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DISTRIBUTED EVENT–TRIGGERED TRACKING
CONTROL OF LEADER–FOLLOWER MULTI–AGENT
SYSTEMS WITH COMMUNICATION DELAYS

Jiangping Hu, Guanrong Chen and Han-Xiong Li

As embedded microprocessors are applied widerly to multi-agent systems, control schedul-
ing and time-delay problems arose in the case of limited energy and computational ability.
It has been shown that the event-triggered actuation strategy is an effective methodol-
ogy for designing distributed control of multi-agent systems with limited computational
resources. In this paper, a tracking control problem of leader-follower multi-agent systems
with/without communication delays is formulated and a distributed dynamic tracking con-
trol is designed by employing event-triggered technique. Then, the input-to-state stability
of the closed-loop multi-agent system with directed interconnections is analyzed. Finally,
a numerical example is given to validate the proposed control.
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1. INTRODUCTION

Recently some great advances have been achieved in cooperative control of multi-
agent systems. The research focus is mainly on communication environments which
consequently require distributed control design. To this day, some control techniques
have been proposed according to different communication conditions, such as time-
varying networks [5, 16], subject to measurement noise [10, 13], time delays [9, 17],
or disturbances [15, 21].

A future control design may equip agents with embedded micro-processors to
collect information from neighboring agents so as to update the controller according
to some pre-designed rules. Motivated by this observation, some protocols were pro-
posed to deal with distributed algorithms of communication and controller actuation
scheduling [3, 20, 22]. Since micro-processors are generally resource- and energy-
limited, an event-triggered control was designed based on measurement errors for
execution in [20]. A timing issue was investigated through the use of a distributed
event-triggered feedback scheme in networked control systems in [22]. Very recently,
some distributed event-triggered control strategies were proposed for multi-agent sys-
tems [2, 3, 14]. All these control design methods possess a common characteristics
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that the controller is updated only when the measurement error magnitude exceeds a
certain threshold. In [3] and [2], centralized and decentralized event-triggered multi-
agent control protocols were developed for a first-order agreement problem, which
were proven to be input-to-state stable (ISS) [12]. The centralized cooperative con-
troller was actuated according to a global event-trigger rule while the decentralized
one was updated at a sequence of separate event-times encoded by a local trigger
function for each agent. Furthermore, a centralized event-triggered cooperative con-
trol was constructed for higher-dimensional multi-agent consensus with a weighted
topology in [14], an event-triggered cooperative control was proposed for first-order
discrete-time multi-agent systems in [4], and a neighbor-based tracking control to-
gether with a distributed estimation was proposed for leader-follower multi-agent
systems in [8].

In this paper, we consider a distributed event-triggered tracking control prob-
lem for leader-follower multi-agent systems in a fixed directed network topology
with partial measurements and possible communication delays. In collective coor-
dination of a group of autonomous agents, the leader-follower problem has been
considered for tracking a single or multiple leaders in [1, 8, 10, 11, 18]. In reality,
some state information of the leader cannot be measured, therefore a decentralized
“observer” design plays a key role in cooperative control of leader-follower multi-
agent systems. Within this context, an “observer”-based dynamic tracking control
was proposed to estimate the unmeasurable state (i. e., velocity) of an active leader
in [8] by collecting real-time measurements from neighbors. In this paper, inspired
by the event-triggered scheduling strategy in multi-agent systems, we consider a dy-
namic tracking problem with event-triggered strategy involved in the control update.
During the event-triggered tracking control process, we assume that every follower
agent broadcasts its state information only if “needed”, which requires the follower
agent to update its state only if some measure of its state error is above a specified
threshold. In the literature about event-triggered control of multi-agent systems,
event-triggered cooperative controllers often keep constant between two consecutive
broadcasts. However, in this paper we concern with the scenario of an independent
active leader, who does not need the event-triggered control updates. Thus, a more
sophisticated event-triggered strategy needs to be developed to continuously up-
date every agent’s partial control input, subject to its local computational resources
availability. We adopt a decentralized event-triggered strategy to update the local
controllers, and finally take into account the communication delays in the tracking
control design.

