Android Application
Secure Design/Secure Coding
Guidebook

February 1st, 2016 Edition
Japan Smartphone Security Association (JSSEC)

Secure Coding Group

Document control number: JSSEC-TECA-SC-GD20160201BE

The content of this guide is up to date as of the time of publication, but standards and environments are constantly evolving.
When using sample code, make sure you are adhering to the latest coding standards and best practices.

JSSEC and the writers of this guide are not responsible for how you use this document. Full responsibility lies with you, the user
of the information provided.

Android™ is a trademark or a registered trademark of Google Inc.

The company names, product names and service names appearing in this document are generally the registered trademarks or
trademarks of their respective companies.

Further, the registered trademark ®, trademark (TM) and copyright © symbols are not used throughout this document.

Parts of this document are copied from or based on content created and provided by Google, Inc. They are used here in

accordance with the provisions of the Creative Commons Attribution 3.0 License

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Android Application Secure Design/Secure Coding Guidebook
- Beta version -
February 1st, 2016
Japan Smartphone Security Association
Secure Coding Group

Index

LI 11 o Yo LU 4 o Y PPN 11
1.1. Building a Secure SmMartphon@ SOCIETY .uuiuuiiiiiiiii et r e e e e enaaes 11
1.2. Timely Feedback on a Regular Basis Through the Beta Version........cccouvuiieuiiiiiiieniiiiieiinnens 12
1.3. Usage Agreement of the GUIdEbOOKcoeniiiiii e 13
1.4. Correction articles of June T 2015 @ditioN ...cueuieniinieiiiie e e e e 14

2. Composition of the GUIAEDOOKccu e e 16
P I B TNV Lo o LY o 0 Y| (= 16
2.2. Sample Code, Rule BoOk, AdVanCed TOPICS cuuuiruiieieeeeieeeee e et et e et e e e e e e e e e e e e e e e eaaas 17
2.3. The Scope of the GUIAEDOOKc.e e e 20
2.4. Literature on Android SeCUre CodiNg ... iiuiiiiiiiiei et e e eaaas 21
2.5. Steps to Install Sample Codes into Android StUIOceeiiniiiiiii e 22

3. Basic Knowledge of Secure Design and Secure CodiNg ...ccuuieiuiieeiieeiiieeee e e e eaaas 35
I I - Vo Vo [o] Fo IVAN o] o] aF- Ud o 4 BT Yol B | o 1 Y200 35
3.2. Handling Input Data Carefully and SECUIelYoeeieeiiieiie e 48

4. Using Technology in @ Safe Way......cceu ittt e e e et e e e e e e e e e e eaeeaneeean 50
4.1, Creating/UsSiNg ACTIVITIES ..ueniiiii ettt et et e e e e e r e e e n e e e e e e e aeaen 50
4.2. Receiving/Sending BroadCastsuuuiuuieeeiiieeueeieeee e e e e e et ea e ea e e 95
4.3. Creating/Using CoNtEeNt ProVidersiiuiieieiieeee et e e e e e e e e e e e e e e e e eneeanes 128
4.4, Creating/UsSiNg SEIVICES ...ttt ettt e e e e et e e e e e e e e e e e e e e e a e e aens 178
S U £ g T Y O] P 223
N o - U T T Vo B o1 P 241
4.7. USING Browsable INTENT......ceeeie et e e e e e e e e e e e e e e e e a e e e e e e eaeeanns 269
4.8. Outputting LOG 10 LOGCat....uuieiiiiii ettt e et e e e s e e e e e r e e e e r e eas 273
e N U EY g T V=T o N P 285
4.10. USING NOTIFICAtIONS .ueeiieeiieiiieee et e et e e e e e e e e e e e a e e e e e e e e a e e e e eeaeenaennns 297

5. HOW tO USE SECUNITY FUNCHIONS .uieiiiie ettt e e e e e e n e r e e e eneaaen 306
5.1. Creating Password INPUL SCrEENS......ieu ettt e e et e et e e e e e e e e e e e e e e eaaaeennes 306
5.2. Permission and ProteCtion LeVEI oo eeeiiei it 321
5.3. Add In-house Accounts t0 ACCOUNT MANAGENuuiiuniieneeeieeee et e et e et e e e e e e e e e e ea e e e aennes 355
5.4, Communicating Via HT T PS ..o e st e e r e r e e e n e ens 375
5.5. Handling privacy datac.ueeieeiiiii et 399
I ST U LY 1T T @V o) o T =1 o /2P 433

