Android Application
Secure Design/Secure Coding
Guidebook

December 1, 2019 Edition
Japan Smartphone Security Association (JSSEC)

Secure Coding Working Group

Document control number: JSSEC-TECA-SC-GD20191201B

Secure Coding Guide Documentation

Release 2019-12-01

Contents
1 Introduction 2
1.1 Building a Secure Smartphone Society oL oo o 2
1.2 Timely Feedback on a Regular Basis Through the Beta Version. 3
1.3 Usage Agreement of the Guidebook L. 3
1.4 Correction articles of September 1, 2018 edition 3
2 Composition of the Guidebook 6
2.1 Developer’s Context e 6
2.2 Sample Code, Rule Book, Advanced Topics 6
2.3 The Scope of the Guidebook L 8
2.4 Literature on Android Secure Coding 9
2.5 Steps to Install Sample Codes into Android Studio 9
3 Basic Knowledge of Secure Design and Secure Coding 19
3.1 Android Application Security L L 19
3.2 Handling Input Data Carefully and Securely 28
4 Using Technology in a Safe Way 30
4.1 Creating/Using Activitieso o 30
4.2 Receiving/Sending Broadcasts 88
4.3 Creating/Using Content Providers 118
4.4 Creating/Using Services« v v v v v i it e e 170
4.5 Using SQLite o o e 212
4.6 Handling Files o o e e e e 228
4.7 Using Browsable Intent Lo Lo 258
4.8 Outputting Log to LogCat e 260
4.9 Using WebView o L e 270
4.10 Using Notifications. o 286
4.11 Using Shared Memory o 0 i i it et e e e e e e e 295
5 How to use Security Functions 319
5.1 Creating Password Input Screens Lo 319
5.2 Permission and Protection Level Lo oo 333
5.3 Add In-house Accounts to Account Manager 365
5.4 Communicating via HTTPS 384
5.5 Handling privacy data L 420
5.6 Using Cryptography o . o e e 454
5.7 Using biometric authentication features L oL oL 483
6 Difficult Problems 499
6.1 Risk of Information Leakage from Clipboard 499

Secure Coding Guide Documentation Release 2019-12-01

Revision history 507
Published by o e 509
Authors of September 1, 2018 Editiono 510
Authors of February 1, 2018 Edition 511
Authors of February 1, 2017 Edition L o 512
Authors of September 1, 2016 Edition 513
Authors of February 1, 2016 Edition 514
Authors of June 1, 2015 Edition e e 515
Authors of July 1, 2014 English Edition 516
Authors of April 1, 2014 English Edition o 517
Authors of April 1, 2013 Japanese Edition oL oL o 518
Authors of November 1, 2012 Japanese Edition 519
Authors of June 1, 2012 Japanese Edition Lo 520

ii

Secure Coding Guide Documentation Release 2019-12-01

December 1, 2019 Edition
Japan Smartphone Security Association (JSSEC)
Secure Coding Working Group

e The content of this guide is up to date as of the time of publication, but standards and environments
are constantly evolving. When using sample code, make sure you are adhering to the latest coding
standards and best practices.

e JSSEC and the writers of this guide are not responsible for how you use this document. Full
responsibility lies with you, the user of the information provided.

e Android is a trademark or a registered trademark of Google Inc. The company names, product
names and service names appearing in this document are generally the registered trademarks or
trademarks of their respective companies. Further, the registered trademark ®, trademark (TM)
and copyright © symbols are not used throughout this document.

e Parts of this document are copied from or based on content created and provided by Google, Inc.
They are used here in accordance with the provisions of the Creative Commons Attribution 3.0
License

Secure Coding Guide Documentation Release 2019-12-01

Introduction

1.1 Building a Secure Smartphone Society

This guidebook is a collection of tips concerning the know-how of secure designs and secure coding for
Android application developers. Our intent is to have as many Android application developers as possible
take advantage of this, and for that reason we are making it public.

In recent years, the smartphone market has witnessed a rapid expansion, and its momentum seems
unstoppable. Its accelerated growth is brought on due to the diverse range of applications. An unspecified
large number of key functions of mobile phones that were once not accessible due to security restrictions
on conventional mobile phones have been made open to smartphone applications. Subsequently, the
availability of varied applications that were once closed to conventional mobile phones is what makes
smartphones more attractive.

With great power that comes from smartphone applications comes great responsibility from their devel-
opers. The default security restrictions on conventional mobile phones had made it possible to maintain
a relative level of security even for applications that were developed without security awareness. As
it has been aforementioned with regard to smartphones, since the key advantage of a smartphone is
that they are open to application developers, if the developers design or code their applications without
the knowledge of security issues then this could lead to risks of users’ personal information leakage or
exploitation by malware causing financial damage such as from illicit calls to premium-rate numbers.

Due to Android being a very open model allowing access to many functions on the smartphone, it is
believed that Android application developers need to take more care about security issues than iOS
application developers. In addition, responsibility for application security is almost solely left to the
application developers. For example, applications can be released to the public without any screening
from a marketplace such as Google Play (former Android Market), though this is not possible for iOS
applications.

In conjunction with the rapid growth of the smartphone market, there has been a sudden influx of
software engineers from different areas in the smartphone application development market. As a result,
there is an urgent call for the sharing knowledge of secure design and consolidation of secure coding
know-how for specific security issues related to mobile applications.

Due to these circumstances, Japan’s Smartphone Security Association (JSSEC) has launched the Secure
Coding Group, and by collecting the know-how of secure design as well as secure coding of Android
applications, it has decided to make all of the information public with this guidebook. It is our intention
to raise the security level of many of the Android applications that are released in the market by having
many Android application developers become acquainted with the know-how of secure design and coding.
As a result, we believe we will be contributing to the creation of a more reliable and safe smartphone
society.

Secure Coding Guide Documentation Release 2019-12-01

1.2 Timely Feedback on a Regular Basis Through the Beta Version

We, the JSSEC Secure Coding Group, will do our best to keep the content contained in the Guidebook
as accurate as possible, but we cannot make any guarantees. We believe it is our priority to publicize
and share the know-how in a timely fashion. Equally, we will upload and publicize what we consider to
be the latest and most accurate correct information at that particular juncture, and will update it with
more accurate information once we receive any feedback or corrections. In other words, we are taking
the beta version approach on a regular basis. We think this approach would be meaningful for many of
the Android application developers who are planning on using the Guidebook.

The latest version of the Guidebook and sample codes can be obtained from the URL below.
o https://www.jssec.org/dl/android_securecoding en.pdf Guidebook (English)
o https://www.jssec.org/dl/android__securecoding_en.zip Sample Codes (English)

The latest Japanese version can be obtained from the URL below.
o https://www.jssec.org/dl/android securecoding.pdf Guidebook (Japanese)

o https://www.jssec.org/dl/android__securecoding.zip Sample Codes (Japanese)

1.3 Usage Agreement of the Guidebook

We need your consent for the following two precautionary statements when using the Guidebook.

1. The information contained in the Guidebook may be inaccurate. Please use the information written
here by your own discretion.

2. In case of finding any mistakes contained in the Guidebook, please send us an e-mail to the address
listed below. However, we cannot guarantee a reply or any revisions thereof.

Japan Smartphone Security Association

Secure Coding Group Inquiry

E-mail: jssec-securecoding-qa@googlegroups.com

Subject: [Comment] Android Secure Coding Guidebook 20191201EN

Content: Name (optional), Affiliation (optional), E-mail (optional), Comment (required) and Other
matters (optional)

1.4 Correction articles of September 1, 2018 edition

This section provides a list of corrections and modifications for the previous edition from the viewpoint
of security, as a result of further studies.

In correcting articles, we adopted the outcomes of our studies and the valuable opinions of those who
read the former editions of this guidebook.

Especially, taking in readers’ opinions is considered as a key factor in making the document highly
practical.

We recommend, for those who use a previous edition of the document as a reference, taking a look at
the list below. Note that the list does not include the following kinds of changes and error corrections:
fixes of typos, organizational changes, and improvements in expression.

Any comments, opinions or suggestions on this guidebook are greatly appreciated.

https://www.jssec.org/dl/android_securecoding_en.pdf
https://www.jssec.org/dl/android_securecoding_en.zip
https://www.jssec.org/dl/android_securecoding.pdf
https://www.jssec.org/dl/android_securecoding.zip
mailto:jssec-securecoding-qa@googlegroups.com

Secure Coding Guide Documentation

Release 2019-12-01

Table 1.4.1: List of revisions

Section revised in
9/1/2018 version

Section revised in this
version

Revision

4.1.3.1. Combining Ez-
ported Attributes and
Intent Filter Settings
(For Activities)

4.1.3.1. Combining Ez-
ported Attributes and
Intent Filter Settings
(For Activities)

Added a note about the behavior when sending
an implicit Intent that was changed in Android
8.0 (API Level 26).

4.4.1.2. Creating/Using
Public Services 4.4.3.1.
Combination of FEx-
ported Attribute and
Intent-filter Setting (In
the Case of Service)

4.4.1.2. Creating/Using
Public Services 4.4.3.1.
Combination of Fux-
ported Attribute and
Intent-filter Setting (In
the Case of Service)

The Intent-filter definition in Public Service was
changed to “(Do not Use)”.

4.6.1.4. Using FEternal
Memory (Read Write
Public) Files

4.6.1.4. Using FEternal
Memory (Read Write
Public) Files

Added an explanation on the requestLegacyEx-
ternalStorage manifest attribute setting that tem-
porarily opts out from the scoped storage function
in Android 10.

4.6.3.5. Revised specifi-
cations in Android 7.0
(API Level 24) for ac-
cessing specific directo-
ries on external storage
media

4.6.3.5. Revised specifi-
cations in Android 7.0
(API Level 24) for ac-
cessing specific directo-
ries on external storage
media

Added an explanation that the StorageVol-
umecreateAccessIntent method was deprecated
as of Android 10.

(not applicable)

4.6.3.6. About specifica-
tions related to access
to external storage in
Android 10 (API Level
29)

Added an explanation on the specifications for ac-
cessing external storage that were changed in An-
droid 10 (APT level 29).

5.2.3.6. Modifications to
the Permission model
specifications in An-
droid versions 6.0 and
later

5.2.3.6. Modifications to
the Permission model
specifications in An-
droid wversions 6.0 and
later

Added an explanation on display of a warning
when an old app was executed in an Android 10
device.

5.4. Communicat- | 5.4. Communicat- | Changed to a sample code where the Google Im-
ing wvia HTTPS ing wia HTTPS age Search API, whose service has been discontin-
5.4.1.1. Communicat- | 5.4.1.1. Communicat- | ued, is not used. The content of the article was
ing via HT'TP 5.4.1.2. | ing via HTTP 5.4.1.2. | also updated to reflect this change.
Communicating via | Communicating via

HTTPS HTTPS

5.4.3.8.(Column): 5.4.3.8. (Column): | The content of the article was updated to take
Transitioning to | Transitioning to | into account support of TLS 1.3 starting from An-
TLS1.2 for secure | TLS1.2/TLS1.3 for | droid 10.

connections secure connections

5.5.1.2. Broad consent | 5.5.1.2. Broad consent | In the example, the IMEI was acquired and used,
is granted: Applica- | is granted: Applica- | but because unprivileged apps can no longer ac-

tions that incorporate
application privacy pol-

tions that incorporate
application privacy pol-

quire IMEI in the Android 10 specifications, the
data used was changed to UUID.

icy icy

(not applicable) 5.5.3.4. Restriction | An article was added to reflect the change in per-
on obtaining non- | missions required for obtaining device identifier
resettable device | information in Android 10.

identifiers on Android
10

Continued on next page

Secure Coding Guide Documentation

Release 2019-12-01

Table 1.4.1 — continued from previous page

Section revised in
9/1/2018 version

Section revised in this
version

Revision

5.6.2.2. Use Strong Al-
gorithms (Specifically,
Algorithms that Meet
the Relevant Criteria)

5.6.2.2. Use Strong Al-
gorithms (Specifically,
Algorithms that Meet
the Relevant Criteria)

The tables for NIST and ECRYPT II were revised
for consistency with the updated source data.

(Required) (Required)

5.6.3.2. Generation | 5.6.3.2. Generation | The article was revised to take into account that

of random numbers | of random numbers | Crypto Provider was deprecated/removed.
5.6.3.3. Measures 5.6.3.3. Measures

to Protect against | to Protect against

Vulnerabilities in | Vulnerabilities mn

Random-Number Random-Number

Generators Generators

5.7. Using fingerprint | 5.7. Using biometric | Because FingerprintManager was deprecated, the

authentication features

authentication features

chapter title was revised to “Biometric Authenti-
cation”, and the content was also updated. Also,
the sample code was changed so that Biomet-
ricPrompt only is used.

Secure Coding Guide Documentation Release 2019-12-01

Composition of the Guidebook

2.1 Developer’s Context

Many guidebooks that have been written on secure coding include warnings about harmful coding prac-
tices and their suggested revisions. Although this approach can be useful at the time of reviewing the
source code that has already been coded, it can be confusing for developers that are about to start
coding, as they do not know which article to refer to.

The Guidebook has focused on the developer’s context of “What is a developer trying to do at this
moment?” Equally, we have taken steps to prepare articles that are aligned with the developer’s context.
For example, we have divided articles into project units by presuming that a developer will be involved
in operations such as “Creating/Using Activities”, “Using SQLite”, etc.

We believe that by publishing articles that support the developer’s context, developers will be able to
easily locate necessary articles that will be instantly useful in their projects.

2.2 Sample Code, Rule Book, Advanced Topics

Each article is comprised of three sections: Sample Code, Rule Book, and Advanced Topics. If you are
in a hurry, please look up the Sample Code and Rule Book sections. The content is provided in a way
where it can be reused to a certain degree. For those who have issues that go beyond these, please refer
the Advanced Topics section. We have given descriptions that will be helpful in finding solutions for
individual cases.

Unless it is specifically noted, our focus of development will be targeted to platforms concerning Android
4.0.3 (API Level 15) and later. Since we have not verified the operational capability of any versions
pertaining to Android versions under 4.0.3 (API Level 15), the measures described may prove ineffective
on these older systems. In addition, even for versions that are covered under the scope of focus, it is
important to verify their operational capability by testing them on your own environment before releasing
them publically.

Also, for the sample code presented in this document, set targetSdkVersion to API level 28 or higher.
This is used to comply with the following requirements specified by Google.

o August 2019: New apps are required to target API level 28 (Android 9) or higher.
e November 2019: Updates to existing apps are required to target API level 28 or higher.

https://android-developers.googleblog.com/2019/02/expanding-target-api-level-requirements.html

Secure Coding Guide Documentation Release 2019-12-01

2.2.1 Sample Code

Sample code that serves as the basic model within the developer’s context and functions as the theme
of an article is published in the Sample Code section. If there are multiple patterns, we have provided
source code for the different patterns and classified them accordingly. We have strived to make our
commentaries as simple as possible. For example, when we want to direct the reader’s attention to a
security issue that requires attention, a bullet-point number will appear next to “Point” in the article.
We will also comment on the sample code that corresponds to the bullet-point number by writing “***
Point (Number) ***” Please note that a single point may correspond to multiple pieces of sample
code. There are sections throughout the entire source code, albeit very little compared to the entire
code, which requires our attention for security. In order to be able to survey the sections that call for
scrutiny, we try to post the entire class unit of sample code.

Please note that only a portion of sample code is posted in the Guidebook. A compressed file, which
contains the entire sample code, is made public in the URL listed below. It is made public by the Apache
License, Version 2.0; therefore, please feel free to copy and paste it. Please note that we have minimized
the code for error processing in the sample code to prevent it from becoming too long.

e https://www.jssec.org/dl/android securecoding en.zip Sample Codes Archive

The projects/keystore file that is attached in the sample code is the keystore file that contains the
developer key for the signature of the APK. The password is “android.” Please use it when singing the
APK in the In-house sample code.

We have provided the keystore file, debug.keystore, for debugging purposes. When using Android Studio
for development, it is convenient for verifying the operational capability of the In-house sample code if
the keystore is set for each project. In addition, for sample code that is comprised of multiple APKs, it is
necessary to match the android:debuggable setting contained inside each AndroidManifest.xml in order
to verify the cooperation between each APK. If the android:debuggable setting is not explicit set when
installing the APK from Android Studio, it will automatically become android:debuggable= “true.”

For embedding the sample code as well as keystore file into Android Studio, please refer to “2.5. Steps
to Install Sample Codes into Android Studio”.

2.2.2 Rule Book

Rules and matters that need to be considered regarding security within the developer’s context will be
published in the Rule Book section. Rules to be handled in that section will be listed in a table format at
the beginning and will be divided into two levels: “Required” and “Recommended.” The rules will consist
of two types of affirmative and negative statements. For example, an affirmative statement that expresses
that a rule is required will say “Required.” An affirmative statement that expresses a recommendation
will say “Recommended.” For a negative statement that expresses the requisite nature of the rule would
say, “Definitely not do.” For a negative sentence that expresses a recommendation would say, “Not
recommended.” Since these differentiations of levels are based on the subjective viewpoint of the author,
it should only be used as a point of reference.

Sample code that is posted in the Sample Code section reflect these rules and matters that need to be
considered, and a detailed explanation on them is available in the Rule Book section. Furthermore, rules
and matters that need to be considered that are not dealt with in the Sample Code section are handled
in the Rule Book section.

2.2.3 Advanced Topics

Items that require our attention, but that could not be covered in the Sample Code and Rule Book
sections within the developer’s context will be published in the Advanced Topics section. The Advanced
Topics section can be utilized to explore ways to solve separate issues that could not be solved in the
Sample Code or Rule Book sections. For example, subject matters that contain personal opinions as
well as topics on the limitations of Android OS in relation the developer’s context will be covered in the
Advanced Topics section.

https://www.jssec.org/dl/android_securecoding_en.zip

Secure Coding Guide Documentation Release 2019-12-01

Developers are always busy. Many developers are expected to have basic knowledge of security and
produce many Android applications as quickly as possible in a somewhat safe manner rather than to
really understand the deep security matters. However, there are certain applications out there that
require a high level of security design and implementation from the beginning. For developers of such
applications, it is necessary for them to have a deep understanding concerning the security of Android

OS.

In order to benefit both developers who emphasize development speed and also those who emphasize
security, all articles of the Guidebook are divided into the three sections of Sample Code, Rule Book,
and Advanced Topics. The aim of the Sample Code and Rule Book sections is to provide generalizations
about security that anyone can benefit from and source code that will work with a minimal amount
of customization and hopefully by just copying and pasting. In the Advanced Topics section, we offer
materials that will help developers think in a certain way when they are facing specific problems. It is
the aim of the Advanced Topics section to help developers examine optimal secure design and coding
when they are involved in building individual applications.

2.3 The Scope of the Guidebook

The purpose of the Guidebook is to collect security best practices that are necessary for general Android
application developers. Consequently, our scope is focused mainly on security tips (The “Application
Security” section in figure below) for the development of Android applications that are distributed
primarily in a public market.

APPLICATIONS

Application
Phons s
Security
APPLICATION FRAMEWORK ™
Fackage Manager
LiBRARIECS ANDROID RUNTIME
Surface Manager e, SQLite Cors Libraries
ST Device
RN r~11-:-|":m -
— Security
5L
LiNUX KERNEL
Carmera Driver F "":.lllu
-

Fig. 2.3.1: Main Components of the Android Platform

Security regarding the implementation of components in the “Device Security” of the above figure is
outside the scope of this guidebook. There are differences in the viewpoint of security between general
applications that are installed by users and pre-installed applications by device manufacturers. The
Guidebook only handles the former and does not deal with the latter. In the current version, tips
only on the implementation by Java are posted, but in future versions, we plan on posting tips on JNI
implementations as well.

Also as of now we do not handle threats that results from an attacker obtaining root privileges. We will
assume the premise of a secure Android device in which it is not possible to obtain root privileges and
base our security advice on utilizing the Android OS security model. For handling of assets and threats,
we have provided a detailed description on “3.1.3. Asset Classification and Protective Countermeasures.”

Secure Coding Guide Documentation Release 2019-12-01

2.4 Literature on Android Secure Coding

Since we are not able to discuss all of Android’s secure coding in the Guidebook, we recommend that
you read the literature mentioned below in conjunction with the Guidebook.

e Android Security: Anzenna Application Wo Sakusei Surutameni (Secured Programming in An-
droid) Author: Tao Software Co., Ltd. ISBN: 978-4-8443-3134-6 http://www.amazon.co.jp/dp/
4844331345/

e The CERT Oracle Secure Coding Standard for Java Authors: Fred Long, Dhruv Mohindra, Robert
C. Seacord, Dean F. Sutherland, David Svoboda http://www.amazon.com/dp/0321803957

2.5 Steps to Install Sample Codes into Android Studio

This section explains how to install sample code into Android Studio. Sample code is divided into
multiple projects depending on the purpose. Installing the sample code is described in, “2.5.1. Installing
the Sample Project”. After the installation is completed, please refer to “2.5.2. Setup the debug.keystore
to run and test the Sample Code” and install the debug.keystore file into Android Studio. We have
verified the following steps in the following environment:

« OS
— Windows 10 Pro
e Android Studio
- 35
o Android SDK
— Android 10.0(APT 29)
* Sample projects can be built through Android 10.0 (API 29) unless otherwise stated.

2.5.1 Installing the Sample Project

2.5.1.1 Download the sample code.

Acquire the sample code from the URL shown in “2.2.1. Sample Code”

2.5.1.2 Extract the sample code.

Right click on the sample code that has been compressed into zip file, and click on “Extract All” as
shown below.

Open

Open in new window

Extract All...

Fig. 2.5.1: Extract the Sample Code

2.5.1.3 Designate where to deploy.

Create a workspace under the name “C:\android_securecoding” by designating “C:\” and clicking on
the “Extract” button.

http://www.amazon.co.jp/dp/4844331345/
http://www.amazon.co.jp/dp/4844331345/
http://www.amazon.com/dp/0321803957

Secure Coding Guide Documentation Release 2019-12-01

¢ Baract Compressed Zipped) Folders

Select a Destination and Extract Files

Files will be extracted to this folder
| Ch

Show extracted files when complete

Extract Cancel

Fig. 2.5.2: Designate where to Deploy

After clicking on the “Extract” button, right underneath “C:\” a folder called “android securecod-
ing_en” will be created.

i O\ - m} X
Hame Share View 0
EE
« « P g » This » Windows (C) » w @ | Search Windows (C2) o
@ Documents -~ Name Date mch\iinecl Type ~
¥ Downloads android_securecoding_en 12/26/2012 1:27PM File folder
D Music ProgramData /2018 1:19PM File folder
&= | Pictures SWSETUP /2018 10:32 File folder
m Videos Windows /2018 10:30 File folder
Program Files 11/28/2018 1257 File folder o

i Windows ()
Dmmmnomm s lamims = m. &
21 items 1 item selected =]

Fig. 2.5.3: “android_ securecoding_en” Folder

The sample code is contained in the “android_securecoding en” folder.

For example, when you want to refer to the sample code within “4.1.1.3. Creating/Using Partner Activ-
ities” of “4.1. Creating/Using Activities” please look below.

android_securecoding
Create Use Activity
Activity PartnerActivity

In this way, the sample code project will be located under the chapter title in the “android__securecoding”
folder.

2.5.1.4 Designate workspace by starting up Android Studio

Launch Android Studio from the start menu or from a desktop icon.

10

Secure Coding Guide Documentation Release 2019-12-01

androids

Fig. 2.5.4: Launch Android Studio

After launching, open project from the dialog that appears.

® Welcome to Android Studie - o x

2

Android Studio

Fig. 2.5.5: Android Studio Dialog

If you have already opened a project, the window is displayed, and so close the displayed project by
selecting “File -> Close Project” from the menu.

11

Secure Coding Guide Documentation Release 2019-12-01

Fig. 2.5.6: File -> Close Project

2.5.1.5 Open an existing Android Studio project

Click “Open an existing Android Studio project” from the dialog that is displayed.

® Welcome to Android Studic - o =

o

Android Studio

Fig. 2.5.7: Open Project

2.5.1.6 Select the project

Select the project you wish to open.

12

Secure Coding Guide Documentation Release 2019-12-01

® Open File or Project X

.
r
o
0
>
»
»

Fig. 2.5.8: Select the Project

If the version of Gradle in the Android Studio you are using differs from the version assumed by the
sample code projects in this guidebook, Gradle will be optimized.

Bullding "AccountManager Authenticator' Gradle project info

Gradle: Build

Fig. 2.5.9: Optimizing the Android Gradle

Following the on-screen instructions, click “Update” to initiate the update of the Android Gradle Plugin.

Android Gradle Plugin Update Recommended ﬂ

The project is using an old version of the Android Gradle plugin.

To take advantage of all the latest features, such as [nstant Run, we strongly
recommend that you update the Androld Gradle plugin to version 2.1.2.

You can lsarn more about this version of the plugin from the release notes,

| Remind me latar ‘ | Don’t ramind me again for this project ‘

Fig. 2.5.10: Update the Android Gradle Plugin

The message shown below is displayed. Click “Fix Gradle wrapper and re-import project Gradle setting”
to update the Gradle wrapper.

13

Secure Coding Guide Documentation Release 2019-12-01

Messages Gradie Syrc

5 L
s = Failed to sync Gradle project "AccountManager Authenticator

4 = Gradle versian 2.2 & requied. Current wersion & 2,10, 1f usng the gradie wrapper, try editing the distributionlr in €©\android_securecodingAdd Propristany Account to Accounit Manager|AccountManager Authenticato\gr
1 G5 O Error: Plese fix the project’s Grade ssttings.
e Gl At a0 e-frodel prdieet
O & A setings
T

B 2 Faeorites v Build Variants

§ B Android Morigor [Terrninal |) 0: Messiges | %5 TODO Wi Everticg] Gradie Corsole

Fig. 2.5.11: Update the Gradle wrapper

2.5.1.7 Finish Opening

Automatically the project is opened.

Fig. 2.5.12: Finish Opening

Android Studio, unlike Eclipse, will display a single project in a window. If you want to open a different
project, click “File -> Open ...

14

Secure Coding Guide Documentation Release 2019-12-01

Fig. 2.5.13: File -> Open...

2.5.2 Setup the debug.keystore to run and test the Sample Code
A signature is needed in order to activate a sample-code-generated application onto an Android device

or emulator. Install the debugging key file “debug.keystore” that will be used for the signature into
Android Studio.

15

Secure Coding Guide Documentation Release 2019-12-01

2.5.2.1 Click on File -> Project Structure...

Fig. 2.5.14: File -> Project Structure...

2.5.2.2 Add Signing

Select a project from Module list in left pane, selecting “Signing” tab, and click “4” button, then change
the default name “config” to “debug”.

B Project Structure »

Fig. 2.5.15: Add Signing

2.5.2.3 Select “debug.keystore” as a Store File

Click the button inside the red circle in Fig. 2.5.15, and set “Store File.” Debug.keystore is contained in
the sample code (underneath the android_securecoding folder)

16

Secure Coding Guide Documentation Release 2019-12-01

® Setect Path =

Fig. 2.5.16: Select “debug.keystore”

® Project Structure x

Fig. 2.5.17: Result of Selectiing “debug.keystore”

2.5.2.4 Set Signing Config

Select the Build Types tab, select signing name typed in the previous step, and then click “OK”.

17

Secure Coding Guide Documentation Release 2019-12-01

B Project Rructure x

Fig. 2.5.18: Set Signing Config

2.5.2.5 Confirm build.gradle file

The path of debug.keystore file you selected is displayed in signingConfigs, signingConfig appears in
debug section of buildTypes.

Fig. 2.5.19: Confirm build.gradle file

18

Secure Coding Guide Documentation Release 2019-12-01

Basic Knowledge of Secure Design and Secure Coding

Although the Guidebook is a collection of security advice concerning Android application development,
this chapter will deal with the basic knowledge on general secure design and secure coding of Android
smartphones and tablets. Since we will be referring to secure design and coding concepts in the later
chapters we recommend that you familiarize yourself with the content contained in this chapter first.

3.1 Android Application Security

There is a commonly accepted way of thinking when examining security issues concerning systems or
applications. First, we need to have a grasp over the objects we want to protect. We will call these
“assets”. Next, we want to gain an understanding over the possible attacks that can take place on an
asset. We will call these “threats”. Finally, we will examine and implement measures to protect “assets”
from the various “threats”. We will call these “countermeasures”.

What we mean by “countermeasures” here is secure design and secure coding, and will deal with these
subjects after Chapter 4. In this section, we will focus on explaining “assets” and “threats”.

3.1.1 “Asset”: Object of Protection

There are two types of “objects of protection” within a system or an application: “information” and
“functions”. We will call these “information assets” and “function assets”. “An information asset” refers
to the type of information that can be referred to or changed only by people who have permission. It is a
type of information that cannot be referred to or changed by anyone who does not have the permission.
“A function asset” refers to a function that can be used only by people who have permission and no one
else.

Below, we will introduce types of information assets and functional assets that exist in Android smart-
phones and tablets. We would like you to use the following as a point of reference to deliberate on
matters with regard to assets when developing a system that utilizes Android applications or Android
smartphones/tablets. For the sake of simplicity, we will collectively call Android smartphones/tablets as
Android smartphones.

3.1.1.1 Information Asset of an Android Smartphone
Table 3.1.1 and Table 3.1.2 represent examples of information contained on an Android smartphone. Ap-

propriate protection is necessary since this information is equivalent to personal information, confidential
information or information that belongs to both.

19

Secure Coding Guide Documentation Release 2019-12-01

Table 3.1.1: Examples of Information Managed by an Android

Smartphone
Information Remarks
Phone number Telephone number of the smartphone itself
Call history Time and date of incoming and outgoing calls as well as phone
numbers
IMEI Device ID of the smartphone
IMSI Subscriber ID
Sensor information GPS, geomagnetic, rate of acceleration, etc.
Various setup information Wi-Fi setting value, etc...
Account information arious account information, authentication information, etc.
Media data Pictures, videos, music, recording, etc...

Table 3.1.2: Examples of Information Managed by an Application

Information Remarks

Contacts Contacts of acquaintances
E-mail address User’s e-mail address

Web bookmarks Bookmarks

Web browsing history Browsing history

Calendar Plans, to-do list, events, etc.
Facebook SNS content, etc.

Twitter SNS content, etc.

The type of information seen in Table 3.1.1 is mainly the type of information that is stored on the
Android smartphone itself or on an SD card. Similarly, the type of information seen in Table 3.1.2 is
primarily managed by an application. In particular, the type of information seen in Table 3.1.2 grows in
proportion to the number of applications installed on the device.

Table 3.1.3 is the amount of information contained in one entry case of contacts. The information here
is not of the smartphone user’s, but of the smartphone user’s friends. In other words, we must be aware
that a smartphone not only contains information on the user, but of other people too.

Table 3.1.3: Examples of Information Contained in One Contact

Entry

Information Content

Phone number Home phone number, mobile phone number, FAX, MMS, etc.

E-mail address Home e-mail, work e-mail, mobile phone e-mail, etc.

Photo humbnail image, large image, etc.

IM address AIM, MSN, Yahoo, Skype, QQ, Google Talk, ICQ, Jabber, Net meeting,
etc.

Nicknames Acronyms, initials, maiden names, nicknames, etc.

Address Country, postal code, region, area, town, street name, etc.

Group membership Favorites, family, friends, coworkers, etc.

Website Blogs, profile site, homepage, FTP server, home, office, etc.

Events Birthdays, anniversaries, others, etc.

Relation Spouse, children, father, mother, manager, assistants, domestic partner,
partners, etc.

SIP address Home, work, other, etc.

Until now, we have primarily focused on information about smartphone users, however, application
possesses other important information as well. Fig. 3.1.1 displays a typical view of the information
inside an application divided into the program portion and data portion. The program portion mainly

20

Secure Coding Guide Documentation Release 2019-12-01

consists of information about the application developer, and the data portion mostly pertains to user
information. Since there could be information that an application developer may not want a user to have
access to, it is important to provide protective countermeasures to prohibit a user from referring to or
making changes to such information.

E P | Ct Ll re M a n a g e r ‘%ﬂlﬂ.’)ﬂendor‘s Information] User's Infarmation
Program Data

[data/app/com.sonydna. picturemanager.apk Jdata/datajcom.sonydna.picturemanager
AndroidManifest.xml —cache
classes.dex Java Code (Binary) | webviewCache Cache of WebView
resources.arsc Resources (e.g. Strings) |
|-—databases
assets | label.db DB for Application
AppAbout_en.html Bundled Data | metadata.db
| webview.db DB for WebView
res I webviewCache.db DB for WebView Cache
| .
|——drawable-hdpi [—files
| broken_image.png Image Files | MedialListl.dat Application Data Files
| |
—layout b
| about.xml Layout Information |
| L —shared_prefs Preference File
—xmil com.sonydna. picturemanager_preferences.xmi
setting.xml XML Files

Fig. 3.1.1: Information Contained in an Application

When creating an Android application, it is important to employ appropriate protective countermeasures
for information that an application manages itself, such as shown in Fig. 3.1.1. However, it is equally
important to have robust security measure in place for information contained in the Android smartphone
itself as well as for information that has been gained from other applications such as shown in Table
3.1.1, Table 3.1.2, and Table 3.1.3 .

3.1.1.2 Function Assets of an Android Smartphone

Table 3.1.4 shows examples of features that an Android OS provides to an application. When these
features are exploited by a malware, etc., damages in the form of unexpected charges or loss of privacy
may be incurred by a user. Therefore, appropriate protective counter-measures that are equal the one
extended to information asset should be set in place.

Table 3.1.4: Examples of Features an Android OS Provides to an

Application

Function Function

Sending and receiving SMS messages Camera

Calling Volume

Network communication Reading the Contract List and Status of the Mo-
bile Phone

GPS SD card

Bluetooth communication Change system setup

NFC communication Reading Log Data

Internet communication (SIP) Obtaining Information of a Running Application

In addition to the functions that the Android OS provides to an application, the inter-application com-
munication components of Android applications are included as part of the function assets as well.
Android applications can allow other applications to utilize features by accessing their internal compo-
nents. We call this inter-application communication. This is a convenient feature, however, there have
been instances where access to functions that should only be used inside a particular application are

21

Secure Coding Guide Documentation Release 2019-12-01

mistakenly given to other applications due the lack of knowledge regarding secure coding on the part of
the developer. There are functions provided by the application that could be exploited by malware that
resides locally on the device. Therefore, it is necessary to have appropriate protective countermeasures
to only allow legitimate applications to access these functions.

3.1.2 “Threats”: Attacks that Threaten Assets

In the previous section, we talked about the assets of an Android smartphone. In this section, we will
explain about attacks that can threaten an asset. Put simply, a threat to an asset is when a third party
who should not have permission, accesses, changes, deletes or creates an information asset or illicitly uses
a function asset. The act of directly or indirectly attacking such assets is called a “threat”. Furthermore,
the malicious person or applications that commit these acts are referred to as “the source of the threats”.
Malicious attackers and malware are the sources of threats but are not the threats themselves. The
relationship between our definitions of assets, threats, threat sources, vulnerabilities, and damage are
shown below in Fig. 3.1.2.

Application

.= d\ssetsy Threat(Attack)

mpac Threat(Attack)

0 Vulnerapility Threat Source

Fig. 3.1.2: Relation between Asset, Threat, Threat Source, Vulnerability, and Damage

Fig. 3.1.3 shows a typical environment that an Android application behaves in. From now on, in order
to expand on the explanation concerning the type of threats an Android application faces by using this
figure as a base, we will first learn how to view this figure.

Smartphone Security Area

i

{Conventional) Server Security Area

Server

Web
Service

3G/4G/Wi-Fi

Application

One user
Information

All users

infarmation

Smartphone 1 :

.

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
i
¥
[
[
[
[
[
[
[
[
[
[
[
[
[
[
1

Fig. 3.1.3: Android Typical Environment an Android Application Behaves in

22

Secure Coding Guide Documentation Release 2019-12-01

The figure above depicts the smartphone on the left and server on the right. The smartphone and server
communicate through the Internet over 3G/4G/Wi-Fi. Although multiple applications exist within
a smartphone, we are only showing a single application in the figure in order to explain the threats
clearly. Smartphone-based applications mainly handle user information, but the server-based web services
collectively manage information of all of its users. Consequently, there is no change the importance of
server security as usual. We will not touch upon issues relating to server security as it falls outside of
the scope of the Guidebook.

