50 in
all dimensions, which is what we would expect from the
central limit theorem. Simulations were carried out for fixed
pa=0.03 and p, = 0.5 and the standard deviation of the
population density was obtained from 5 x 10° surviving
runs for each lattice size. Fig. 2(b) shows how the size of
the fluctuations also increase as the critical point is
approached, as expected from Eq. (2.4). These larger
fluctuations will also increase the probability of extinction
as indicated in Fig. 3 where we examine the probability of
survival P that is, the probability that extinction has not
occurred up to some time f,,,. We examine the 1-
dimensional case only using three different values of p,;
with #max = 10° and repeat the simulation 5 x 10* times for
each lattice size. The figure clearly shows how the
probability of survival increases with L, yet decreases as
pa increases. Indeed, as p, is approached, population
density decreases and fluctuation size increases, resulting in
species with higher death rates being more susceptible to
extinction. This is indeed observed in nature where long-
lived species are known, in general, to have a higher chance
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Fig. 2. (a) Log-log plot of the standard deviation of the population
density Ap versus the number of sites N in the 1 (+), 2 (x) and 3 (e)
dimensional systems. The hashed line has gradient —0.5 for the eye and
indicates the power law behaviour. (b) The fluctuations versus p, for the
same dimensions as in (a).

of survival than short-lived ones (Pimm, 1991; Stocklin and
Fischer, 1999).

4. Allee effects

One reason we observe a decline in population growth at
low densities is due to a decrease in mating successes at low
densities. This is empirically known to occur in both plant
(e.g. Aizen and Feinsinger, 1994) and animal (e.g. Birk-
head, 1977; Robinson, 1988) populations. In our model,
this aspect is incorporated by the fact that two individuals
are required for reproduction whereas an individual can die
by itself. As density decreases, each individual therefore
finds it increasingly difficult to find another for reproduc-
tion before they die. To examine this, we return to our MF
equation (2.2).
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Fig. 3. How P, varies with L for the 1-dimensional model with (from left
to right), p, = 0.04, 0.05 and 0.06. Similar results are seen in 2 and 3
dimensions.

It is easy to show that whereas g, and p, are stable
stationary points of Eq. (2.2), p_ is unstable. We may
therefore treat p_ as a critical population density p. since,
from the MF, any population whose density p(¢)<pg_ will
be driven to extinction by the dynamics of the system.
In fact,

{ 0 for p()<p,
p(t) > ¢ ast — o0 4.1)

py  for p()>p,

for Pa <pd,'
We again wish to compare this MF prediction with the

MC results in 1, 2 and 3 spatial dimensions. Due to the
instability of p_, we instead use the initial population density
p(0) and find the value of p, (or indeed vice versa) that
separates the active and absorbing states. This then gives us
an excellent way of finding g_ = p, for different values of p,;.
The MC simulations were carried out and the death rates
found iteratively in the same fashion as in Section 2. The
results are shown in Fig. 4 and clearly show the importance
of the initial population density for survival. The density
dependence appears to increase with dimensionality, which
we expect, since two individuals meeting becomes progres-
sively harder as the dimensionality of the system increases.

From Eq. (4.1) we expect that the population will survive
only as long as p(#) > p.. The MC results however in Fig. 5,
show more of an increase in the probability of extinction as
we approach p rather than the definite extinction/survival
cut-of that the MF predicts. We also see that as p,, and
therefore p., decreases, a greater increase in p(0) is needed
to increase P to 1.

The existence of this critical population density is highly
significant to the conservation of species. It is clear from our
model that a sufficiently small population will not grow,
regardless of how much space and resources are available
(see also Amarasekare, 1998). Such behaviour has been
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Fig. 4. Phase diagram showing the critical values of p, separating the 2
long-term outcomes of the system for different initial population densities
according to the MF (line) and the 1 (+), 2 (x ) and 3 (e) dimensional
MC simulations. We remind the reader that, from MF, extinction occurs
in all cases for p;>p,,.
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Fig. 5. Plot of Py with 7,,,, = 2000 for different initial conditions. From
left to right we have, p.=0.17 (p;=0.94), 0.11 (p,=0.92) and 0.05
(pa = 0.089).

observed in nature. Populations of northern cod (Gadus
morhua), for example, have failed to grow, despite having
had seven years of moratorium (Shelton and Healey, 1999;
Frank and Brickman, 2000). Similarly, when introducing
bird populations to a new area, it has been found that
repeated releases of large numbers of individuals are often
needed before the introduction is successful (Long, 1981).