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 1

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

5.7. Using fingerprint authentication fEAtUIeScuuiiiiiiieiiie e e e e e ean e 462
L B 1 ol o o 1= o PP 473
6.1. Risk of Information Leakage from Clipboard..........ccooiuuiiiiiiiiiiiiii e 473

2 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Revision history

Date Revised contents

2014-04-01 | e Initial English Edition

2014-07-01 | » Added new articles below
e 5.5 Handling privacy data
* 5.6 Using Cryptography

2015-06-01 | » We have reviewed the entire document in accordance with the following policy
¢ Change of development environment (Eclipse -> Android Studio)
* Responding to Android latest version Lollipop
e Change of API Level (8 or later -> 15 or later)

2016-02-01 | » Added new articles below

* 4.10 Using Notifications
e 5.7 Using fingerprint authentication features
* Revised article below

¢ 5.2 Permission and Protection Level

New editions of the guidebook updated based on public opinions and comments.

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 3

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
assocunon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

- Published by -
Japan Smartphone Security Association
Secure Coding Group, Application Working Group, Smartphone Technology Committee

Leader Masaru Matsunami Sony Digital Network Applications, Inc.
Member Msaomi Adachi Android Security Japan
Tohru Ohzono Cisco Systems, Inc.
Shigenori Takei NTT Software Corporation
Masahiro Kasahara SoftBank Mobile Corp.
Ikuya Fukumono Software Research Associates, Inc.
Eiji Hoshimoto Software Research Associates, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Mitake Ohtani Sony Digital Network Applications, Inc.
Muneaki Nishimura Sony Digital Network Applications, Inc.
Setsuko Kaji Sony Digital Network Applications, Inc.
Taeko Ito Sony Digital Network Applications, Inc.
Hidenori Yamaji Sony Mobile Communications Inc.
Eiji Shimano Tao Software, Inc.
Gaku Taniguchi Tao Software, Inc.

(In no particular order)

4 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of June 1, 2015 Edition -

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.
Member

Tohru Ohzono Cisco Systems, Inc.

Akio Kondo, Kazuma Mitake, Kyosuke BRILLIANTSERVICE co., Ltd.
Imanishi, Masato Shintani, Naohiko

Shimura, Ryuji Fujita, Shohei

Hara, Tomoyuki Fujisawa, Yutaka

Kawahara

Shigeru Yatabe Fomalhaut Techno Solutions
Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigenori Takei NTT Software Corporation
Masahiro Kasahara SoftBank Mobile Corp.

Eiji Hoshimoto Software Research Associates, Inc.
Akira Ando, Ken Okuyama, Muneaki Sony Digital Network Applications, Inc.
Nishimura

Eiji Shimano , Gaku Taniguchi Tao Software, Inc.

(In no particular order)

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 5

JAPAN

SMARTPHONE

l|||| CURITY

ASSOCIATION

SE I

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of July 1,

2014 English Edition -

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Tohru Ohzono

Shigeru Yatabe

Keisuke Takemori, Takamasa Isohara
Naonobu Yatsukawa

Shigenori Takei

Masahiro Kasahara

Eiji Hoshimoto, Tsutomu Kumazawa
Akira Ando, Ken Okuyama, Setsuko Kaji,
Taeko Ito, Yoshinori Kataoka

Eiji Shimano , Gaku Taniguchi
Michiyoshi Sato

Cisco Systems, Inc.

Fomalhaut Techno Solutions

KDDI CORPORATION

Nihon Unisys, Ltd.

NTT Software Corporation
SoftBank Mobile Corp.

Software Research Associates, Inc.

Sony Digital Network Applications, Inc.

Tao Software, Inc.

Tokyo System House Co., Ltd.

(In no particular order)

6

All rights reserved © Japan Smartphone Security Association.

Building a Secure Smartphone Society

JAPAN

SMARTPHONE

l|||| CURITY

ASSOCIATION

SE I

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

- Authors of April 1, 2014 English Edition -

Masaru Matsunami

Tomoyuki Hasegawa
Mayumi Nishiyama
Tohru Ohzono
Masaki Kubo

Daniel Burrowes, Zachary Mathis
Renta Futamura

Naonobu Yatsukawa

Shigenori Takei

Ikuya Fukumono, Tsutomu Kumazawa

Akira Ando, Hiroko Nakajima, Ken
Okuyama, Satoshi Fujimura, Setsuko
Kaji, Taeko Ito, Yoshinori Kataoka
Hidenori Yamaji, Takuya Nishibayashi

Koji Isoda
Gaku Taniguchi
Michiyoshi Sato

Leader

Sony Digital Network Applications, Inc.