We will use the following figure to describe the type of threats that exist towards Android applications.

3.1.2.1 Network-based Third-Party

smartphone Security Area

i

(Conventional) Server Security Area

i

|

i

1

|

!

Smartphene |
Attack Attack !
o [' o — !
F H

|

i

i

|

i

i

4) Server
App * » Web
e —_— Service
IG/AGIWIF p1aicinus attacker an network
|
P Information
- of all users
A i
I

Fig. 3.1.4: Network-Based Malicious Third Party Attacking an Application

Generally, a smartphone application manages user information on a server so the information assets will
move between the networks connecting them. As indicated in Fig. 3.1.4, a network-based malicious third
party may access (sniff) any information during this communication or try to change information (data
manipulation). The malicious attacker in the middle (also referred to as “Man in The Middle”) can also
pretend to be the real server tricking the application. Without saying, network-based malicious third
parties will usually try to attack the server as well.

3.1.2.2 Threat Due to User-Installed Malware

B T et |

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

i

i

i

i

; ™
i

' Market | [Mal. | Attack A
i ware PP
i

i

i

i

i

i

Web

Service

Careless
LSeT

of all users

pS A

1

|
1 i
" i
1 I
' |
1 |
1 i
' |
1 i

i
1 i
' i
1 I
' |
1 |
1 i

|
' i

i
' I
1 i
1 i
1 i
! e !
1 i

|
v i

i
' |
1 i
' |
1 i
1 |
1 I

|
1 |
1 i
' I
' i
1 |
1 i
1 i
1 i

|
1 I
1 i
' |

;
; .
[Information

Fig. 3.1.5: Malware Installed by a User Attacks an Application

23

Secure Coding Guide Documentation Release 2019-12-01

The biggest selling point of a smartphone is in its ability to acquire numerous applications from the
market in order to expand on its features. The downside to users being able to freely install many
applications is that they will sometimes mistakenly install malware. As shown in Fig. 3.1.5, malware
may exploit the inter-application communication functions or a vulnerability in the application in order
to gain access to information or function assets.

3.1.2.3 Threat of an Malicious File that Exploits a Vulnerability in an Application

Smartphone Security Area

i

{Conventional) Server Security Area

Server

Smartphone

Web
Service

Careless
User

of all users

;
;
:
;
;
:
[information
:
;
;
;
;
;
'

Fig. 3.1.6: Attack from Malicious Files that Exploit a Vulnerability in an Application

Various types of files such as music, images, videos and documents are widely available on the Internet
and typically users will download many files to their SD card in order to use them on their smartphone.
Furthermore, it is also common to download attached files sent in an e-mail. These files are later opened
by a viewing or editing application.

If there is any vulnerability in the function of an application that processes these files, an attacker can
use a malicious file to exploit it and gain access to information or function assets of the application. In
particular, vulnerabilities are often present in processing a file format with a complex data structure.
The attacker can fulfill many different goals when exploiting an application in this way.

As shown in Fig. 3.1.6, an attack file stays dormant until it is opened by a vulnerable application. Once it
is opened, it will start causing havoc by taking advantage of an application’s vulnerability. In comparison
to an active attack, we call this attack method a “Passive Attack.”

24

Secure Coding Guide Documentation Release 2019-12-01

3.1.2.4 Threats from a Malicious Smartphone User

Smartphone Security Area

i

{Conventional) Server Security Area

Smartphone Server

—

Web
Service

Attack ‘
Smartphdne | Information

USE malicious uisr_'ri of all users

ps -

[
ok
[
oo
ik
P
1

Fig. 3.1.7: Attacks from a Malicious Smartphone User

With regard to application development for an Android smartphone, the environment as well as features
that help to develop and analyze an application are openly provided to the general user. Among the
features that are provided, the useful ADB debugging feature can be accessed by anyone without regis-
tration or screening. This feature allows an Android smartphone user to easily perform OS or application
analysis.

As it is shown in Fig. 3.1.7, a smartphone user with malicious intent can analyze an application by taking
advantage of the debugging feature of ADB and try to gain access to information or function assets of
an application. If the actual asset contained in the application belongs to the user, it poses no problem,
but if the asset belongs to someone other than the user, such as the application developer, then it will
become a concern. Accordingly, we need to be aware that the legitimate smartphone user can maliciously
target the assets within an application.

3.1.2.5 Threats from Third Party in the Proximity of a Smartphone

Smartphone Security Area

i e

(Conventional) Server Security Area

Malicious attacker
standing by smartphone

i] !
|] |
H H H
! ! !
i] !
1 i
|] |
E Attac E E
: 2 1 L : :
| -~ T : - |
H Smartphone | Attac ' Fées i
i - 4 i — |
! A ' Web !
] PP : i Service |
H o |
] " i
i P !
i o Information i
! - of all users !
]] L]
\ P |
| \ J B |
A ——————— [

Fig. 3.1.8: Attacks from a Malicious Third Party in the Proximity of a Smartphone

Due to face that most smartphones possess a variety of near-field communication mechanisms, such as
NFC, Bluetooth and Wi-Fi, we must not forget that attacks can occur from a malicious attacker who

25

Secure Coding Guide Documentation Release 2019-12-01

is in physical proximity of a smartphone. An attacker can shoulder surf a password while peeping over
a user who is inputting it in. Or, as indicated in Fig. 3.1.8, an attacker can be more sophisticated and
attack the Bluetooth functionality of an application from a remote distance. There is also the threat
that a malicious person could steal the smartphone creating a risk of data leakage or even destroy the
smartphone causing a loss of critical information. Developers need to take these risks into consideration
as well as early as the design stage.

3.1.2.6 Summary of Threats

[o g |

smartphone Security Area (Conventional) Server Security Area

Malicious attacker E
standing by smartphone]
:

Attac
‘ BT
. h =, ”
Smartphone | Attacl rver
h J Attack ﬁ Attack
Market | [pal.] Attack o - >
I-Fi —_— Service
3G/4G/Wi-Fi Malicious attacker on the network

Smartuhdne Information
USE gma!icious uEsr_'r: of all users

Fig. 3.1.9: Summary of the Various Attacks on Smartphone Applications

Careless
USer

i

|

I

]

i

I

— i
> Web !
i

i

i

i

i

i

i

i

Fig. 3.1.9 summarizes the main types of threats explained in the previous sections. Smartphones are
surrounded by a wide variety of threats and the figure above does not include all of them. Through
our daily information gathering, we need to spread the awareness concerning the various threats that
surround an Android application and be aware of them during the application’s secure design and coding.
The following literature that was created by Japan’s Smartphone Security Association (JSSEC) contains
other valuable information on the threats to smartphone security.

o Security Guidebook for Using Smartphones and Tablets https://www.jssec.org/dl/guide-
lines v2.pdf [Version 2] (Japanese) https://www.jssec.org/dl/guidelines2012Enew_ v1.0.pdf [Ver-
sion 1] (English)

o Implementation Guidebook for Smartphone Network Security [Version 1] https://www.jssec.org/
dl/NetworkSecurityGuidel.pdf (Japanese)

e Cloud Usage Guidebook for Business Purposes of Smartphones [Beta Version]
https://www.jssec.org/dl/cloudguide2012_ beta.pdf (Japanese)

o Guidebook for Reviewing the Implementation/Operation of MDM [Version 1] https://www.jssec.
org/dl/MDMGuideV1.pdf (Japanese)

3.1.3 Asset Classification and Protective Countermeasures

As was discussed in the previous sections, Android smartphones are surrounded by a variety of threats.
Protecting every asset in an application from such threats could prove to be very difficult given the time
it takes for development and due to technical limitations. Consequently, Android application developers
should examine feasible countermeasures for their assets. This should be done according to priority
level based on the developer’s judgement criteria. This is a subjective matter that is based on how the
importance of an asset is viewed and what the accepted level of damage is.

In order to help decide on the protective countermeasures for each asset, we will classify them and
stipulate the level of protective countermeasures for each group. This will be achieved by examining the

26

https://www.jssec.org/dl/guidelines_v2.pdf
https://www.jssec.org/dl/guidelines_v2.pdf
https://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
https://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
https://www.jssec.org/dl/NetworkSecurityGuide1.pdf
https://www.jssec.org/dl/NetworkSecurityGuide1.pdf
https://www.jssec.org/dl/cloudguide2012_beta.pdf
https://www.jssec.org/dl/MDMGuideV1.pdf
https://www.jssec.org/dl/MDMGuideV1.pdf

Secure Coding Guide Documentation Release 2019-12-01

legal basis, pertaining to the level of importance regarding the impact of any damages that can occur and
the social responsibility of the developer (or organization). These will prove to be the judgement criteria
when deciding on how to handle each asset and the implementation of the type of countermeasures. Since
this will become a standard for application developers and organizations on determining how to handle
an asset and provide protective countermeasures, it is necessary to specify the classification methods and
pertaining countermeasures in accordance the application developer’s (or organization’s) circumstances.

Asset classification and protective countermeasure levels that are adopted in the Guidebook are shown

below for reference:

Table 3.1.5: Asset Classification and Protective Countermeasure

Levels

Asset Clas- | Asset Level Level of Protective Counter-Measures

sification

High'! The amount of damage the asset causes is | Provide protection against sophisticated
fatal and catastrophic to the organization | attacks that break through the Android
or an individual’s activity. OS security model and prevent root priv-
i.e.) When an asset at this level is dam- | ilege compromises and attacks that alter
aged, the organization will not be able to | the dex portion of an APK.
continue its business. Ensure security takes priority over other

elements such as user experience, etc.

Medium The amount of damage the asset causes | Utilize the Android OS security model. It
has a substantial impact the organization | will provide protection covered under its
or an individual’s activity. scope.

i.e.) When an asset at this level is dam- | Ensure security takes priority over other
aged, the organization’s profit level dete- | elements such as user experience, etc.
riorates, adversely affecting its business.

Low The amount of damage the asset causes | Utilize the Android OS security model. It
has a limited impact on the organization | will provide protection covered under its
or an individual’s activity. scope.

i.e.) When an asset at this level is dam- | Compare security countermeasures with

aged, the organization’s profit level will | other elements such as user experience,

be affected but is able to compensate its | etc. At this level, it is possible for non-

losses from other resources. security issues to take precedence over se-
curity issues.

Asset classification and protective countermeasures described in the Guidebook are proposed under the
premise of a secure Android device where root privilege has not been compromised. Furthermore, it
is based on the security measures that utilize the security model of Android OS. Specifically, we are
hypothetically devising protective countermeasures by utilizing the Android OS security model on the
premise of a functioning Android OS security model against assets that are classified lower than or equal
to the medium level asset.

3.1.4 Sensitive Information

The term “sensitive information”, instead of information asset, will be used from now on in the Guide-
book. As it has been aforementioned in the previous section, we have to determine the asset level and
the level of protective countermeasures for each information asset that an application handles.

1 We also believe in the necessity of protecting high level assets from attacks that are caused due the breaching of the
Android OS security model. Such attacks include the compromise of root privileges and attacks that analyze or alter
the APK binary. To protect these types of assets, we need to design sophisticated defensive countermeasures against such
threats through the combination of multiple methods such as encryption, obfuscation, hardware support and server support.
As the collection of know-how regarding these defenses cannot be easily written in this guidebook, and since appropriate
defensive design differ in accordance to individual circumstances, we have deemed them to be outside of the Guidebook’s
scope. We recommend that you consult with a security specialist who is well versed in tamper resistant designs of Android
if your device requires protection from sophisticated attacks that include attacks resulting from the compromise of root
privileges or attacks caused by the analysis or alteration of an APK file.

27

Secure Coding Guide Documentation Release 2019-12-01

3.2 Handling Input Data Carefully and Securely

Validating input data is the easiest and yet most effective secure coding method. All data that is inputted
into the application either directly or indirectly by an outside source needs to be properly validated. To
illustrate best practices of input data validation, the following is an example of an Activity as used in a
program that receives data from Intent.

It is possible that an Activity can receive data from an Intent that was tampered by an attacker. By
sending data with a format or a value that a programmer is not expecting, the attacker can induce a
malfunction in the application that leads to some sort of security incident. We must not forget that a
user can become an attacker as well.

Intents are configured by action, data and extras, and we must be careful when accepting all forms of
data that can be controlled by an attacker. We always need to validate the following items in any code
that handles data from an untrusted source.

(a) Does the received data match the format that was expected by the programmer and does the value
fall in the expected scope?

(b) Even if you have received the expected format and value, can you guarantee that the code which
handles that data will not behave unexpectedly?

The next example is a simple sample where HTML is acquired from a remote web page in a designated
URL and the code is displayed in TextView. However, there is a bug.

Sample Code that Displays HTML of a Remote Web page in TextView

TextView tv = (TextView) findViewById(R.id.textview);
InputStreamReader isr = null;
char[] text = new char[1024];
int read;
try {
String urlstr = getIntent().getStringExtra("WEBPAGE_URL");
URL url = new URL(urlstr);
isr = new InputStreamReader (url.openConnection().getInputStream());
while ((read=isr.read(text)) != -1) {
tv.append(new String(text, 0, read));
}
} catch (MalformedURLException e) { //...

From the viewpoint of (a), “urlstr is the correct URL”, verified through the non-occurrence of a Mal-
formedURLException by a new URL(). However, this is not sufficient. Furthermore, when a “file://..”
formatted URL is designated by urlstr, the file of the internal file system is opened and is displayed in
TextView rather than the remote web page. This does not fulfill the viewpoint of (b), since it does not
guarantee the behavior which was expected by the programmer.

The next example shows a revision to fix the security bugs. Through the viewpoint of (a), the input data
is validated by checking that “urlstr is a legitimate URL and the protocol is limited to http or https.” As
a result, even by the viewpoint of (b), the acquisition of an Internet-routed InputStream is guaranteed
through url.openConnection().getInputStream().

Revised sample code that displays HTML of Internet-based Web page in TextView

TextView tv = (TextView) findViewById(R.id.textview);
InputStreamReader isr = null;
char[] text = new char[1024];
int read;
try {
String urlstr = getIntent().getStringExtra("WEBPAGE_URL");
URL url = new URL(urlstr);
String prot = url.getProtocol();
if (!"http".equals(prot) && !"https".equals(prot)) {
throw new MalformedURLException("invalid protocol");

(continues on next page)

28

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

3
isr = new InputStreamReader (url.openConnection().getInputStream());
while ((read=isr.read(text)) != -1) {
tv.append(new String(text, 0, read));
}

} catch (MalformedURLException e) { //...

Validating the safety of input data is called “Input Validation” and it is a fundamental secure coding
method. Surmising from the sense of the word of Input Validation, it is quite often the case where
the viewpoint of (a) is heeded but the viewpoint of (b) is forgotten. It is important to remember that
damage does not take place when data enters the program but when the program “uses” that data in an
incorrect way. We hope that you will refer the URLs listed below.

e The CERT Oracle Secure Coding Standard for Java https://www.securecoding.cert.org/
confluence/x/Ux (English)

e Application of CERT Oracle Secure Coding Standard for Android Application Development https:
/ /www.securecoding.cert.org/confluence/x/C4AiBw (English)

o Rules Applicable Only to the Android Platform (DRD) https://www.securecoding.cert.org/
confluence/x/H4CIBg (English)

o« IPA “Secure Programming Course” https://www.ipa.go.jp/security/awareness/vendor/
programming/index.html (Japanese)

29

https://www.securecoding.cert.org/confluence/x/Ux
https://www.securecoding.cert.org/confluence/x/Ux
https://www.securecoding.cert.org/confluence/x/C4AiBw
https://www.securecoding.cert.org/confluence/x/C4AiBw
https://www.securecoding.cert.org/confluence/x/H4ClBg
https://www.securecoding.cert.org/confluence/x/H4ClBg
https://www.ipa.go.jp/security/awareness/vendor/programming/index.html
https://www.ipa.go.jp/security/awareness/vendor/programming/index.html

Secure Coding Guide Documentation Release 2019-12-01

Using Technology in a Safe Way

In Android, there are many specific security related issues that pertain only to certain technologies such
as Activities or SQLite. If a developer does not have enough knowledge about each of the different
security issues regarding each technology when designing and coding, then unexpected vulnerabilities
may arise. This chapter will explain about the different scenarios that developers will need to know
when using their application components.

4.1 Creating/Using Activities

4.1.1 Sample Code

The risks and countermeasures of using Activities differ depending on how that Activity is being used.
In this section, we have classified 4 types of Activities based on how the Activity is being used. You
can find out which type of activity you are supposed to create through the following chart shown below.
Since the secure coding best practice varies according to how the activity is used, we will also explain
about the implementation of the Activity as well.

Table 4.1.1: Definition of Activity Types

Type

Definition

Private Activity

An activity that cannot be launched by another application, and therefore is the
safest activity

Public Activity

An activity that is supposed to be used by an unspecified large number of appli-
cations.

Partner Activity

An activity that can only be used by specific applications made by a trusted
partner company.

In-house Activity

An activity that can only be used by other in-house applications.

30

Secure Coding Guide Documentation Release 2019-12-01

Use anly in
he same application?

Allow unspecified number
applications to use?

Allow specified company s
applications to use

Private Activity Public Activity Partner Activity In-house Activity

Fig. 4.1.1: Flow Figure to select Activity Type

4.1.1.1 Creating/Using Private Activities
Private Activities are Activities which cannot be launched by the other applications and therefore it is
the safest Activity.

When using Activities that are only used within the application (Private Activity), as long as you use
explicit Intents to the class then you do not have to worry about accidently sending it to any other
application. However, there is a risk that a third party application can read an Intent that is used to
start the Activity. Therefore it is necessary to make sure that if you are putting sensitive information
inside an Intent used to start an Activity that you take countermeasures to make sure that it cannot be
read by a malicious third party.

Sample code of how to create a Private Activity is shown below.
Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Explicitly set the exported attribute to false.

4

. Handle the received intent carefully and securely, even though the intent was sent from the same
application.

5. Sensitive information can be sent since it is sending and receiving all within the same application.

To make the Activity private, set the “exported” attribute of the Activity element in the AndroidMani-
fest.xml to false.

AndroidManifest.xml

<?rxml verstion="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.privateactivity" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Private activity —-->
<!-— x4 POINT 1 *%* Do mnot specify taskAffinity —->
<!-- *%xx POINT 2 *** Do not spectfy launchMode —-—->

(continues on next page)

31

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

<I-- xxx POINT 3 *** Explicitly set the exported attribute to false. -->
<activity

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />

<!-- Public activity launched by launcher -->
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

PrivateActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

¥ % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.activity.privateactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.private_activity);

// *%% POINT 4 **% Handle the received Intent carefully and securely,
// even though the Intent was sent from the same application.
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
String param = getIntent().getStringExtra("PARAM");
Toast .makeText (this,
String.format ("Received param: \"%s\"", param),
Toast .LENGTH_LONG) . show() ;

(continues on next page)

32

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public void onReturnResultClick(View view) {

// #x% POINT 5 *** Sensitive information can be sent since it is sending
// and receiving all within the same application.

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult (RESULT_OK, intent);

finish();

Next, we show the sample code for how to use the Private Activity.
Point (Using an Activity):
6. Do not set the FLAG_ACTIVITY_NEW_ TASK flag for intents to start an activity.
7. Use the explicit Intents with the class specified to call an activity in the same application.

8. Sensitive information can be sent only by putExtra() since the destination activity is in the same
application’.

9. Handle the received result data carefully and securely, even though the data comes from an activity
within the same application.

PrivateUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

X % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.activity.privateactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateUserActivity extends Activity {
private static final int REQUEST_CODE = 1;
@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.user_activity);

(continues on next page)

1 Caution: Unless points 1, 2 and 6 are abided by, there is a risk that Intents may be read by a third party. Please refer
to 4.1.2.2. and 4.1.2.3. for more details.

33

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public void onUseActivityClick(View view) {

// *%% POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag
// for intents to start an activity.

// *%% POINT 7 #** Use the explicit Intents with the class
// specified to call an activity in the same application.
Intent intent = new Intent(this, PrivateActivity.class);

// #x% POINT 8 *** Sensitive information can be sent only by putExtra()
// since the destination activity is in the same application.
intent.putExtra("PARAM", "Sensitive Info");

startActivityForResult (intent, REQUEST_CODE) ;

@0verride
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (resultCode '= RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// #*% POINT 9 *** Handle the received data carefully and securely,
// even though the data comes from an activity within the same
// application.
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely.”
Toast.makeText (this,
String.format ("Received result: \"/s\"", result),
Toast.LENGTH_LONG) . show() ;
break;

4.1.1.2 Creating/Using Public Activities
Public Activities are Activities which are supposed to be used by an unspecified large number of appli-
cations. It is necessary to be aware that Public Activities may receive Intents sent from malware.

In addition, when using Public Activities, it is necessary to be aware of the fact that malware can also
receive or read the Intents sent to them.

The sample code to create a Public Activity is shown below.
Points (Creating an Activity):

1. Explicitly set the exported attribute to true.

2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?zml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.activity.publicactivity" >

(continues on next page)

34

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Public Activity ——>
<I-- x*xx POINT 1 *** Explicitly set the exported attribute to true. -—>
<activity

android:name=".PublicActivity"

android:label="@string/app_name"

android:exported="true">

<!-- Define intent filter to receive an implicit intent for a specified action -->
<intent-filter>
<action android:name="org.jssec.android.activity.MY_ACTION" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
</manifest>

PublicActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

¥ %X % %X X X ¥ X X X ¥ * Xx

limitations under the License.

*
N

package org.jssec.android.activity.publicactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PublicActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

// *%% POINT 2 *** Handle the received intent carefully and securely.
// Since this is a public activity, it is possible that the sending
// application may be malware.
// Omitted, since this s a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
String param = getIntent().getStringExtra("PARAM");
Toast.makeText (this,
String.format ("Received param: \"%s\"", param),

(continues on next page)

35

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Toast .LENGTH_LONG) . show() ;

public void onReturnResultClick(View view) {

// #*% POINT 3 *** When returning a result, do not include sensitive
// information.

// Since this is a public activity, it is possible that the receiving
// application may be malware.

// If there is mo problem if the data gets received by malware,

// then it can be returned as a result.

Intent intent = new Intent();

intent.putExtra("RESULT", "Not Sensitive Info");

setResult (RESULT_OK, intent);

finish();

Next, Herein after sample code of Public Activity user side.
Points (Using an Activity):
4. Do not send sensitive information.

5. When receiving a result, handle the data carefully and securely.

PublicUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www. apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.activity.publicuser;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PublicUserActivity extends Activity {
private static final int REQUEST_CODE = 1;
@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

(continues on next page)

36

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public void onUseActivityClick(View view) {

try {
// **% POINT 4 *** Do not send sensitive information.
Intent intent = new Intent("org.jssec.android.activity.MY_ACTION");
intent.putExtra("PARAM", "Not Sensitive Info");
startActivityForResult (intent, REQUEST_CODE) ;
} catch (ActivityNotFoundException e) {
Toast.makeText (this,
"Target activity not found.", Toast.LENGTH_LONG) .show();

@0verride
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

// #*% POINT 5 *** When receiving a result, handle the data carefully and
// securely.
// Omitted, since this s a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."”
if (resultCode != RESULT_O0K) return;
switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");
Toast.makeText (this,
String.format ("Received result: \"/s\"", result),
Toast .LENGTH_LONG) . show() ;
break;

4.1.1.3 Creating/Using Partner Activities

Partner activities are Activities that can only be used by specific applications. They are used between
cooperating partner companies that want to securely share information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.
Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent used
to start an Activity that you take countermeasures to make sure that it cannot be read by a malicious
third party

Sample code for creating a Partner Activity is shown below.

Points (Creating an Activity):

1.

6.

Do not specify taskAffinity.

2. Do not specify launchMode.

3. Do not define the intent filter and explicitly set the exported attribute to true.
4.
5

Verify the requesting application’s certificate through a predefined whitelist.

. Handle the received intent carefully and securely, even though the intent was sent from a partner

application.

Only return Information that is granted to be disclosed to a partner application.

Please refer to “4.1.3.2. Validating the Requesting Application” for how to validate an application by a
white list. Also, please refer to “5.2.1.3. How to Verify the Hash Value of an Application’s Certificate”
for how to verify the certificate hash value of a destination application which is specified in the whitelist.

37

Secure Coding Guide Documentation Release 2019-12-01

AndroidManifest.xml

<?xml verstion="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.activity.partneractivity" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Partner activity —-->
<I-- *%x POINT 1 *** Do not spectify taskAffinity —-->
<!-— xxx POINT 2 *%* Do not specify launchMode —-->
<!-- xxx POINT 3 *** Do not define the intent filter and explicitly set the ezported,
—attridbute to true ——>
<activity
android:name=".PartnerActivity"
android:exported="true" />

</application>
</manifest>

PartnerActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PartnerActivity extends Activity {

// **% POINT 4 #*** Verify the requesting application's certificate
// through a predefined whitelist.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context) ;
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

(continues on next page)

38

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// org.jssec.android.activity.partneruser.
sWhitelists.add("org.jssec.android.activity.partneruser", isdebug 7
// Certificate hash value of "androiddebugkey” in the debug.keystore.
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of "partner key" in the keystore.
"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register the other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname) ;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

// *%% POINT 4 *** Verify the requesting application's certificate
// through a predefined whitelist.
if (!checkPartner(this, getCallingActivity().getPackageName())) {
Toast.makeText (this,
"Requesting application is not a partner application.",
Toast.LENGTH_LONG) . show () ;
finish();
return;

// *¥x POINT 5 *#* Handle the received intent carefully and securely,

// even though the intent was sent from a partner application.

// Omitted, since this is a sample. Refer to

// "3.2 Handling Input Data Carefully and Securely.”

Toast.makeText (this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *¥x POINT 6 *#* Only return Information that is granted to be disclosed
// to a partner application.

Intent intent = new Intent();

intent.putExtra("RESULT", "Information for partner applications");
setResult (RESULT_OK, intent);

finish();

PkgCertWhitelists. java

/%

* % ¥ X X ¥ X X X ¥ * X%

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

(continues on next page)

39

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* limitations under the License.

*/
package org.jssec.android.shared;

import android.content.pm.PackageManager;
import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase();
if (sha2b6.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hexz char

mWhitelists.put (pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {
// ** 4f API Level >= 28, direct checking is possible
PackageManager pm = ctx.getPackageManager();
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes (correctHash),
CERT_INPUT_SHA256) ;
} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

*
*
*
*
*
*
*
*
*
* distributed under the License is distributed on an "AS IS" BASIS,

(continues on next page)

40

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.

*/
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null,;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format ("%02X", b));
}

return hexadecimal.toString();

Sample code for using a Partner Activity is described below.

Points (Using an Activity):

41

Secure Coding Guide Documentation Release 2019-12-01

7. Verify if the certificate of the target application has been registered in a whitelist.

8. Do not set the FLAG_ACTIVITY_NEW_ TASK flag for the intent that start an activity.

9. Only send information that is granted to be disclosed to a Partner Activity only by putExtra().
10. Use explicit intent to call a Partner Activity.
11. Use startActivityForResult() to call a Partner Activity.

12. Handle the received result data carefully and securely, even though the data comes from a partner
application.

Refer to “4.1.3.2. Validating the Requesting Application” for how to validate applications by white list.
Also please refer to “5.2.1.3. How to Verify the Hash Value of an Application’s Certificate” for how to
verify the certificate hash value of a destination application which is to be specified in a white list.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.partneruser" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<activity
android:name="org.jssec.android.activity.partneruser.PartnerUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

PartnerUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

¥ % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.activity.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Context;

(continues on next page)

42

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import
import
import
import

public

/7
/7

android.content.Intent;
android.os.Bundle;
android.view.View;
android.widget.Toast;

class PartnerUserActivity extends Activity {

*xx POINT 7 *** Verify <f the certificate of a target application
has been registered in a white list.

private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {

}

boolean isdebug = Utils.isDebuggable(context) ;
sWhitelists = new PkgCertWhitelists();

// Register the certificate hash value of partner application
// org.jssec.android.activity.partneractivity.
sWhitelists.add("org.jssec.android.activity.partneractivity", isdebug 7
// Certificate hash value of "androiddebugkey"” is in debug.keystore.
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of "my company key" is in the keystore.
"D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA");

// Register the other partner applications in the same way.

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname) ;

private static final int REQUEST_CODE = 1;

/7

Information related the target partner activity

private static final String TARGET_PACKAGE =

"org.jssec.android.activity.partneractivity";

private static final String TARGET_ACTIVITY =

"org.jssec.android.activity.partneractivity.PartnerActivity";

@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

public void onUseActivityClick(View view) {

// *%% POINT 7 *** Verify if the certificate of the target application
// has been registered in the own white list.
if (!checkPartner(this, TARGET_PACKAGE)) {
Toast.makeText (this,
"Target application is not a partner application.",
Toast .LENGTH_LONG) .show() ;
return;

try {
// **% POINT 8 #*** Do not set the FLAG_ACTIVITY_NEW_TASK flag for
// the intent that start an activity.
Intent intent = new Intent();

// #**% POINT 9 #** Only send information that %s granted to be
// disclosed to a Partner Activity only by putEztra().

(continues on next page)

43

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

intent.putExtra("PARAM", "Info for Partner Apps");

// *%x POINT 10 *** Use exzplicit intent to call a Partner Activity.
intent.setClassName (TARGET_PACKAGE, TARGET_ACTIVITY);

// #%% POINT 11 *¥* Use startActivityForResult() to call a Partner
// Activity.
startActivityForResult (intent, REQUEST_CODE);
}
catch (ActivityNotFoundException e) {
Toast.makeText (this,
"Target activity not found.",
Toast.LENGTH_LONG) . show() ;

@0verride
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// *%x POINT 12 #** Handle the received data carefully and securely,

// even though the data comes from a partner application.

// Omitted, since this 4is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."”

Toast.makeText (this,
String.format ("Received result: \"/s\"", result),
Toast .LENGTH_LONG) . show() ;

break;

PkgCertWhitelists. java

/%

* % %X X X ¥ X X X ¥ * X *x

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*
AN

package org.jssec.android.shared;

import android.content.pm.PackageManager;
import java.util.HashMap;

import java.util.Map;

import android.content.Context;

(continues on next page)

44

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.os.Build;
import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase();
if (sha2b6.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hexz char

mWhitelists.put (pkgname, sha256) ;
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {
// ** if API Level >= 28, direct checking is possible
PackageManager pm = ctx.getPackageManager();
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes (correctHash),
CERT_INPUT_SHA256) ;
} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ % ¥ X X X ¥ X X ¥ ¥ *x x

*
N

package org. jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

(continues on next page)

45

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import
import
import
import
import

public

android.content.Context;

android.content.pm.PackageInfo;
android.content.pm.PackageManager;
android.content.pm.PackageManager.NameNotFoundException;
android.content.pm.Signature;

class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {

return null;

}

private static String byte2hex(bytel[] data) {

if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

4.1.1.4 Creating/Using In-house Activities

In-house activities are the Activities which are prohibited to be used by applications other than other
in-house applications. They are used in applications developed internally that want to securely share
information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.
Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent used
to start an Activity that you take countermeasures to make sure that it cannot be read by a malicious
third party.

46

Secure Coding Guide Documentation Release 2019-12-01

Sample code for creating an In-house Activity is shown below.
Points (Creating an Activity):
1. Define an in-house signature permission.
. Do not specify taskAffinity.
. Do not specify launchMode.
. Require the in-house signature permission.

2

3

4

5. Do not define an intent filter and explicitly set the exported attribute to true.

6. Verify that the in-house signature permission is defined by an in-house application.
7

. Handle the received intent carefully and securely, even though the intent was sent from an in-house
application.

8. Sensitive information can be returned since the requesting application is in-house.

9. When exporting an APK, sign the APK with the same developer key as the requesting application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.activity.inhouseactivity" >

<!-- xxx POINT 1 *** Define an in-house signature permission ——>
<permission
android:name="org. jssec.android.activity.inhouseactivity.MY_PERMISSION"
android:protectionlLevel="signature" />

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- In-house Activity -->
<!-- xx*x POINT 2 *** Do not specify taskAffinity -->
<!-- *%x POINT 3 *** Do not spectfy launchMode -->
<!-— xxx POINT 4 *** Require the in-house signature permission -—->
<!-- xx*x POINT 5 *** Do not define the intent filter and explicitly set the ezported,
—attridbute to true —->
<activity
android:name="org. jssec.android.activity.inhouseactivity.InhouseActivity"
android:exported="true"
android:permission="org. jssec.android.activity.inhouseactivity.MY_PERMISSION" />
</application>
</manifest>

InhouseActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

*
*
*
*
*
*
* http://www. apache.org/licenses/LICENSE-2.0
*
*
*
*
*
* limitations under the License.

(continues on next page)

47

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

*/
package org. jssec.android.activity.inhouseactivity;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class InhouseActivity extends Activity {

// In-house Signature Permission
private static final String MY_PERMISSION =
"org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the
// debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26

—F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2,
—42E142CA";
¥
}
return sMyCertHash;
¥
@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

// *%% POINT 6 *** Verify that the in-house signature permission is
// defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText (this,
"The in-house signature permission is not declared by in-house,

—application.",
Toast.LENGTH_LONG) .show() ;
finish();
return;
}

// *%% POINT 7 *** Handle the received intent carefully and securely,
// even though the intent was sent from an in-house application.
// Omitted, since this %is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
String param = getIntent().getStringExtra("PARAM") ;
Toast .makeText (this,
String.format("Received param: \"/s\"", param),

(continues on next page)

48

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Toast .LENGTH_LONG) . show() ;

public void onReturnResultClick(View view) {

// #*% POINT 8 *** Sensitive information can be returned since
// the requesting application is in-house.

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult (RESULT_OK, intent);

finish();

SigPerm. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % % X X ¥ X X X ¥ ¥ X *x

*
AN

package org. jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;
public class SigPerm {

public static boolean test(Context ctx, String sigPermName,
String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission
// named sigPermName.
PackageManager pm = ctx.getPackageManager() ;
PermissionInfo pi =
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;
String pkgname = pi.packageName;
// Fail if the permisstion named sigPermName is not a Signature
// Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash value of pkgname with the correct hash
// value.

(continues on next page)

49

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

if (Build.VERSION.SDK_INT >= 28) {
// *% 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname));

} catch (NameNotFoundException e) {
return false;

}

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

X % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES) ;

// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];

(continues on next page)

50

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;
}
}

private static byte[] computeSha256(bytel[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;
}
}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

*** Point9 *** When exporting an APK, sign the APK with the same developer key as the requesting
application.

r @ Generate Signed APK ﬁw
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: |«eceser
Key alias:
Key password: [.

[] Remember passwords

|micanoel | Hep |

Fig. 4.1.2: Sign the APK with the same developer key as the requesting application

Sample code for using an In-house Activity is described below.
Points (Using an activity):
10. Declare that you want to use the in-house signature permission.
11. Verify that the in-house signature permission is defined by an in-house application.
12. Verify that the destination application is signed with the in-house certificate.
13. Sensitive information can be sent only by putExtra() since the destination application is in-house.
14. Use explicit intents to call an In-house Activity.

15. Handle the received data carefully and securely, even though the data came from an in-house
application.

51

Secure Coding Guide Documentation Release 2019-12-01

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?rxml verston="1.0" encoding="utf-8"2?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.inhouseuser" >

<!-- x*xx POINT 10 *** Declare to use the in-house signature permission —->
<uses-permission
android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<activity
android:name="org.jssec.android.activity.inhouseuser.InhouseUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

InhouseUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % ¥ X X ¥ ¥ X X ¥ ¥ *x x

*
N

package org.jssec.android.activity.inhouseuser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class InhouseUserActivity extends Activity {

// Target Activity information

(continues on next page)

52

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

private static final String TARGET_PACKAGE =
"org.jssec.android.activity.inhouseactivity";

private static final String TARGET_ACTIVITY =
"org.jssec.android.activity.inhouseactivity.InhouseActivity";

// In-house Signature Permission
private static final String MY_PERMISSION =
"org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash wvalue of "androiddebugkey" in the
// debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26,

—F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2,
—42E142CA";
X
}

return sMyCertHash;

private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

public void onUseActivityClick(View view) {

// *%% POINT 11 *%* Verify that the in-house signature permission %s
// defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText (this,
"The in-house signature permission is not declared by in-house,
—application.",
Toast.LENGTH_LONG) .show() ;
return;

// *% POINT 12 *#x Verify that the destination application is signed
// with the in-house certificate.
if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
Toast.makeText (this,
"Target application is not an in-house application.",
Toast .LENGTH_LONG) . show() ;
return;

try {
Intent intent = new Intent();

// #*% POINT 13 *#** Senstitive information can be sent only by
// putEztra() since the destination application is in-house.