4.1. A decrease in population density

Apart from the initial conditions, it is certainly
conceivable that the population density could fall below
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the critical value due to a reduction in population size
caused by disease or hunting, for example. We examine this
through MC simulations by increasing p,; to 1 at some
t = t, and then returning p, to its original value once a
density p, has been reached. We examine this here in 2
dimensions with now reflective rather than the previously
used periodic boundary conditions. Qualitatively, all
previous results have been very similar when using
reflective boundary conditions but here we want to increase
this degree of realism in our model.

In 2 dimensions, for p,;, = 0.093, p. was found to be
0.140. So, from the MF, for p; = 0.093, we would expect
that if p;>0.14 the population will survive, with the
population density returning to p_ . However, for p;<0.14,
extinction will occur. Using p, = 0.15> p. in Fig. 6, we see
that for those runs that did survive, the population density
does indeed return to what it once was. We also see, as
suggested by Fig. 5, that most of the runs did result in
extinction. In fact the survival probability was only 0.007.

From Fig. 6 we observe that there is a time delay
between the start of the population decrease and when the
probability of survival begins to fall. Assuming an
individual that dies the nth time it is picked survives n—1
time steps, it is easy to show that the expected lifetime (in
time steps) of an individual is given by (1-p;)/ps Here,
then, the observed time delay of approximately 40 time
steps, with p; = 0.093, corresponds to approximately four
lifetimes. In general, the delay presents an opportunity to
act in order to increase the probability of survival.

According to our model, in order to reduce the
probability of extinction in such a case, the population
density must be increased beyond p.. This has important
ecological implications since it shows that the probability
of extinction can be decreased, not only by increasing the
population (which is of course not always possible), but
also by a decrease in habitat size for a fixed population.
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Fig. 6. The average population density of the surviving runs only with the
survival probability P(7) (hashed line), i.e. the probability that extinction
has not occurred up to time ¢. 4 value of L = 30 was used with # = 1000.

To see whether this hypothesis holds, we simulate this
again using p,; = 0.093 but with p; = p. = 0.14 so that the
probability of survival is negligible. Now, however, once
the population density has been reduced, the area covered
by the lattice is halved. This is achieved by halving the
linear length of the lattice in 1 dimension. The individuals
in the half that is removed are randomly relocated in the
remaining half therefore doubling the population density.
Once the population has recovered and stabilized, the
lattice is returned to its original size. Fig. 7 shows the
recovery of the population once the lattice size has been
reduced. With .., = 4000, the probability of survival
increased substantially from 0.004 to 0.278.

We expect there to be an optimal habitat reduction size
— too large a reduction and the population will be in
danger from the large fluctuations associated with smaller
habitat or population sizes, whereas too small a reduction
and the density will not be increased sufficiently This is
confirmed in Fig. 8 where we plot the probability of
survival P, up to some t,.x against the proportional
reduction in area 4 = L? for different values of p.. We
define this proportional reduction in area A4 to be
AA = 1-A,e/Aolg- Again, a 2-dimensional lattice with
an initial value L =30 was used and P, measured with
tmax = 4000. An optimal value of AA clearly exists in
each case.

From Fig. 8, we see that the greatest value of P is
achieved with p, = 0.11. Smaller values of p, result in
smaller populations, which, from Section 3, are at greater
risk of extinction by fluctuations. Since in Fig. 8 p, = p,,
larger values of p, are associated with larger values of p,.
Again, from Section 3, these populations are also at a
greater risk from extinction by fluctuations. We also
observe that as p, = p. increases, the value of A4 giving
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Fig. 7. Plot showing the surviving runs only (solid line) that recover, after
a sudden decrease in population size at #;, = 1000, due to the re-sizing of
the lattice. The lattice is returned to how it was originally at r = 2000 and
the population recovers to its original value. The re-scaled probability of
survival P'(¢) is also shown (hashed line).
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Fig. 9. How the probability of survival changes with reductions in habitat
size, AA for different initial values L = 26 (), 32 (<), 38 (V), 44 (O) and
50 (A) with py = p.=0.11.

the optimal value of P, decreases. This is likely to be due to
the fact that smaller values of p. require a greater density
increase to improve Py as seen in Fig. 5.