Member

Android Security Japan
BJIT Inc.
Cisco Systems, Inc.

Japan Computer Emergency Response Team

Coordination Center JPCERT/CC)
Kobe Digital Labo Inc.

NextGen, Inc.

Nihon Unisys, Ltd.

NTT Software Corporation
Software Research Associates, Inc.

Sony Digital Network Applications, Inc.

Sony Mobile Communications Inc.
Symantec Japan, Inc.

Tao Software, Inc.

Tokyo System House Co., Ltd.

(In no particular order)

All rights reserved © Japan Smartphone Security Association.

Building a Secure Smartphone Society

7

SMARTPHONE

l|||| CURITY

ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of April 1, 2013 Japanese Edition -

Masaru Matsunami

Masaomi Adachi, Tomoyuki Hasegawa

Yuki Abe, Tomomi Oouchi, Tsutomu
Kumazawa, Toshimi Sawada, Kiyoshi
Hata, Youichi Higa, Yuu Fukui, Ikuya

Fukumoto, Eiji Hoshimoto, Shun Yokoi,

Takakazu Yoshizawa

Takeshi Fujiwara

Shigenori Takei

Masaki Kubo, Hiroshi Kumagai, Yozo
Toda

Tohru Ohzono

Toru Asano, Akira Ando, Ryohji Ikebe,
Jun Ogiso, Ken Okuyama, Yoshinori
Kataoka, Muneaki Nishimura, Koji
Furusawa, Kenji Yamaoka

Gaku Taniguchi

Naonobu Yatsukawa

Shigeru Yatabe

Leader
Sony Digital Network Applications, Inc.

Member

Android Security Japan

Software Research Associates, Inc.

NRI SecureTechnologies, Ltd.
NTT Software Corporation

Japan Computer Emergency Response Team
Coordination Center JPCERT/CC)
Cisco Systems, Inc.

Sony Digital Network Applications, Inc.

Tao Software, Inc.
Nihon Unisys, Ltd.
Fomalhaut Techno Solutions

(In no particular order)

8

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

SMARTPHONE

ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

- Authors of November 1, 2012 Japanese Edition -
Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato, Nakaguchi Akihiko
Tomomi Oouchi, Naoyuki Ohira,
Tsutomu Kumazawa, Miki Sekikawa,
Seigo Nakano, Youichi Higa, lkuya
Fukumoto, Eiji Hoshimoto, Shoichi
Yasuda, Tadayuki Yahiro, Takakazu
Yoshizawa

Shigenori Takei

Keisuke Takemori

Masaki Kubo, Hiroshi Kumagai, Yozo
Toda

Tohru Ohzono

Toru Asano, Akira Ando, Ryohji Ikebe,
Shigeru Ichikawa, Mitake Ohtani, Jun
Ogiso, Ken Okuyama, Yoshinori
Kataoka, lkue Sato, Muneaki Nishimura,
Kazuo Yamaoka, Takeru Kikkawa
Gaku Taniguchi, Eiji Shimano, Hisao
Kitamura

Takao Yamakawa

Masaki Ishihara, Yasuaki Mori
Naonobu Yatsukawa

Shigeru Yatabe

Shigeki Fujii

Android Security Japan

Software Research Associates, Inc.

NTT Software Corporation
KDDI CORPORATION

Japan Computer Emergency Response Team
Coordination Center (JPCERT/CC)
Cisco Systems, Inc.

Sony Digital Network Applications, Inc.

Tao Software, Inc.

Japan Online Game Association
Nippon System Kaihatsu Co., Ltd.
Nihon Unisys, Ltd.

Fomalhaut Techno Solutions
UNIADEX, Ltd.

(In no particular order)

All rights reserved © Japan Smartphone Security Association.

Building a Secure Smartphone Society 9

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

- Authors of June 1, 2012 Japanese Edition-

Masaru Matsunami

Katsuhiko Sato

Tomomi Oouchi, Youichi Higa, Eiji
Hoshimoto

Shigenori Takei

Masaki Kubo, Hiroshi Kumagai, Yozo
Toda
Masaaki Chida

Tohru Ohzono
Yoichi Taguchi
Masahiko Sakamoto

Akira Ando, Shigeru Ichikawa, Ken
Okuyama, lkue Sato, Muneaki
Nishimura, Kazuo Yamaoka

Gaku Taniguchi, Eiji Shimano, Hisao
Kitamura

Michiyoshi Sato

Masakazu Hattori

Naonobu Yatsukawa

Shigeru Yatabe

Shigeki Fujii

Leader

Sony Digital Network Applications, Inc.