(continues on next page)

53

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

intent.putExtra("PARAM", "Sensitive Info");

// **% POINT 14 »** Use explicit intents to call an In-house Activity.
intent.setClassName (TARGET_PACKAGE, TARGET_ACTIVITY);
startActivityForResult (intent, REQUEST_CODE);
}
catch (ActivityNotFoundException e) {
Toast.makeText (this,
"Target activity not found.",
Toast.LENGTH_LONG) . show() ;

@0verride
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// *%x POINT 15 #** Handle the received data carefully and securely,

// even though the data came from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."”

Toast.makeText (this,
String.format ("Received result: \"/s\"", result),
Toast .LENGTH_LONG) . show() ;

break;

SigPerm. java

/%

* % %X X X ¥ X X X ¥ % X *x

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*
AN

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

(continues on next page)

54

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,
String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;

String pkgname = pi.packageName;

// Fail 4if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash value of pkgname with the correct hash
// value.
if (Build.VERSION.SDK_INT >= 28) {
// **% 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname));
¥

} catch (NameNotFoundException e) {
return false;

}

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

X % ¥ X X X X X X X ¥ *x x

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.Packagelnfo;

(continues on next page)

55

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =
pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null,;

}

private static byte[] computeSha256(bytel[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination
application.

56

Secure Coding Guide Documentation Release 2019-12-01

[® Generate Signed APK [

Key store path: | C:¥jssec¥Projects¥keystore J

I Create new... I l Choose existing... ‘

Key store password: L -------

|
Key alias: < | my company k; > D
J

Key password: |.......
[C] Remember passwords

| NI [t] [

Fig. 4.1.3: Sign the APK with the same developer key as the destination application

4.1.2 Rule Book

Be sure to follow the rules below when creating or sending an Intent to an activity.

1.

10.
11.

12.

Activities that are Used Only Internally to the Application Must be Set Private (Required)

2. Do Not Specify taskAffinity (Required)
3. Do Not Specify launchMode (Required)
4.
)
6

Do Not Set the FLAG _ACTIVITY NEW __TASK Flag for Intents that Start an Activity (Required)

. Handling the Received Intent Carefully and Securely (Required)
. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House

Application (Required)

When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)

Use the explicit Intents if the destination Activity is predetermined. (Required)
Handle the Returned Data from a Requested Activity Carefully and Securely (Required)
Verify the Destination Activity if Linking with Another Company’s Application (Required)

When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of Pro-
tection (Required)

Sending Sensitive Information Should Be Limited as much as possible (Recommended)

4.1.2.1 Activities that are Used Only Internally to the Application Must be Set Private (Required)

Activities which are only used in a single application are not required to be able to receive any Intents
from other applications. Developers often assume that Activities intended to be private will not be
attacked but it is necessary to explicitly make these Activities private in order to stop malicious Intents
from being received.

AndroidManifest.xml

<!-- Private activity —-->
<I-— xxx 4.1.1.1 - POINT 3 *** Explicitly set the exported atiribute to false. -->
<activity

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />

57

Secure Coding Guide Documentation Release 2019-12-01

Intent filters should not be set on activities that are only used in a single application. Due to the
characteristics of Intent filters, Due to the characteristics of how Intent filters work, even if you intend to
send an Intent to a Private Activity internally, if you send the Intent through an Intent filter than you
may unintentionally start another Activity. Please see Advanced Topics “4.1.3.1. Combining Exported
Attributes and Intent Filter Settings (For Activities)” for more details.

AndroidManifest.xml(Not recommended)

<!-- Private activity —-—->

<I-— x4k 4.1.1.1 - POINT 3 *** Egzplicitly set the exported attridbute to false. -->

<activity
android:name=".PictureActivity"
android:label="@string/picture_name"
android:exported="false" >
<intent-filter>

<action android:name="org.jssec.android.activity.OPEN />

</intent-filter>

</activity>

4.1.2.2 Do Not Specify taskAffinity (Required)

In Android OS, Activities are managed by tasks. Task names are determined by the affinity that the
root Activity has. On the other hand, for Activities other than root Activities, the task to which the
Activity belongs is not determined by the Affinity only, but also depends on the Activity’s launch mode.
Please refer to “4.1.3.4. Root Activity” for more details.

In the default setting, each Activity uses its package name as its affinity. As a result, tasks are allocated
according to application, so all Activities in a single application will belong to the same task. To change
the task allocation, you can make an explicit declaration for the affinity in the AndroidManifest.xml file
or you can set a flag in an Intent sent to an Activity. However, if you change task allocations, there is a
risk that another application could read the Intents sent to Activities belonging to another task.

Be sure not to specify android:taskAffinity in the AndroidManifest.xml file and use the default setting
keeping the affinity as the package name in order to prevent sensitive information inside sent or received
Intents from being read by another application.

Below is an example AndroidManifest.xml file for creating and using Private Activities.

AndroidManifest.xml
<I-— *%x 4.1.1.1 — POINT 1 *** Do mot specify taskAffinity —-->
<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<l-— *xx 4.1.1.1 - POINT 1 *** Do not specify taskAffinity —-->
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

<!-- Private activity —-—>

<I-- xxx 4.1.1.1 - POINT 1 *** Do not specify taskAffinity -->
<activity

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />
</application>

58

Secure Coding Guide Documentation Release 2019-12-01

Please refer to the “Google Android Programming guide”?, the Google Developer’s API Guide “Tasks
and Back Stack™, “4.1.3.3. Reading Intents Sent to an Activity” and “4.1.3.4. Root Activity” for more
details about tasks and affinities.

4.1.2.3 Do Not Specify launchMode (Required)

The Activity launch mode is used to control the settings for creating new tasks and Activity instances
when starting an Activity. By default it is set to “standard” In the “standard” setting, new instances
are always created when starting an Activity, tasks follow the tasks belonging to the calling Activity, and
it is not possible to create a new task. When a new task is created, it is possible for other applications
to read the contents of the calling Intent so it is required to use the “standard” Activity launch mode
setting when sensitive information is included in an Intent.

The Activity launch mode can be explicitly set in the android:launchMode attribute in the AndroidMan-
ifest.xml file, but because of the reason explained above, this should not be set in the Activity declaration
and the value should be kept as the default “standard”.

AndroidManifest.xml
<I-- xxx 4.1.1.1 - POINT 2 *** Do not specify launchMode -->
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

<!-- Private activity —-—>

<I-— xxx 4.1.1.1 - POINT 2 *** Do not spectify launchMode -->
<activity

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />
</application>

Please refer to “4.1.3.3. Reading Intents Sent to an Activity” and “4.1.3.4. Root Activity.”

4.1.2.4 Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity
(Required)

The launch mode of an Activity can be changed when executing startActivity() or startActivityForRe-
sult() and in some cases a new task may be generated. Therefore it is necessary to not change the launch
mode of Activity during execution.

To change the Activity launch mode, set the Intent flags by using setFlags() or addFlags() and use that
Intent as an argument to startActivity() or startActivityForResult(). FLAG_ACTIVITY NEW_TASK
is the flag used to create a new task. When the FLAG__ACTIVITY_NEW_ TASK is set, a new task
will be created if the called Activity does not exist in the background or foreground.

The FLAG__ACTIVITY_MULTIPLE_TASK flag can be set simultaneously with FLAG_ACTIV-
ITY_NEW_TASK. In this case, a new task will always be created. New tasks may be created with
either setting so these should not be set with Intents that handle sensitive information.

Example of sending an intent

2 Author Egawa, Fujii, Asano, Fujita, Yamada, Yamaoka, Sano, Takebata, “Google Android Programming Guide”,
ASCII Media Works, July 2009
3 https://developer.android.com/guide/components/tasks-and-back-stack.html

59

https://developer.android.com/guide/components/tasks-and-back-stack.html

Secure Coding Guide Documentation Release 2019-12-01

Intent intent = new Intent();

// *%% 4.1.1.1 - POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag
// for the intent to start an activity.

intent.setClass(this, PrivateActivity.class);
intent.putExtra("PARAM", "Sensitive Info");

startActivityForResult (intent, REQUEST_CODE);

In addition, you may think that there is a way to prevent the contents of an Intent from being read even
if a new task was created by explicitly setting the FLAG__ACTIVITY_EXCLUDE_FROM__RECENTS
flag. However, even by using this method, the contents can be read by a third party so you should avoid
any usage of FLAG_ACTIVITY_NEW_ TASK.

Please refer to “4.1.3.1. Combining Exported Attributes and Intent Filter Settings (For Activities)”,
“4.1.3.3. Reading Intents Sent to an Activity” and “4.1.3.4. Root Activity”.

4.1.2.5 Handling the Received Intent Carefully and Securely (Required)

Risks differ depending on the types of Activity, but when processing a received Intent data, the first
thing you should do is input validation.

Since Public Activities can receive Intents from untrusted sources, they can be attacked by malware.
On the other hand, Private Activities will never receive any Intents from other applications directly,
but it is possible that a Public Activity in the targeted application may forward a malicious Intent to
a Private Activity so you should not assume that Private Activities cannot receive any malicious input.
Since Partner Activities and In-house Activities also have the risk of a malicious intent being forwarded
to them as well, it is necessary to perform input validation on these Intents as well.

Please refer to “3.2. Handling Input Data Carefully and Securely”.

4.1.2.6 Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-
House Application (Required)

Make sure to protect your in-house Activities by defining an in-house signature permission when creating
the Activity. Since defining a permission in the AndroidManifest.xml file or declaring a permission request
does not provide adequate security, please be sure to refer to “5.2.1.2. How to Communicate Between
In-house Applications with In-house-defined Signature Permission.”

4.1.2.7 When Returning a Result, Pay Attention to the Possibility of Information Leakage of that
Result from the Destination Application (Required)

When you use setResult() to return data, the reliability of the destination application will depend on
the Activity type. When Public Activities are used to return data, the destination may turn out to be
malware in which case that information could be used in a malicious way. For Private and In-house
Activities, there is not much need to worry about data being returned to be used maliciously because
they are being returned to an application you control. Partner Activities are somewhat in the middle.

As above, when returning data from Activities, you need to pay attention to information leakage from
the destination application.

Example of returning data.

public void onReturnResultClick(View view) {

// **% 4.1.1.1 - POINT 6 **x Information that is granted to be disclosed
// to a partner application can be returned.

(continues on next page)

60

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Intent intent = new Intent();
intent.putExtra ("RESULT",
"Information that is granted to disclose to partner applications");
setResult (RESULT_OK, intent);
finish();

4.1.2.8 Use the explicit Intents if the destination Activity is predetermined. (Required)

When using an Activity by implicit Intents, the Activity in which the Intent gets sent to is determined
by the Android OS. If the Intent is mistakenly sent to malware then Information leakage can occur. On
the other hand, when using an Activity by explicit Intents, only the intended Activity will receive the
Intent so this is much safer.

Unless it is absolutely necessary for the user to determine which application’s Activity the intent should
be sent to, you should use explicit intents and specify the destination in advance.

Using an Activity in the same application by an explicit Intent

Intent intent = new Intent(this, PictureActivity.class);
intent.putExtra("BARCODE", barcode);
startActivity(intent) ;

Using other applicaion’s Public Activity by an explicit Intent

Intent intent = new Intent();

intent.setClassName (
"org.jssec.android.activity.publicactivity",
"org.jssec.android.activity.publicactivity.PublicActivity");

startActivity(intent) ;

However, even when using another application’s Public Activity by explicit Intents, it is possible that the
destination Activity could be malware. This is because even if you limit the destination by package name,
it is still possible that a malicious application can fake the same package name as the real application.
To eliminate this type of risk, it is necessary to consider using a Partner or In-house.

Please refer to “4.1.3.1. Combining Ezported Attributes and Intent Filter Settings (For Activities)”.

4.1.2.9 Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

While the risks differ slightly according to what type of Activity you accessing, when processing Intent
data received as a returned value, you always need to perform input validation on the received data.

Public Activities have to accept returned Intents from untrusted sources so when accessing a Public
Activity it is possible that, the returned Intents are actually sent by malware. It is often mistakenly
thought that all returned Intents from a Private Activity are safe because they are originating from
the same application. However, since it is possible that an intent received from an untrusted source is
indirectly forwarded, you should not blindly trust the contents of that Intent. Partner and In-house
Activities have a risk somewhat in the middle of Private and Public Activities. Be sure to input validate
these Activities as well.

Please refer to “3.2. Handling Input Data Carefully and Securely” for more information.
4.1.2.10 Verify the Destination Activity if Linking with Another Company’s Application (Required)
Be sure to sure a whitelist when linking with another company’s application. You can do this by sav-

ing a copy of the company’s certificate hash inside your application and checking it with the certificate
hash of the destination application. This will prevent a malicious application from being able to spoof

61

Secure Coding Guide Documentation Release 2019-12-01

Intents. Please refer to sample code section “4.1.1.3. Creating/Using Partner Activities” for the con-
crete implementation method. For technical details, please refer to “4.1.3.2. Validating the Requesting
Application.”

4.1.2.11 When Providing an Asset Secondhand, the Asset should be Protected with the Same Level
of Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole because
an application with permissions to an asset can act as a proxy and allow access to an unprivileged
application. Substantially this is the same as re-delegating a permission so it is referred to as the
“Permission Re-delegation” problem. Please refer to “5.2.3.4. Permission Re-delegation Problem.’

4.1.2.12 Sending Sensitive Information Should Be Limited as much as possible (Recommended)

You should not send sensitive information to untrusted parties. Even when you are linking with a specific
application, there is still a chance that you unintentionally send an Intent to a different application or
that a malicious third party can steal your Intents. Please refer to “4.1.3.5. Log Output When using
Activities.”

You need to consider the risk of information leakage when sending sensitive information to an Activity.
You must assume that all data in Intents sent to a Public Activity can be obtained by a malicious third
party. In addition, there is a variety of risks of information leakage when sending Intents to Partner
or In-house Activities as well depending on the implementation. Even when sending data to Private
Activities, there is a risk that the data in the Intent could be leaked through LogCat. Information in
the extras part of the Intent is not output to LogCat so it is best to store sensitive information there.

However, not sending sensitive data in the first place is the only perfect solution to prevent information
leakage therefore you should limit the amount of sensitive information being sent as much as possible.
When it is necessary to send sensitive information, the best practice is to only send to a trusted Activity
and to make sure the information cannot be leaked through LogCat.

In addition, sensitive information should never be sent to the root Activity. Root Activities are Activities
that are called first when a task is created. For example, the Activity which is launched from launcher
is always the root Activity.

Please refer to “4.1.3.3. Reading Intents Sent to an Activity” and “4.1.3.4. Root Activity” for more details
on root Activities.

4.1.3 Advanced Topics

4.1.3.1 Combining Exported Attributes and Intent Filter Settings (For Activities)

We have explained how to implement the four types of Activities in this guidebook: Private Activities,
Public Activities, Partner Activities, and In-house Activities. The various combinations of permitted
settings for each type of exported attribute defined in the AndroidManifest.xml file and the intent-filter
elements are defined in the table below. Please verify the compatibility of the exported attribute and
intent-filter element with the Activity you are trying to create.

Table 4.1.2: Combination of exporte attributes and intent-filter

Value of exported attribute

true false Not specified
Intent Filter defined Public (Do not Use) | (Do not Use)
Intent Filter Not Defined | Public, Partner,In-house | Private (Do not Use)

62

Secure Coding Guide Documentation Release 2019-12-01

When the exported attribute of an Activity is left unspecified, the question of whether or not the Ac-
tivity is public is determined by the presence or absence of intent filters for that Activity*. However, in
this guidebook it is forbidden to set the exported attribute to “unspecified”. In general, as mentioned
previously, it is best to avoid implementations that rely on the default behavior of any given API; more-
over, in cases where explicit methods — such as the exported attribute — exist for enabling important
security-related settings, it is always a good idea to make use of those methods.

The reason why “a defined intent filter and an exported attribute of false” should not be used is that
there is a loophole in Android’s behavior, and because of how Intent filters work, other application’s
Activities can be called unexpectedly. The following two figures below show this explanation. Fig. 4.1.4
is an example of normal behavior in which a Private Activity (Application A) can be called by an implicit
Intent only from the same application. The Intent filter (action = “X”) is defined to work only inside
Application A, so this is the expected behavior.

y ™

Application A
Call an activity with
the implicit intent

Intent(“X")
Application C

Private Activity A-1 Call the activity with
exported="false” the implicit intent

action="X" @ Intent(“X"™)

Since the activity A-1 is private one,
it can be called only by the application A.

L Android device

Fig. 4.1.4: An Example of Normal Behavior

Fig. 4.1.5 below shows a scenario in which the same Intent filter (action="X") is defined in Application
B as well as Application A. Application A is trying to call a Private Activity in the same application
by sending an implicit Intent, but this time a dialogue box asking the user “Complete action using” is
displayed, and the Public Activity B-1 in Application B called by mistake due to the user selection®. Due
to this loophole, it is possible that sensitive information can be sent to other applications or application
may receive an unexpected retuned value.

4 If any intent filters are defined, the Activity is public; otherwise it is private. For more information, see https:
//developer.android.com/guide/topics/manifest /activity-element.html#exported

5 For terminals running Android 8.0(API Level 26) or later, it has been confirmed that the “Complete action using”
dialog is not displayed and an automatic transition is made to the Public Activity B-1 in Application B in the figure. For
this reason, it should be prohibited to start a private activity with intent filters by an implicit intent.

63

https://developer.android.com/guide/topics/manifest/activity-element.html#exported
https://developer.android.com/guide/topics/manifest/activity-element.html#exported

Secure Coding Guide Documentation Release 2019-12-01

4 ™)
Application A
Call an activity with Application
the implicit intent selector

Intent(“X") A-1

A1)
[B-1]
~—

Private Activity A—1
exported="false”
action="X"

Public Activity B-1
exported="true"

When the activity B—1 that has the
same action exists, OS display the
selector dialog, and public activity B—1is
called depends on user selection,

action="X

Android device
\

Fig. 4.1.5: An Example of Abnormal Behavior

As shown above, definitely not make an implicit Intent call to Private Activity using Intent filters because
it allows information to be exchanged with an app that is not the app you want. In addition, we have
verified that this behavior does not depend on the installation order of Application A and Application
B.

4.1.3.2 Validating the Requesting Application

Here we explain the technical information about how to implement a Partner Activity. Partner applica-
tions permit that only particular applications which are registered in a whitelist are allowed access and
all other applications are denied. Because applications other than in-house applications also need access
permission, we cannot use signature permissions for access control.

Simply speaking, we want to validate the application trying to use the Partner Activity by checking if
it is registered in a predefined whitelist and allow access if it is and deny access if it is not. Application
validation is done by obtaining the certificate from the application requesting access and comparing its
hash with the one in the whitelist.

Some developers may think that it is sufficient to just compare “the package name” without obtaining
“the certificate”, however, it is easy to spoof the package name of a legitimate application so this is
not a good method to check for authenticity. Arbitrarily assignable values should not be used for
authentication. On the other hand, because only the application developer has the developer key for
signing its certificate, this is a better method for identification. Since the certificate cannot be easily
spoofed, unless a malicious third party can steal the developer key, there is a very small chance that
malicious application will be trusted. While it is possible to store the entire certificate in the whitelist,
it is sufficient to only store the SHA-256 hash value in order to minimize the file size.

There are two restrictions for using this method.
o The requesting application has to use startActivityForResult() instead of startActivity().

e The requesting application can only call from an Activity.

64

Secure Coding Guide Documentation Release 2019-12-01

The second restriction is the restriction imposed as a result of the first restriction, so technically there
is only a single restriction.

This restriction occurs due to the restriction of Activity.getCallingPackage() which gets the package name
of the calling application. Activity.getCallingPackage() returns the package name of source (requesting)
application only in case it is called by startActivityForResult(), but unfortunately, when it is called by
startActivity(), it only returns null. Because of this, when using the method explained here, the source
(requesting) application needs to use startActivityForResult() even if it does not need to obtain a return
value. In addition, startActivityForResult() can be used only in Activity classes, so the source (requester)
is limited to Activities.

PartnerActivity. java
/%
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

¥ % % X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PartnerActivity extends Activity {

// **% POINT 4 *** Verify the requesting application's certificate
// through a predefined whitelist.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context);
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application
// org.jssec.android.activity.partneruser.
sWhitelists.add("org.jssec.android.activity.partneruser", isdebug 7
// Certificate hash value of "androtddebugkey” in the debug.keystore.
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of "partner key" in the keystore.
"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register the other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname) ;

(continues on next page)

65

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

// *%% POINT 4 #*** Verify the requesting application's certificate
// through a predefined whitelist.
if (!checkPartner(this, getCallingActivity().getPackageName())) {
Toast.makeText (this,
"Requesting application is not a partner application.",
Toast.LENGTH_LONG) . show () ;
finish();
return;

// *¥x POINT 5 *#* Handle the received intent carefully and securely,

// even though the intent was sent from a partner application.

// Omitted, since this is a sample. Refer to

// "3.2 Handling Input Data Carefully and Securely.”

Toast .makeText (this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *¥x POINT 6 *#* Only return Information that is granted to be disclosed
// to a partner application.

Intent intent = new Intent();

intent.putExtra("RESULT", "Information for partner applications");
setResult (RESULT_OK, intent);

finish();

PkgCertWhitelists. java

/%

* % %X X X ¥ X X X ¥ % X *x

*
AN

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

package org.jssec.android.shared;

import
import
import
import
import

import

android.content.pm.PackageManager;
java.util.HashMap;

java.util.Map;
android.content.Context;
android.os.Build;

static android.content.pm.PackageManager.CERT_INPUT_SHA256;

(continues on next page)

66

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll (" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase();
if (sha2b6.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hexz char

mWhitelists.put (pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {
// ** if API Level >= 28, direct checking is possible
PackageManager pm = ctx.getPackageManager();
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes (correctHash),
CERT_INPUT_SHA256) ;
} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

X % ¥ X X X X X X X ¥ *x x

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.Packagelnfo;

(continues on next page)

67

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =
pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(bytel[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

4.1.3.3 Reading Intents Sent to an Activity

In Android 5.0 (API Level 21) and later, the information retrieved with getRecentTasks() has been
limited to the caller’s own tasks and possibly some other tasks such as home that are known to not be
sensitive. However applications, which support the versions under Android 5.0 (API Level 21), should
protect against leaking sensitive information.

The following describes the contents of this problem occurring in Android 5.0 and earlier version.

Intents that are sent to the task’s root Activity are added to the task history. A root Activity is the first
Activity started in a task. It is possible for any application to read the Intents added to the task history
by using the ActivityManager class.

Sample code for reading the task history from an application is shown below. To browse the task history,

68

Secure Coding Guide Documentation

Release 2019-12-01

specify the GET__TASKS permission in the AndroidManifest.xml file.

AndroidManifest.xml
<manifest zmlns:android="http://schemas.android.com/apk/res/android"

package="org. jssec.android.intent.maliciousactivity" >

<!-- Use GET_TASKS Permission ——>
<uses-permission android:name="android.permission.GET_TASKS" />

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >

<activity

android:name=".MaliciousActivity"
android:label="@string/title_activity_main"
android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>
</application>
</manifest>

MaliciousActivity. java

/*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

package org.jssec.android.intent.maliciousactivity;

import
import

import
import
import
import
import

public

java.util.List;
java.util.Set;

android.app.Activity;
android.app.ActivityManager;
android.content.Intent;
android.os.Bundle;
android.util.Log;

class MaliciousActivity extends Activity {

@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.malicious_activity);

69

(continues on next page)

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// Get am ActivityManager instance.
ActivityManager activityManager =
(ActivityManager) getSystemService(ACTIVITY_SERVICE);
// Get 100 recent task info.
List<ActivityManager.RecentTaskInfo> list = activityManager
.getRecentTasks (100, ActivityManager.RECENT_WITH_EXCLUDED) ;
for (ActivityManager.RecentTaskInfo r : list) {
// Get Intent sent to root Activity and Log %t.
Intent intent = r.baselntent;
Log.v("baseIntent", intent.toString());
Log.v(" action:", intent.getAction());
String target = intent.getDataString();
if (target != null) {
Log.v(" data:", intent.getDataString());
}
if (r.origActivity != null) {
Log.v(" pkg:", r.origActivity.getPackageName() +
r.origActivity.getClassName());
}
Bundle extras = intent.getExtras();
if (extras != null) {
Set<String> keys = extras.keySet();
for(String key : keys) {
Log.v(" extras:", key + "=" + extras.get(key).toString());
}

You can obtain specified entries of the task history by using the getRecentTasks() function of the Acitiv-
ityManager class. Information about each task is stored in an instance of the ActivityManager.Recent-
TaskInfo class, but Intents that were sent to the task’s root Activity are stored in its member variable
baselntent. Since the root Activity is the Activity which was started when the task was created, please
be sure to not fulfill the following two conditions when calling an Activity.

e A new task is created when the Activity is called.

e The called Activity is the task’s root Activity which already exists in the background or foreground.

4.1.3.4 Root Activity

The root Activity is the Activity which is the starting point of a task. In other words, this is the Activity
which was launched when task was created. For example, when the default Activity is launched by
launcher, this Activity will be the root Activity. According to the Android specifications, the contents
of Intents sent to the root Activity can be read from arbitrary applications. So, it is necessary to take
countermeasures not to send sensitive information to the root Activity. In this guidebook, the following
three rules have been made to avoid a called Activity to become root Activity.

« taskAffinity should not be specified.
¢ launchMode should not be specified.
e The FLAG_ACTIVITY_NEW_ TASK flag should not be set in an Intent sent to an Activity.

We consider the situations that an Activity can become the root Activity below. A called Activity
becoming a root Activity depends on the following.

e The launch mode of the called Activity

e The task of a called Activity and its launch mode

70

Secure Coding Guide Documentation Release 2019-12-01

First of all, let me explain “the Launch mode of called Activity”. Launch mode of Activity can be
set by writing android:launchMode in AndroidManifest.xml. When it’s not written, it’s considered as
“standard”. In addition, launch mode can be also changed by a flag to set to Intent. Flag “FLAG__AC-
TIVITY_NEW_ TASK?” launches Activity by “singleTask” mode.

The launch modes that can be specified are as per below. I'll explain about the relation with the root
activity, mainly.

standard

Activity which is called by this mode won’t be root, and it belongs to the caller side task. Every time
it’s called, Instance of Activity is to be generated.

singleTop

This launch mode is the same as “standard”, except for that the instance is not generated when launching
an Activity which is displayed in most front side of foreground task.

singleTask

This launch mode determines the task to which the activity would be belonging by Affinity value. When
task which is matched with Activity’s affinity doesn’t exist either in background or in foreground, a new
task is generated along with Activity’s instance. When task exists, neither of them is to be generated.
In the former one, the launched Activity’s Instance becomes root.

singlelnstance

Same as “singleTask”, but following point is different. Only root Activity can belongs to the newly
generated task. So instance of Activity which was launched by this mode is always root activity. Now,
we need to pay attention to the case that the class name of called Activity and the class name of Activity
which is included in a task are different although the task which has the same name of called Activity’s
affinity already exists.

From as above, we can get to know that Activity which was launched by “singleTask” or “singleInstance”
has the possibility to become root. In order to secure the application’s safety, it should not be launched
by these modes.

Next, I'll explain about “Task of the called Activity and its launch mode”. Even if Activity is called by
“standard” mode, it becomes root Activity in some cases depends on the task state to which Activity
belongs.

For example, think about the case that called Activity’s task has being run already in background.

The problem here is the case that Activity Instance of the task is launched by “singleInstance”. When
the affinity of Activity which was called by “standard” is same with the task, new task is to be generated
by the restriction of existing “singlelnstance” Activity. However, when class name of each Activity is
same, task is not generated and existing activity Instance is to be used. In any cases, that called Activity
becomes root Activity.

As per above, the conditions that root Activity is called are complicated, for example it depends on the
state of execution. So when developing applications, it’s better to contrive that Activity is called by
“standard”.

As an example of that Intent which is sent to Private Activity is read out form other application, the
sample code shows the case that caller side Activity of private Activity is launched by “singleInstance”
mode. In this sample code, private activity is launched by “standard” mode, but this private Activity
becomes root Activity of new task due the “singlelnstance” condition of caller side Activity. At this

71

Secure Coding Guide Documentation Release 2019-12-01

moment, sensitive information that is sent to Private Activity is recorded task history, so it can be read
out from other applications. FYI, both caller side Activity and Private Activity have the same affinity.

AndroidManifest.xml(Not recommended)

<?xml version="1.0" encoding="utf-8"2?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.activity.singleinstanceactivity" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Set the launchMode of the root Activity to "singlelnstance". -->
<!-- Do not use taskAffinity -->
<activity

android:name="org.jssec.android.activity.singleinstanceactivity.PrivateUserActivity"
android:label="@string/app_name"
android:launchMode="singleInstance"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

<!-- Private activity ——->

<!-- Set the launchMode to "standard." -->
<!-- Do not use taskAffinity -->

<activity

android:name="org. jssec.android.activity.singleinstanceactivity.PrivateActivity"
android:label="@string/app_name"
android:exported="false" />
</application>
</manifest>

Private Activity only returns the results to the received Intent.

PrivateActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

¥ % ¥ X X X X X X X ¥ *x x

*
N

package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

(continues on next page)

72

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public class PrivateActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.private_activity);

// Handle intent securely, even though the intent sent from

// the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely.”

String param = getIntent().getStringExtra("PARAM");

Toast .makeText (this,
String.format ("Received param: \"%s\"", param),
Toast .LENGTH_LONG) . show() ;

public void onReturnResultClick(View view) {
Intent intent = new Intent();
intent.putExtra("RESULT", "Sensitive Info");
setResult (RESULT_OK, intent);
finish();

In caller side of Private Activity, Private Activity is launched by “standard” mode without setting flag
to Intent.

PrivateUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateUserActivity extends Activity {
private static final int REQUEST_CODE = 1;
@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

(continues on next page)

73

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

setContentView(R.layout.user_activity);

public void onUseActivityClick(View view) {

// Start the Private Activity with "standard” lanchMode.
Intent intent = new Intent(this, PrivateActivity.class);
intent.putExtra("PARAM", "Sensitive Info");

startActivityForResult (intent, REQUEST_CODE) ;

@0verride
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// Handle received result data carefully and securely,

// even though the data came from the Activity in the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText (this,
String.format("Received result: \"/s\"", result),
Toast.LENGTH_LONG) . show() ;

break;

4.1.3.5 Log Output When using Activities
When using an activity, the contents of intent are output to LogCat by ActivityManager. The following
contents are to be output to LogCat, so in this case, sensitive information should not be included here.
e Destination Package name
¢ Destination Class name
o URI which is set by Intent#setData()

For example, when an application sent mails, the mail address is unfortunately outputted to LogCat if
the application would specify the mail address to URIL. So, better to send by setting Extras.

When sending a mail as below, mail address is shown to the logCat.

MainActivity. java
// URI ts output to the LogCat.
Uri uri = Uri.parse("mailto:test@gmail.com");
Intent intent = new Intent(Intent.ACTION_SENDTO, uri);
startActivity(intent) ;

When using Extras, mail address is no more shown to the logCat.

MainActivity. java
// Contents which was set to Extra, s not output to the LogCat.
Uri uri = Uri.parse("mailto:");

(continues on next page)

74

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Intent intent = new Intent(Intent.ACTION_SENDTO, uri);
intent.putExtra(Intent.EXTRA_EMAIL, new String[] {"test@gmail.com"});
startActivity(intent);

However, there are cases where other applications can read the Extras data of intent using Activity-
Manager#getRecentTasks(). Please refer to “4.1.2.2. Do Not Specify taskAffinity (Required)”, “4.1.2.3.
Do Not Specify launchMode (Required)” and “4.1.2.4. Do Not Set the FLAG _ACTIVITY NEW_TASK
Flag for Intents that Start an Activity (Required)”.

4.1.3.6 Protecting against Fragment Injection in PreferenceActivity

When a class derived from PreferenceActivity is a public Activity, a problem known as Fragment Injec-
tion® may arise. To prevent this problem from arising, it is necessary to override PreferenceActivity.Is-
ValidFragment() and check the validity of its arguments to ensure that the Activity does not handle any
Fragments without intention. (For more on the safety of input data, see Section “3.2. Handling Input
Data Carefully and Securely”.)

Below we show a sample in which IsValidFragment() has been overridden. Note that, if the source code
has been obfuscated, class names and the results of parameter-value comparisons may change. In this
case it is necessary to pursue alternative countermeasures.

Example of an overridden isValidFragment() method

protected boolean isValidFragment (String fragmentName) {
// If the source code ts obfuscated, we must pursue alternative strategies
return PreferenceFragmentA.class.getName().equals(fragmentName)
| | PreferenceFragmentB.class.getName().equals(fragmentName)
|| PreferenceFragmentC.class.getName() .equals(fragmentName)
| | PreferenceFragmentD.class.getName () .equals(fragmentName) ;

Note that if the app’s targetSdkVersion is 19 or greater, failure to override PreferenceActivity.isValid-
Fragment() will result in a security exception and the termination of the app whenever a Fragment
is inserted [when isValidFragment() is called], so in this case overriding PreferenceActivity.isValidFrag-
ment() is mandatory.

4.1.3.7 The Autofill framework

The Autofill framework was added in Android 8.0 (API Level 26). Using this framework allows apps
to store information entered by users—such as user names, passwords, addresses, phone numbers, and
credit cards—and subsequently to retrieve this information as necessary to allow the app to fill in forms
automatically. This is a convenient mechanism that reduces data-entry burdens for users; however,
because it allows a given app to pass sensitive information such as passwords and credit cards to other
apps, it must be handled with appropriate care.

Overview of the framework
2 components

In what follows, we provide an overview of the two components” registered by the Autofill framework.

o Apps eligible for Autofill (user apps):

6 For more information on Fragment Injection, consult this URL: https://securityintelligence.com/
new-vulnerability-android-framework- fragment-injection/
7 The “user app” and the “Autofill service” may belong to the same package (the same APK file) or to different packages.

(0]

https://securityintelligence.com/new-vulnerability-android-framework-fragment-injection/
https://securityintelligence.com/new-vulnerability-android-framework-fragment-injection/

Secure Coding Guide Documentation Release 2019-12-01

Pass view information (text and attributes) to Autofill service; receive information from Aut-
ofill service as needed to auto-fill forms.

— All apps that have Activities are user apps (when in the foreground).

— It is possible for all Views of all user apps to be eligible for Autofill. It is also possible to
explicitly specify that any given individual view should be ineligible for Autofill.

It is also possible to restrict an app’s use of Autofill to the Autofill service within the same
package.

o Services that provide Autofill (Autofill services):

— Save View information passed by an app (requires user permission); provide an app with
information needed for Autofill in a View (candidate lists).

— The Views eligible for this information saving are determined by the Autofill service. (Within
the Autofill framework, by default information on all Views contained in an Activity are passed
to the Autofill service.)

— It is also possible to construct Autofill services provided by third parties.

— It is possible for several to be present within a single terminal with only the service selected
by the user via “Settings” enabled (“None” is also a possible selection.)

— It also possible for a Service to provide a Ul to validate users via password entry or other
mechanisms to protect the security of the user information handled.