We plot in Fig. 9 P against A4 for a fixed p; = 0.11, but
with different initial values of 4. We see that as L increases,
P, also increases for a fixed AA4. This is likely to be due to
the larger population sizes that remain after the reduction
in habitat size which are less susceptible to extinction by
fluctuations.

Whilst reflective boundary conditions were used here,
very similar results were obtained using periodic boundary
conditions. In fact, with periodic boundary conditions, the
probability of survival increased more significantly due to

the population being able to grow in two directions rather
than in just one after the lattice had been returned to its
original size. This of course could be achieved in reality by
reducing the habitat from more than one direction.

This model was proposed to represent how the area in
which a population is found could be reduced in real life.
The species could be driven towards one end of the habitat
with a boundary placed to prevent them leaving the desired
area. This boundary could then be removed once the
population has recovered. Clearly this is easier for larger,
land-based animals but in principle, at least, could be
achieved for all non-plant species.

5. Conclusions

Allee effects are certainly observed in nature (Stephens
and Sutherland, 1999; Pedersen et al., 2001; Gyllenberg et
al., 1997) and have been studied with respect to extinction.
Using a lattice model, we have observed Allee effects
together with the role of fluctuations, with the advantage of
being able to examine the effects of habitat size. Being able
to model the population as a group of individuals which
move, breed and die, rather than as a variable in an
equation, has enabled us to gain a more realistic insight
into how real populations behave. In particular, the MC
results have taken into account the finite size of the
habitats as well as fluctuations and clustering in the
population. This has resulted in certain discrepancies
between the MF and MC results. Most notably, we
observed extinction occurring in the MC simulations where
the MF predicted survival.

Rather than the clear-cut conclusions that deterministic
models produce, conservationists often examine the prob-
ability that a population will maintain itself without
significant demographic or genetic manipulation for the
foreseeable ecological future (Soule, 1987). In this spirit,
for a sufficiently large population density we have shown
that the probability of survival does increase with habitat
size due to the smaller fluctuations. However, far more
important are the death rate and population density, since
if these fall on the wrong side of their critical values,
extinction is almost a certainty.

Our findings are certainly significant for the design of
habitats. The idea of a critical habitat size, mentioned in
the Introduction, is misleading since, according to our
model, it is certainly not true that for a fixed population
size the larger the habitat size the better. Regardless of the
amount of space and resources available, a population will
only grow if the density is above its critical value. We also
proposed, in the last section, a method for greatly reducing
the probability of extinction by reducing the habitat size
once a species has become rare.

Our notion of density has been that of the number of
individuals per unit area. While we assumed this to be
constant in space when deriving our MF equation (2.2),
clearly this will vary amongst real populations. In fact, for
populations that are found in patches, the value of the
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Fig. 10. Snapshot of the output from a 2-dimensional lattice with
L =100. A value of p;=0.1 was used and the picture was taken at
t = 600 when p = 0.2223.

density will depend very much on the scales used. The same
is true of the MC results as shown in Fig. 10, where we see
clear examples of clustering. In nature, species will cluster
to varying degrees and hence the value of the critical
population density will also vary and would need to be
estimated in each case.

So great is the variety of species on our planet that any
attempt to create a general model that could accurately
capture the behaviour of them all would be futile. Here, we
have assumed a homogenous habitat, where all sites are
equally accessible and habitable and have used the
parameters p, and p, only to describe the species. Whilst
our model may therefore not accurately describe any
particular species, we believe that it shows the general
behaviour of species which rely on others for growth and
sustainability. Great care would certainly need to be taken
in applying our findings to real situations since our findings
are of more qualitative, rather than quantitative relevance.
In particular, we think that our model would be most
relevant for species where the individuals live alone yet
sexually reproduce, rather than those which live in groups.
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