The paper is organized as follows: Section 2 presents some preliminaries and
formulates the tracking problem under investigation. In Section 3, a decentralized
event-triggered tracking control is designed for two cases: time-delay free and time-
varying delays. Then, the convergence of the tracking error evolution is analyzed in
Section 4. Section 5 gives a numerical example to illustrate the tracking algorithm.
Section 6 summarizes the results of the paper and suggests a couple of some future
research topics.

Throughout this paper, I denotes an identity matrix; 1 denotes a column vector
with all ones; the norm of a vector x ∈ Rn is defined as ‖x‖ =

√
xT x; the spectral
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norm of matrix A ∈ Rm×n is defined as ‖A‖ = max1≤i≤n

√
λi, where λi (i = 1, . . . , n)

are eigenvalues of AT A; col(·) denotes the concatenation.

2. PRELIMINARIES AND PROBLEM FORMULATION

The multi-agent system under study is a group of n follower-agents (called follow-
ers for simplicity and labelled 1, . . . , n) and one active leader-agent (called leader
and labelled 0). The followers are moving based on the information exchange in
their individual neighborhood while the leader is self-active hence moving indepen-
dently. Thus, the information flow in the leader-follower multi-agent system can
be conveniently described by a directed graph Ḡ. In graph theory [6], a directed
graph Ḡ consists of a vertex set V̄ and an arc set Ē . Here, V̄ = {0, 1, 2, . . . , n} and
Ē = {(i, j)|i, j ∈ V̄}, where vertex i ∈ V̄ represents agent i, and (i, j) is in Ē if and
only if agent i receives information from agent j and a weight aij > 0 is defined
simultaneously. A neighbor set of follower i is defined by Ni = {j|(i, j) ∈ Ē}.

To define the connectivity of Ḡ, some concepts in graph theory are needed. A path
in Ḡ is a sequence i0, i1, . . . , iq of distinct vertices such that (ij−1, ij) is an arc,
j = 1, . . . , q. If there exists a path from vertex i to vertex j, vertex j is said to be
reachable from vertex i. Furthermore, if there exists a path from every vertex in
Ḡ to vertex j, then vertex j is a globally reachable vertex of Ḡ. A directed graph
Ḡ is strongly connected if there exists a path between any two distinct vertices. A
directed graph G is a subgraph of Ḡ if its vertex set V(G) ⊆ V̄, arc set E(G) ⊆ Ē
and every arc in E(G) has both end-vertices in V̄. A subgraph G is an induced
subgraph provided that two vertices of G are adjacent in G if and only if they are
adjacent in Ḡ. An induced subgraph G that is strongly connected and maximal
(i. e., no more vertices can be added while preserving its connectedness) is called a
strong component of Ḡ. It is noted that even if Ḡ has a global reachable vertex,
its subgraph G with vertex set V = V̄/{0} may not be strongly connected. In this
paper, such a subgraph G will be employed to model the interconnection topology
of the n followers.

The dynamics of the ith follower is assumed to be a first-order linear system:

ẋi(t) = ui(t), i = 1, . . . , n, (1)

where xi(t) ∈ Rl and ui(t) ∈ Rl are, respectively, the state and the control in-
put. The active leader is described by a second-order linear system with a partially
unknown acceleration: 

ẋ0(t) = v0(t),
v̇0(t) = u0(t) + δ(t),
y0(t) = x0(t),

(2)

where x0(t) ∈ Rl, v0(t) ∈ Rl and u0(t) ∈ Rl are, respectively, the position, velocity
and acceleration, the disturbance δ(t) ∈ Rl is bounded with an upper bound δ̄, and
y0(t) is the only measured output. To simplify the notation, we assume l = 1 in the
sequel.

Since only the position of the leader can be measured, each follower has to collect
information from its neighbors and estimate the leader’s velocity during the motion
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process. In [8], a distributed observer-based dynamic tracking control was proposed
for each follower i:

ui = vi − k
[ ∑

j∈Ni

aij(xi − xj) + ai0(xi − x0)
]
,

v̇i = u0 − γk
[ ∑

j∈Ni

aij(xi − xj) + ai0(xi − x0)
]
,

(3)

where vi(t) is the estimate of the leader’s velocity v0(t) and ai0 is the leader’s ad-
jacency coefficient. The dynamic tracking control (3) assumes that the relative-
position measurements xi − xj are transmitted in continuous time. In practice,
however, communication (especially wireless communication) takes place over digi-
tal networks therefore information is transmitted at discrete time instants. When the
follower finds that a local “error” signal exceeds a given threshold, it broadcasts its
state information to all neighboring agents. Under this scenario, the event-triggered
dynamic tracking control is more preferable than that proposed in (3).