Procedural flowchart for the Autofill framework

Fig. 4.1.6 is a flowchart illustrating the procedural flow of interactions among Autofill-related components
during Autofill. When triggered by events such as motion of the focus in a user app’s View, information
on that View (primarily the parent-child relationships and various attributes of the View) is passed via
the Autofill framework to the Autofill service selected within “Settings”. Based on the data it receives,
the Autofill service fetches from a database the information (candidate lists) needed for Autofill, then
returns this to the framework. The framework displays a candidate list to the user, and the app carries
out the Autofill operation using the data selected by the user.

F- - - - - - - -—-—F""""""""">"""="»"¥"=/""=-—""¥"»"¥"=/"—"¥—-—"""¥"”"¥”/"/="”"¥”/”W~"”"”¥”/~/” = 3
| Android terminal I
| - .

| 1. View information 2. View information l
I (primarily attribute (primarily attribute J
| information) information)]l

Autofill .

| Useraps ——'- § " P Autofill service |
[——— rarmnewar] » - |
|[6. Selected data _ Autofill information L_DB |
| {candidate list) — |
- ——— e e e e e e e e e e e e e — — ..-]

4. Display candidate list 5. Select from list

User

Fig. 4.1.6: Procedural flow among components for Autofill

Next, Fig. 4.1.7 is a flowchart illustrating the procedural flow for saving user data via Autofill. Upon a
triggering event such as when AutofillManager#commit() is called or when an Activity is unfocused, if
any Autofilled values for the View have been modified and the user has granted permission via the Save
Permission dialog box displayed by the Autofill framework, information on the View (including text) is
passed via the Autofill framework to the Autofill service selected via “Settings”, and the Autofill service
stores information in the database to complete the procedural sequence.

76

Secure Coding Guide Documentation Release 2019-12-01

I'e 3
| Android tarminal |
| |
[1. View information 4, View information |
} {including text) (including text) |
|
I L Al Atofillservice
| User apo framewark wen e Jl
[|
| |
|
e /. ‘. .-ﬂ]

2. Display Save Permission dialog 3. Permit save

User

Fig. 4.1.7: Procedural flow among components for saving user data

Security concerns for Autofill user apps

As noted in the section “Overview of the framework” above, the security model adopted by the Autofill
framework is premised on the assumption that the user configures the “Settings” to select secure Autofill
services and makes appropriate decisions regarding which data to pass to which Autofill service when
storing data.

However, if a user unwittingly selects a non-secure Autofill service, there is a possibility that the user
may permit the storage of sensitive information that should not be passed to the Autofill service. In
what follows we discuss the damage that could result in such a scenario.

When saving information, if the user selects an Autofill service and grants it permission via the Save
Permission dialog box, information for all Views contained in the Activity currently displayed by the app
in use may be passed to the Autofill service. If the Autofill service is malware, or if other security issues
arise—for example, if View information is stored by the Autofill service on an external storage medium
or on an insecure cloud service—this could create the risk that information handled by the app might
be leaked.

On the other hand, during Autofill, if the user has selected a piece of malware as the Autofill service,
values transmitted by the malware may be entered as input. At this point, if the security of the data
input is not adequately validated by the app or by the cloud services to which the app sends data, risks
of information leakage and/or termination of the app or the service may arise.

Note that, as discussed above in the section “2 components”, apps with Activities are automatically
eligible for Autofill, and thus all developers of apps with Activities must take the risks described above
into account when designing and implementing apps. In what follows we will present countermeasures
to mitigate the risks described above we recommend that these be adopted as appropriate based on a
consideration of the countermeasures required by an app—referring to “3.1.3. Asset Classification and
Protective Countermeasures” and other relevant resources.

Steps to mitigate risk: 1

As discussed above, security within the Autofill framework is ultimately guaranteed only at the user’s
discretion. For this reason, the range of countermeasures available to apps is somewhat limited. However,
there is one way to mitigate the concerns described above: Setting the importantForAutofill attribute
for a view to “no” ensures that no View information is passed to the Autofill service (i.e. the View is
made ineligible for Autofill), even if the user cannot make appropriate selections or permissions (such as

7

Secure Coding Guide Documentation Release 2019-12-01

selecting a piece of malware as the Autofill service)®.

The importantForAutofill attribute may be specified by any of the following methods.
e Set the importantForAutofill attribute in the layout XML
o Call View#setImportantForAutofill()

The values that may be set for this attribute are shown below. Make sure to use values appropriate for
the specified range. In particular, note with caution that, when a value is set to “no” for a View, that
View will be ineligible for Autofill, but its children will remain eligible for Autofill. The default value is
“auto.”

Table 4.1.3: Eligible for Autofill?

Value Specified Child
Name of constant View View

“auto” “auto”9 “auto”9
IMPORTANT FOR_ AUTOFILL_ AUTO

“IIO” NO Yes
IMPORTANT FOR AUTOFILL NO

“noExcludeDescendants” No No
IMPORTANT FOR AUTOFILL NO EXCLUDE DE-
SCENDANTS

“yes” Yes Yes
IMPORTANT FOR_ AUTOFILL YES

“yesExcludeDescendants” Yes No
IMPORTANT FOR AUTOFILL YES EXCLUDE DE-
SCENDANTS

It is also possible to use AutofillManager#hasEnabledAutofillServices() to restrict the use of Autofill
functionality to Autofill services within the same package.

In what follows, we show an example that all Views in an Activity are eligible for Autofill (whether
or not a View actually uses Autofill is determined by the Autofill service) only in case that “Settings”
have been configured to use a Autofill service within the same package. It is also possible to call
View#setImportantForAutofill() for individual Views.

DisableForOtherServiceActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to inm writing, software

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* % ¥ %X X %X ¥ X X %X *

(continues on next page)

8 Even after taking this step, in some cases it may not be possible to avoid the security concerns described above—for
example, if the user intentionally uses Autofill. Implementing the steps described in “Steps to mitigate risk: 2”7 will improve
security in these cases.

9 Determined by Autofill framework

78

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* See the License for the specific language governing permissions and
* limitations under the License.

*/

package org.jssec.android.autofillframework.autofillapp;

import
import
import
import
import
import

import

public

android.os.Bundle;
androidx.appcompat.app.AppCompatActivity;
android.view.View;
android.view.autofill.AutofillManager;
android.widget.EditText;
android.widget.TextView;

org.jssec.android.autofillframework.R;

class DisableForOtherServiceActivity extends AppCompatActivity {

private boolean mIsAutofillEnabled = false;

private EditText mUsernameEditText;
private EditText mPasswordEditText;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.disable_for_other_service_activity);

mUsernameEditText = (EditText)findViewById(R.id.field_username);
mPasswordEditText = (EditText)findViewById(R.id.field_password) ;

findViewById(R.id.button_login).setOnClickListener (
new View.OnClickListener() {
@0verride
public void onClick(View v) {
login();
}
B

findViewById(R.id.button_clear).setOnClickListener (
new View.OnClickListener() {
@Override
public void onClick(View v) {
resetFields();
}
b;

//Because the floating-toolbar is not supported for this Activity,
// Autofill may be used by selecting "Automatic Input”

@0verride
protected void onStart() {

}

super.onStart () ;

@Override
protected void onResume() {

super . onResume () ;

updateAutofillStatus();

View rootView = this.getWindow() .getDecorView();

if (!'mIsAutofillEnabled) {
//If not using Autofill service within the same package,
// make all Views ineligible for Autofill

(continues on next page)

79

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

rootView.setImportantForAutofill(View.IMPORTANT _FOR_AUTOFILL_NO_EXCLUDE_
—DESCENDANTS) ;
} else {
//If using Autofill service within the same package,
// make all Views eligible for Autofill
//View#tsetImportantForAutofill() may also be called for specific Views
rootView.setImportantForAutofill (View.IMPORTANT FOR_AUTOFILL_AUTO);

private void login() {
String username = mUsernameEditText.getText().toString();
String password = mPasswordEditText.getText().toString();

//Validate data obtained from View
if (!Util.validateUsername (username) || !Util.validatePassword(password)) {
//appropriate error handling

//Send username, password to server

finish();

private void resetFields() {
mUsernameEditText.setText ("");
mPasswordEditText.setText ("");

private void updateAutofillStatus() {
AutofillManager mgr = getSystemService(AutofillManager.class);

mIsAutofillEnabled = mgr.hasEnabledAutofillServices();

TextView statusView = (TextView) findViewById(R.id.label_autofill_status);
String status = "Our autofill service is --.";
if (mIsAutofillEnabled) {
status = "autofill service within same package is enabled";
} else {
status = "autofill service within same package is disabled";
}

statusView.setText (status);

Steps to mitigate risk: 2

Even in cases where an app has implemented the steps described in the previous section (“Steps to mitigate
risk: 17), the user can forcibly enable the use of Autofill by long-pressing the View, displaying the floating
toolbar or a similar control interface, and selecting “Automatic input”. In this case, information for all
Views—including Views for which the importantForAutofill attribute has been set to “no,” or for which
similar steps have been taken—will be passed to the Autofill service.

It is possible to avoid the risk of information leakage even in circumstances such as these by deleting the
“Automatic Input” option from the floating-toolbar menu and other control interfaces; this step is to be
carried out in addition to the procedures described in “Steps to mitigate risk: 17.

Sample code for this purpose is shown below.

80

Secure Coding Guide Documentation

Release 2019-12-01

DisableAutofillActivity. java

/%

¥ %X % % X X ok X X X ¥ * *x

Copyright (C) 2012-2019 Japan Smartphone Security Association
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

*/

package org. jssec.android.autofillframework.autofillapp;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;
import android.view.ActionMode;

import android.view.Menu;

import android.view.Menultem;

import android.view.SubMenu;

import android.view.View;

import android.widget.EditText;

import org.jssec.android.autofillframework.R;

public class DisableAutofillActivity extends AppCompatActivity {

private EditText mUsernameEditText;
private EditText mPasswordEditText;

private ActionMode.Callback mActionModeCallback;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.disable_autofill_activity);

mUsernameEditText = (EditText) findViewById(R.id.field_username);
mPasswordEditText = (EditText) findViewById(R.id.field _password);

findViewById(R.id.button_login) .setOnClickListener (
new View.OnClickListener() {
@Override
public void onClick(View v) {
login();
}
b;

findViewById(R.id.button_clear).setOnClickListener(
new View.OnClickListener() {
@0verride
public void onClick(View v) {
resetFields();
}
b

mActionModeCallback = new ActionMode.Callback() {
@0verride

81

(continues on next page)

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public boolean onCreateActionMode (ActionMode mode, Menu menu) {
removeAutofillFromMenu (menu) ;
return true;

@0verride

public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
removeAutofillFromMenu (menu) ;
return true;

@Override
public boolean onActionItemClicked(ActionMode mode, Menultem item) {
return false;

}

@0verride
public void onDestroyActionMode (ActionMode mode) {
Y

};

//Delete "Automatic Input" from floating-toolbar
setMenu() ;

void setMenu() {
if (mActionModeCallback == null) {
return;
¥
//Register callback for all editable TextViews contained in Activity
mUsernameEditText
.setCustomInsertionActionModeCallback (mActionModeCallback) ;
mPasswordEditText
.setCustomInsertionActionModeCallback (mActionModeCallback) ;

//Traverse all menu levels, deleting "Automatic Input” from each
void removeAutofillFromMenu(Menu menu) {
if (menu.findItem(android.R.id.autofill) != null) {
menu.removeltem(android.R.id.autofill);

for (int i=0; i<menu.size(); i++) {
SubMenu submenu = menu.getItem(i).getSubMenu() ;
if (submenu !'= null) {
removeAutofillFromMenu (submenu) ;

private void login() {
String username = mUsernameEditText.getText().toString();
String password = mPasswordEditText.getText().toString();

//Validate data obtained from View

if (!Util.validateUsername(username) || Util.validatePassword(password)) {
//appropriate error handling

//Send username, password to server

(continues on next page)

82

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

finish();

private void resetFields() {
mUsernameEditText.setText ("");
mPasswordEditText.setText ("");

Steps to mitigate risk: 3

In Android 9.0 (API level 28), AutofillManager#getAutofillServiceComponentName() can be used to
find out what components of Autofill Service are currently enabled. This can be used to obtain the
package name and confirm whether the application itself is considered a trusted Autofill Service.

In this case, as described in “4.1.3.2. Validating the Requesting Application” above, because a package
name could be spoofed, identity verification solely using this method cannot be recommended. In the
same way as the example described in 4.1.3.2., the Autofill Service certificate must be obtained from the
package name, and the identity must be verified by checking that the certificate matches one that was
registered beforehand in a whitelist. This method is described in detail in 4.1.3.2., and so refer to this
section for more information.

An example is shown below where Autofill is used for all views of an activity only when an Autofill
Service that was registered beforehand in the whitelist is enabled.

EnableOnlyWhitelistedServiceActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org. jssec.android.autofillframework.autofillapp;

import android.content.ComponentName;

import android.content.Context;

import android.os.Bundle;

import android.app.Activity;

import android.view.View;

import android.view.autofill.AutofillManager;
import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.autofillframework.R;

public class EnableOnlyWhitelistedServiceActivity extends Activity {
private static PkgCertWhitelists sWhitelists = null;

(continues on next page)

83

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

private static void buildWhitelists(Context context) {

}

sWhitelists = new PkgCertWhitelists();

// Register hash value of the certificate of trusted Autofill Service

sWhitelists.add("com.google.android.gms",
"1975B2F17177BC89A5DFF31F9E64A6CAE281A53DC1D1D59B1D147FE1C82AFA00") ;

// In a similer manner register other trusting Autofill Srvices

/7

private static boolean checkService(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

private boolean mIsAutofillEnabled = false;

private EditText mUsernameEditText;
private EditText mPasswordEditText;

@0verride
protected void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.enable_only_whitelisted_service_activity);

mUsernameEditText = (EditText)findViewById(R.id.field_username) ;
mPasswordEditText = (EditText)findViewById(R.id.field_password) ;

findViewById(R.id.button_login).setOnClickListener(
new View.OnClickListener() {
@0verride
public void onClick(View v) {
login();
X
b

findViewById(R.id.button_clear).setOnClickListener (

new View.OnClickListener() {

@0verride

public void onClick(View v) {

resetFields();

}
b;
// Because the floating-toolbar is not supported for this Activity,
// Autofill may be used by selecting "Automatic Input”

@0verride
protected void onStart() {

}

super.onStart () ;

@0verride
protected void onResume() {

super . onResume () ;

updateAutofillStatus();

View rootView = this.getWindow() .getDecorView();

if (!'mIsAutofillEnabled) {
// If the Autofill Service %s not on white list,
// exclude all Views from the target of Autoftill
rootView.setImportantForAutofill(View.IMPORTANT _FOR_AUTOFILL_NO_EXCLUDE_

—DESCENDANTS) ;

} else {

(continues on next page)

84

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// If the Autofill Service is on white list,

// include all Views as the target of Autofill

// It is also possible to call View#setImportantForAutofill()

// for a specific View
rootView.setImportantForAutofill (View.IMPORTANT _FOR_AUTOFILL_AUTO) ;

}

private void login() {
String username = mUsernameEditText.getText().toString();
String password = mPasswordEditText.getText().toString();

// Validate safetiness of data obtained from View
if (!Util.validateUsername (username) || !Util.validatePassword(password)) {
// Do apropriate error handling

// Eend username and passowrd to the Server

finish();

private void resetFields() {
mUsernameEditText.setText ("");
mPasswordEditText.setText ("");

private void updateAutofillStatus() {
AutofillManager mgr = getSystemService(AutofillManager.class);
// From Android 9.0 (API Level 28), it is possible to get
// component info. of Autofill Service
ComponentName componentName = mgr.getAutofillServiceComponentName () ;
String componentNameString = "None';
if (componentName == null) {
// "Settings"-"Autofill Service" is set to "None"
mIsAutofillEnabled = false;
Toast.makeText (this, "No Autofill Service", Toast.LENGTH_LONG).show();
} else {
String autofillServicePackage = componentName.getPackageName() ;
// Check if the Autofill Service is registered in white list
if (checkService(this, autofillServicePackage)) {
mIsAutofillEnabled = true;
Toast.makeText (this,

"Trusted Autofill Service: " + autofillServicePackage,
Toast .LENGTH_LONG) . show() ;
} else {
Toast .makeText (this,
"Untrusted Autofill Service: " + autofillServicePackage,

Toast .LENGTH_LONG) .show() ;
// if not on white list, do not use Autofill Service
mIsAutofillEnabled = false;
}
componentNameString =
autofillServicePackage + " / " + componentName.getClassName () ;

TextView statusView = (TextView) findViewById(R.id.label_autofill_status);
String status = "current autofill service: \n" + componentNameString;
statusView.setText (status);

85

Secure Coding Guide Documentation Release 2019-12-01

PkgCertWhitelists. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

¥ %X % % X X ok X X X ¥ * *x

limitations under the License.

*
N

package org.jssec.android.shared;

import android.content.pm.PackageManager;
import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes —-> 64 chars
sha256 = sha256.toUpperCase() ;
if (sha2b6.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hez char

mWhitelists.put (pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {
// ** 4f API Level >= 28, direct checking is possible
PackageManager pm = ctx.getPackageManager();
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash) ,
CERT_INPUT_SHA256) ;
} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

86

Secure Coding Guide Documentation Release 2019-12-01

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ %X % % X X ok X X X ¥ * *x

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager() ;
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha266 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {

(continues on next page)

87

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

4.2 Receiving/Sending Broadcasts

4.2.1 Sample Code

Creating Broadcast Receiver is required to receive Broadcast. Risks and countermeasures of using Broad-
cast Receiver differ depending on the type of the received Broadcast.

You can find your Broadcast Receiver in the following judgment flow. The receiving applications can-
not check the package names of Broadcast-sending applications that are necessary for linking with the
partners. As a result, Broadcast Receiver for the partners cannot be created.

Table 4.2.1: Definition of broadcast receiver types

Type Definition

Private broadcast | A broadcast receiver that can receive broadcasts only from the same application,
receiver therefore is the safest broadcast receiver

Public broadcast | A broadcast receiver that can receive broadcasts from an unspecified large num-
receiver ber of applications.

In-house broad- | A broadcast receiver that can receive broadcasts only from other In-house appli-
cast receiver cations

Receive broadcasts only
rom the same application?

aceive broadcasts only
from unspecified number
application?

Mo

h 4

Private Broadcast Recaiver Public Broadcast Recaiver In-house Broadcast Receiver

Fig. 4.2.1: Flow Figure to select Broadcast Receiver Type

In addition, Broadcast Receiver can be divided into 2 types based on the definition methods, Static
Broadcast Receiver and Dynamic Broadcast Receiver. The differences between them can be found in
the following figure. In the sample code, an implementation method for each type is shown. The
implementation method for sending applications is also described because the countermeasure for sending
information is determined depending on the receivers.

88

Secure Coding Guide Documentation Release 2019-12-01

Table 4.2.2: Deinition Method and Characteristic of Broadcast Re-

ceivers
Definition method Characteristic
Static Broad- | Define by writing <re-
. . y g e There is a restriction that some Broad-
cast Receiver ceiver> elements in An-

casts(e.g. ACTION_BATTERY_ CHANGED)
sent by system cannot be received.

¢ Broadcast can be received from application’s ini-
tial boot till uninstallation.

o If the app’s targetSDKVersion is 26 or above,
then, on terminals running Android 8.0 (API
level 26 or later, Broadcast Receivers may not
be registered for implicit Broadcast Intents'’

droidManifest.xml

Dynamic B callin register-
Y v & & e Broadcasts which cannot be received by static
Broadcast Receiver() and un-) .
) . . Broadcast Receiver can be received.
Receiver regsterReceiver() in a

e The period of receiving Broadcasts can be con-
trolled by the program. For example, Broadcasts
can be received only while Activity is on the front
side.

o Private Broadcast Receiver cannot be created.

program, register/unreg-
ister Broadcast Receiver
dynamically.

4.2.1.1 Private Broadcast Receiver - Receiving/Sending Broadcasts

Private Broadcast Receiver is the safest Broadcast Receiver because only Broadcasts sent from within
the application can be received. Dynamic Broadcast Receiver cannot be registered as Private, so Private
Broadcast Receiver consists of only Static Broadcast Receivers.

Points (Receiving Broadcasts):
1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from within the
same application.

3. Sensitive information can be sent as the returned results since the requests come from within the
same application.

AndroidManifest.xml

<?zml wversion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.broadcast.privatereceiver" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Private Broadcast Receiver —-—->
<!-- xxx POINT 1 *** Ezplicitly set the exzported attribute to false. —-->
<receiver

android:name=".PrivateReceiver"
android:exported="false" />

<activity

(continues on next page)

10° As exceptions to this rule, some implicit Broadcast Intents sent by the system may use Broadcast Receivers. For more
information, consult the following URL. https://developer.android.com/guide/components/broadcast-exceptions.html

89

https://developer.android.com/guide/components/broadcast-exceptions.html

Secure Coding Guide Documentation

Release 2019-12-01

(continued from previous page)

android:name=".PrivateSenderActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

PrivateReceiver. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PrivateReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

// **% POINT 2 *** Handle the received intent carefully and securely,
// even though the intent was sent from within the same application.
// Omitted, since this s a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely.”
String param = intent.getStringExtra("PARAM");
Toast .makeText (context,

String.format ("Received param: \"%s\"", param),

Toast .LENGTH_SHORT) . show () ;

// #*% POINT 3 #*** Sensitive information can be sent as the returned
// results since the requests come from within the same application.
setResultCode (Activity.RESULT_OK) ;

setResultData("Sensitive Info from Receiver");

abortBroadcast () ;

The sample code for sending Broadcasts to private Broadcast Receiver is shown below.

Points (Sending Broadcasts):

90

Secure Coding Guide Documentation Release 2019-12-01

4. Use the explicit Intent with class specified to call a receiver within the same application.
5. Sensitive information can be sent since the destination Receiver is within the same application.

6. Handle the received result data carefully and securely, even though the data came from the Receiver
within the same application.

PrivateSenderActivity.java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

¥ % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateSenderActivity extends Activity {

public void onSendNormalClick(View view) {
// *#% POINT 4 *** Use the explicit Intent with class specified to call
// a recetver within the same application.
Intent intent = new Intent(this, PrivateReceiver.class);

// *%% POINT 5 #*** Sensitive information can be sent since the destination
// Recetiver is within the same application.

intent.putExtra("PARAM", "Sensitive Info from Sender");

sendBroadcast (intent) ;

public void onSendOrderedClick(View view) {
// #x% POINT 4 *** Use the explicit Intent with class specified to call
// a receiver within the same application.
Intent intent = new Intent(this, PrivateReceiver.class);

// *#%% POINT 5 *** Sensitive information can be sent since the destination
// Recetver ts within the same application.

intent.putExtra("PARAM", "Sensitive Info from Sender");
sendOrderedBroadcast (intent, null, mResultReceiver, null, O, null, null);

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {

// *%% POINT 6 *** Handle the received result data carefully and

(continues on next page)

91

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// securely, even though the data came from the Receiver within
// the same application.
// Omitted, since this s a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."”
String data = getResultData();
PrivateSenderActivity.this
.logLine(String.format ("Received result: \"%s\"", data));

}
private TextView mLogView;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n") ;

4.2.1.2 Public Broadcast Receiver - Receiving/Sending Broadcasts
Public Broadcast Receiver is the Broadcast Receiver that can receive Broadcasts from unspecified large
number of applications, so it’s necessary to pay attention that it may receive Broadcasts from malware.
Points (Receiving Broadcasts):

1. Explicitly set the exported attribute to true.

2. Handle the received Intent carefully and securely.

3. When returning a result, do not include sensitive information.

Public Receiver which is the sample code for public Broadcast Receiver can be used both in static
Broadcast Receiver and Dynamic Broadcast Receiver.

PublicReceiver. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

X % ¥ X X X ¥ X X X ¥ *x *x

*
N

package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;

(continues on next page)

92

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PublicReceiver extends BroadcastReceiver {

private static final String MY_BROADCAST_PUBLIC =
"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

public boolean isDynamic = false;
private String getName() {
return isDynamic 7 "Public Dynamic Broadcast Receiver"
"Public Static Broadcast Receiver";

@0verride
public void onReceive(Context context, Intent intent) {

// *%% POINT 2 **% Handle the received Intent carefully and securely.
// Since this is a public broadcast receiver, the requesting application
// may be malware.
// Omitted, since this s a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely.”
if (MY_BROADCAST_PUBLIC.equals(intent.getAction())) {
String param = intent.getStringExtra("PARAM");
Toast.makeText (context,
String.format ("%s:\nReceived param: \"%s\"",
getName (), param),
Toast.LENGTH_SHORT) . show () ;

// *¥x POINT 3 #*#* When returning a result, do not include sensitive

// information.

// Since this is a public broadcast receiver, the requesting application
// may be malware.

// If no problem when the information is taken by malware, it can be

// returned as result.

setResultCode (Activity.RESULT_OK) ;

setResultData(String.format ("Not Sensitive Info from %s", getName()));
abortBroadcast () ;

Static Broadcast Receive is defined in AndroidManifest.xml. Note with caution that—depending on the
terminal version—reception of implicit Broadcast Intents may be restricted, as in Table 4.2.2.

AndroidManifest.xml

<?zml wversion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.broadcast.publicreceiver" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Public Static Broadcast Receiver -->
<I-— x4x POINT 1 *** Exzplicitly set the exported attribute to true. -->
<receiver

android:name=".PublicReceiver"

(continues on next page)

93

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

android:exported="true" >
<intent-filter>
<action android:name="org.jssec.android.broadcast.MY_BROADCAST_PUBLIC" />
</intent-filter>
</receiver>

<service
android:name=".DynamicReceiverService"
android:exported="false" />

<activity
android:name=".PublicReceiverActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

In Dynamic Broadcast Receiver, registration/unregistration is executed by calling registerReceiver() or
unregisterReceiver() in the program. In order to execute registration/unregistration by button opera-
tions, the button is allocated on PublicReceiverActivity. Since the scope of Dynamic Broadcast Receiver
Instance is longer than PublicReceiverActivity, it cannot be kept as the member variable of PublicRe-
ceiverActivity. In this case, keep the Dynamic Broadcast Receiver Instance as the member variable of
DynamicReceiverService, and then start/end DynamicReceiverService from PublicReceiverActivity to
register /unregister Dynamic Broadcast Receiver indirectly.

DynamicReceiverService. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org. jssec.android.broadcast.publicreceiver;

import android.app.Service;

import android.content.Intent;
import android.content.IntentFilter;
import android.os.IBinder;

import android.widget.Toast;

public class DynamicReceiverService extends Service {

private static final String MY_BROADCAST_PUBLIC =
"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

(continues on next page)

94

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

private PublicReceiver mReceiver;

@0verride
public IBinder onBind(Intent intent) {
return null;

}

@0verride
public void onCreate() {
super.onCreate() ;

// Register Public Dynamic Broadcast Recetiver.
mReceiver = new PublicReceiver();
mReceiver.isDynamic = true;
IntentFilter filter = new IntentFilter();
filter.addAction(MY_BROADCAST PUBLIC) ;
// Prioritize Dynamic Broadcast Receiver,
// rather than Static Broadcast Receiver.
filter.setPriority(1);
registerReceiver (mReceiver, filter);
Toast.makeText (this,
"Registered Dynamic Broadcast Receiver.",
Toast.LENGTH_SHORT) .show () ;

@0verride
public void omDestroy() {
super.onDestroy() ;

// Unregister Public Dynamic Broadcast Receiver.
unregisterReceiver (mReceiver) ;
mReceiver = null;
Toast.makeText (this,
"Unregistered Dynamic Broadcast Receiver.",
Toast .LENGTH_SHORT) . show () ;

PublicReceiverActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % %X X X ¥ X X X ¥ * X *x

*
AN

package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

(continues on next page)

95

Secure Coding Guide Documentation

Release 2019-12-01

(continued from previous page)

public class PublicReceiverActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

public void onRegisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
startService(intent) ;

public void onUnregisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
stopService (intent) ;

Next, the sample code for sending Broadcasts to public Broadcast Receiver is shown. When sending
Broadcasts to public Broadcast Receiver, it’s necessary to pay attention that Broadcasts can be received

by malware.
Points (Sending Broadcasts):
4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

PublicSenderActivity. java
/%
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.broadcast.publicsender;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicSenderActivity extends Activity {

private static final String MY_BROADCAST_PUBLIC =
"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

96

(continues on next page)

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public void onSendNormalClick(View view) {
// *%% POINT 4 #**% Do not send sensitive information.
Intent intent = new Intent (MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
sendBroadcast (intent) ;

public void onSendOrderedClick(View view) {
// #x% POINT 4 *** Do not send sensitive information.
Intent intent = new Intent (MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
sendOrderedBroadcast (intent, null, mResultReceiver, null, O, null, null);

public void onSendStickyClick(View view) {
// *#% POINT 4 *** Do not send sensitive information.
Intent intent = new Intent (MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
//sendStickyBroadcast ts deprecated at API Level 21
sendStickyBroadcast (intent) ;

public void onSendStickyOrderedClick(View view) {
// *%% POINT 4 **% Do not send sensitive information.
Intent intent = new Intent (MY_BROADCAST_PUBLIC) ;
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
//sendStickyOrderedBroadcast is deprecated at API Level 21
sendStickyOrderedBroadcast (intent, mResultReceiver, null, 0, null, null);

public void onRemoveStickyClick(View view) {
Intent intent = new Intent (MY_BROADCAST_PUBLIC);
//removeStickyBroadcast is deprecated at API Level 21
removeStickyBroadcast (intent) ;

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {

// **% POINT 5 *** When receiving a rTesult, handle the result data
// carefully and securely.
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
String data = getResultData();
PublicSenderActivity.this
.logLine(String.format ("Received result: \"%s\"", data));

s
private TextView mLogView;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;

(continues on next page)

97

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

mLogView.append("\n") ;

4.2.1.3 In-house Broadcast Receiver - Receiving/Sending Broadcasts

In-house Broadcast Receiver is the Broadcast Receiver that will never receive any Broadcasts sent from
other than in-house applications. It consists of several in-house applications, and it’s used to protect the
information or functions that in-house application handles.

Points (Receiving Broadcasts):
1. Define an in-house signature permission to receive Broadcasts.
. Declare to use the in-house signature permission to receive results.
. Explicitly set the exported attribute to true.
. Require the in-house signature permission by the Static Broadcast Receiver definition.

2
3
4
5. Require the in-house signature permission to register Dynamic Broadcast Receiver.
6. Verify that the in-house signature permission is defined by an in-house application.
7

. Handle the received intent carefully and securely, even though the Broadcast was sent from an
in-house application.

8. Semnsitive information can be returned since the requesting application is in-house.
9. When Exporting an APK, sign the APK with the same developer key as the sending application.

In-house Receiver which is a sample code of in-house Broadcast Receiver is to be used both in Static
Broadcast Receiver and Dynamic Broadcast Receiver.

InhouseReceiver. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.broadcast.inhousereceiver;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class InhouseReceiver extends BroadcastReceiver {

(continues on next page)

98

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// In-house Signature Permission
private static final String MY_PERMISSION =
"org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the
// debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26,

—F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2,
—42E142CA";
X
}

return sMyCertHash;

private static final String MY_BROADCAST_INHOUSE =
"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

public boolean isDynamic = false;
private String getName() {
return isDynamic 7?7 "In-house Dynamic Broadcast Receiver"
"In-house Static Broadcast Receiver";

@Override
public void onReceive(Context context, Intent intent) {

// *¥x POINT 6 *#* Verify that the in-house signature permission s
// defined by an in-house application.
if (!SigPerm.test(context, MY_PERMISSION, myCertHash(context))) {
Toast.makeText (context,"The in-house signature permission is not declared by in-
—house application.", Toast.LENGTH_LONG) .show();
return;

}

// *%% POINT 7 **% Handle the received intent carefully and securely,
// even though the Broadcast was sent from an in-house application..
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
if (MY_BROADCAST_INHOUSE.equals(intent.getAction())) {
String param = intent.getStringExtra("PARAM");
Toast.makeText (context, String.format("/s:\nReceived param: \"/s\"", getName(),
—param), Toast.LENGTH_SHORT) .show();
}

// **% POINT 8 #*** Sensitive information can be returned since the
// requesting application %is in-house.

setResultCode (Activity.RESULT_0K) ;

setResultData(String.format ("Sensitive Info from %s", getName()));
abortBroadcast () ;

Static Broadcast Receiver is to be defined in AndroidManifest.xml.Note with caution that—depending

99

Secure Coding Guide Documentation Release 2019-12-01

on the terminal version—reception of implicit Broadcast Intents may be restricted, as in Table 4.2.2.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.broadcast.inhousereceiver" >

<!-- xxx POINT 1 *** Define an in-house signature permission to receive Broadcasts —-->
<permission
android:name="org. jssec.android.broadcast.inhousereceiver.MY_PERMISSION"
android:protectionlLevel="signature" />

<!-— x*xx POINT 2 *** Declare to use the in-house signature permission to receive results. —-->
<uses-permission
android:name="org. jssec.android.broadcast.inhousesender.MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-— xx*x POINT 3 *** Exzplicitly set the exzported attribute to true. —-->

<I-- x%xx POINT 4 *** Require the in-house signature permission by the Static Broadcasty
—Receiver definition. —-->
<receiver

android:name=".InhouseReceiver"
android:permission="org. jssec.android.broadcast.inhousereceiver .MY_PERMISSION"
android:exported="true">
<intent-filter>
<action android:name="org.jssec.android.broadcast.MY_BROADCAST_INHOUSE" />
</intent-filter>
</receiver>

<service
android:name=".DynamicReceiverService"
android:exported="false" />

<activity
android:name=".InhouseReceiverActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Dynamic Broadcast Receiver executes registration/unregistration by calling registerReceiver() or un-
registerReceiver() in the program. In order to execute registration/unregistration by the button op-
erations, the button is arranged on InhouseReceiverActivity. Since the scope of Dynamic Broadcast
Receiver Instance is longer than InhouseReceiverActivity, it cannot be kept as the member variable
of InhouseReceiverActivity. So, keep Dynamic Broadcast Receiver Instance as the member variable of
DynamicReceiverService, and then start/end DynamicReceiverService from InhouseReceiverActivity to
register /unregister Dynamic Broadcast Receiver indirectly.

InhouseReceiverActivity. java

/*
* Copyright (C) 2012-2019 Japan Smartphone Security Association
*

(continues on next page)

100

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

* % % %X X X ¥ X X X *

*
N

package org.jssec.android.broadcast.inhousereceiver;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class InhouseReceiverActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

public void onRegisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
startService(intent) ;

public void onUnregisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
stopService(intent) ;

DynamicReceiverService. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % %X X X ¥ X X X ¥ * X *x

*
AN

package org.jssec.android.broadcast.inhousereceiver;

import android.app.Service;

import android.content.Intent;
import android.content.IntentFilter;
import android.os.IBinder;

(continues on next page)

101

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.widget.Toast;
public class DynamicReceiverService extends Service {

private static final String MY_BROADCAST_INHOUSE =
"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

private InhouseReceiver mReceiver;

@0Override
public IBinder onBind(Intent intent) {
return null;

}

@0verride
public void onCreate() {
super.onCreate() ;

mReceiver = new InhouseReceiver();
mReceiver.isDynamic = true;

IntentFilter filter = new IntentFilter();
filter.addAction(MY_BROADCAST_INHOUSE) ;
// Prioritize Dynamic Broadcast Receiver,
// rather than Static Broadcast Receiver.
filter.setPriority(1);

// *¥x POINT 5 *#* [hen registering a dynamic broadcast receiver, require

// the in-house signature permission.

registerReceiver (mReceiver, filter,
"org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION",
null);

Toast.makeText (this,
"Registered Dynamic Broadcast Receiver.",
Toast.LENGTH_SHORT) .show () ;

@0verride
public void onDestroy() {
super.onDestroy () ;
unregisterReceiver (mReceiver) ;
mReceiver = null;
Toast .makeText (this,
"Unregistered Dynamic Broadcast Receiver.",
Toast .LENGTH_SHORT) . show () ;

SigPerm. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

*
*
*
*
*
*
*
*
*
*
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either exzpress or tmplied.

(continues on next page)

102

Secure Codi

ng Guide Documentation Release 2019-12-01

(continued from previous page)

* See the License for the specific language governing permissions and
* limitations under the License.

*/

package org.

jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

} ca

}

// Get the package name of the application which declares a permission
// named sigPermName.
PackageManager pm = ctx.getPackageManager();
PermissionInfo pi =
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;
String pkgname = pi.packagelName;
// Fail if the permisstion named sigPermName is mot a Signature
// Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash value of pkgname with the correct hash
// value.
if (Build.VERSION.SDK_INT >= 28) {
// ** 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the factility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname)) ;

tch (NameNotFoundException e) {
return false;

PkgCert. java
/*
Copyright

Licensed
you may m

You may o

http

* % ¥ %X X ¥ % x *x

Unless re

(C) 2012-2019 Japan Smartphone Security Association
under the Apache License, Version 2.0 (the "License");
ot use this file except in compliance with the License.
btain a copy of the License at

://www. apache.org/licenses/LICENSE-2.0

quired by applicable law or agreed to in writing, software

(continues on next page)

103

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* %X X %

*/
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager() ;
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data) ;
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("7%02X", b));
}

return hexadecimal.toString();

4% Point 9 *** When exporting an APK, sign the APK with the same developer key as the sending
application.

104

Secure Coding Guide Documentation Release 2019-12-01

[® Generate Signed APK [

Key store path: | C:¥jssec¥Projects¥keystore J

I Create new... I | Choose existing... ‘

Keyﬂmm;pﬁwaﬂ:L ------- |

Key alias: < | my company k; :) []

Key password: |.......]
[C] Remember passwords

[revee] I (i) []

Fig. 4.2.2: Sign the APK with the same developer key as the sending application

Next, the sample code for sending Broadcasts to in-house Broadcast Receiver is shown.
Points (Sending Broadcasts):
10. Define an in-house signature permission to receive results.
11. Declare to use the in-house signature permission to receive Broadcasts.
12. Verify that the in-house signature permission is defined by an in-house application.
13. Sensitive information can be returned since the requesting application is the in-house one.
14. Require the in-house signature permission of Receivers.
15. Handle the received result data carefully and securely.

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?rxml version="1.0" encoding="utf-8"?>

<manifest zmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.broadcast.inhousesender" >

<uses-permission android:name="android.permission.BROADCAST_STICKY"/>

<!-- xxx POINT 10 *** Define an in-house signature permission to receive results. ——>
<permission
android:name="org. jssec.android.broadcast.inhousesender.MY_PERMISSION"
android:protectionlLevel="signature" />

<!-— *xx POINT 11 *** Declare to use the in-house signature permission to receive Broadcasts.
o ==
<uses-permission
android:name="org. jssec.android.broadcast.inhousereceiver.MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<activity
android:name="org. jssec.android.broadcast.inhousesender.InhouseSenderActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

(continues on next page)

105

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

</intent-filter>
</activity>
</application>
</manifest>

InhouseSenderActivity.java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

X % % X X ¥ X X X ¥ ¥ *x *x

*
N

package org. jssec.android.broadcast.inhousesender;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class InhouseSenderActivity extends Activity {

// In-house Signature Permission
private static final String MY_PERMISSION =
"org.jssec.android.broadcast.inhousesender.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the
// debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26

—F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2
—42E142CA";
}
}

return sMyCertHash;

private static final String MY_BROADCAST_INHOUSE =

(continues on next page)

106

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

"org. jssec.android.broadcast.MY_BROADCAST_INHOUSE";
public void onSendNormalClick(View view) {

// *%% POINT 12 *** Verify that the in-house signature permission %s
// defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText (this, "The in-house signature permission is not declared by in-
—house application.", Toast.LENGTH_LONG) .show();
return;

}

// *#% POINT 13 *** Sensitive information can be returned since the
// requesting application %is in-house.

Intent intent = new Intent(MY_BROADCAST_INHOUSE) ;
intent.putExtra("PARAM", "Sensitive Info from Sender");

// #*% POINT 14 *** Require the in-house signature permission to limit

// recetvers.

sendBroadcast (intent,
"org.jssec.android.broadcast.inhousesender.MY_PERMISSION");

public void onSendOrderedClick(View view) {

// *%% POINT 12 *** Verify that the in-house signature permission %s
// defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText (this, "The in-house signature permission is not declared by in-
—house application.", Toast.LENGTH_LONG) .show();
return;

}

// *#% POINT 13 *#** Sensitive information can be returned since the
// requesting application %is in-house.

Intent intent = new Intent(MY_BROADCAST_INHOUSE) ;
intent.putExtra("PARAM", "Sensitive Info from Sender");

// **% POINT 14 *** Require the in-house signature permission to limit

// recetivers.

sendOrderedBroadcast (intent,
"org.jssec.android.broadcast.inhousesender.MY_PERMISSION",
mResultReceiver, null, O, null, null);

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {

// **x POINT 15 #x** Handle the received result data carefully and
// securely, even though the data came from an in-house
// application.
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
String data = getResultData();
InhouseSenderActivity.this
.logLine(String.format ("Received result: \"%s\"", data));

};

private TextView mLogView;

(continues on next page)

107

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n");

SigPerm. java

/%

* % % X X ¥ X X X ¥ ¥ X *x

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*
AN

package org. jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,
String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission
// named sigPermName.
PackageManager pm = ctx.getPackageManager() ;
PermissionInfo pi =
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;
String pkgname = pi.packageName;
// Fail if the permisstion named sigPermName is not a Signature
// Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash value of pkgname with the correct hash
// value.

(continues on next page)

108

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

if (Build.VERSION.SDK_INT >= 28) {
// *% 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname));

} catch (NameNotFoundException e) {
return false;

}

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

X % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES) ;

// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];

(continues on next page)

109

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;
}
}

private static byte[] computeSha256(bytel[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;
}
}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b)) ;
}

return hexadecimal.toString();

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination
application.

[® Generate Signed APK ||

Key store path: | C:¥jssec¥Projects¥keystore J

I Create new... I | Choose existing... ‘
Key store password: L |

Key alias: < |m'.r company k; > []

Key password: |.......]
[] Remember passwords

By o SRR

Fig. 4.2.3: Sign the APK with the same developer key as the destination application

4.2.2 Rule Book

Follow the rules below to Send or receive Broadcasts.
1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)
2. Handle the Received Intent Carefully and Securely (Required)

3. Use the In-house Defined Signature Permission after Verifying that it’s Defined by an In-house
Application (Required)

4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the
Destination Application (Required)

5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)

110

Secure Coding Guide Documentation Release 2019-12-01

6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be
Delivered (Required)
8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)

9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection Level
(Required)

4.2.2.1 Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)

Broadcast Receiver which is used only in the application should be set as private to avoid from receiving
any Broadcasts from other applications unexpectedly. It will prevent the application function abuse or
the abnormal behaviors.

Receiver used only within the same application should not be designed with setting Intent-filter. Because
of the Intent-filter characteristics, a public Receiver of other application may be called unexpectedly by
calling through Intent-filter even though a private Receiver within the same application is to be called.

AndroidManifest.xml (Not recoomended)
<!-- Private Broadcast Recetver —-->
<I-— xx* 4.2.1.1 - POINT 1 **x Explicitly set the exported attridbute to false. -—>
<receiver android:name=".PrivateReceiver"
android:exported="false" >
<intent-filter>
<action android:name="org.jssec.android.broadcast.MY_ACTION" />
</intent-filter>
</receiver>

Please refer to “4.2.3.1. Combinations of the exported Attribute and the Intent-filter setting (For Re-
cever).

4.2.2.2 Handle the Received Intent Carefully and Securely (Required)

Though risks are different depending on the types of the Broadcast Receiver, firstly verify the safety of
Intent when processing received Intent data.

Since Public Broadcast Receiver receives the Intents from unspecified large number of applications, it
may receive malware’s attacking Intents. Private Broadcast Receiver will never receive any Intent from
other applications directly, but Intent data which a public Component received from other applications
may be forwarded to Private Broadcast Receiver. So don’t think that the received Intent is totally safe
without any qualification. In-house Broadcast Receivers have some degree of the risks, so it also needs
to verify the safety of the received Intents.

Please refer to “3.2. Handling Input Data Carefully and Securely”

4.2.2.3 Use the In-house Defined Signature Permission after Verifying that it’s Defined by an In-
house Application (Required)

In-house Broadcast Receiver which receives only Broadcasts sent by an In-house application should be
protected by in-house-defined Signature Permission. Permission definition/Permission request declara-
tions in AndroidManifest.xml are not enough to protecting, so please refer to “5.2.1.2. How to Communi-
cate Between In-house Applications with In-house-defined Signature Permission.” ending Broadcasts by
specifying in-house-defined Signature Permission to receiverPermission parameter requires verification in
the same way.

111

Secure Coding Guide Documentation Release 2019-12-01

4.2.2.4 When Returning a Result Information, Pay Attention to the Result Information Leakage
from the Destination Application (Required)

The Reliability of the application which returns result information by setResult() varies depending on
the types of the Broadcast Receiver. In case of Public Broadcast Receiver, the destination application
may be malware, and there may be a risk that the result information is used maliciously. In case of
Private Broadcast Receiver and In-house Broadcast Receiver, the result destination is In-house developed
application, so no need to mind the result information handling.

Need to pay attention to the result information leakage from the destination application when result
information is returned from Broadcast Receivers as above.

4.2.2.5 When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Re-
quired)

Broadcast is the created system to broadcast information to unspecified large number of applications or
notify them of the timing at once. So, broadcasting sensitive information requires the careful designing
for preventing the illicit obtainment of the information by malware.

For broadcasting sensitive information, only reliable Broadcast Receiver can receive it, and other Broad-
cast Receivers cannot. The following are some examples of Broadcast sending methods.

e The method is to fix the address by Broadcast-sending with an explicit Intent for sending Broadcasts
to the intended reliable Broadcast Receivers only. There are 2 patterns in this method.

— When it’s addressed to a Broadcast Receiver within the same application, specify the address
by Intent#setClass(Context, Class). Refer to sample code section “4.2.1.1. Private Broadcast
Receiver - Receiving/Sending Broadcasts” for the concrete code.

— When it’s addressed to a Broadcast Receiver in other applications, specify the address by
Intent#setClassName(String, String). Confirm the permitted application by comparing the
developer key of the APK signature in the destination package with the white list to send
Broadcasts. Actually the following method of using implicit Intents is more practical.

e The Method is to send Broadcasts by specifying in-house-defined Signature Permission to receiver-
Permission parameter and make the reliable Broadcast Receiver declare to use this Signature Per-
mission. Refer to the sample code section “4.2.1.3. In-house Broadcast Receiver - Receiving/Sending
Broadcasts” for the concrete code. In addition, implementing this Broadcast-sending method needs
to apply the rule “4.2.2.3. Use the In-house Defined Signature Permission after Verifying that it’s
Defined by an In-house Application (Required).”

4.2.2.6 Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

Usually, the Broadcasts will be disappeared when they are processed to be received by the available
Broadcast Receivers. On the other hand, Sticky Broadcasts (hereafter, Sticky Broadcasts including Sticky
Ordered Broadcasts), will not be disappeared from the system even when they processed to be received
by the available Broadcast Receivers and will be able to be received by registerReceiver(). When Sticky
Broadcast becomes unnecessary, it can be deleted anytime arbitrarily with removeStickyBroadcast().

As it’s presupposed that Sticky Broadcast is used by the implicit Intent. Broadcasts with specified
receiverPermission Parameter cannot be sent. For this reason, information sent via Sticky Broadcasts
can be accessed by multiple unspecified apps — including malware — and thus sensitive information
must not be sent in this way. Note that Sticky Broadcast is deprecated in Android 5.0 (API Level 21).

4.2.2.7 Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May
Not Be Delivered (Required)

Ordered Broadcast without specified receiverPermission Parameter can be received by unspecified large
number of applications including malware. Ordered Broadcast is used to receive the returned information

112

Secure Coding Guide Documentation Release 2019-12-01

from Receiver, and to make several Receivers execute processing one by one. Broadcasts are sent to the
Receivers in order of priority. So if the high- priority malware receives Broadcast first and executes
abortBroadcast(), Broadcasts won’t be delivered to the following Receivers.

4.2.2.8 Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Re-
quired)

Basically the result data should be processed safely considering the possibility that received results may
be the attacking data though the risks vary depending on the types of the Broadcast Receiver which has
returned the result data.

When sender (source) Broadcast Receiver is public Broadcast Receiver, it receives the returned data
from unspecified large number of applications. So it may also receive malware’s attacking data. When
sender (source) Broadcast Receiver is private Broadcast Receiver, it seems no risk. However the data
received by other applications may be forwarded as result data indirectly. So the result data should not
be considered as safe without any qualification. When sender (source) Broadcast Receiver is In-house
Broadcast Receiver, it has some degree of the risks. So it should be processed in a safe way considering
the possibility that the result data may be an attacking data.

Please refer to “3.2. Handling Input Data Carefully and Securely”

4.2.2.9 When Providing an Asset Secondarily, the Asset should be protected with the Same Pro-
tection Level (Required)

When information or function assets protected by Permission are provided to other applications secon-
darily, it’s necessary to keep the protection standard by claiming the same Permission of the destination
application. In the Android Permission security models, privileges are managed only for the direct ac-
cess to the protected assets from applications. Because of the characteristics, acquired assets may be
provided to other applications without claiming Permission which is necessary for protection. This is
actually same as re-delegating Permission, as it is called, Permission re-delegation problem. Please refer
to “5.2.3.4. Permission Re-delegation Problem.”

4.2.3 Advanced Topics

4.2.3.1 Combinations of the exported Attribute and the Intent-filter setting (For Receiver)

Table 4.2.3 represents the permitted combination of export settings and Intent-filter elements when
implementing Receivers. The reason why the usage of “exported="false” with Intent-filter definition” is
principally prohibited, is described below.

Table 4.2.3: Usable or not; Combination of exported attribute and
intent-filter elements

Value of exported attribute

True False Not specified
Intent-filter defined OK (Do not Use) | (Do not Use)
Intent Filter Not Defined | OK OK (Do not Use)

When the exported attribute of a Receiver is left unspecified, the question of whether or not the Re-
ceiver is public is determined by the presence or absence of intent filters for that Receiver'!. However,
in this guidebook it is forbidden to set the exported attribute to “unspecified”. In general, as mentioned
previously, it is best to avoid implementations that rely on the default behavior of any given API; more-
over, in cases where explicit methods — such as the exported attribute — exist for enabling important
security-related settings, it is always a good idea to make use of those methods.

11 If any intent filters are defined then the Receiver is public; otherwise it is private. For more information, see https:
//developer.android.com/guide/topics/manifest /receiver-element.html#exported

113

https://developer.android.com/guide/topics/manifest/receiver-element.html#exported
https://developer.android.com/guide/topics/manifest/receiver-element.html#exported

Secure Coding Guide Documentation Release 2019-12-01

Public Receivers in other applications may be called unexpectedly even though Broadcasts are sent to
the private Receivers within the same applications. This is the reason why specifying exported="false”
with Intent-filter definition is prohibited. The following 2 figures show how the unexpected calls occur.

Fig. 4.2.4 is an example of the normal behaviors which a private Receiver (application A) can be called
by implicit Intent only within the same application. Intent-filter (in the figure, action="X") is defined
only in application A, so this is the expected behavior.

y s

Application A
Send a broadcast with
the implicit intent

| Intent(“X™)
Application C

Private Receiver A-1 Send a broadcast with
exported="false" the implicit intent

action="X" @ Intent(“X")

Since the receiver A-1 is private one,
it can receive broadcasts only from the
application A.

Android device

Fig. 4.2.4: An Example of Normal Behavior

Fig. 4.2.5 is an example that Intent-filter (see action="X" in the figure) is defined in the application B
as well as in the application A. First of all, when another application (application C) sends Broadcasts
by implicit Intent, they are not received by a private Receiver (A-1) side. So there won’t be any security
problem. (See the orange arrow marks in the Figure.)

From security point of view, the problem is application A’s call to the private Receiver within the same
application. When the application A broadcasts implicit Intent, not only Private Receiver within the
same application, but also public Receiver (B-1) with the same Intent-filter definition can also receive
the Intent. (Red arrow marks in the Figure). In this case, sensitive information may be sent from the
application A to B. When the application B is malware, it will cause the leakage of sensitive information.
When the Broadcast is Ordered Broadcast, it may receive the unexpected result information.

114

Secure Coding Guide Documentation Release 2019-12-01

Application A
Send a broadcast with
the implicit intent

[auml
Intent(“X"))

Application C
Send a broadcast with
the implicit intent

Private Receiver A-1
exported="false"”
action="X"

Intent(“X")

Application B

Public Receiver B-1
exported="true"
action="X"

When several applications that have
the receiver defining the same action
(intent—filter) are installed, intents
are sent to all receivers.

Android device
\

Fig. 4.2.5: An Example of Abnormal Behavior

However, “exported="false” with Intent-filter definition” should be used when Broadcast Receiver to re-
ceive only Broadcast Intent sent by the system is implemented. Other combination should not be used.
This is based on the fact that Broadcast Intent sent by the system can be received by exported="false”.
If other applications send Intent which has same ACTION with Broadcast Intent sent by system, it
may cause an unexpected behavior by receiving it. However, this can be prevented by specifying ex-
ported=""false”.

4.2.3.2 Receiver Won't Be Registered before Launching the Application

It is important to note carefully that a Broadcast Receiver defined statically in AndroidManifest.xml will
not be automatically enabled upon installation'?. Apps are able to receive Broadcasts only after they
have been launched the first time; thus, it is not possible to use the receipt of a Broadcast after installation
as a trigger to initiate operations. However, if the Intent. FLAG_INCLUDE_ STOPPED_ PACKAGES
flag set when sending a Broadcast, that Broadcast will be received even by apps that have not yet been
launched for the first time.

4.2.3.3 Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID
Application

Same UID can be provided to several applications. Even if it’s private Broadcast Receiver, the Broadcasts
sent from the same UID application can be received.

However, it won’t be a security problem. Since it’s guaranteed that applications with the same UID have
the consistent developer keys for signing APK. It means that what private Broadcast Receiver receives
is only the Broadcast sent from In-house applications.

12 In versions prior to Android 3.0, Receivers were registered automatically simply by installing apps.

115

Secure Coding Guide Documentation Release 2019-12-01

4.2.3.4 Types and Features of Broadcasts

Regarding Broadcasts, there are 4 types based on the combination of whether it’s Ordered or not, and
Sticky or not. Based on Broadcast sending methods, a type of Broadcast to send is determined. Note
that Sticky Broadcast is deprecated in Android 5.0 (API Level 21).

Table 4.2.4: Type of Sending Broadcast

Type of Broadcast Method for sending Ordered? | Sticky?
Normal Broadcast sendBroadcast() No No
Ordered Broadcast sendOrderedBroadcast() Yes No
Sticky Broadcast sendStickyBroadcast() No Yes
Sticky Ordered Broadcast | sendStickyOrderedBroadcast() | Yes Yes

The feature of each Broad cast is described.

Table 4.2.5: Feature of Each Broadcast

Type of Broadcast Features for each type of Broadcast

Normal Broadcast Normal Broadcast disappears when it is sent to receivable Broadcast
Receiver. Broadcasts are received by several Broadcast Receivers si-
multaneously. This is a difference from Ordered Broadcast. Broadcasts
are allowed to be received by the particular Broadcast Receivers.
Ordered Broadcast Ordered Broadcast is characterized by receiving Broadcasts one by
one in order with receivable Broadcast Receivers. The higher-priority
Broadcast Receiver receives earlier. Broadcasts will disappear when
Broadcasts are delivered to all Broadcast Receivers or a Broadcast Re-
ceiver in the process calls abortBroadcast(). Broadcasts are allowed
to be received by the Broadcast Receivers which declare the specified
Permission. In addition, the result information sent from Broadcast
Receiver can be received by the sender with Ordered Broadcasts. The
Broadcast of SMS-receiving notice (SMS__RECEIVED) is a represen-
tative example of Ordered Broadcast.

Sticky Broadcast Sticky Broadcast does not disappear and remains in the system, and
then the application that calls registerReceiver() can receive Sticky
Broadcast later. Since Sticky Broadcast is different from other Broad-
casts, it will never disappear automatically. So when Sticky Broad-
cast is not necessary, calling removeStickyBroadcast() explicitly is re-
quired to delete Sticky Broadcast. Also, Broadcasts cannot be re-
ceived by the limited Broadcast Receivers with particular Permis-
sion. The Broadcast of changing battery-state notice (ACTION__BAT-
TERY_CHANGED) is the representative example of Sticky Broad-
cast.

Sticky Ordered Broadcast This is the Broadcast which has both characteristics of Ordered Broad-
cast and Sticky Broadcast. Same as Sticky Broadcast, it cannot allow
only Broadcast Receivers with the particular Permission to receive the
Broadcast.

From the Broadcast characteristic behavior point of view, above table is conversely arranged in the
following one.

116

Secure Coding Guide Documentation Release 2019-12-01

Table 4.2.6: Characteristic behavior of Broadcast

Characteristic be- Nor- Or- Sticky | Sticky Ordered
havior of Broadcast mal dered | Broad- Broadcast
Broad- | Broad- cast
cast cast
Limit Broadcast Re- OK OK - -

ceivers which can re-
ceive Broadcast, by

Permission

Get the results of pro- - OK - OK
cess from Broadcast

Receiver

Make Broadcast Re- - OK - OK

ceivers process Broad-
casts in order

Receive Broadcasts - - OK OK
later, which have been
already sent

4.2.3.5 Broadcasted Information May be Output to the LogCat

Basically sending/receiving Broadcasts is not output to LogCat. However, the error log will be output
when lacking Permission causes errors in receiver/sender side. Intent information sent by Broadcast is
included in the error log, so after an error occurs it’s necessary to pay attention that Intent information
is displayed in LogCat when Broadcast is sent.

Erorr of lacking Permission in sender side

W/ActivityManager (266): Permission Denial: broadcasting Intent {
act=org.jssec.android.broadcastreceiver.creating.action.MY_ACTION }

from org.jssec.android.broadcast.sending (pid=4685, uid=10058) requires
org.jssec.android.permission.MY_PERMISSION due to receiver
org.jssec.android.broadcastreceiver.creating/org. jssec.android.broadcastreceiver.creating.
—CreatingType3Receiver

Erorr of lacking Permission in receiver side

W/ActivityManager (275): Permission Denial: receiving Intent {
act=org.jssec.android.broadcastreceiver.creating.action.MY_ACTION } to
org.jssec.android.broadcastreceiver.creating requires
org.jssec.android.permission.MY_PERMISSION due to sender
org.jssec.android.broadcast.sending (uid 10158)

4.2.3.6 Items to Keep in Mind When Placing an App Shortcut on the Home Screen

In what follows we discuss a number of items to keep in mind when creating a shortcut button for
launching an app from the home screen or for creating URL shortcuts such as bookmarks in web browsers.
As an example, we consider the implementation shown below.

Place an app shortcut on the home screen

Intent targetIntent = new Intent(this, TargetActivity.class);

// Intent to request shortcut creation
Intent intent = new Intent("com.android.launcher.action.INSTALL_SHORTCUT");

// Specify an Intent to be launched when the shortcut is tapped

(continues on next page)

117

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

intent.putExtra(Intent.EXTRA_SHORTCUT_INTENT, targetIntent);
Parcelable icon =

Intent.ShortcutIconResource.fromContext (context, iconResource);
intent.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE, icon);
intent.putExtra(Intent.EXTRA_SHORTCUT_NAME, title);
intent.putExtra("duplicate", false);

// Use Broadcast to send the system our request for shortcut creation
context.sendBroadcast (intent) ;

In the Broadcast sent by the above code snippet, the receiver is the home-screen app, and it is difficult to
identify the package name; one must take care to remember that this is a transmission to a public receiver
with an implicit intent. Thus the Broadcast sent by this snippet could be received by any arbitrary app,
including malware; for this reason, the inclusion of sensitive information in the Intent may create the risk
of a damaging leak of information. It is particularly important to note that, when creating a URL-based
shortcut, secret information may be contained in the URL itself.

As countermeasures, it is necessary to follow the points listed in “4.2.1.2. Public Broadcast Receiver
- Receiving/Sending Broadcasts” and to ensure that the transmitted Intent does not contain sensitive
information.

4.3 Creating/Using Content Providers

Since the interface of ContentResolver and SQLiteDatabase are so much alike, it’s often misunderstood
that Content Provider is so closely related to SQLiteDatabase. However, actually Content Provider
simply provides the interface of inter-application data sharing, so it’s necessary to pay attention that it
does not interfere each data saving format. To save data in Content Provider, SQLiteDatabase can be
used, and other saving formats, such as an XML file format, also can be used. Any data saving process
is not included in the following sample code, so please add it if needed.

4.3.1 Sample Code

The risks and countermeasures of using Content Provider differ depending on how that Content Provider
is being used. In this section, we have classified 5 types of Content Provider based on how the Content
Provider is being used. You can find out which type of Content Provider you are supposed to create
through the following chart shown below.

Table 4.3.1: Definition of content provider types

Type Definition

Private Content | A content provider that cannot be used by another application, and there-
Provider fore is the safest content provider

Public Content | A content provider that is supposed to be used by an unspecified large
Provider number of applications

Partner Content | A content provider that can be used by specific applications made by a
Provider trusted partner company.

In-house Content | A content provider that can only be used by other in-house applications
Provider

Temporary permit | A content provider that is basically private content provider but permits
Content Provider specific applications to access the particular URI.

118

Secure Coding Guide Documentation Release 2019-12-01

Mo

Provide sorvices atways?

h 4

Private Content Provider Public Content Provider Partner Gontent Provider In-house Cantent Provider Tamporary
Contart Provider

Fig. 4.3.1: Flow Figure to decide Content Provider Type

4.3.1.1 Creating/Using Private Content Providers
Private Content Provider is the Content Provider which is used only in the single application, and the
safest Content Provider!®.
Sample code of how to implement a private Content Provider is shown below.
Points (Creating a Content Provider):
1. Explicitly set the exported attribute to false.

2. Handle the received request data carefully and securely, even though the data comes from the same
application.

3. Sensitive information can be sent since it is sending and receiving all within the same application.

AndroidManifest.xml

<?rxml verston="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.provider.privateprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<I-- *%xx POINT 1 *** Explicitly set the exported attribute to false. —-—>
<provider
android:name=".PrivateProvider"
android:authorities="org.jssec.android.provider.privateprovider"
android:exported="false" />

(continues on next page)

13 However, non-public settings for Content Provider are not functional in Android 2.2 (API Level 8) and previous
versions.

119

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

</application>
</manifest>

PrivateProvider. java

/%

*
*
*
*
*
*
*
*
*
*
*
*
*

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

package org.jssec.android.provider.privateprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

public class PrivateProvider extends ContentProvider {

public static final String AUTHORITY =
"org.jssec.android.provider.privateprovider";

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.org. jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =
"vnd.android.cursor.item/vnd.org. jssec.contenttype";

// Exzpose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses';
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1;
private static final int DOWNLOADS_ID_CODE = 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID_CODE
private static UriMatcher sUriMatcher;
static {

sUriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ;

sUriMatcher.addURI (AUTHORITY, Download.PATH, DOWNLOADS_CODE) ;

sUriMatcher.addURI (AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE) ;

4;

(continues on next page)

120

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

sUriMatcher.addURI (AUTHORITY, Address.PATH, ADDRESSES_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE) ;

// Since this is a sample program, query method returns the following
// fized result always without using database.
private static MatrixCursor sAddressCursor =
new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "Longon" });
sAddressCursor.addRow(new String[] { "3", "Paris" });
}
private static MatrixCursor sDownloadCursor =
new MatrixCursor(new String[] { "_id", "path" 1});
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

@0verride
public boolean onCreate() {
return true;

}

@0verride
public String getType(Uri uri) {
// *%% POINT 2 #*** Handle the received request data carefully and securely,
// even though the data comes from the same application.
// Here, whether uri is within expectations or not, is verified by
// UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.
// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 3 *** Sensitive information can be sent since it ts sending
// and receiving all within the same application.
// However, the result of getType rarely has the sensitive meaning.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *%% POINT 2 *** Handle the received request data carefully and securely,
// even though the data comes from the same application.

// Here, whether uri is within ezpectations or not, ts verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

(continues on next page)

121

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// *%% POINT 3 *** Sensitive information can be sent since it ts sending
// and receiving all within the same application.
// It depends on application whether the query result has sensitive meaning
// or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public Uri insert(Uri uri, ContentValues values) {

// *%% POINT 2 #*** Handle the received request data carefully and securely,
// even though the data comes from the same application.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *¥x POINT 3 *#x Sensitive information can be sent since it is sending
// and receiving all within the same application.
// It depends on application whether the issued ID has sensitive meaning
// or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
b
@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *%% POINT 2 **% Handle the received request data carefully and securely,
// even though the data comes from the same application.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// **% POINT 3 #*** Sensitive information can be sent since it is sending
// and receiving all within the same application.

// It depends on application whether the number of updated records has
// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

(continues on next page)

122

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

case DOWNLOADS_CODE:
return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// #*% POINT 2 *** Handle the received request data carefully and securely,
// even though the data comes from the same application.

// Here, whether uri is within expectations or not, ts verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// *#% POINT 3 #*** Sensitive information can be sent since it ts sending
// and receiving all within the same application.
// It depends on application whether the number of deleted records has
// sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

Next is an example of Activity which uses Private Content Provider.
Points (Using a Content Provider):
4. Sensitive information can be sent since the destination provider is in the same application.

5. Handle received result data carefully and securely, even though the data comes from the same
application.

PrivateUserActivity. java
/*
* Copyright (C) 2012-2019 Japan Smartphone Security Association

(continues on next page)

123

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* % ¥ X X ¥ X X X ¥ * Xx

*
N

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

package org.jssec.android.provider.privateprovider;

import
import
import
import
import
import

public

android.app.Activity;
android.database.Cursor;
android.net.Uri;
android.os.Bundle;
android.view.View;
android.widget.TextView;

class PrivateUserActivity extends Activity {

public void onQueryClick(View view) {

logLine (" [Queryl");

Cursor cursor = null;
try {
// *¥x POINT 4 #** Sensitive information can be sent since the
// destination provider is in the same application.
cursor =
getContentResolver () .query (PrivateProvider.Download.CONTENT_URI,
null, null, null, null);

// **% POINT 5 #x* Handle recetved result data carefully and securely,
// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {
logLine(" null cursor");
} else {

boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format (" 7%d, %s", cursor.getInt(0),
cursor.getString(1)));
moved = cursor.moveToNext();

}
¥
}
finally {
if (cursor '= null) cursor.close();
}

public void onInsertClick(View view) {

logLine (" [Insert]");

(continues on next page)

124

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// *#% POINT 4 *** Sensitive information can be sent since the
// destination provider is in the same application.
Uri uri =
getContentResolver () .insert (PrivateProvider.Download.CONTENT_URI,
null);

// *#% POINT 5 *** Handle received result data carefully and securely,
// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."”

logLine(" wuri:" + uri);

public void onUpdateClick(View view) {
logLine (" [Updatel");

// #*% POINT 4 *** Sensitive information can be sent since the
// destination provider is in the same application.
int count =
getContentResolver () .update (PrivateProvider.Download.CONTENT _URI,
null, null, null);

// *¥x POINT 5 *#* Handle received result data carefully and securely,
// even though the data comes from the same application.

// Omitted, since this s a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely.”
logLine(String.format(" Ys records updated", count));

public void onDeleteClick(View view) {
logLine (" [Deletel");

// *%% POINT 4 *** Sensitive information can be sent since the
// destination provider is in the same application.
int count =
getContentResolver () .delete(PrivateProvider.Download.CONTENT _URI,
null, null);

// *%% POINT 5 *** Handle received result data carefully and securely,
// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" Ys records deleted", count));

private TextView mLogView;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n");

125

Secure Coding Guide Documentation Release 2019-12-01

4.3.1.2 Creating/Using Public Content Providers

Public Content Provider is the Content Provider which is supposed to be used by unspecified large
number of applications. It’s necessary to pay attention that since this doesn’t specify clients, it may be
attacked and tampered by Malware. For example, a saved data may be taken by select(), a data may be
changed by update(), or a fake data may be inserted/deleted by insert()/delete().

In addition, when using a custom Public Content Provider which is not provided by Android OS, it’s
necessary to pay attention that request parameter may be received by Malware which masquerades as the
custom Public Content Provider, and also the attack result data may be sent. Contacts and MediaStore
provided by Android OS are also Public Content Providers, but Malware cannot masquerades as them.

Sample code to implement a Public Content Provider is shown below.
Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Handle the received request data carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml verstion="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.provider.publicprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<I-— x4 POINT 1 *** Explicitly set the exported attribute to true. -->
<provider
android:name=".PublicProvider"
android:authorities="org. jssec.android.provider.publicprovider"
android:exported="true" />
</application>
</manifest>

PublicProvider. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % % X X ¥ X X X ¥ ¥ X *x

*
AN

package org.jssec.android.provider.publicprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;

(continues on next page)

126

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.database.MatrixCursor;
import android.net.Uri;

public class PublicProvider extends ContentProvider {

public static final String AUTHORITY =
"org.jssec.android.provider.publicprovider";

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.org. jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =
"vnd.android.cursor.item/vnd.org. jssec.contenttype";

// Ezpose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

// UriMatcher

private static final int DOWNLOADS_CODE = 1

private static final int DOWNLOADS_ID_CODE

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE = 4;

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ;
sUriMatcher.addURI (AUTHORITY, Download.PATH, DOWNLOADS_CODE) ;
sUriMatcher.addURI (AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH, ADDRESSES_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

2;

// Since this is a sample program,
// query method returns the following fized result always without using
// database.
private static MatrixCursor sAddressCursor =
new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" });
}
private static MatrixCursor sDownloadCursor =
new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

@0verride
public boolean onCreate() {
return true;

}

Q@0verride

(continues on next page)

127

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// #*% POINT 2 *** Handle the received request data carefully and securely.
// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// #*% POINT 3 *** When returning a result, do not include sensitive
// information.
// It depends on application whether the query result has senstitive
// meaning or not.
// If no problem when the information is taken by malware, it can be
// returned as result.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:

return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public Uri insert(Uri uri, ContentValues values) {

// *%% POINT 2 #**% Handle the received request data carefully and securely.
// Here, whether uri %s within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."”

// *%% POINT 3 *** When returning a result, do not include sensitive
// information.

// It depends on application whether the issued ID has sensitive

// meaning or not.

// If no problem when the information s taken by malware, it can be
// returned as result.

(continues on next page)

128

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *%% POINT 2 #*** Handle the received request data carefully and securely.
// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 3 *** When returning a result, do not include sensitive
// information.
// It depends on application whether the number of updated records has
// senstitive meaning or not.
// If no problem when the information s taken by malware, it can be
// returned as result.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *%% POINT 2 #**% Handle the received request data carefully and securely.
// Here, whether uri %s within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."”

// *%% POINT 3 *** When returning a result, do not include sensitive
// information.

// It depends on application whether the number of deleted records has
// sensitive meaning or not.

// If no problem when the information s taken by malware, it can be
// returned as result.

(continues on next page)

129

Secure Coding Guide Documentation

Release 2019-12-01

(continued from previous page)

switch (sUriMatcher .match(uri)) {
case DOWNLOADS_CODE:
return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

Next is an example of Activity which uses Public Content Provider.
Points (Using a Content Provider):
4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

PublicUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.provider.publicuser;

import android.app.Activity;

import android.content.ContentValues;
import android.content.pm.ProviderInfo;
import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicUserActivity extends Activity {

// Target Content Provider Information
private static final String AUTHORITY =
"org.jssec.android.provider.publicprovider";
private interface Address {
public static final String PATH = "addresses";

130

(continues on next page)

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

public void onQueryClick(View view) {
logLine (" [Queryl");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

Cursor cursor = null;
try {
// **% POINT 4 *** Do not send sensitive information.
// since the target Content Provider may be malware.
// If no problem when the information is taken by malware,
// it can be included in the request.
cursor = getContentResolver().query(Address.CONTENT_URI,
null, null, null, null);

// *¥x POINT 5 #** When receiving a result, handle the result data
// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {
logLine(" null cursor");
} else {

boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format (" 7%d, %s", cursor.getInt(0),
cursor.getString(1)));
moved = cursor.moveToNext();

}
}
}
finally {
if (cursor !'= null) cursor.close();
}

public void onInsertClick(View view) {
logLine (" [Insert]");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// *%% POINT 4 **% Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,

// it can be included in the request.