In the leader-follower problem under investigation, the active leader is indepen-
dent and needs not broadcast its information in any event-triggered fashion. How-
ever, follower i’s control, ui(t), has to be designed based on the latest states received
from its neighboring followers and also the sate x0(t) if it is linked to the leader.
Therefore, a new control protocol needs to be designed to solve the leader-following
problem with an event-triggered scheduling strategy. The event-triggered tracking
problem is said to be solved if one can find a distributed event-triggered control
strategy such that

‖xi(t)− x0(t)‖ ≤ ζ, (4)

for some constant ζ depending on δ̄, i = 1, . . . , n, as t →∞.

3. CONTROL DESIGN

In this section, we design event-triggered tracking controls for systems with or with-
out communication delays.

In consensus control, typical information available for a follower is its relative
positions with the neighbors. It is usually assumed that the relative-position mea-
surement

yij(t) = xi(t)− xj(t) (5)

is performed in continuous time, which implicitly implies that the multi-agent com-
munication network bandwidth is unlimited or every agent has abundant energy.
However, when followers transmit their state information in discrete time, dis-
tributed tracking control needs to be redefined to take into account event-triggered
strategies. In order to model the event-triggers for followers, assume that there are
n monotone increasing sequences of event times τi(s) (s = 0, 1, . . . ; i = 1, . . . , n).
Let x̂i(t) = xi(τi(s)), t ∈ [τi(s), τi(s + 1)), be the measured state of follower i. The
measured relative-position measurements ŷij(t) depend on the measured states x̂i(t)
and x̂j(t), j ∈ Ni, that is,

ŷij(t) = x̂i(t)− x̂j(t), i, j = 1, . . . , n. (6)
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τj(3)τj(2)τj(1)τj(0) τj(4)

τi(0) τi(1) τi(2) τi(4)τi(3)

Fig. 1. The event times for follower i and follower j.

It should be noted that the event times τi(s) are mutually independent among fol-
lowers and may take different values, as illustrated by Figure 1.

Furthermore, if the communication between agent i and agent j (or the leader)
has a time-varying delay r(t), then the measured relative-position measurement is
described by

ŷij(t− r(t)) = x̂i(t− r(t))− x̂j(t− r(t)), (7)

where r(t) is a continuously differentiable function satisfying 0 ≤ r(t) ≤ r̄ < ∞.
Due to unavailable measurement of the leader’s velocity v0(t), each follower can

have an estimate vi(t) by fusing the information obtained from its neighbors. When
communication delay is not considered, the velocity estimate vi(t) is given with the
measurements ŷij(t) and yi0(t), as follows:

v̇i(t) = u0(t)− γk

[ ∑
j∈Ni

aij ŷij(t) + ai0yi0(t)

]
, (8)

where aij denotes the adjacency coefficient between follower i and follower j; con-
stant 0 < γ < 1; the gain k is to be designed. Moreover, an event-triggered tracking
control is designed as follows:

ui(t) = vi(t)− k

[ ∑
j∈Ni

aij ŷij(t) + ai0yi0(t)

]
, (9)

where the gain k is the same as above. It is noted that both the velocity esti-
mate vi(t) and the control input ui(t) use the broadcasted measurements ŷij(t) from
neighboring followers and the continuous-time measurement yi0(t) from the leader.

When communication delay is involved in the multi-agent coordination, a dis-
tributed event-triggered tracking control with time delays can be similarly formu-
lated, as follows:

ui(t) = vi(t)− k

[ ∑
j∈Ni

aij ŷij(t− r) + ai0yi0(t− r)

]
,

v̇i(t) = u0(t)− γk

[ ∑
j∈Ni

aij ŷij(t− r) + ai0yi0(t− r)

]
.