ContentValues values = new ContentValues();

values.put ("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// #*% POINT 5 #*** When receiving a rTesult, handle the result data
// carefully and securely.

(continues on next page)

131

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."”
logLine(" wuri:" + uri);

public void onUpdateClick(View view) {
logLine (" [Update]l");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// #*% POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,
// it can be included in the request.

ContentValues values = new ContentValues();
values.put("city", "Tokyo");

String where = "_id = 7";
String[] args = { "4" };
int count =

getContentResolver () .update (Address.CONTENT_URI, values, where, args);

// *%% POINT 5 *** lWhen receiving a result, handle the result data
// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine (String.format(" Ys records updated", count));

public void onDeleteClick(View view) {
logLine(" [Deletel");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// *¥x POINT 4 *#* Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,

// it can be included in the request.

int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

// *¥x POINT 5 *#* l[hen receiving a result, handle the result data
// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" 7s records deleted", count));

private boolean providerExists(Uri uri) {
ProviderInfo pi =
getPackageManager () .resolveContentProvider (uri.getAuthority(), 0);
return (pi != null);

private TextView mLogView;

(continues on next page)

132

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n");

4.3.1.3 Creating/Using Partner Content Providers

Partner Content Provider is the Content Provider which can be used only by the particular applications.
The system consists of a partner company’s application and In-house application, and it is used to
protect the information and features which are handled between a partner application and an In-house
application.

Sample code to implement a partner-only Content Provider is shown below.
Points (Creating a Content Provider):
1. Explicitly set the exported attribute to true.
2. Verify if the certificate of a requesting application has been registered in the own white list.

3. Handle the received request data carefully and securely, even though the data comes from a partner
application.

4. Information that is granted to disclose to partner applications can be returned.

AndroidManifest.xml

<?zml wversion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.provider.partnerprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-— x4k POINT 1 *** Exzplicitly set the exported attribute to true. -->
<provider
android:name=".PartnerProvider"
android:authorities="org. jssec.android.provider.partnerprovider"
android:exported="true" />
</application>
</manifest>

PartnerProvider. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

*
*

* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
*
*
*

You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

(continues on next page)

133

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* %X ¥ * X%

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

package org.jssec.android.provider.partnerprovider;

import java.util.List;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.ActivityManager;
import android.app.ActivityManager.RunningAppProcessInfo;
import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;

import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

import android.os.Binder;

import android.os.Build;

public class PartnerProvider extends ContentProvider {

public static final String AUTHORITY =
"org.jssec.android.provider.partnerprovider";

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.org. jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =
"vnd.android.cursor.item/vnd.org. jssec.contenttype";

// Ezpose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

// UriMatcher

private static final int DOWNLOADS_CODE = 1,

private static final int DOWNLOADS_ID CODE =

private static final int ADDRESSES_CODE =

private static final int ADDRESSES_ID_CODE =

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ;
sUriMatcher.addURI (AUTHORITY, Download.PATH, DOWNLOADS_CODE) ;
sUriMatcher.addURI (AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH, ADDRESSES_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

(continues on next page)

134

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// Since this is a sample program,
// query method returns the following fized rTesult always without using
// database.
private static MatrixCursor sAddressCursor =
new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" 1});
}
private static MatrixCursor sDownloadCursor =
new MatrixCursor(new String[] { "_id", "path" 1});
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

// *** POINT 2 *** Verify if the certificate of a requesting application has
// been registered in the own white list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context) ;
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application
// org.jssec.android.provider.partneruser.
sWhitelists.add("org.jssec.android.provider.partneruser", isdebug 7
// Certificate hash value of "androtddebugkey” in the debug.keystore.
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of "partner key" in the keystore.
"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register following other partner applications in the same way.
}
private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);
}
// Get the package name of the calling application.
private String getCallingPackage(Context context) {
String pkgname;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
pkgname = super.getCallingPackage() ;
} else {
pkgname = null;
ActivityManager am = (ActivityManager) context.getSystemService(Context.ACTIVITY_

«+SERVICE) ;
List<RunningAppProcessInfo> procList = am.getRunningAppProcesses();
int callingPid = Binder.getCallingPid();
if (procList != null) {
for (RunningAppProcessInfo proc : procList) {
if (proc.pid == callingPid) {
pkgname = proc.pkgList[proc.pkgList.length - 1];
break;
}
}
}
}

return pkgname;

(continues on next page)

135

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

@0verride
public boolean onCreate() {
return true;

}

@Override
public String getType(Uri uri) {

switch (sUriMatcher .match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *#%% POINT 2 *** Verify if the certificate of a requesting application
// has been registered in the own white list.
if (!checkPartner(getContext(), getCallingPackage (getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

}

// *#% POINT 3 #**% Handle the received request data carefully and securely,
// even though the data comes from a partner application.

// Here, whether uri %s within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 4 **% Information that is granted to disclose to partner
// applications can be returned.
// It depends on application whether the query result can be disclosed
// or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public Uri insert(Uri uri, ContentValues values) {

(continues on next page)

136

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// *#%% POINT 2 *** Verify if the certificate of a requesting application
// has been registered in the own white list.
if (!checkPartner(getContext(), getCallingPackage (getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

}

// *#% POINT 3 *** Handle the received request data carefully and securely,
// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 4 #**% Information that is granted to disclose to partner
// applications can be returned.
// It depends on application whether the issued ID has sensitive meaning
// or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *#%% POINT 2 *** Verify if the certificate of a requesting application
// has been registered in the own white list.
if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

}

// *%% POINT 3 #**% Handle the received request data carefully and securely,
// even though the data comes from a partner application.

// Here, whether uri %s within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 4 **% Information that is granted to disclose to partner
// applications can be returned.
// It depends on application whether the number of updated records has
// sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

(continues on next page)

137

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *%% POINT 2 *** Verify if the certificate of a requesting application
// has been registered in the own white list.
if (!checkPartner(getContext(), getCallingPackage (getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

}

// *%% POINT 3 #*** Handle the received request data carefully and securely,
// even though the data comes from a partner application.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// #*% POINT 4 *** Information that is granted to disclose to partner
// applications can be returned.
// It depends on application whether the number of deleted records has
// senstitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

Next is an example of Activity which use partner only Content Provider.

Points (Using a Content Provider):
5. Verify if the certificate of the target application has been registered in the own white list.
6. Information that is granted to disclose to partner applications can be sent.

7. Handle the received result data carefully and securely, even though the data comes from a partner
application.

PartnerUserActivity. java

/*
* Copyright (C) 2012-2019 Japan Smartphone Security Association
*

* Licensed under the Apache License, Version 2.0 (the "License");

(continues on next page)

138

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ezpress or implied.
See the License for the specific language governing permissions and

* % %X X X ¥ X X *x *

*
N

limitations under the License.

package org.jssec.android.provider.partneruser;

import
import

import
import
import
import
import
import
import
import
import

public

org.jssec.android.shared.PkgCertWhitelists;
org. jssec.android.shared.Utils;

android

android

android

.app.Activity;
android.
android.
android.

content.ContentValues;
content.Context;
content.pm.ProviderInfo;

.database.Cursor;
android.
android.
android.
.widget.TextView;

net.Uri;
os.Bundle;
view.View;

class PartnerUserActivity extends Activity {

// Target Content Provider Information

private static final String AUTHORITY =
"org.jssec.android.provider.partnerprovider";
private interface Address {

public
public

static final String PATH = "addresses";
static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

// *#x POINT 4 #**x Verify if the certificate of the target application has
// been registered in the own white list.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context) ;

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// org.

jssec.android.provider.partnerprovider.

sWhitelists.add("org. jssec.android.provider.partnerprovider", isdebug 7
// Certificate hash value of "androtiddebugkey" in the debug.keystore.
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of "partner key" in the keystore.
"D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA");

// Register following other partner applications in the same way.
private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname) ;

(continues on next page)

139

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// Get package mame of target content provider.
private String providerPkgname (Uri uri) {
String pkgname = null;
ProviderInfo pi =
getPackageManager () .resolveContentProvider (uri.getAuthority (), 0);
if (pi != null) pkgname = pi.packageName;
return pkgname;

public void onQueryClick(View view) {
logLine (" [Query]");

// *%% POINT 4 #*** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner (this, providerPkgname (Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

Cursor cursor = null;
try {
// #%% POINT 5 *** Information that is granted to disclose to partner
// applications can be sent.
cursor = getContentResolver () .query(Address.CONTENT_URI,
null, null, null, null);

// **% POINT 6 #** Handle the received result data carefully and
// securely, even though the data comes from a partner application.
// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {
logLine(" null cursor");
} else {

boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format (" 7d, %s", cursor.getInt(0),
cursor.getString(1)));
moved = cursor.moveTolNext () ;

}
}
}
finally {
if (cursor != null) cursor.close();
}

public void onInsertClick(View view) {
logLine (" [Insert]");

// *%% POINT 4 #*** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner (this, providerPkgname (Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

// *%% POINT 5 **% Information that is granted to disclose to partner
// applications can be sent.
ContentValues values = new ContentValues();

(continues on next page)

140

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

values.put ("city", "Tokyo");
Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *#% POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(" wuri:" + uri);

public void onUpdateClick(View view) {
logLine (" [Updatel");

// #x% POINT 4 *** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner(this, providerPkgname (Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

// *#% POINT 5 *** Information that is granted to disclose to partner
// applications can be sent.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = 7";
String[] args = { "4" };
int count =

getContentResolver () .update (Address.CONTENT_URI, values, where, args);

// *#% POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."
logLine(String.format (" 7s records updated", count));

public void onDeleteClick(View view) {
logLine (" [Deletel");

// *¥x POINT 4 *#x Verify 4if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner(this, providerPkgname (Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

// *%% POINT 5 #*** Information that is granted to disclose to partner
// applications can be sent.
int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

// *%% POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.

// Omitted, since this s a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" s records deleted", count));

private TextView mLogView;

(continues on next page)

141

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n") ;

PkgCertWhitelists. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Assoctiation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.shared;

import android.content.pm.PackageManager;
import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase() ;
if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hexz char

mWhitelists.put (pkgname, sha256) ;
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

(continues on next page)

142

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {
// ** 4f API Level >= 28, direct checking is possible
PackageManager pm = ctx.getPackageManager() ;
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager() ;
PackageInfo pkginfo =

pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;

// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();

(continues on next page)

143

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(bytel[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

4.3.1.4 Creating/Using In-house Content Providers
In-house Content Provider is the Content Provider which prohibits to be used by applications other than
In house only applications.
Sample code of how to implement an In house only Content Provider is shown below.
Points (Creating a Content Provider):
1. Define an in-house signature permission.
2. Require the in-house signature permission.
3. Explicitly set the exported attribute to true.
4. Verify if the in-house signature permission is defined by an in-house application.
5. Verify the safety of the parameter even if it’s a request from In house only application.
6. Sensitive information can be returned since the requesting application is in-house.
7

. When exporting an APK, sign the APK with the same developer key as that of the requesting
application.

AndroidManifest.xml

<?rxml verstion="1.0" encoding="utf-8"2?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.provider.inhouseprovider">

<!-- xxx POINT 1 *** Define an in-house signature permission ——>
<permission
android:name="org. jssec.android.provider.inhouseprovider.MY_PERMISSION"
android:protectionLevel="signature" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

(continues on next page)

144

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

<I-- xxx POINT 2 *** Require the in-house signature permission —->
<!-- x*xx POINT 3 **x Explicitly set the exported attridbute to true. —-—>
<provider

android:name=".InhouseProvider"
android:authorities="org.jssec.android.provider.inhouseprovider"
android:permission="org. jssec.android.provider.inhouseprovider.MY_PERMISSION"
android:exported="true" />
</application>
</manifest>

InhouseProvider. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

¥ % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.provider.inhouseprovider;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;

import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

public class InhouseProvider extends ContentProvider {

public static final String AUTHORITY =
"org.jssec.android.provider.inhouseprovider";

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.org. jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =
"vnd.android.cursor.item/vnd.org. jssec.contenttype";

// Exzpose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

(continues on next page)

145

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// UriMatcher

private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID CODE

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE =

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ;
sUriMatcher.addURI (AUTHORITY, Download.PATH, DOWNLOADS_CODE) ;
sUriMatcher.addURI (AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH, ADDRESSES_CODE) ;
sUriMatcher.addURI (AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

// Since this is a sample program, query method returns the following
// fized result always without using database.
private static MatrixCursor sAddressCursor =
new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" });
}
private static MatrixCursor sDownloadCursor =
new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

// In-house Signature Permission
private static final String MY_PERMISSION =
"org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the
// debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26,

—F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2,
—42E142CA";
¥
}
return sMyCertHash;
¥
@Override

public boolean onCreate() {
return true;

}

@0verride
public String getType(Uri uri) {

(continues on next page)

146

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

switch (sUriMatcher .match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *#% POINT 4 *** Verify if the in-house signature permission s defined
// by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared by,
—in-house application.");

}

// #*% POINT 5 *** Handle the received request data carefully and securely,
// even though the data came from an in-house application.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// #x% POINT 6 *** Sensitive information can be returned since the
// requesting application %is in-house.
// It depends on application whether the query result has sensitive
// meaning or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
Y
@Override

public Uri insert(Uri uri, ContentValues values) {

// **% POINT 4 #*** Verify if the in-house signature permission %s defined
// by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared byy
—in-house application.");

}

// *%% POINT 5 *** Handle the received request data carefully and securely,

(continues on next page)

147

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// even though the data came from an in-house application.

// Here, whether uri is within exzpectations or not, is verified by
// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.
// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *#%% POINT 6 *** Sensitive information can be returned since the
// requesting application %is in-house.
// It depends on application whether the issued ID has sensitive meaning
// or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *¥x POINT 4 *#x Verify 4f the in-house signature permission is defined
// by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared byy
—in-house application.");

}

// *#% POINT 5 #*** Handle the received request data carefully and securely,
// even though the data came from an in-house application.

// Here, whether uri %s within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 6 *** Sensitive information can be returned since the
// requesting application is in-house.
// It depends on application whether the number of updated records has
// sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

(continues on next page)

148

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

@0verride
public int delete(Uri uri, String selection, String[] selectionArgs) {

// *%% POINT 4 *** Verify if the in-house signature permission s defined
// by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared by
—in-house application.");

}

// #*% POINT 5 *** Handle the received request data carefully and securely,
// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely.”

// *#% POINT 6 *** Sensitive information can be returned since the
// requesting application %is in-house.
// It depends on application whether the number of deleted records has
// sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

SigPerm. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www. apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.shared;

import android.content.Context;

(continues on next page)

149

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;
public class SigPerm {

public static boolean test(Context ctx, String sigPermName,
String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission
// named sigPermName.
PackageManager pm = ctx.getPackageManager() ;
PermissionInfo pi =
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;
String pkgname = pi.packageName;
// Fail 4if the permission named sigPermName is not a Signature
// Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash value of pkgname with the correct hash
// value.
if (Build.VERSION.SDK_INT >= 28) {
// *% 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname));
¥

} catch (NameNotFoundException e) {
return false;

}

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org. jssec.android.shared;

(continues on next page)

150

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null,;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting
application.

151

Secure Coding Guide Documentation Release 2019-12-01

[® Generate Signed APK —

Key store path: I C:¥jssec¥Projects¥keystore]

l ;mmn!new".l | Choose existing...
Key store password: L |

oy ot B

Key password: |.......]
[C] Remember passwords

o) R (o] [0]

Fig. 4.3.2: Sign the APK with the same developer key as the requesting application

Next is the example of Activity which uses In house only Content Provider.
Point (Using a Content Provider):
8. Declare to use the in-house signature permission.
9. Verify if the in-house signature permission is defined by an in-house application.0
10. Verify if the destination application is signed with the in-house certificate.
11. Sensitive information can be sent since the destination application is in-house one.

12. Handle the received result data carefully and securely, even though the data comes from an in-house
application.

13. When exporting an APK, sign the APK with the same developer key as that of the destination
application.

AndroidManifest.xml

<?rxml verstion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.provider.inhouseuser">

<!-- xx* POINT 8 *** Declare to use the in-house signature permission. ——>
<uses-permission

android:name="org. jssec.android.provider.inhouseprovider .MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".InhouseUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

InhouseUserActivity. java

/*

* Copyright (C) 2012-2019 Japan Smartphone Security Association
*

(continues on next page)

152

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

* % % %X X X ¥ X X X *

*
N

package org.jssec.android.provider.inhouseuser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;
import android.content.Context;

import android.content.pm.PackageManager;
import android.content.pm.ProviderInfo;
import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class InhouseUserActivity extends Activity {

// Target Content Provider Information
private static final String AUTHORITY =
"org.jssec.android.provider.inhouseprovider";
private interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH);

// In-house Signature Permission
private static final String MY_PERMISSION =
"org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the
// debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26,

—F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE8S8B D7B3A7C2
—42E142CA";
}
}

return sMyCertHash;

(continues on next page)

153

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// Get package name of target content provider.

private static String providerPkgname(Context context, Uri uri) {
String pkgname = null;
PackageManager pm = context.getPackageManager();
ProviderInfo pi = pm.resolveContentProvider (uri.getAuthority(), 0);
if (pi !'= null) pkgname = pi.packagelName;
return pkgname;

public void onQueryClick(View view) {
logLine (" [Query]");

// *#% POINT 9 *** Verify if the in-house signature permission s defined
// by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
logLine(" The in-house signature permission is not declared by in-house
—application.");
return;

}

// #*% POINT 10 *** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, myCertHash(this))) {
logLine(" The target content provider is not served by in-house applications.");
return;

Cursor cursor = null;
try {
// **% POINT 11 *** Sensitive information can be sent since the
// destination application %s in-house one.
cursor =
getContentResolver () .query(Address.CONTENT_URI,
null, null, null, null);

// **% POINT 12 *** Handle the recetved result data carefully and

// securely, even though the data comes from an in-house application.
// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {
logLine(" null cursor");
} else {

boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format (" 7%d, %s", cursor.getInt(0),
cursor.getString(1)));
moved = cursor.moveTolNext () ;

}
}
}
finally {
if (cursor != null) cursor.close();
}

public void onInsertClick(View view) {

(continues on next page)

154

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

logLine (" [Insert]");

// #x% POINT 9 *** Verify if the in-house signature permission is defined
// by an in-house application.
String correctHash = myCertHash(this);
if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {
logLine(" The in-house signature permission is not declared by in-house
—application.");
return;

}

// #*% POINT 10 *** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, correctHash)) {
logLine(" The target content provider is not served by in-house applications.");
return;

// *%% POINT 11 *** Sensitive information can be sent since the

// destination application is in—house one.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver () .insert(Address.CONTENT_URI, values);

// #*% POINT 12 #** Handle the received result data carefully and securely,
// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(" wuri:" + uri);

public void onUpdateClick(View view) {
logLine (" [Update]");

// *#% POINT 9 *** Verify if the in-house signature permission s defined
// by an in-house application.
String correctHash = myCertHash(this);
if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {
logLine(" The in-house signature permission is not declared by in-house
—application.");
return;

}

// *%% POINT 10 *** Verify if the destination application is stigned with

// the in-house certificate.

String pkgname = providerPkgname (this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, correctHash)) {
logLine(" The target content provider is not served by in-house applications.");
return;

// **% POINT 11 *** Sensitive information can be sent since the
// destination application is in-house one.
ContentValues values = new ContentValues();
values.put ("city", "Tokyo");
String where = "_id = 7";
String[] args = { "4" };
int count =
getContentResolver () .update (Address.CONTENT_URI, values, where, args);

(continues on next page)

155

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// *%% POINT 12 *#%* Handle the received result data carefully and securely,
// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" 7s records updated", count));

public void onDeleteClick(View view) {
logLine (" [Delete]");

// *#% POINT 9 *** Verify if the in-house signature permission s defined

// by an in-house application.

String correctHash = myCertHash(this);

if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {
logLine(" The target content provider is not served by in-house applications.");
return;

// *¥x POINT 10 #** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, correctHash)) {
logLine(" The target content provider is not served by in-house applications.");
return;

// *#% POINT 11 *%* Sensitive information can be sent since the
// destination application is in-house one.
int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

// *¥x POINT 12 #** Handle the received result data carefully and securely,
// even though the data comes from an in-house application.

// Omitted, since this s a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely.”
logLine(String.format (" Js records deleted", count));

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n") ;

SigPerm. java

/*

*
*
*
*
*

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

(continues on next page)

156

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

* % ¥ %X X X ¥ X%

*
N

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;
public class SigPerm {

public static boolean test(Context ctx, String sigPermName,
String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packagelName;

// Fail if the permisstion named sigPermName is mot a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash wvalue of pkgname with the correct hash
// value.
if (Build.VERSION.SDK_INT >= 28) {
// ** 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname)) ;

} catch (NameNotFoundException e) {
return false;

}

PkgCert. java

/*
* Copyright (C) 2012-2019 Japan Smartphone Security Association
*

* Licensed under the Apache License, Version 2.0 (the "License");

(continues on next page)

157

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* %X X ¥ X X ¥ X X *x

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ezpress or implied.
See the License for the specific language governing permissions and
limitations under the License.

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager() ;
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("7%02X", b));

(continues on next page)

158

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

}

return hexadecimal.toString();

*** Point 13 *** When exporting an APK, sign the APK with the same developer key as that of the
destination application.

F kil
® Generate Signed APK &
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password:
Key password: [.]

[C] Remember passwords

Key alias: | my company ke -
|
|

'icanoel . Help |

Fig. 4.3.3: Sign the APK with the same developer key as the destination application

4.3.1.5 Creating/Using Temporary permit Content Providers

Temporary permit Content Provider is basically a private Content Provider, but this permits the partic-
ular applications to access the particular URI. By sending an Intent which special flag is specified to the
target applications, temporary access permission is provided to those applications. Contents provider
side application can give the access permission actively to other applications, and it can also give access
permission passively to the application which claims the temporary access permission.

Sample code of how to implement a temporary permit Content Provider is shown below.
Points (Creating a Content Provider):

1. Explicitly set the exported attribute to false.

2. Specify the path to grant access temporarily with the grant-uri-permission.

3. Handle the received request data carefully and securely, even though the data comes from the
application granted access temporarily.

. Information that is granted to disclose to the temporary access applications can be returned.

. Specify URI for the intent to grant temporary access.

4

5

6. Specify access rights for the intent to grant temporary access.

7. Send the explicit intent to an application to grant temporary access.
8

. Return the intent to the application that requests temporary access.

AndroidManifest.xml

<?zml wversion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.provider.temporaryprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

(continues on next page)

159

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

<activity
android:name=".TemporaryActiveGrantActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<!-- Temporary Content Provider —->
<I-- x%xx POINT 1 *** Explicitly set the exported attribute to false. —-—->
<provider
android:name=".TemporaryProvider"
android:authorities="org. jssec.android.provider.temporaryprovider"
android:exported="false" >

<!-- xxx POINT 2 *** Spectify the path to grant access temporarily with the grant-uri-
—permission. ——>
<grant-uri-permission android:path="/addresses" />

</provider>

<activity
android:name=".TemporaryPassiveGrantActivity"
android:label="@string/app_name"
android:exported="true" />
</application>
</manifest>

TemporaryProvider. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.provider.temporaryprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

public class TemporaryProvider extends ContentProvider {
public static final String AUTHORITIY =
"org.jssec.android.provider.temporaryprovider";

(continues on next page)

160

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.org. jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =
"vnd.android.cursor.item/vnd.org. jssec.contenttype";

// Ezpose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITIY + "/" + PATH);
X
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITIY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1

private static final int DOWNLOADS_ID_CODE 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID_CODE = 4;

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ;
sUriMatcher.addURI (AUTHORITIY, Download.PATH, DOWNLOADS_CODE) ;
sUriMatcher.addURI (AUTHORITIY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
sUriMatcher.addURI (AUTHORITIY, Address.PATH, ADDRESSES_CODE) ;
sUriMatcher.addURI (AUTHORITIY, Address.PATH + "/#", ADDRESSES_ID_CODE);

// Since this is a sample program,
// query method returns the following fized result always without using
// database.
private static MatrixCursor sAddressCursor =
new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" 1});
}
private static MatrixCursor sDownloadCursor =
new MatrixCursor(new String[] { "_id", "path" 1});
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

@0verride
public boolean onCreate() {
return true;

}

@Override
public String getType(Uri uri) {

switch (sUriMatcher .match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

(continues on next page)

161

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE,;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *%% POINT 3 #*** Handle the received request data carefully and securely,
// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// *%% POINT 4 **% Information that is granted to disclose to the
// temporary access applications can be returned.
// It depends on application whether the query result can be disclosed
// or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
X
@0verride

public Uri insert(Uri uri, ContentValues values) {

// *%% POINT 3 #*** Handle the received request data carefully and securely,
// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// #*% POINT 4 *** Information that %s granted to disclose to the
// temporary access applications can be returned.
// It depends on application whether the issued ID has sensitive meaning
// or mot.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

(continues on next page)

162

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *#% POINT 3 #*** Handle the received request data carefully and securely,
// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// *¥x POINT 4 *#* Information that is granted to disclose to the
// temporary access applications can be returned.
// It depends on application whether the number of updated records has
// sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
X
@0verride

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *%% POINT 3 #*** Handle the received request data carefully and securely,
// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within ezpectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely.”

// #*% POINT 4 *** Information that %s granted to disclose to the
// temporary access applications can be returned.
// It depends on application whether the number of deleted records has
// sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

(continues on next page)

163

Secure Coding Guide Documentation

Release 2019-12-01

(continued from previous page)

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

TemporaryActiveGrantActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ %X % %X X X ¥ X X X ¥ * Xx

*
N

package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class TemporaryActiveGrantActivity extends Activity {

// User Activity Information

private static final String TARGET_PACKAGE =
"org.jssec.android.provider.temporaryuser";

private static final String TARGET_ACTIVITY =
"org.jssec.android.provider.temporaryuser.TemporaryUserActivity";

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.active_grant) ;

// In the case that Content Provider application grants access permission
// other application actively.
public void onSendClick(View view) {
try {
Intent intent = new Intent();

// **% POINT 5 #** Specify URI for the intent to grant temporary
// access.
intent.setData(TemporaryProvider.Address.CONTENT _URI) ;

to

(continues on next page)

164

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// **% POINT 6 *** Specify access rights for the intent to grant
// temporary access.
intent.setFlags (Intent.FLAG_GRANT_READ_URI_PERMISSION) ;

// #%% POINT 77 #** Send the explicit intent to an application to grant
// temporary access.

intent.setClassName (TARGET_PACKAGE, TARGET_ACTIVITY);
startActivity(intent) ;

} catch (ActivityNotFoundException e) {
Toast.makeText (this,
"User Activity not found.", Toast.LENGTH_LONG) .show();

TemporaryPassiveGrantActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www. apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org. jssec.android.provider.temporaryprovider;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class TemporaryPassiveGrantActivity extends Activity {
@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.passive_grant);

// In the case that Content Provider application passively grants access
// permission to the application that requested Content Provider access.
public void onGrantClick(View view) {

Intent intent = new Intent();

// *%% POINT 5 *** Specify URI for the intent to grant temporary access.
intent.setData(TemporaryProvider.Address.CONTENT_URI) ;

// *%% POINT 6 *** Specify access rights for the intent to grant temporary
// access.

intent.setFlags (Intent.FLAG_GRANT_READ_URI_PERMISSION) ;

// **% POINT 8 *** Return the intent to the application that rTequests

(continues on next page)

165

Secure Coding Guide Documentation

(continued from previous page)

// temporary access.
setResult (Activity .RESULT_OK, intent);
finish();

public void onCloseClick(View view) {

}

finish();

Next is the example of temporary permit Content Provider.

Points (Using a Content Provider):

9. Do not send sensitive information.

10. When receiving a result, handle the result data carefully and securely.

TemporaryUserActivity. java

/*

¥ % % X X X k¥ X X X ¥ * *x

*
N

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

package org.jssec.android.provider.temporaryuser;

import
import
import
import
import
import
import
import
import

public

android.app.Activity;
android.content.ActivityNotFoundException;
android.content.Intent;
android.content.pm.ProviderInfo;
android.database.Cursor;

android.net.Uri;

android.os.Bundle;

android.view.View;
android.widget.TextView;

class TemporaryUserActivity extends Activity {

// Information of the Content Provider's Activity to request temporary content
// provider access.
private static final String TARGET_PACKAGE =

"org.jssec.android.provider.temporaryprovider";

private static final String TARGET_ACTIVITY =

"org.jssec.android.provider.temporaryprovider.TemporaryPassiveGrantActivity";

// Target Content Provtder Information
private static final String AUTHORITY =

"org.jssec.android.provider.temporaryprovider";

private interface Address {

public static final String PATH = "addresses';
public static final Uri CONTENT_URI =

(continues on next page)

166

Release 2019-12-01

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Uri.parse("content://" + AUTHORITY + "/" + PATH);

private static final int REQUEST_CODE = 1;
public void onQueryClick(View view) {
logLine (" [Query]");

Cursor cursor = null;
try {
if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// #*% POINT 9 *** Do not send sensitive information.
// If no problem when the information is taken by malware, %t can be
// included in the request.
cursor = getContentResolver().query(Address.CONTENT_URI,
null, null, null, null);

// *¥x POINT 10 *** When receiving a result, handle the result data
// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {
logLine(" null cursor");
} else {

boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format (" 7%d, %s", cursor.getInt(0),
cursor.getString(1)));
moved = cursor.moveToNext();

}
} catch (SecurityException ex) {
logLine(" Exception:" + ex.getMessage());

}
finally {

if (cursor != null) cursor.close();
}

// In the case that this application requests temporary access to the Content
// Provider and the Content Provider passively grants temporary access
// permission to this application.
public void onGrantRequestClick(View view) {
Intent intent = new Intent();
intent.setClassName (TARGET_PACKAGE, TARGET_ACTIVITY);
try {
startActivityForResult (intent, REQUEST_CODE);
} catch (ActivityNotFoundException e) {
logLine("Content Provider's Activity not found.");

}

private boolean providerExists(Uri uri) {
ProviderInfo pi =
getPackageManager () .resolveContentProvider (uri.getAuthority(), 0);
return (pi != null);

(continues on next page)

167

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

}
private TextView mLogView;

// In the case that the Content Provider application grants temporary access
// to this application actively.
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
mLogView = (TextView)findViewById(R.id.logview);
}

private void logLine(String line) {
mLogView.append(line) ;
mLogView.append("\n") ;

4.3.2 Rule Book

Be sure to follow the rules below when Implementing or using a content provider.
1. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)
2. Handle the Received Request Parameter Carefully and Securely (Required)
3. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house
Application (Required)
4. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)
5. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of Pro-
tection (Required)
And user side should follow the below rules, too.

6. Handle the Returned Result Data from the Content Provider Carefully and Securely (Required)

4.3.2.1 Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

Content Provider which is used only in a single application is not necessary to be accessed by other
applications, and the access which attacks the Content Provider is not often considered by developers. A
Content Provider is basically the system to share data, so it’s handled as public by default. A Content
Provider which is used only in a single application should be set as private explicitly, and it should be
a private Content Provider. In Android 2.3.1 (API Level 9) or later, a Content Provider can be set as
private by specifying android:exported="false” in provider element.

AndroidManifest.xml
<I--4.3.1.1 - **x POINT 1 *** Ezplicitly set the exported attridbute to false. -->
<provider
android:name=".PrivateProvider"
android:authorities="org.jssec.android.provider.privateprovider"
android:exported="false" />

168

Secure Coding Guide Documentation Release 2019-12-01

4.3.2.2 Handle the Received Request Parameter Carefully and Securely (Required)

Risks differ depending on the types of Content Providers, but when processing request parameters, the
first thing you should do is input validation.

Although each method of a Content Provider has the interface which is supposed to receive the component
parameter of SQL statement, actually it simply hands over the arbitrary character string in the system,
so it’s necessary to pay attention that Contents Provider side needs to suppose the case that unexpected
parameter may be provided.

Since Public Content Providers can receive requests from untrusted sources, they can be attacked by
malware. On the other hand, Private Content Providers will never receive any requests from other
applications directly, but it is possible that a Public Activity in the targeted application may forward a
malicious Intent to a Private Content Provider so you should not assume that Private Content Providers
cannot receive any malicious input.

Since other Content Providers also have the risk of a malicious intent being forwarded to them as well,
it is necessary to perform input validation on these requests as well.

Please refer to “3.2. Handling Input Data Carefully and Securely”.

4.3.2.3 Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-
house Application (Required)

Make sure to protect your in-house Content Providers by defining an in-house signature permission when
creating the Content Provider. Since defining a permission in the AndroidManifest.xml file or declaring
a permission request does not provide adequate security, please be sure to refer to “5.2.1.2. How to
Communicate Between In-house Applications with In-house-defined Signature Permission.”

4.3.2.4 When Returning a Result, Pay Attention to the Possibility of Information Leakage of that
Result from the Destination Application (Required)

In case of query() or insert(), Cursor or Uri is returned to the request sending application as a result
information. When sensitive information is included in the result information, the information may be
leaked from the destination application. In case of update() or delete(), number of updated/deleted
records is returned to the request sending application as a result information. In rare cases, depending
on some application specs, the number of updated/deleted records has the sensitive meaning, so please
pay attention to this.

4.3.2.5 When Providing an Asset Secondarily, the Asset should be Protected with the Same Level
of Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole because
an application with permissions to an asset can act as a proxy and allow access to an unprivileged
application. Substantially this is the same as re-delegating a permission, so it is referred to as the
“Permission Re-delegation” problem. Please refer to “5.2.3.4. Permission Re-delegation Problem.”

4.3.2.6 Handle the Returned Result Data from the Content Provider Carefully and Securely (Re-
quired)

Risks differ depending on the types of Content Provider, but when processing a result data, the first
thing you should do is input validation.

In case that the destination Content Provider is a public Content Provider, Malware which masquerades
as the public Content Provider may return the attack result data. On the other hand, in case that

169

Secure Coding Guide Documentation Release 2019-12-01

the destination Content Provider is a private Content Provider, it is less risk because it receives the
result data from the same application, but you should not assume that private Content Providers cannot
receive any malicious input. Since other Content Providers also have the risk of a malicious data being
returned to them as well, it is necessary to perform input validation on that result data as well.

Please refer to “3.2. Handling Input Data Carefully and Securely”

4.4 Creating/Using Services

4.4.1 Sample Code

The risks and countermeasures of using Services differ depending on how that Service is being used. You
can find out which type of Service you are supposed to create through the following chart shown below.
Since the secure coding best practice varies according to how the service is created, we will also explain
about the implementation of the Service as well.

Table 4.4.1: Definition of service types

Type Definition

Private Service A service that cannot be used another application, and therefore is the safest
service.

Public Service A service that is supposed to be used by an unspecified large number of applica-
tions

Partner Service A service that can only be used by the specific applications made by a trusted
partner company.

In-house Service A service that can only be used by other in-house applications.

Use only in
he same application?

Allow unspecified number
applications to usa?

Allow specified company s
applications to use

Private Service Public Servica Partner Service In-house Service

Fig. 4.4.1: Flow Figure to select Service Type

There are several implementation methods for Service, and you will select the method which matches
with the type of Service that you suppose to create. The items of vertical columns in the table show the
implementation methods, and these are divided into 5 types. “OK” stands for the possible combination
and others show impossible/difficult combinations in the table.

Please refer to “4.4.3.2. How to Implement Service” and Sample code of each Service type (with * mark
in a table) for detailed implementation methods of Service.

170

Secure Coding Guide Documentation Release 2019-12-01

Table 4.4.2: Implementation Methods of Service

Category Private Service | Public Service Partner In-house
Service Service

startService type OK* OK - OK

IntentService OK OK* - OK

type

local bind type OK - - -

Messenger bind OK OK - OK*

type

AIDL bind type OK OK OK* OK

Sample code for each security type of Service are shown as below, by using combination of * mark in
Table 4.4.2.