(10)

4. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the tracking errors for all followers
under distributed event-triggered control with/without communication delays.
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4.1. No communication delays

Let ei(t) = x̂i(t) − xi(t) = xi(τi(s)) − xi(t), t ∈ [τi(s), τi(s + 1)). The event-time
τi(s) is implicitly defined by an event-trigger, fi(ei(t), {ej(t)|j ∈ Ni}) = 0, which
will be given below. Thus, x̂i(t) = ei(t) + xi(t). With this variable change, the
control (9) together with the velocity estimation (8) is applied to system (1), which
yields the following closed-loop system:{

ẋ =v − k(L + B)x + kB1x0 − kLe,

v̇ =u01− γk(L + B)x + γkB1x0 − γkLe,
(11)

where x = col(x1, . . . , xn) ∈ Rn, v = col(v1, . . . , vn) ∈ Rn, and e = col(e1, . . . , en) ∈
Rn, respectively, denote the position, velocity estimation, measurement error of the
leader-follower multi-agent system, L = D − A ∈ Rn×n, A = [aij ] ∈ Rn×n and
D ∈ Rn×n are, respectively, the Laplacian matrix, adjacency matrix and degree
matrix of the directed subgraph G, B = diag{a10, . . . , an0} is a diagonal matrix
representing the leader-follower adjacency relationship, and 1 = col(1, . . . , 1) ∈ Rn.
From algebraic graph theory [6], it is well known that L always has a zero eigenvalue
associated with the right eigenvector 1. Moreover, if the subgraph G is balanced, L
has a zero eigenvalue associated with the left eigenvector 1. Thus, we have

−(L + B)x + B1x0 = −(L + B)(x− x01).

Define a new matrix H = L + B.

Lemma 4.1. (Hu and Hong [11]) The following statements are equivalent:

(I) vertex 0 is a globally reachable vertex of the directed graph Ḡ;

(II) −H is a stable matrix whose eigenvalues have negative real-parts;

(III) G is balanced, and H + HT is a symmetric positive definite matrix.

Lemma 4.1 implies that if vertex 0 is a globally reachable vertex of the directed
graph Ḡ and if its subgraph G is balanced, then

λ∗ = min{λ : eigenvalues of H + HT } > 0.

For system (11), define two variable changes:

x̄ = x− x01,

v̄ = v − v01.
(12)

Thus, system (11) can be further simplified as follows:{
˙̄x =v̄ − kHx̄− kLe,

˙̄v =− γkHx̄− γkLe− 1⊗ δ,
(13)

which can be rewritten in a compact form:

ε̇ = Fε + Je + g, (14)
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where ε = col(x̄, v̄), F =
(
−kH I
−γkH 0

)
, J =

(
−kL
−γkL

)
and g =

(
0

−1⊗ δ

)
.

Now, a main result is established as follows.

Theorem 4.2. Assume that vertex 0 is globally reachable in the directed graph Ḡ,
its subgraph G is balanced, and k satisfies

k >
1

2γ(1− γ2)λ∗
. (15)

Then, with control (9) and estimation (8), the event-triggered tracking problem is
solved. Moreover, if the disturbance bound δ̄ = 0, then limt→∞ ‖ε(t)‖ = 0.

P r o o f . Take a candidate ISS Lyapunov function V (ε) = εT (t)Pε(t) with a sym-
metric positive definite matrix

P =
(

In −γIn

−γIn In

)
, 0 < γ < 1.

Consider the derivative of V (ε):

V̇ (ε)|(14) = εT (FT P + PF )ε + 2εT PJe + 2εT Pg

= −εT Qε + 2εT PJe + 2εT Pg,

where

Q =
(

k(1− γ2)(H + HT ) −In

−In 2γIn

)
.

If k satisfies (15), then the matrix Q will be positive definite according to the Schur
complement formula. Simultaneously, we can get the minimum eigenvalue of Q:

µ∗ =
1
2

[
(1− γ2)kλ∗ + 2γ −

√
[(1− γ2)kλ∗ − 2γ]2 + 4

]
, (16)

which is a positive number when k satisfies (15). In addition, the eigenvalues of P
are either 1− γ or 1 + γ, so

(1− γ)‖ε‖2 ≤ V (ε) ≤ (1 + γ)‖ε‖2. (17)

Therefore, from (16) and (17), we have

V̇ (ε)|(14) ≤ −µ∗‖ε‖2 + 2εT PJe + 2εT Pg

≤ −µ∗‖v̄‖2 − µ∗‖x̄‖2 − 2(1− γ2)k
∑

i

∑
j∈Ni

x̄i(ei − ej) + 2(1 + γ)‖ε‖δ̄

≤ −µ∗‖v̄‖2 − µ∗
∑

i

[
‖x̄i‖2 −

2(1− γ2)k‖x̄i‖
µ∗

∑
j∈Ni

(‖ei‖+ ‖ej‖)

]
+ 2(1 + γ)‖ε‖δ̄.

Enforcing the condition∑
j∈Ni

(‖ei‖+ ‖ej‖) ≤ ε
µ∗‖x̄i‖

2(1− γ2)k
(18)
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with 0 < ε < 1, we have

V̇ (ε)|(14) ≤ −(1− ε)µ∗‖ε‖2 + 2(1 + γ)‖ε‖δ̄

≤ −1
2
(1− ε)µ∗‖ε‖2 +

2(1 + γ)2δ̄2

(1− ε)µ∗
.

(19)

Thus, for follower i, an event-trigger can be defined by

fi(ei(t), {ej(t)|j ∈ Ni}) =
∑
j∈Ni

(‖ei‖+ ‖ej‖)− ε
µ∗‖x̄i‖

(1− γ2)k
. (20)

When the event-trigger fi(ei(t), {ej(t)|j ∈ Ni}) = 0, the condition (18) is enforced.
Given the event-trigger (20), from (17) and (19), we have

V̇ (ε)|(14) ≤ − (1− ε)µ∗
2(1 + γ)

V (ε) +
2(1 + γ)2δ̄2

(1− ε)µ∗
. (21)

Thus, with t0 = 0,

V (ε(t)) ≤ e−
(1−ε)µ∗
2(1+γ) tV (ε(0)) +

4(1 + γ)3δ̄2

(1− ε)2µ2
∗

(1− e−
(1−ε)µ∗
2(1+γ) t),

which implies
lim

t→∞
‖ε(t)‖ ≤ ζ

with ζ = 2(1+γ)
√

1+γ
(1−ε)µ∗

√
1−γ

δ̄. Furthermore, if δ̄ = 0, then limt→∞ ‖ε(t)‖ = 0. The proof
is thus completed. �

Remark 4.3. To simplify the simulations in the next section, the event-trigger
condition (18) can be replaced by a conservative centralized one, given as follows:

‖e‖ ≤ ε
µ∗‖ε‖

2(1− γ2)‖L‖
. (22)

If the event-trigger condition (22) holds and if δ̄ = 0, then there exists at least one
agent for which the next inter-event interval is bounded from below by a time τD,
implicitly determined by τD = 1

‖F‖−‖J‖ ln
[

1+φ

1+
‖J‖
‖F‖φ

]
,

φ(τD, 0) = εµ∗
2(1−γ2)‖L‖ ,

(23)

where y(t) = ‖e‖
‖ε‖ ≤ φ(t, φ0), φ(0, φ0) = φ0, and φ(t, φ0) is the solution of

φ̇ = ‖F‖(1 + φ)
(
1 +

‖J‖
‖F‖

φ
)
. (24)

Here, (24) is derived by differentiating y(t) and employing (14).
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4.2. With communication delays

Still, take the variable change x̂i(t) = ei(t) + xi(t). With control (10), we have{
ẋ =v − k(L + B)x(t− r) + kB1x0(t− r)− kLe(t− r),
v̇ =u01− γk(L + B)x(t− r) + γkB1x0(t− r)− γkLe(t− r).

(25)

After making the variable changes (12), a further simplified closed-loop system is
obtained in the form of time-delayed differential equations as follows:{

˙̄x =v̄ − kHx̄(t− r)− kLe(t− r),
˙̄v =− γkHx̄(t− r)− γkLe(t− r)− 1⊗ δ,

(26)

or,
ε̇ = F1ε + F2ε(t− r) + Je(t− r) + g, (27)

where

ε = col(x̄, v̄), F1 =
(

0 I
0 0

)
, F2 =

(
−kH 0
−γkH 0

)
, J =

(
−kL
−γkL

)
, and g =

(
0

−1⊗ δ

)
.

Before establishing another main result, we state an important lemma on the
stability of time-delayed systems.