4.4.1.1 Creating/Using Private Services
Private Services are Services which cannot be launched by the other applications and therefore it is the
safest Service.

When using Private Services that are only used within the application, as long as you use explicit Intents
to the class then you do not have to worry about accidently sending it to any other application.

Sample code of how to use the startService type Service is shown below.
Points (Creating a Service):
1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from the same
application.

3. Sensitive information can be sent since the requesting application is in the same application.

AndroidManifest.xml

<?rxml verstion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.privateservice" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<!-- Private Service derived from Service class ——>
<!-— xxx POINT 1 *¥* Explicitly set the exported attribute to false. -->
<service android:name=".PrivateStartService" android:exported="false”/>

<!-- Private Service derived from IntentService class ——>
<I-- *%xx POINT 1 *** Explicitly set the exported attribute to false. —-—>

<service android:name=".PrivateIntentService" android:exported="false"/>

</application>

(continues on next page)

171

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

</manifest>

PrivateStartService. java

/%

*
*
*
*
*
*
*
*
*
*
*
*
*

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

package org.jssec.android.service.privateservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.widget.Toast;

public class PrivateStartService extends Service {

// The onCreate gets called only one time when the service starts.
@0verride
public void onCreate() {
Toast.makeText (this, "PrivateStartService - onCreate()",
Toast .LENGTH_SHORT) . show () ;

// The onStartCommand gets called each time after the startService gets called.
@0verride
public int onStartCommand(Intent intent, int flags, int startId) {
// *#% POINT 2 #*** Handle the received intent carefully and securely,
// even though the intent was sent from the same application.
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."
String param = intent.getStringExtra("PARAM");
Toast .makeText (this,
String.format ("PrivateStartService\nReceived param: \"%s\"",
param) ,
Toast . LENGTH_LONG) .show() ;

return Service.START_NOT_STICKY;

// The onDestroy gets called only one time when the service stops.
@0verride
public void onDestroy() {
Toast.makeText (this,
"PrivateStartService - onDestroy()",
Toast .LENGTH_SHORT) .show () ;

@0verride
public IBinder onBind(Intent intent) {

(continues on next page)

172

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// This service does not provide binding, so return null
return null;

Next is sample code for Activity which uses Private Service.
Points (Using a Service):
4. Use the explicit intent with class specified to call a service in the same application.
5. Sensitive information can be sent since the destination service is in the same application.

6. Handle the received result data carefully and securely, even though the data came from a service
in the same application.

PrivateUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

package org.jssec.android.service.privateservice;

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PrivateUserActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.privateservice_activity) ;

// —--- StartService control ---

public void onStartServiceClick(View v) {
// **% POINT 4 #*** Use the explicit intent with class specified to call
// a service in the same application.
Intent intent = new Intent(this, PrivateStartService.class);
// *#% POINT 5 *** Sensitive information can be sent since the destination
// service is in the same application.

intent.putExtra("PARAM", "Sensitive information");

startService(intent) ;

// —-= StopService control --

(continues on next page)

173

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public void onStopServiceClick(View v) {
doStopService() ;
}

@0verride

public void onStop() {
super.onStop() ;
// Stop service if the service is running.
doStopService() ;

private void doStopService() {
// *%% POINT 4 #*** Use the explicit intent with class specified to call
// a service in the same application.
Intent intent = new Intent(this, PrivateStartService.class);
stopService (intent) ;

// --- IntentService control ---

public void onIntentServiceClick(View v) {
// *%% POINT 4 #*** Use the explicit intent with class specified to call
// a service in the same application.
Intent intent = new Intent(this, PrivateIntentService.class);

// **% POINT 5 **% Sensitive information can be sent since the destination
// service is in the same application.

intent.putExtra("PARAM", "Sensitive information");

startService(intent) ;

4.4.1.2 Creating/Using Public Services

Public Service is the Service which is supposed to be used by the unspecified large number of applications.
It’s necessary to pay attention that it may receive the information (Intent etc.) which was sent by
Malware. In addition, since an Intent to start Service may be received by Malware, explicit Intent
should be used for launching Public Service, and <intent-filter> should not be declared in Service.

Sample code of how to use the startService type Service is shown below.
Points (Creating a Service):
1. Explicitly set exported = “true” without defining the intent filter.
2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?rxml verstion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.service.publicservice" >

<I-- API 28 —->
<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

<application
android:icon="@drawable/ic_launcher"

(continues on next page)

174

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

android:label="@string/app_name"
android:allowBackup="false" >

<!-- Most standard Service —-->
<!-- **xx POINT 1 *** Explicitly set exported = "true" without defining the intent filter. -
—=>

<service android:name=".PublicStartService" android:exported="true" />

<!-- Public Service derived from IntentService class -->

<!-— xxx POINT 1 **x Ezplicitly set exported = "true" without defining the intent filter. -
o>

<service android:name=".PublicIntentService" android:exported="true" />

</application>

</manifest>

PublicIntentService. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

package org.jssec.android.service.publicservice;

*
*
*
*
*
*
* http://www. apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

import android.app.IntentService;
import android.app.Notification;

import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.content.Context;

import android.content.Intent;

import android.os.Build;

import android.widget.Toast;

public class PublicIntentService extends IntentService{
public static final String INTENT_CHANNEL = "intent_channel";

VAL
* Default constructor must be provided when a service extends
* IntentService class.
* If it does mot exist, an error occurs.
*/
public PublicIntentService() {
super ("CreatingTypeBService") ;

}

// The onCreate gets called only one time when the Service starts.
@0verride
public void onCreate() {

super.onCreate () ;

(continues on next page)

175

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Toast .makeText (this,
this.getClass() .getSimpleName() + " - onCreate()",
Toast .LENGTH_SHORT) . show () ;

// The onHandleIntent gets called each time after the startService gets called.
@0verride
protected void onHandleIntent(Intent intent) {
if (Build.VERSION.SDK_INT >= 26) {
Context context = getApplicationContext();
String title = context.getString(R.string.app_name);
NotificationChannel default_channel =
new NotificationChannel (INTENT_CHANNEL, "Intent Channel",
NotificationManager . IMPORTANCE_DEFAULT) ;
NotificationManager notificationManager =
(NotificationManager) this.getSystemService(Context .NOTIFICATION_SERVICE) ;
notificationManager.createNotificationChannel (default_channel) ;
Notification notification =
new Notification.Builder (context, INTENT_CHANNEL)
.setContentTitle(title)
.setSmalllcon(android.R.drawable.btn_default)
.setContentText ("Intent Channel")
.setAutoCancel (true)
.setWhen(System. currentTimeMillis())
.build();
startForeground (1, notification);
}
// *%% POINT 2 *** Handle intent carefully and securely.
// Since it's public service, the intent may come from malicious
// application.
// Omitted, since this s a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely.”
String param = intent.getStringExtra("PARAM");
Toast .makeText (this,
String.format ("Recieved parameter \"%s\"", param),
Toast.LENGTH_LONG) . show() ;

// The onDestroy gets called only one time when the service stops.
@Override
public void onDestroy() {
Toast.makeText (this,
this.getClass() .getSimpleName() + " - onDestroy()",
Toast .LENGTH_SHORT) . show () ;

Next is sample code for Activity which uses Public Service.
Points (Using a Service):

4. Call service by Explicit Intent

5. Do not send sensitive information.

6. When receiving a result, handle the result data carefully and securely.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

(continues on next page)

176

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.service.publicserviceuser" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >
<activity
android:name=".PublicUserActivity"
android:label="@string/app_name"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>

</manifest>

PublicUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ %X % %X X X ¥ X X X ¥ * Xx

*/

package org. jssec.android.service.publicserviceuser;

import android.app.Activity;
import android.content.Intent;
import android.os.Build;
import android.os.Bundle;
import android.view.View;

public class PublicUserActivity extends Activity {

// Using Service Info

private static final String TARGET_PACKAGE =
"org.jssec.android.service.publicservice";

private static final String TARGET_START_CLASS =
"org.jssec.android.service.publicservice.PublicStartService";

private static final String TARGET_INTENT_CLASS =
"org.jssec.android.service.publicservice.PublicIntentService";

@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

setContentView(R.layout.publicservice_activity);

(continues on next page)

177

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// —--- StartService control ---

public void onStartServiceClick(View v) {
Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice

=");

// *%% POINT 4 *** Call service by Exzplicit Intent
intent.setClassName (TARGET_PACKAGE, TARGET_START_CLASS);

// *%% POINT 5 #*** Do not send sensitive information.
intent.putExtra("PARAM", "Not sensitive information");

if (Build.VERSION.SDK_INT >= 26) {
startForegroundService (intent) ;
} else {
startService(intent) ;

startService(intent) ;

// #x% POINT 6 *** When receiving a rTesult, handle the result data
// carefully and securely.

// This sample code uses startService(), so receiving no result.

// —-—- StopService control ---

public void onStopServiceClick(View v) {
doStopService() ;
}

// —--- IntentService control —-—-—

public void onIntentServiceClick(View v) {
Intent intent = new Intent("org.jssec.android.service.publicservice.action.
< intentservice");

// *¥x POINT 4 **x Call service by Ezplicit Intent
intent.setClassName (TARGET_PACKAGE, TARGET_INTENT_CLASS);

// *%x POINT 5 *%x Do not send sensitive information.
intent.putExtra("PARAM", "Not sensitive information");

if (Build.VERSION.SDK_INT >= 26) {
startForegroundService (intent) ;
} else {
startService(intent) ;

@Override

public void onStop(){
super.onStop() ;
// Stop service if the service is Tunning.
doStopService() ;

// Stop service
private void doStopService() {
Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice

")

(continues on next page)

178

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// *%% POINT 4 *** Call service by Ezplicit Intent
intent.setClassName (TARGET_PACKAGE, TARGET_START_CLASS);

stopService(intent) ;

4.4.1.3 Creating/Using Partner Services

Partner Service is Service which can be used only by the particular applications. System consists of
partner company’s application and In house application, this is used to protect the information and
features which are handled between a partner application and In house application.

Following is an example of AIDL bind type Service.
Points (Creating a Service):
1. Explicitly set exported = “true” without defining the intent filter.
2. Verify that the certificate of the requesting application has been registered in the own white list.

3. Do not (Cannot) recognize whether the requesting application is partner or not by onBind (on-
StartCommand, onHandleIntent).

4. Handle the received intent carefully and securely, even though the intent was sent from a partner
application.

5. Return only information that is granted to be disclosed to a partner application.

In addition, refer to “5.2.1.3. How to Verify the Hash Value of an Application’s Certificate” for how to
verify the certification hash value of destination application which is specified to white list.

AndroidManifest.xml

<?zml wversion="1.0" encoding="utf-8"2>

<manifest zmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.service.partnerservice.aidl" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Service using AIDL -->
<!-- **xx POINT 1 *** Explicitly set exported = "true" without defining the intent filter. -
o>
<service
android:name="org. jssec.android.service.partnerservice.aidl.PartnerAIDLService"
android:exported="true" />
</application>

</manifest>

In this example, 2 AIDL files are to be created. One is for callback interface to give data from Service
to Activity. The other one is Interface to give data from Activity to Service and to get information. In
addition, package name that is described in AIDL file should be consistent with directory hierarchy in
which AIDL file is created, same like package name described in java file.

IPartnerAIDLServiceCallback.aidl
package org.jssec.android.service.partnerservice.aidl;

interface IPartnerAIDLServiceCallback {

(continues on next page)

179

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Ve
* It's called when the wvalue is changed.
*/

void valueChanged(String info);

IPartnerAIDLService.aidl
package org.jssec.android.service.partnerservice.aidl;

import org.jssec.android.service.partnerservice.aidl.IExclusiveAIDLServiceCallback;
interface IPartnerAIDLService {

J**
* Register Callback
*/
void registerCallback(IPartnerAIDLServiceCallback cb);

J**
* Get Information
*/
String getInfo(String param) ;

J**
* Unregister Callback
*/
void unregisterCallback(IPartnerAIDLServiceCallback cb) ;

PartnerAIDLService. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

package org.jssec.android.service.partnerservice.aidl;

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Service;

import android.content.Context;
import android.content.Intent;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteCallbackList;
import android.os.RemoteException;
import android.widget.Toast;

(continues on next page)

180

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public class PartnerAIDLService extends Service {
private static final int REPORT_MSG = 1;
private static final int GETINFO_MSG = 2;

// The wvalue which this service informs to client
private int mValue = O;

// **% POINT 2 #** Verify that the certificate of the requesting application
// has been registered in the own white list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context);
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// "org.jssec.android.service.partnerservice.atdluser”

sWhitelists.add("org. jssec.android.service.partnerservice.aidluser", isdebug ?
// Certificate hash value of debug.keystore "androiddebugkey”
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of keystore "partner key"
"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register other partner applications in the same way

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname) ;

// Object to register callback

// Methods which RemoteCallbackList provides are thread-safe.

private final RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks =
new RemoteCallbackList<IPartnerAIDLServiceCallback>();

// Handler to send data when callback is called.
private static class ServiceHandler extends Handler{

private Context mContext;
private RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks;
private int mValue = O;

public ServiceHandler(Context context,
RemoteCallbackList<IPartnerAIDLServiceCallback> callback, int value){
this.mContext = context;
this.mCallbacks = callback;
this.mValue = value;

@0verride
public void handleMessage (Message msg) {
switch (msg.what) {
case REPORT_MSG: {
if (mCallbacks == null){
return;
}
// Start broadcast
// To call back on to the registered clients, use beginBroadcast().
// beginBroadcast() makes a copy of the currently registered
// callback list.
final int N = mCallbacks.beginBroadcast();

(continues on next page)

181

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

for (int i = 0; 1 < N; i++) {
IPartnerAIDLServiceCallback target =
mCallbacks.getBroadcastItem(i) ;
try {
// *%% POINT 5 #*** Information that is granted to disclose
// to partner applications can be returned.
target.valueChanged("Information disclosed to partner applicationy
— (callback from Service) No." + (++mValue));

} catch (RemoteException e) {
// Callbacks are managed by RemoteCallbackList, do mnot
// unregister callbacks here.
// RemoteCallbackList.kill() unregister all callbacks
}

}
// finishBroadcast() cleans up the state of a broadcast previously

// initiated by calling beginBroadcast().
mCallbacks.finishBroadcast () ;

// Repeat after 10 seconds

sendEmptyMessageDelayed (REPORT_MSG, 10000) ;

break;
}
case GETINFO_MSG: {

if (mContext !'= null) {

Toast.makeText (mContext,
(String) msg.obj, Toast.LENGTH_LONG).show();

}
break;
}
default:
super .handleMessage (msg) ;
break;
} // switch

protected final ServiceHandler mHandler =
new ServiceHandler(this, mCallbacks, mValue);

// Interfaces defined in AIDL
private final IPartnerAIDLService.Stub mBinder =
new IPartnerAIDLService.Stub() {
private boolean checkPartner() {
Context ctx = PartnerAIDLService.this;
if (!PartnerAIDLService.checkPartner (ctx,
Utils.getPackageNameFromUid(ctx, getCallingUid()))) {
mHandler.post (new Runnable(){
@Override
public void run(){
Toast.makeText (PartnerAIDLService.this,
"Requesting application is not partner application.",
Toast .LENGTH_LONG) . show() ;

b;
return false;
}
return true;
}
public void registerCallback(IPartnerAIDLServiceCallback cb) {
// *%% POINT 2 #*** Verify that the certificate of the requesting

(continues on next page)

182

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// application has been registered in the own white list.
if (!checkPartner()) {
return;
}
if (cb != null) mCallbacks.register(cb);
}
public String getInfo(String param) {
// *%% POINT 2 *** Verify that the certificate of the requesting
// application has been registered in the own white list.
if (!checkPartner()) {
return null;
}
// *#% POINT 4 **% Handle the received intent carefully and
// securely, even though the intent was sent from a partner
// application
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."”
Message msg = new Message();
msg.what = GETINFO_MSG;
msg.obj = String.format("Method calling from partner application. Recieved \"

—%s\"", param);
PartnerAIDLService.this.mHandler.sendMessage (msg) ;
// *¥*x POINT 5 #*#* Return only information that is granted to be
// disclosed to a partner application.
return "Information disclosed to partner application (method from Service)";
¥

public void unregisterCallback(IPartnerAIDLServiceCallback cb) {
// *¥*x POINT 2 *#x Verify that the certificate of the requesting
// application has been registered in the own white list.
if (!checkPartner()) {
return;

if (cb != null) mCallbacks.unregister(cb);
s

@0verride

public IBinder onBind(Intent intent) {
// *¥x POINT 3 *#x Verify that the certificate of the requesting
// application has been registered in the own white list.
// So requesting application must be wvalidated in methods defined
// in AIDL every time.
return mBinder;

@Override
public void onCreate() {
Toast.makeText (this,
this.getClass() .getSimpleName() + " - onCreate()",
Toast .LENGTH_SHORT) . show() ;

// During service is running, inform the incremented number periodically.
mHandler . sendEmptyMessage (REPORT_MSG) ;

@0verride
public void onDestroy() {
Toast .makeText (this,

(continues on next page)

183

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

this.getClass() .getSimpleName() + " - onDestroy()",
Toast .LENGTH_SHORT) .show () ;

// Unregister all callbacks
mCallbacks.kill();

mHandler .removeMessages (REPORT_MSG) ;

PkgCertWhitelists. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.shared;

import android.content.pm.PackageManager;
import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase() ;
if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hez char

mWhitelists.put (pkgname, sha256) ;
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {

(continues on next page)

184

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// ** 4f API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager() ;

return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;

} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ %X % %X X X ¥ X X X ¥ * Xx

*
N

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname)) ;

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager() ;
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {

(continues on next page)

185

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("7%02X", b));
}

return hexadecimal.toString();

Next is sample code of Activity which uses partner only Service.
Points (Using a Service):
6. Verify if the certificate of the target application has been registered in the own white list.
7. Return only information that is granted to be disclosed to a partner application.
8. Use the explicit intent to call a partner service.
9

. Handle the received result data carefully and securely, even though the data came from a partner
application.

PartnerAIDLUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spectific language governing permissions and
limitations under the License.

*/

package org.jssec.android.service.partnerservice.aidluser;

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLService;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLServiceCallback;
import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

(continues on next page)

186

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteException;
import android.view.View;

import android.widget.Toast;

public class PartnerAIDLUserActivity extends Activity {

private boolean mIsBound;
private Context mContext;

private final static int MGS_VALUE_CHANGED = 1;

// **% POINT 6 *** Verify if the certificate of the target application has
// been registered in the own white list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context) ;
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner service application
// "org.jssec.android.service.partnerservice.atdl”
sWhitelists.add("org.jssec.android.service.partnerservice.aidl", isdebug ?
// Certificate hash value of debug.keystore "androtddebugkey"
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255"
// Certificate hash value of keystore "my company key"
"D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA");

// Register other partner service applications in the same way

}

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

// Information about destination (requested) partner activity.

private static final String TARGET_PACKAGE =
"org.jssec.android.service.partnerservice.aidl";

private static final String TARGET_CLASS =
"org.jssec.android.service.partnerservice.aidl.PartnerAIDLService";

private static class ReceiveHandler extends Handler{
private Context mContext;

public ReceiveHandler (Context context){
this.mContext = context;

}

@0verride
public void handleMessage (Message msg) {
switch (msg.what) {
case MGS_VALUE_CHANGED: {
String info = (String)msg.obj;
Toast .makeText (mContext,
String.format ("Received \"Ys\" with callback.", info),
Toast .LENGTH_SHORT) .show() ;
break;

(continues on next page)

187

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

default:
super.handleMessage (msg) ;
break;

} // switch

private final ReceiveHandler mHandler = new ReceiveHandler (this);

// Interfaces defined in AIDL. Receive notice from service
private final IPartnerAIDLServiceCallback.Stub mCallback =
new IPartnerAIDLServiceCallback.Stub() {
@0verride
public void valueChanged(String info) throws RemoteException {
Message msg = mHandler.obtainMessage (MGS_VALUE_CHANGED, info);
mHandler.sendMessage (msg) ;

};

// Interfaces defined in AIDL. Inform service.
private IPartnerAIDLService mService = null;

// Connection used to connect with service. This is necessary when service 1S
// implemented with bindService().
private ServiceConnection mConnection = new ServiceConnection() {

// This 4s called when the connection with the service has been
// established.
@0verride
public void onServiceConnected(ComponentName className,
IBinder service) {
mService = IPartnerAIDLService.Stub.asInterface(service);

try{
// connect to service
mService.registerCallback(mCallback) ;

}catch(RemoteException e){
// service stopped abnormally

}

Toast.makeText (mContext,
"Connected to service",
Toast .LENGTH_SHORT) . show() ;

// This is called when the service stopped abnormally and connection
// is disconnected.
@0verride
public void onServiceDisconnected(ComponentName className) {
Toast .makeText (mContext,
"Disconnected from service",
Toast .LENGTH_SHORT) . show() ;

};
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

setContentView(R.layout.partnerservice_activity);

(continues on next page)

188

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

mContext = this;

// —-- StartService control --

public void onStartServiceClick(View v) {
// Start bindService
doBindService() ;

// —-= GetInfo control --
public void onGetInfoClick(View v) {
getServiceinfo () ;

}

// —-— StopService control --
public void onStopServiceClick(View v) {
doUnbindService() ;

}

@0verride

public void onDestroy() {
super.onDestroy () ;
doUnbindService () ;

/K
* Connect to service
*/
private void doBindService() {
if (!mIsBound){
// *¥x POINT 6 **x Verify if the certificate of the target application
// has been registered in the own white list.
if (!checkPartner(this, TARGET_PACKAGE)) {
Toast .makeText (this,
"Destination(Requested) sevice application is not registered in white list.
", Toast.LENGTH_LONG) .show();
return;

}
Intent intent = new Intent();

// **% POINT 7 #** Return only information that is granted to be
// disclosed to a partner application.
intent.putExtra("PARAM",

"Information disclosed to partner application");

// **% POINT 8 #** Use the explicit intent to call a partner service.
intent.setClassName (TARGET_PACKAGE, TARGET_CLASS);

bindService(intent, mConnection, Context.BIND_AUTO_CREATE);
mIsBound = true;

/**
* Disconnect service
*/
private void doUnbindService() {
if (mIsBound) {
// Unregister callbacks which have been registered.

(continues on next page)

189

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

if (mService != null){
try{
mService.unregisterCallback(mCallback) ;
}catch(RemoteException e){
// Service stopped abnormally
// Omitted, since it' s sample.

}
unbindService (mConnection) ;
Intent intent = new Intent();

// **% POINT 8 #x* Use the explicit intent to call a partner service.
intent.setClassName (TARGET_PACKAGE, TARGET_CLASS);

stopService(intent) ;

mIsBound = false;

/**
* Get information from service
*/
void getServiceinfo() {
if (mIsBound && mService != null) {
String info = null;

try {
// *%% POINT 7 *** Return only information that is granted to be
// disclosed to a partner application.

info = mService.getInfo("Information disclosed to partner application (method,,

—from activity)");
} catch (RemoteException e) {
e.printStackTrace() ;

}

// *%x POINT 9 **x Handle the received result data carefully and

// securely, even though the data came from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText (mContext,
String.format ("Received \"%s\" from service.", info),
Toast.LENGTH_SHORT) .show() ;

PkgCertWhitelists. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

*
*
*
*
*
*
*
*
*
*
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

(continues on next page)

190

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* See the License for the specific language governing permissions and
* limitations under the License.

*/
package org.jssec.android.shared;

import android.content.pm.PackageManager;
import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64)
return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase();
if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)
return false; // found non hexz char

mWhitelists.put (pkgname, sha256) ;
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash wvalue which corresponds to pkgname.
String correctHash = mWhitelists.get (pkgname) ;

// Compare the actual hash value of pkgname with the correct hash value.
if (Build.VERSION.SDK_INT >= 28) {
// *% if API Level >= 28, direct checking is possible
PackageManager pm = ctx.getPackageManager();
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else use the facility of PkgCert
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

* % ¥ %X X ¥ % x *x

Unless required by applicable law or agreed to in writing, software

(continues on next page)

191

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* %X X %

*/
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager() ;
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data) ;
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("7%02X", b));
}

return hexadecimal.toString();

192

Secure Coding Guide Documentation Release 2019-12-01

4.4.1.4 Creating/Using In-house Services

In-house Services are the Services which are prohibited to be used by applications other than in-house
applications. They are used in applications developed internally that want to securely share information
and functionality.

Following is an example which uses Messenger bind type Service.
Points (Creating a Service):
1. Define an in-house signature permission.
2. Require the in-house signature permission.
3. Explicitly set exported = “true” without defining the intent filter.
4. Verify that the in-house signature permission is defined by an in-house application.
5

. Handle the received intent carefully and securely, even though the intent was sent from an in-house
application.

6. Sensitive information can be returned since the requesting application is in-house.

7. When exporting an APK, sign the APK with the same developer key as the requesting application.

AndroidManifest.xml

<?zml wversion="1.0" encoding="utf-8"2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.service.inhouseservice.messenger" >

<I-- *xx POINT 1 *** Define an in-house signature permission ——>

<permission
android:name="org. jssec.android.service.inhouseservice.messenger .MY_PERMISSION"
android:protectionLevel="signature" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Service using Messenger —->
<!-- x%xx POINT 2 *** Require the in-house stignature permission ——>
<I-— x#x POINT 3 *** Exzplicitly set exported = "true” without defining the intent filter. -
o>
<service
android:name="org. jssec.android.service.inhouseservice.messenger.
—InhouseMessengerService"
android:exported="true"
android:permission="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION" /
>
</application>

</manifest>

InhouseMessengerService. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

*
*

* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*
*
*

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

(continues on next page)

193

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ezpress or implied.
See the License for the specific language governing permissions and
limitations under the License.

* ¥ % X%

*/
package org.jssec.android.service.inhouseservice.messenger;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Iterator;

import android.app.Service;

import android.content.Context;
import android.content.Intent;
import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;
import android.os.RemoteException;
import android.widget.Toast;

public class InhouseMessengerService extends Service{
// In-house signature permission
private static final String MY_PERMISSION =
"org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of debug.keystore "androiddebugkey"
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26,,

—F77C8255";
} else {
// Certificate hash value of keystore "my company key"
sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOES8B D7B3A7C2,
—42E142CA";
}
}

return sMyCertHash;

// Manage clients(destinations of sending data) in a list
private ArrayList<Messenger> mClients = new ArrayList<Messenger>();

// Messenger used when service recetve data from client
private final Messenger mMessenger =

new Messenger(new ServiceSideHandler (mClients));

// Handler which handles message received from client
private static class ServiceSideHandler extends Handler{

private ArrayList<Messenger> mClients;

(continues on next page)

194

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public ServiceSideHandler (ArrayList<Messenger> clients){
mClients = clients;

}

@0verride
public void handleMessage (Message msg){
switch(msg.what){
case CommonValue.MSG_REGISTER_CLIENT:
// Add messenger received from client
mClients.add(msg.replyTo) ;
break;
case CommonValue.MSG_UNREGISTER_CLIENT:
mClients.remove (msg.replyTo) ;
break;
case CommonValue.MSG_SET_VALUE:
// Send data to client
sendMessageToClients (mClients) ;

break;
default:
super.handleMessage (msg) ;
break;
}
}
}
J**
* Send data to client
*/

private static void sendMessageToClients(ArrayList<Messenger> mClients){

// **% POINT 6 *** Sensitive information can be returned since the
// requesting application %is in-house.
String sendValue = "Sensitive information (from Service)";

// Send data to the registered client one by ome.
// Use iterator to send all clients even though clients are removed in the
// loop process.
Iterator<Messenger> ite = mClients.iterator();
while(ite.hasNext ()){
try {
Message sendMsg =
Message.obtain(null, CommonValue.MSG_SET_VALUE, null);

Bundle data = new Bundle();
data.putString("key", sendValue);
sendMsg.setData(data) ;

Messenger next = ite.next();
next.send(sendMsg) ;

} catch (RemoteException e) {

// If client does not exzits, remove it from a list.
ite.remove();

@0verride
public IBinder onBind(Intent intent) {

// *%% POINT 4 #*** Verify that the in-house signature permission s

(continues on next page)

195

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText (this,"In-house defined signature permission is not defined by in-

—house application.", Toast.LENGTH_LONG) .show();

return null;

}

// *%% POINT 5 #*** Handle the received intent carefully and securely,

// even though the intent was sent from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."”

String param = intent.getStringExtra("PARAM") ;

Toast.makeText (this,
String.format ("Received parameter \"Ys\".", param),
Toast . LENGTH_LONG) .show() ;

return mMessenger.getBinder();

@0verride
public void onCreate() {

}

Toast .makeText (this, "Service - onCreate()", Toast.LENGTH_SHORT).show();

@0verride
public void onDestroy() {

}

Toast .makeText (this, "Service - onDestroy()", Toast.LENGTH_SHORT) .show();

SigPerm. java

/*

¥ %X % X X X ¥ X X X ¥ * *x

*
N

Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

package org.jssec.android.shared;

import
import
import
import
import

import

public

android.content.Context;
android.content.pm.PackageManager;
android.content.pm.PackageManager.NameNotFoundException;
android.content.pm.PermissionInfo;

android.os.Build;

static android.content.pm.PackageManager.CERT_INPUT_SHA256;

class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

(continues on next page)

196

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission
// named sigPermName.
PackageManager pm = ctx.getPackageManager();
PermissionInfo pi =
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;
String pkgname = pi.packagelName;
// Fail if the permission named sigPermName is mot a Signature
// Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash wvalue of pkgname with the correct hash
// value.
if (Build.VERSION.SDK_INT >= 28) {
// ** 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname)) ;

} catch (NameNotFoundException e) {
return false;

}

PkgCert . java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www. apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

(continues on next page)

197

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackagelInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256) ;
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null,;

}

private static String byte2hex(bytel[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format ("%02X", b));
}

return hexadecimal.toString();

4% Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting
application.

[® Generate signed APK =)
Key store path: ' Ci¥jssec¥Projects¥keystore
I Qmmhanew".l | Chxseexﬁﬁng".
Key store password: -'
Key alias: @‘IIII!HHHIII!II" ”."]
Key password: [.......]
[C] Remember passwords
o) R [] [

Fig. 4.4.2: Sign the APK with the same developer key as the requesting application

198

Secure Coding Guide Documentation Release 2019-12-01

Next is the sample code of Activity which uses in house only Service.
Points (Using a Service):
8. Declare to use the in-house signature permission.
9. Verify that the in-house signature permission is defined by an in-house application.
10. Verify that the destination application is signed with the in-house certificate.
11. Sensitive information can be sent since the destination application is in-house.
12. Use the explicit intent to call an in-house service.

13. Handle the received result data carefully and securely, even though the data came from an in-house
application.

14. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?rml verstion="1.0" encoding="utf-8"?>

<manifest zmlns:android="http://schemas.android.com/apk/res/android"
package="org. jssec.android.service.inhouseservice.messengeruser" >

<!-— xxx POINT 8 *** Declare to use the in-house signature permission. ——>
<uses-permission
android:name="org. jssec.android.service.inhouseservice.messenger .MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >
<activity
android:name="org. jssec.android.service.inhouseservice.messengeruser.
—InhouseMessengerUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

InhouseMessengerUserActivity. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www. apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % % X X ¥ X X X ¥ * X *x

*
N

package org. jssec.android.service.inhouseservice.messengeruser;

(continues on next page)

199

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;

import android.content.ServiceConnection;
import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;

import android.os.RemoteException;
import android.view.View;

import android.widget.Toast;

public class InhouseMessengerUserActivity extends Activity {

private boolean mIsBound;
private Context mContext;

// Destination (Requested) service application information

private static final String TARGET_PACKAGE =
"org.jssec.android.service.inhouseservice.messenger";

private static final String TARGET_CLASS =
"org.jssec.android.service.inhouseservice.messenger.InhouseMessengerService";

// In-house signature permission
private static final String MY_PERMISSION =
"org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of debug.keystore "androiddebugkey"
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26,

—F77C8255";
} else {
// Certificate hash value of keystore "my company key"
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2,
—42E142CA";
X
}

return sMyCertHash;

// Messenger used when this application receives data from service.
private Messenger mServiceMessenger = null;

// Messenger used when this application sends data to service.
private final Messenger mActivityMessenger =
new Messenger (new ActivitySideHandler());

// Handler which handles message received from service
private class ActivitySideHandler extends Handler {
@Override
public void handleMessage (Message msg) {

(continues on next page)

200

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

switch (msg.what) {
case CommonValue.MSG_SET_VALUE:
Bundle data = msg.getData();
String info = data.getString("key");
// *%% POINT 13 *#** Handle the received result data carefully and
// securely, even though the data came from an in-house application
// Omitted, since this is a sample. Please refer to
// "3.2 Handling Input Data Carefully and Securely."”
Toast .makeText (mContext,
String.format ("Received \"%s\" from service.", info),
Toast .LENGTH_SHORT) .show () ;
break;
default:
super .handleMessage (msg) ;

// Connection used to connect with service. This is necessary when service 1S
// implemented with bindService().
private ServiceConnection mConnection = new ServiceConnection() {

// This is called when the connection with the service has been
// established.
@0verride
public void onServiceConnected(ComponentName className,
IBinder service) {
mServiceMessenger = new Messenger(service) ;
Toast .makeText (mContext,
"Connect to service",
Toast.LENGTH_SHORT) . show() ;

try {
// Send own messenger to service
Message msg =
Message.obtain(null, CommonValue.MSG_REGISTER_CLIENT) ;
msg.replyTo = mActivityMessenger;
mServiceMessenger.send(msg) ;
} catch (RemoteException e) {
// Service stopped abnormally
}

// This is called when the service stopped abnormally and connection
// is disconnected.
@0verride
public void onServiceDisconnected(ComponentName className) {
mServiceMessenger = null;
Toast .makeText (mContext,
"Disconnected from service",
Toast.LENGTH_SHORT) . show() ;

};

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.inhouseservice_activity);

mContext = this;

(continues on next page)

201

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

// --- StartService control ---

public void onStartServiceClick(View v) {
// Start bindService
doBindService() ;

// -= GetInfo control --
public void onGetInfoClick(View v) {
getServiceinfo();

}

// —-— StopService control --
public void onStopServiceClick(View v) {
doUnbindService() ;

}

@0verride

protected void onDestroy() {
super.onDestroy() ;
doUnbindService() ;

/*x
* Connect to service
*/
void doBindService() {
if (!mIsBound){
// *¥x POINT 9 #*x Verify that the in-house signature permission is
// defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText (this, "In-house defined signature permission is not defined by
—in-house application.", Toast.LENGTH_LONG).show();
return;

}

// **¥x POINT 10 *x% Verify that the destination application is signed
// with the in-house certificate.
if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
Toast.makeText (this, "Destination(Requested) service application is not in-
—house application.", Toast.LENGTH_LONG) .show();
return;

}

Intent intent = new Intent();

// ##*% POINT 11 *#** Senstitive information can be sent since the
// destination application is in-house one.
intent.putExtra("PARAM", "Sensitive information");

// **% POINT 12 *** Use the exzplicit intent to call an in-house
// service.

intent.setClassName (TARGET_PACKAGE, TARGET_CLASS);

bindService(intent, mConnection, Context.BIND_AUTO_CREATE);
mIsBound = true;

%k

(continues on next page)

202

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

* Disconnect service
*/
void doUnbindService() {
if (mIsBound) {
unbindService (mConnection) ;
mIsBound = false;

%k
* Get information from service
*/
void getServiceinfo() {
if (mServiceMessenger != null) {
try {
// Request sending information
Message msg = Message.obtain(null, CommonValue.MSG_SET_VALUE);
mServiceMessenger.send (msg) ;
} catch (RemoteException e) {
// Service stopped abnormally
¥

SigPerm. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ % ¥ X X X ¥ X X X ¥ *x x

*
N

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;
public class SigPerm {

public static boolean test(Context ctx, String sigPermName,
String correctHash) {

if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
try {

// Get the package name of the application which declares a permission
// named sigPermName.