Lemma 4.4. (Hale and Lunel [7]) Let φ1, φ2 and φ3 be continuous, nonnegative,
and nondecreasing functions, with φ1(`) > 0, φ2(`) > 0, φ3(`) > 0 for ` > 0 and
φ1(0) = φ2(0) = 0. Consider the following system:

ẋ = f(xt), t > 0,

x(θ) = ϕ(θ), θ ∈ [−r, 0],
(28)

where xt(θ) = x(t + θ), θ ∈ [−r, 0] and f(0) = 0. If there is a continuous function
V (t, x) satisfying:

• Condition (I):
φ1(‖x‖) ≤ V (t, x) ≤ φ2(‖x‖), t ∈ R, x ∈ Rn;

• Condition (II): for ∆ > 0, there exists a continuous nondecreasing function
φ(`) with φ(`) > `, for ` > 0, such that

V̇ (t, x) ≤ −φ3(‖x‖) + ∆,

whenever V (t + θ, x(t + θ)) < φ(V (t, x(t))), θ ∈ [−r, 0];

then the solution x = 0 of (28) is uniformly ultimately bounded.

Theorem 4.5. Under the same conditions as in Theorem 4.2, the event-triggered
tracking problem with communication delays is solved.
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P r o o f . Take the same Lyapunov function V (ε) = εT (t)Pε(t), and consider the
derivative of V (ε). Since

ε(t− r) = ε(t)−
∫ t

t−r

ε̇(`) d`,

= ε(t)−
∫ t

t−r

[
F1ε(`) + F2ε(`− r) + Je(`− r) + g(`)

]
d`,

system (27) can be transformed to

ε̇ =Fε− F2F1

∫ 0

−r

ε(t + `) d`− F 2
2

∫ 0

−r

ε(t + `− r) d`

− F2J

∫ 0

−r

e(t + `− r)d`− F2

∫ t

t−r

g(`) d`,

where F = F1 + F2. Then,

V̇ (ε)|(27) = εT (FT P + PF )ε− 2εT PF2F1

∫ 0

−r

ε(t + `) d`− 2εT PF2

∫ t

t−r

g(`) d`

− 2εT PF 2
2

∫ 0

−r

ε(t + `− r) d`− 2εT PF2J

∫ 0

−r

e(t + `− r) d`.

Observe that 2aT b ≤ aT Ψa + bT Ψ−1b holds for any appropriate positive definite
matrix Ψ. Thus, for the second term in (4.2), with aT = −εT PF2F1, b = ε(t + `)
and Ψ = P−1, we have

− 2εT PF2F1

∫ 0

−r

ε(t + `) d` ≤ rεT PF2F1P
−1FT

1 FT
2 Pε +

∫ 0

−r

εT (t + `)Pε(t + `) d`.

(29)
Similarly, for the third and fourth terms in (4.2), we have

− 2εT PF 2
2

∫ 0

−r

ε(t + `− r) d` ≤ rεT PF 2
2 P−1(F 2

2 )T Pε +
∫ −r

−2r

εT (t + `)Pε(t + `) d`,

− 2εT PF2J

∫ 0

−r

e(t + `− r) d` ≤ rεT PF2JJT FT
2 Pε +

∫ −r

−2r

eT (t + `)e(t + `) d`,

− 2εT PF2

∫ t

t−r

g(`) d` ≤ rεT PF2F
T
2 Pε + nδ̄2r̄.

(30)
It then follows from the above inequalities (29), (30), and Lemma 4.4 with

φ(`) = q` (31)
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for some constant q > 1, that

V̇ (ε)|(27) ≤− εT Qε + rεT
[
PF2F1P

−1FT
1 FT

2 P + PF 2
2 P−1(F 2

2 )T P

+ PF2JJT FT
2 P + PF2F

T
2 P

]
ε +

∫ 0

−r

εT (t + `)Pε(t + `) d`

+
∫ −r

−2r

εT (t + `)Pε(t + `) d` +
∫ −r

−2r

eT (t + `)e(t + `) d` + nδ̄2r̄

≤− εT Qε + rεT
[
PF2F1P

−1FT
1 FT

2 P + PF 2
2 P−1(F 2

2 )T P

+ PF2JJT FT
2 P + PF2F

T
2 P

]
ε +

∫ 0

−r

εT (t + `)Pε(t + `) d`

+
∫ −r

−2r

εT (t + `)Pε(t + `) d` +
∫ −r

−2r

eT (t + `)e(t + `) d` + nδ̄2r̄

+
1

1− γ

∫ −r

−2r

εT (t + `)Pε(t + `) d`−
∫ −r

−2r

εT (t + `)ε(t + `) d`

≤− εT
[
Q− rPF2F1P

−1FT
1 FT

2 P − rPF 2
2 P−1(F 2

2 )T P − rPF2JJT FT
2 P

− rPF2F
T
2 P − 3− 2γ

1− γ
qrP

]
ε + nδ̄2r̄

−
∫ −r

−2r

[
εT (t + `)ε(t + `)− eT (t + `)e(t + `)

]
d`.

Denote

α = ‖PF2F1P
−1FT

1 FT
2 P+PF 2

2 P−1(F 2
2 )T P+PF2JJT FT

2 P+PF2F
T
2 P+

3− 2γ

1− γ
qP‖.

If we choose the upper bound of the time delay to satisfy

r̄ <
(1− γ)µ∗

(1 + γ)α− (1− ε)(1− γ)q
, (32)

where µ∗ is given by (16), and the event-trigger function as

fi(ei, {ej |j ∈ Ni}) = ‖e‖2 − ε‖ε‖2, (33)

for 0 < ε < 1, where x̄ is defined in (12), then we have

V̇ (ε)|(27) ≤− µ∗ε
T ε + αrεT ε− (1− ε)

∫ −r

−2r

εT (t + `)ε(t + `) d` + nr̄δ̄2

≤−
( µ∗

1 + γ
− αr

1− γ
+

(1− ε)qr
1 + γ

)
V (ε) + nr̄δ̄2

=− βV (ε) + nr̄δ̄2,

with β = µ∗
1+γ −

αr
1−γ + (1−ε)qr

1+γ . According to Lemma 4.4, ε(t) = 0 is uniformly

ultimately bounded. In fact, ‖ε(t)‖ ≤ ζ =
√

nr̄
(1−γ)β δ̄, as t → ∞. The proof is

completed. �
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Remark 4.6. The upper bound (32) of the time-varying communication delay is
very conservative, as shown in the numerical example.

5. NUMERICAL EXAMPLE

In this section, we give a numerical example to illustrate the distributed event-
triggered tracking controls (9) and (10) of the leader-follower multi-agent system (2)
and system (1).

The considered directed graph Ḡ associated with the leader-follower multi-agent
system is depicted in Figure 2, where the corresponding subgraph G is balanced.

2

0

1 4

3

Fig. 2. Topology Ḡ and its subgraph G.
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(a) Tracking without communication delays
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(b) Tracking with a communication delay

Fig. 3. Evolution of ‖e(t)‖ and its upper bound.

The Laplacian matrix L of G is

L =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 ,

and the leader adjacency matrix is B = diag{1, 0, 0, 1}. By Lemma 4.1, H + HT is
positive definite. The minimum eigenvalue λ∗ = 0.7639. Thus, from (15), we can
take k = 7.5 when γ = 0.5. The acceleration of the active leader is assumed to be
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u0(t) = t sin(t). For event-triggered control (9) without communication delays, by
taking ε = 0.8 in (18), an alternative event-triggered condition ‖e(t)‖ = ε‖ε(t)‖

2k(1−γ2)‖L‖
is adopted to show the evolution of the measurement error, as illustrated in Fig-
ure 3 (a).

For event-triggered control (10) with communication delays, take q = 2.5 in (31),
so that the upper bound r̄ < 1.27× 10−6 and the time-varying delay is assumed to
be r(t) = 10−6 · | cos(t)| < r̄. An event-triggered condition ‖e(t)‖ =

√
ε‖ε(t)‖ with

ε = 0.7 in (33) is used in this example. Then, the evolution of the measurement
error is obtained as shown in Figure 3 (b).

6. CONCLUSION

A new distributed event-triggered tracking control was proposed for leader-follower
multi-agent systems on a directed interconnection graph with/without communi-
cation delays. The input-to-state stability of the closed multi-agent system was
analyzed by employing an ISS Lyapunov function. Simulations showed that the pro-
posed control is effective. Some possible future research issues may be to provide
rules that guarantee better bounds on the event-triggered intervals and to relax the
requirements on updating control laws at the agents’ own event times.
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