(continues on next page)

203

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =
pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA) ;

String pkgname = pi.packagelName;

// Fail if the permisston named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)
return false;

// Compare the actual hash value of pkgname with the correct hash
// value.
if (Build.VERSION.SDK_INT >= 28) {
// **% 4f API Level >= 28, direct check is possible
return pm.hasSigningCertificate (pkgname,
Utils.hex2Bytes(correctHash),
CERT_INPUT_SHA256) ;
} else {
// else(API Level < 28) use the facility of PkgCert
return correctHash.equals(PkgCert.hash(ctx, pkgname)) ;

} catch (NameNotFoundException e) {
return false;

}

PkgCert. java
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

(continues on next page)

204

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo =
pm.getPackageInfo (pkgname, PackageManager.GET_SIGNATURES) ;
// Will not handle multiple signatures.
if (pkginfo.signatures.length != 1) return null;
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert) ;
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

}

private static byte[] computeSha256(bytel[] data) {
try {
return MessageDigest.getInstance("SHA-256") .digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

}

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append (String.format ("%02X", b));
}

return hexadecimal.toString();

% Point14 *** When exporting an APK, sign the APK with the same developer key as the destination
application.

[@ Generate Signed APK g
Key store path: ' Ci¥jssec¥Projects¥keystore
I Create new... | | Choose existing... |
Key store password: -'
Key alias: |]
Key password: []

[C] Remember passwords

) o IR

Fig. 4.4.3: Sign the APK with the same developer key as the destination application

4.4.2 Rule Book

Implementing or using service, follow the rules below.

205

Secure Coding Guide Documentation Release 2019-12-01

1. Service that Is Used Only in an application, Must Be Set as Private (Required)
2. Handle the Received Data Carefully and Securely (Required)

3. Use the In-house Defined Signature Permission after Verifying If it’s Defined by an In-house
Application (Required)

4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

5. When Returning a Result Information, Pay Attention the Result Information Leakage from the
Destination Application (Required)

6. Use the Explicit Intent if the Destination Service Is fized (Required)
7. Verify the Destination Service If Linking with the Other Company’s Application (Required)

8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level Protection
(Required)

9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

4.4.2.1 Service that Is Used Only in an application, Must Be Set as Private (Required)

Service that is used only in an application (or in same UID) must be set as Private. It avoids the
application from receiving Intents from other applications unexpectedly and eventually prevents from
damages such as application functions are used or application behavior becomes abnormal.

All you have to do in implementation is set exported attribute false when defining Service in Android-
Manifest.xml.

AndroidManifest.xml
<!-- Private Service derived from Service class ——>
<I-- *%xx 4.4.1.1 — POINT 1 *** Egplicitly set the exported attridbute to false. -->
<service android:name=".PrivateStartService" android:exported="false"/>

In addition, this is a rare case, but do not set Intent Filter when service is used only within the application.
The reason is that, due to the characteristics of Intent Filter, public service in other application may be
called unexpectedly though you intend to call Private Service within the application.

AndroidManifest.xml(Not recommended)
<!-- Private Service derived from Service class ——>
<I-— x4k 4.4.1.1 - POINT 1 *** Ezplicitly set the exported attribute to false. -->
<service android:name=".PrivateStartService" android:exported="false">
<intent-filter>
<action android:name="org.jssec.android.service.0OPEN />
</intent-filter>
</service>

See “4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)”.

4.4.2.2 Handle the Received Data Carefully and Securely (Required)

Same like Activity, In case of Service, when processing a received Intent data, the first thing you should
do is input validation. Also in Service user side, it’s necessary to verify the safety of result information
from Service. Please refer to “4.1.2.5. Handling the Received Intent Carefully and Securely (Required)”
and “4.1.2.9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required).”

In Service, you should also implement calling method and exchanging data by Message carefully.

Please refer to “3.2. Handling Input Data Carefully and Securely”

206

Secure Coding Guide Documentation Release 2019-12-01

4.4.2.3 Use the In-house Defined Signature Permission after Verifying If it’s Defined by an In-house
Application (Required)

Make sure to protect your in-house Services by defining in-house signature permission when creating the
Service. Since defining a permission in the AndroidManifest.xml file or declaring a permission request
does not provide adequate security, please be sure to refer to “5.2.1.2. How to Communicate Between
In-house Applications with In-house-defined Signature Permission.”

4.4.2.4 Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

Security checks such as Intent parameter verification or in-house-defined Signature Permission verification
should not be included in onCreate, because when receiving new request during Service is running, process
of onCreate is not executed. So, when implementing Service which is started by startService, judgment
should be executed by onStartCommand (In case of using IntentService, judgment should be executed by
onHandleIntent.) It’s also same in the case when implementing Service which is started by bindService,
judgment should be executed by onBind.

4.4.2.5 When Returning a Result Information, Pay Attention the Result Information Leakage from
the Destination Application (Required)

Depends on types of Service, the reliability of result information destination application (callback re-
ceiver side/ Message destination) are different. Need to consider seriously about the information leakage
considering the possibility that the destination may be Malware.

See, Activity “4.1.2.7. When Returning a Result, Pay Attention to the Possibility of Information Leakage
of that Result from the Destination Application (Required)”, for details.

4.4.2.6 Use the Explicit Intent if the Destination Service Is fixed (Required)

When using a Service by implicit Intents, in case the definition of Intent Filter is same, Intent is sent to
the Service which was installed earlier. If Malware with the same Intent Filter defined intentionally was
installed earlier, Intent is sent to Malware and information leakage occurs. On the other hand, when
using a Service by explicit Intents, only the intended Service will receive the Intent so this is much safer.

There are some other points which should be considered, please refer to “4.1.2.8. Use the explicit Intents
if the destination Activity is predetermined. (Required).”

4.4.2.7 Verify the Destination Service If Linking with the Other Company’s Application (Required)

Be sure to sure a whitelist when linking with another company’s application. You can do this by saving
a copy of the company’s certificate hash inside your application and checking it with the certificate
hash of the destination application. This will prevent a malicious application from being able to spoof
Intents. Please refer to sample code section “4.4.1.3. Creating/Using Partner Services” for the concrete
implementation method.

4.4.2.8 When Providing an Asset Secondarily, the Asset should be protected with the Same Level
Protection (Required)

When an information or function asset, which is protected by permission, is provided to another applica-
tion secondhand, you need to make sure that it has the same required permissions needed to access the
asset. In the Android OS permission security model, only an application that has been granted proper
permissions can directly access a protected asset. However, there is a loophole because an application
with permissions to an asset can act as a proxy and allow access to an unprivileged application. Substan-
tially this is the same as re-delegating permission so it is referred to as the “Permission Re-delegation”
problem. Please refer to “5.2.3.4. Permission Re-delegation Problem.’

207

Secure Coding Guide Documentation Release 2019-12-01

4.4.2.9 Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

You should not send sensitive information to untrusted parties.

You need to consider the risk of information leakage when exchanging sensitive information with a Service.
You must assume that all data in Intents sent to a Public Service can be obtained by a malicious third
party. In addition, there is a variety of risks of information leakage when sending Intents to Partner or
In-house Services as well depending on the implementation.

Not sending sensitive data in the first place is the only perfect solution to prevent information leakage
therefore you should limit the amount of sensitive information being sent as much as possible. When it
is necessary to send sensitive information, the best practice is to only send to a trusted Service and to
make sure the information cannot be leaked through LogCat.

4.4.3 Advanced Topics

4.4.3.1 Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)

We have explained how to implement the four types of Services in this guidebook: Private Services,
Public Services, Partner Services, and In-house Services. The various combinations of permitted settings
for each type of exported attribute defined in the AndroidManifest.xml file and the intent-filter elements
are defined in the table below. Please verify the compatibility of the exported attribute and intent-filter
element with the Service you are trying to create.

Table 4.4.3: Combination of Exported Attributes and Intent-filter

Setting
Value of exported attribute
true false Not specified
Intent Filter defined (Do not Use) (Do not Use) | (Do not Use)
Intent Filter Not Defined | Public, Partner, In-house | Private (Do not Use)

If the exported attribute is not unspecified in a Service, the question of whether or not the Service
is public is determined by whether or not intent filters are defined'*; however, in this guidebook it is
forbidden to set a Service’s exported attribute to “unspecified”. In general, as mentioned previously, it
is best to avoid implementations that rely on the default behavior of any given API; moreover, in cases
where explicit methods exist for configuring important security-related settings such as the exported
attribute, it is always a good idea to make use of those methods.

In “Table 4.4.3 Combination of Exported Attributes and Intent-filter Setting”, all “Intent Filter defined”
are set to “(Do not Use)”. This is because when a Service is started using an implicit Intent, it is not
possible to know which Service responds to the Intent, and a malicious Service may respond.

And the reason why “a defined intent filter and an exported attribute of false” should not be used is
that there is a loophole in Android’s behavior, and because of how Intent filters work, other application’s
Services can be called unexpectedly.

Concretely, Android behaves as per below, so it’s necessary to consider carefully when application de-
signing.
e When multiple Services define the same content of intent-filter, the definition of Service within
application installed earlier is prioritized.

e In case explicit Intent is used, prioritized Service is automatically selected and called by OS.

The system that unexpected call is occurred due to Android’s behavior is described in the three figures
below. Fig. 4.4.4 is an example of normal behavior that Private Service (application A) can be called
by implicit Intent only from the same application. Because only application A defines Intent-filter
(action="X" in the Figure), it behaves normally. This is the normal behavior.

14 If any intent filters are defined then the Service is public; otherwise it is private. For more information, see https:
/ /developer.android.com/guide/topics/manifest /service-element#exported

208

https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported

Secure Coding Guide Documentation Release 2019-12-01

Application A
Call a service with
the implicit intent

Application C
Private Service A-1 Call the service with
exported="false"” the implicit intent
action="X"

@ Intent(“X™)

Since the service A—1 is private one,
it can be called only by the application A.

L Android device

Fig. 4.4.4: An Example of Normal Behavior

Fig. 4.4.5 and Fig. 4.4.6 below show a scenario in which the same Intent filter (action="X") is defined
in Application B as well as Application A.

Fig. 4.4.5 shows the scenario that applications are installed in the order, application A -> application B.
In this case, when application C sends implicit Intent, calling Private Service (A-1) fails. On the other
hand, since application A can successfully call Private Service within the application by implicit Intent
as expected, there won’t be any problems in terms of security (counter-measure for Malware).

- N

Application A
Call a service with
the implicit intent

Intent(“X™)
Application C

Private Service A—1 Call the service with
exported="false” the implicit intent

action="X" @ Intent(“X™)

b

Application B

Public Service B-1 - - .
ubile serviee When application A that has private

service is installed earlier than
applications else, and it does not accept
any intents from other applications.

exported="true"”
action="X"

Android device
' S

Fig. 4.4.5: Applications are installed in the order, application A -> application B

Fig. 4.4.6 shows the scenario that applications are installed in the order, applicationB -> applicationA.

209

Secure Coding Guide Documentation Release 2019-12-01

There is a problem here, in terms of security. It shows an example that applicationA tries to call Private
Service within the application by sending implicit Intent, but actually Public Activity (B-1) in application
B which was installed earlier, is called. Due to this loophole, it is possible that sensitive information
can be sent from applicationA to applicationB. If applicationB is Malware, it will lead the leakage of
sensitive information.

4 N

Application C
Call the service with
the implicit intent

Application B

Public Service B-1
exported="true"
action="X"

Intent(“X")

Application A
Call a service with
the implicit intent

| Intent(“X") I

Private Service A-1
exported="false"”
action="X"

When application BA that has public
service is installed earlier than
applications else, and it is only enabled
and service B—1 is called unintentionally
from application A.

Android device
9 v,

Fig. 4.4.6: Applications are installed in the order, applicationB -> applicationA

As shown above, using Intent filters to send implicit Intents to Private Service may result in unexpected
behavior so it is best to avoid this setting.

4.4.3.2 How to Implement Service

Because methods for Service implementation are various and should be selected with consideration of
security type which is categorized by sample code, each characteristics are briefly explained. It’s divided
roughly into the case using startService and the case using bindService. And it’s also possible to create
Service which can be used in both startService and bindService. Following items should be investigated
to determine the implementation method of Service.

o Whether to disclose Service to other applications or not (Disclosure of Service)
o Whether to exchange data during running or not (Mutual sending/receiving data)
o Whether to control Service or not (Launch or complete)
o Whether to execute as another process (communication between processes)
o Whether to execute multiple processes in parallel (Parallel process)
Table 4.4.4 shows category of implementation methods and feasibility of each item.

“NG” stands for impossible case or case that another frame work which is different from the provided
function is required.

210

Secure Coding Guide Documentation Release 2019-12-01

Table 4.4.4: Category of implementation methods for Service

Category Disclosure Mutual Control Commu- Parallel pro-

of Service sending/re- Service nication cess

ceiving data | (Boot/Exit) | between
processes

startService OK NG OK OK NG
type
IntentService OK NG NG OK NG
type
local bind | NG OK OK NG NG
type
Messenger OK OK OK OK NG
bind type
AIDL bind | OK OK OK OK OK
type

startService type

This is the most basic Service. This inherits Service class, and executes processes by onStartCommand.

In user side, specify Service by Intent, and call by startService. Because data such as results cannot be
returned to source of Intent directly, it should be achieved in combination with another method such as
Broadcast. Please refer to “4.4.1.1. Creating/Using Private Services” for the concrete example.

Checking in terms of security should be done by onStartCommand, but it cannot be used for partner
only Service since the package name of the source cannot be obtained.

IntentService type

IntentService is the class which was created by inheriting Service. Calling method is same as startService
type. Following are characteristics compared with standard service (startService type.)

o Processing Intent is done by onHandleIntent (onStartCommand is not used.)
e It’s executed by another thread.
e Process is to be queued.

Call is immediately returned because process is executed by another thread, and process towards Intents
is sequentially executed by Queuing system. Each Intent is not processed in parallel, but it is also
selectable depending on the product’s requirement, as an option to simplify implementation. Since data
such as results cannot be returned to source of Intent, it should be achieved in combination with another
method such as Broadcast. Please refer to “4.4.1.2. Creating/Using Public Services” for the concrete
example of implementation.

Checking in terms of security should be done by onHandlelntent, but it cannot be used for partner only
Service since the package name of the source cannot be obtained.

local bind type

This is a method to implement local Service which works only within the process same as an application.
Define the class which was derived from Binder class, and prepare to provide the feature (method) which
was implemented in Service to caller side.

From user side, specify Service by Intent and call Service by using bindService. This is the most simple
implementation method among all methods of binding Service, but it has limited usages since it cannot
be launched by another process and also Service cannot be disclosed. See project “Service PrivateSer-
viceLocalBind” which is included in Sample code, for the concrete implementation example.

211

Secure Coding Guide Documentation Release 2019-12-01

From the security point of view, only private Service can be implemented.

Messenger bind type

This is the method to achieve the linking with Service by using Messenger system.

Since Messenger can be given as a Message destination from Service user side, the mutual data exchanging
can be achieved comparatively easily. In addition, since processes are to be queued, it has a characteristic
that behaves “thread-safely”. Parallel process for each process is not possible, but it is also selectable as
an option to simplify the implementation depending on the product’s requirement. Regarding user side,
specify Service by Intent, and call Service by using bindService. See “4.4.1.4. Creating/Using In-house
Services” for the concrete implementation example.

Security check in onBind or by Message Handler is necessary, however, it cannot be used for partner
only Service since package name of source cannot be obtained.

AIDL bind type

This is a method to achieve linking with Service by using AIDL system. Define interface by AIDL,
and provide features that Service has as a method. In addition, call back can be also achieved by
implementing interface defined by AIDL in user side, Multi-thread calling is possible, but it’s necessary
to implement explicitly in Service side for exclusive process.

User side can call Service, by specifying Intent and using bindService. Please refer to “4.4.1.3. Creat-
ing/Using Partner Services” for the concrete implementation example.

Security must be checked in onBind for In-house only Service and by each method of interface defined
by AIDL for partner only Service.

This can be used for all security types of Service which are described in this Guidebook.

4.5 Using SQLite

Herein after, some cautions in terms of security when creating/operating database by using SQLite. Main
points are appropriate setting of access right to database file, and counter-measures for SQL injection.
Database which permits reading/writing database file from outside directly (sharing among multiple
applications) is not supposed here, but suppose the usage in backend of Content Provider and in an
application itself. In addition, it is recommended to adopt counter-measures mentioned below in case of
handling not so much sensitive information, though handling a certain level of sensitive information is
supposed here.

4.5.1 Sample Code

4.5.1.1 Creating/Operating Database

When handling database in Android application, appropriate arrangements of database files and access
right setting (Setting for denying other application’s access) can be achieved by using SQLiteOpen-
Helper'®. Here is an example of easy application that creates database when it’s launched, and executes
searching/adding/changing/deleting data through UL Sample code is what counter-measure for SQL
injection is done, to avoid from incorrect SQL being executed against the input from outside.

15 As regarding file storing, the absolute file path can be specified as the 2nd parameter (name) of SQLiteOpenHelper
constructor. Therefore, need attention that the stored files can be read and written by the other applications if the SD
Card path is specified.

212

Secure Coding Guide Documentation

ape Mame of User-T

Information of User-7

Fig. 4.5.1: Using Database in Android Application

Points:

1. SQLiteOpenHelper should be used for database creation.
2. Use place holder.

3. Validate the input value according the application requirements.

SampleDbOpenHelper. java

/%

¥ %X %X %X X X ¥ X X X X * *

Copyright (C) 2012-2019 Japan Smartphone Security Assoctation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.orqg/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*
AN

package org.jssec.android.sqlite;

import android.content.Context;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

import android.widget.Toast;

(continues on next page)

213

Release 2019-12-01

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

public class SampleDbOpenHelper extends SQLiteOpenHelper {
private SQLiteDatabase mSampleDb; //Database to store the data to be handled

public static SampleDbOpenHelper newHelper (Context context)

{
//**% POINT 1 #** SQLiteOpenHelper should be used for database creation.
return new SampleDbOpenHelper (context);

public SQLiteDatabase getDb() {
return mSampleDb;

}

//0Open DB by Writable mode
public void openDatabaseWithHelper() {
try {
if (mSampleDb != null && mSampleDb.isOpen()) {
if (!mSampleDb.isReadOnly())// Already opened by writable mode
return;
mSampleDb.close() ;
}
mSampleDb = getWritableDatabase(); //It's opened here.
} catch (SQLException e) {
//In case fail to construct database, output to log
Log.e(mContext.getClass() .toString(),
mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE)) ;
Toast.makeText (mContext,
R.string.DATABASE_OPEN_ERROR_MESSAGE,
Toast .LENGTH_LONG) . show() ;

//Open DB by ReadOnly mode.
public void openDatabaseReadOnly() {
try {
if (mSampleDb != null && mSampleDb.isOpen()) {
if (mSampleDb.isReadOnly())// Already opened by ReadOnly.
return;
mSampleDb.close();
}
SQLiteDatabase.openDatabase (mContext.getDatabasePath(CommonData.DBFILE_NAME) .
—getPath() ,null, SQLiteDatabase.0PEN_READONLY) ;
} catch (SQLException e) {
//In case failed to construct database, output to log
Log.e(mContext.getClass().toString(),
mContext.getString (R.string.DATABASE_OPEN_ERROR_MESSAGE)) ;
Toast.makeText (mContext,
R.string.DATABASE_OPEN_ERROR_MESSAGE,
Toast .LENGTH_LONG) . show() ;

//Database Close
public void closeDatabase() {
try {
if (mSampleDb != null && mSampleDb.isOpen()) {
mSampleDb.close();
}
} catch (SQLException e) {
//In case fatled to construct database, output to log

(continues on next page)

214

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

Log.e(mContext.getClass() .toString(),
mContext.getString(R.string.DATABASE_CLOSE_ERROR_MESSAGE)) ;
Toast.makeText (mContext,
R.string.DATABASE_CLOSE_ERROR_MESSAGE,
Toast.LENGTH_LONG) .show() ;

//Remember Context
private Context mContext;

//Table creation command
private static final String CREATE_TABLE_COMMANDS
= "CREATE TABLE " + CommonData.TABLE_NAME + " ("
+ "_id INTEGER PRIMARY KEY AUTOINCREMENT, "
+ "idno INTEGER UNIQUE, "
+ "name VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ") NOT NULL, "
+ "info VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ")"
+

Il);ll;

public SampleDbOpenHelper (Context context) {
super (context, CommonData.DBFILE_NAME, null, CommonData.DB_VERSION) ;
mContext = context;

}
@0verride
public void onCreate(SQLiteDatabase db) {
try {
db.execSQOL(CREATE_TABLE_COMMANDS) ; //Ezecute DB construction command
} catch (SQLException e) {
//In case failed to construct database, output to log
Log.e(this.getClass().toString(),
mContext.getString(R.string.DATABASE_CREATE_ERROR_MESSAGE)) ;
}
}
@0verride

public void onUpgrade(SQLiteDatabase arg0O, int argl, int arg2) {
// It's to be executed when database wversion up. Write processes like data
// transition.

DataSearchTask. java(SQLite Database Project)
/*
Copyright (C) 2012-2019 Japan Smartphone Security Association

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

*
*
*
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
*
*
*
*

package org.jssec.android.sqlite.task;

(continues on next page)

215

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

import org.jssec.android.sqlite.CommonData;
import org.jssec.android.sqlite.DataValidator;
import org.jssec.android.sqlite.MainActivity;
import org.jssec.android.sqlite.R;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;
import android.os.AsyncTask;

import android.util.Log;

//Data search task

public class DataSearchTask extends AsyncTask<String, Void, Cursor> {
private MainActivity mActivity;
private SQLiteDatabase mSampleDB;

public DataSearchTask(SQLiteDatabase db, MainActivity activity) {
mSampleDB = db;
mActivity = activity;

@0verride
protected Cursor doInBackground(String... params) {
String idno = params[0];
String name = params[1];
String info = params[2];
String cols[] = {"_id", "idno",'"name","info"};

Cursor cur;

//**% POINT 3 *** Validate the input value according the application
// requirements.
if (!DataValidator.validateData(idno, name, info))

{

return null;

//When all parameters are null, execute all search
if ((idno == null || idno.length() == 0) &&
(name == null || name.length() == 0) &&
(info == null || info.length() == 0)) {
try {
cur = mSampleDB.query(CommonData.TABLE_NAME,
cols, null, null, null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(),
mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE)) ;
return null;
¥

return cur;

//When No is specified, execute searching by No
if (idno != null && idno.length() > 0) {
String selectionArgs([] = {idno};

try {
//**% POINT 2 #** Use place holder.
cur = mSampleDB.query(CommonData.TABLE_NAME, cols,

(continues on next page)

216

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

"idno = 7", selectionArgs, null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(),
mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE)) ;
return null;
}

return cur;

//When Name is specified, exzecute perfect match search by Name
if (name != null && name.length() > 0) {
String selectionArgs[] = {name};
try {
//**% POINT 2 #** Use place holder.
cur = mSampleDB.query(CommonData.TABLE_NAME, cols,
"name = 7", selectionArgs, null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(),
mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE)) ;
return null;
}

return cur;

//0Other than above, ezecute partly match searching with the condition
// of info.

//Escape @ in info which was received as input.

String argString = info.replaceAll("@", "@Q@");

//Escape J in info which was received as input.

argString = argString.replaceAll("}", "@}");

//Escape _ in info which was received as input.

argString = argString.replaceAll("_", "@_");

String selectionArgs[] = {argString};

try {
//*%* POINT 2 *#** Use place holder.
cur = mSampleDB.query(CommonData.TABLE_NAME, cols,
"info LIKE '%' [| 7 || 'J' ESCAPE '@'",
selectionArgs, null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(),
mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE)) ;
return null;

}

return cur;
}
@0verride

protected void onPostExecute(Cursor resultCur) {
mActivity.updateCursor (resultCur) ;

}

DataValidator. java

/*
* Copyright (C) 2012-2019 Japan Smartphone Security Association
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*

(continues on next page)

217

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ezpress or implied.
See the License for the specific language governing permissions and
limitations under the License.

* % %X X X * X%

*/
package org.jssec.android.sqlite;

public class DataValidator {
//Validate the Input value
//validate numeric characters
public static boolean validateNo(String idno) {
//null and blank are OK
if (idno == null || idno.length() == 0) {
return true;

}

//Validate that it's numeric character.
try {
if (!idno.matches("[1-9][0-9]1*")) {
//Error 4if it's not numeric value
return false;
}
} catch (NullPointerException e) {
//Detected an error
return false;

return true;

// Validate the length of a character string
public static boolean validateLength(String str, int max_length) {
//null and blank are OK
if (str == null || str.length() == 0) {
return true;

//Validate the length of a character string is less than MAX
try {
if (str.length() > max_length) {
//When it's longer than MAX, error
return false;

b
} catch (NullPointerException e) {

//Bug

return false;

return true;

// Validate the Input value
public static boolean validateData(String idno, String name, String info) {
if (!validateNo(idno)) {
return false;
}
if (!validatelLength(name, CommonData.TEXT_DATA_LENGTH_MAX)) {

(continues on next page)

218

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

return false;

}else if(!validateLength(info, CommonData.TEXT_DATA_LENGTH_MAX)) {
return false;

}

return true;

4.5.2 Rule Book

Using SQLite, follow the rules below accordingly.
1. Set DB File Location and Access Right Correctly (Required)
2. Use Content Provider for Access Control When Sharing DB Data with Other Application (Required)

3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.
(Required)

4.5.2.1 Set DB File Location and Access Right Correctly (Required)

Considering the protection of DB file data, DB file location and access right setting is the very important
elements that need to be considered together.

For example, even if file access right is set correctly, a DB file can be accessed from anybody in case that
it is arranged in a location which access right cannot be set, e.g. SD card. And in case that it’s arranged
in application directory, if the access right is not correctly set, it will eventually allow the unexpected
access. Following are some points to be met regarding the correct allocation and access right setting,
and the methods to realize them.

About location and access right setting, considering in terms of protecting DB file (data), it’s necessary
to execute 2 points as per below.

1. Location

Locate in file path that can be obtained by Context#getDatabasePath(String name), or in some cases,
directory that can be obtained by Context#getFilesDir'C.

2. Access right
Set to MODE_PRIVATE (= it can be accessed only by the application which creates file) mode.

By executing following 2 points, DB file which cannot be accessed by other applications can be created.
Here are some methods to execute them.

1. Use SQLiteOpenHelper
2. Use Context#openOrCreateDatabase

When creating DB file, SQLiteDatabase#openOrCreateDatabase can be used. However, when using this
method, DB files which can be read out from other applications are created, in some Android smartphone
devices. So it is recommended to avoid this method, and using other methods. Each characteristics for
the above 2 methods are as per below.

16 Both methods provide the path under (package) directory which is able to be read and written only by the specified
application.

219

Secure Coding Guide Documentation Release 2019-12-01

Using SQLiteOpenHelper

When using SQLiteOpenHelper, developers don’t need to be worried about many things. Create a class
derived from SQLiteOpenHelper, and specify DB name (which is used for file name)'” to constructer’s
parameter, then DB file which meets above security requirements, are to be created automatically.

Refer to specific usage method for “4.5.1.1. Creating/Operating Database” for how to use.

Using Context#openQOrCreateDatabase

When creating DB by using Context#openOrCreateDatabase method, file access right should be specified
by option, in this case specify MODE_ PRIVATE explicitly.

Regarding file arrangement, specifying DB name (which is to be used to file name) can be done as same as
SQLiteOpenHelper, a file is to be created automatically, in the file path which meets the above mentioned
security requirements. However, full path can be also specified, so it’s necessary to pay attention that
when specifying SD card, even though specifying MODE__ PRIVATE, other applications can also access.

Example to execute access permission setting to DB explicitly: MainActivity.java

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//Construct database
try {
//Create DB by setting MODE_PRIVATE
db = Context.openOrCreateDatabase("Sample.db", MODE_PRIVATE, null);
} catch (SQLException e) {
//In case fatled to construct DB, log output
Log.e(this.getClass().toString(),
getString(R.string.DATABASE_OPEN_ERROR_MESSAGE)) ;
return;
}

//0mit other initial process

There are three possible settings for access privileges: MODE_PRIVATE, MODE_ WORLD_ READ-
ABLE, and MODE_WORLD__WRITEABLE. These constants can be specified together by “OR” op-
erator. However, all settings other than MODE__PRIVATE are deprecated in API Level 17 and later
versions, and will result in a security exception in API Level 24 and later versions. Even for apps intended
for API Level 15 and earlier, it is generally best not to use these flags'®.

« MODE_PRIVATE Only creator application can read and write
« MODE_WORLD_READABLE Creator application can read and write, Others can only read in

« MODE_WORLD__WRITEABLE Creator application can read and write, Others can only write
in

4.5.2.2 Use Content Provider for Access Control When Sharing DB Data with Other Application
(Required)

The method to share DB data with other application is that create DB file as WORLD _READABLE,
WORLD_ WRITEABLE, to other applications to access directly. However, this method cannot limit
applications which access to DB or operations to DB, so data can be read-in or written by unexpected

17 (Undocumented in Android reference) Since the full file path can be specified as the database name in SQLiteOpen-
Helper implementation, need attention that specifying the place (path) which does not have access control feature (e.g. SD
cards) unintentionally.

18 For more information as to MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE and points of cau-
tion regarding their use, see Section “4.6.3.2. Access Permission Setting for the Directory”.

220

Secure Coding Guide Documentation Release 2019-12-01

party (application). As a result, it can be considered that some problems may occur in confidentiality
or consistency of data, or it may be an attack target of Malware.

As mentioned above, when sharing DB data with other applications in Android, it’s strongly recom-
mended to use Content Provider. By using Content Provider, there are some merits, not only the merits
from the security point of view which is the access control on DB can be achieved, but also merits from
the designing point of view which is DB scheme structure can be hidden into Content Provider.

4.5.2.3 Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.
(Required)

In the sense that preventing from SQL injection, when incorporating the arbitrary input value to SQL
statement, placeholder should be used. There are 2 methods as per below to execute SQL using place-
holder.

1. Get SQLiteStatement by using SQLiteDatabase#tcompileStatement(), and after that place param-
eter to placeholder by using SQLiteStatement#bindString() or bindLong() etc.

2. When calling execSQL(), insert(), update(), delete(), query(), rawQuery() and replace() in SQLite-
Database class, use SQL statement which has placeholder.

In addition, when executing SELECT command, by using SQLiteDatabase#tcompileStatement(), there
is a limitation that “only the top 1 element can be obtained as a result of SELECT command”, so usages
are limited.

In either method, the data content which is given to placeholder is better to be checked in advance
according the application requirements. Following is the further explanation for each method.

When Using SQLiteDatabase#compileStatement():

Data is given to placeholder in the following steps.

1. Get the SQL statement which includes placeholder by using SQLiteDatabase#tcompileStatement|(),
as SQLiteStatement.

2. Set the created as SQLiteStatement objects to placeholder by using the method like bindLong()
and bindString().

3. Execute SQL by method like execute() of ExecSQLiteStatement object.

Use case of placeholder: DatalnsertTask.java (an extra)

//Adding data task

public class DataInsertTask extends AsyncTask<String, Void, Void> {
private MainActivity mActivity;
private SQLiteDatabase mSampleDB;

public DataInsertTask(SQLiteDatabase db, MainActivity activity) {
mSampleDB = db;
mActivity = activity;

}

@Override

protected Void doInBackground(String... params) {
String idno = params[0];
String name = params[1];
String info = params[2];

// *#%% POINT 3 *** Validate the input value according the application
// requirements.
if (!DataValidator.validateData(idno, name, info))

{

(continues on next page)

221

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

return null;
}
// Adding data task
// **% POINT 2 #*** Use place holder
String commandString = "INSERT INTO " + CommonData.TABLE_NAME +
" (idno, name, info) VALUES (7, 7, 7)";
SQLiteStatement sqlStmt = mSampleDB.compileStatement (commandString) ;
sqlStmt.bindString(1l, idno);
sqlStmt.bindString(2, name);
sqlStmt.bindString(3, info);
try {
sqlStmt.executelnsert();
} catch (SQLException e) {
Log.e(DataInsertTask.class.toString(),
mActivity.getString(R.string.UPDATING_ERROR_MESSAGE)) ;
} finally {
sqlStmt.close();
}

return null;

. Abbreviation ...

This is a type that SQL statement to be executed as object is created in advance, and parameters are
allocated to it. The process to execute is fixed, so there’s no room for SQL injection to occur. In addition,
there is a merit that process efficiency is enhanced by reutilizing SQLiteStatement object.

In the Case Using Method for Each Process which SQLiteDatabase provides:

There are 2 types of DB operation methods that SQLiteDatabase provides. One is what SQL statement
is used, and another is what SQL statement is not used. Methods that SQL statement is used are
SQLiteDatabase#execSQL() /rawQuery() and it’s executed in the following steps.

1. Prepare SQL statement which includes placeholder.
2. Create data to allocate to placeholder.
3. Send SQL statement and data as parameter, and execute a method for process.

On the other hand, SQLiteDatabase#insert()/update()/delete()/query()/replace() is the method that
SQL statement is not used. When using them, data should be sent as per the following steps.

1. In case there’s data to insert/update to DB, register to ContentValues.

2. Send ContentValues as parameter, and execute a method for each process (In the following example,
SQLiteDatabase#insert())

Use case of metod for each process (SQLiteDatabase#insert())

private SQLiteDatabase mSampleDB;
private void addUserData(String idno, String name, String info) {

// Validity check of the value(Type, range), escape process
if (!validateInsertData(idno, name, info)) {
// If failed to pass the walidation, log output
Log.e(this.getClass() .toString(),
getString(R.string.VALIDATION_ERROR_MESSAGE)) ;
return;

}

// Prepare data to insert

(continues on next page)

222

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

ContentValues insertValues = new ContentValues();
insertValues.put("idno", idno);
insertValues.put ("name", name);
insertValues.put("info", info);

// Ezecute Insert
try {
mSampleDb. insert ("SampleTable", null, insertValues);
} catch (SQLException e) {
Log.e(this.getClass().toString(),
getString(R.string.DB_INSERT_ERROR_MESSAGE)) ;
return;

In this example, SQL command is not directly written, for instead, a method for inserting which SQLite-
Database provides, is used. SQL command is not directly used, so there’s no room for SQL injection in
this method, too.

4.5.3 Advanced Topics

4.5.3.1 When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be
Implemented

When using character string which includes wild card (%, _) of LIKE predicate, as input value of place
holder, it will work as a wild card unless it is processed properly, so it’s necessary to implement escape
process in advance according the necessity. It is the case which escape process is necessary that wild
card should be used as a single character (“%” or “_ 7).

The actual escape process is executed by using ESCAPE clause as per below sample code.

Example of ESCAPE process in case of using LIKE

// Data search task
public class DataSearchTask extends AsyncTask<String, Void, Cursor> {

private MainActivity mActivity;
private SQLiteDatabase mSampleDB;
private ProgressDialog mProgressDialog;

public DataSearchTask(SQLiteDatabase db, MainActivity activity) {
mSampleDB = db;
mActivity = activity;

@Override
protected Cursor doInBackground(String... params) {
String idno = params[0];
String name = params[1];
String info = params[2];
String cols[] = {"_id", "idno",'"name","info"};

Cursor cur;
. Abbreviation ...

// Ezecute like search(partly match) with the condition of info
// Point: Escape process should be performed on characters

// which ts applied to wild card

// Escape @ in info which was received as input

(continues on next page)

223

Secure Coding Guide Documentation Release 2019-12-01

(continued from previous page)

String argString = info.replaceAll("@", "@@");
// Escape] in info which was received as input
argString = argString.replaceAll("}%", "@%");

// Escape _ in info which was received as input
argString = argString.replaceAll("_", "@_");
String selectionArgs[] = {argString};

try {
// Point: Use place holder
cur = mSampleDB.query("SampleTable", cols,
"info LIKE '%' || 7 || '/' ESCAPE '@'",
selectionArgs, null, null, null);
} catch (SQLException e) {
Toast .makeText (mActivity,
R.string.SERCHING_ERROR_MESSAGE, Toast.LENGTH_LONG).show();
return null;

}

return cur;
}
@0verride

protected void onPostExecute(Cursor resultCur) {
mProgressDialog.dismiss();
mActivity.updateCursor (resultCur) ;

4.5.3.2 Use External Input to SQL Command in which Place Holder Cannot Be Used

W