Member

Android Security Japan

Software Research Associates, Inc.

NTT Software Corporation

Japan Computer Emergency Response Team
Coordination Center JPCERT/CC)
GREE, Inc.

Cisco Systems, Inc.

System House. ING Co., Ltd.

Secure Sky Technology, Inc.

Sony Digital Network Applications, Inc.

Tao Software, Inc.

Tokyo System House Co., Ltd.
Trend Micro Incorporated.
Nihon Unisys, Ltd.

Fomalhaut Techno Solutions
UNIADEX, Ltd.

(In no particular order)

10

All rights reserved © Japan Smartphone Security Association.

Building a Secure Smartphone Society

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

1. Introduction

I 1.1. Building a Secure Smartphone Society

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

This guidebook is a collection of tips concerning the know-how of secure designs and secure coding
for Android application developers. Our intent is to have as many Android application developers as
possible take advantage of this, and for that reason we are making it public.

In recent years, the smartphone market has witnessed a rapid expansion, and its momentum seems
unstoppable. Its accelerated growth is brought on due to the diverse range of applications. An
unspecified large number of key functions of mobile phones that were once not accessible due to
security restrictions on conventional mobile phones have been made open to smartphone
applications. Subsequently, the availability of varied applications that were once closed to
conventional mobile phones is what makes smartphones more attractive.

With great power that comes from smartphone applications comes great responsibility from their
developers. The default security restrictions on conventional mobile phones had made it possible to
maintain a relative level of security even for applications that were developed without security
awareness. As it has been aforementioned with regard to smartphones, since the key advantage of a
smartphone is that they are open to application developers, if the developers design or code their
applications without the knowledge of security issues then this could lead to risks of users' personal
information leakage or exploitation by malware causing financial damage such as from illicit calls to
premium-rate numbers.

Due to Android being a very open model allowing access to many functions on the smartphone, it is
believed that Android application developers need to take more care about security issues than iOS
application developers. In addition, responsibility for application security is almost solely left to the
application developers. For example, applications can be released to the public without any
screening from a marketplace such as Google Play (former Android Market), though this is not
possible for iOS applications.

In conjunction with the rapid growth of the smartphone market, there has been a sudden influx of
software engineers from different areas in the smartphone application development market. As a
result, there is an urgent call for the sharing knowledge of secure design and consolidation of secure
coding know-how for specific security issues related to mobile applications.

Due to these circumstances, Japan's Smartphone Security Association (JSSEC) has launched the
Secure Coding Group, and by collecting the know-how of secure design as well as secure coding of
Android applications, it has decided to make all of the information public with this guidebook. It is
our intention to raise the security level of many of the Android applications that are released in the
market by having many Android application developers become acquainted with the know-how of
secure design and coding. As a result, we believe we will be contributing to the creation of a more
reliable and safe smartphone society.

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 11

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 1.2. Timely Feedback on a Regular Basis Through the Beta Version

We, the JSSEC Secure Coding Group, will do our best to keep the content contained in the Guidebook
as accurate as possible, but we cannot make any guarantees. We believe it is our priority to publicize
and share the know-how in a timely fashion. Equally, we will upload and publicize what we consider
to be the latest and most accurate correct information at that particular juncture, and will update it
with more accurate information once we receive any feedback or corrections. In other words, we are
taking the beta version approach on a regular basis. We think this approach would be meaningful for
many of the Android application developers who are planning on using the Guidebook.

The latest version of the Guidebook and sample codes can be obtained from the URL below.
® http://www.jssec.org/dl/android_securecoding_en.pdf Guidebook (English)
® http://www.jssec.org/dl/android_securecoding_en.zip Sample Codes (English)

The latest Japanese version can be obtained from the URL below.

® http://www.jssec.org/dl/android_securecoding.pdf Guidebook (Japanese)
® http://www.jssec.org/dl/android_securecoding.zip Sample Codes (Japanese)
12 All rights reserved © Japan Smartphone Security Association. 7imely Feedback on a Regular Basis Through the

Beta Version

http://www.jssec.org/dl/android_securecoding_en.pdf
http://www.jssec.org/dl/android_securecoding_en.zip
http://www.jssec.org/dl/android_securecoding.pdf
http://www.jssec.org/dl/android_securecoding.zip

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

I 1.3. Usage Agreement of the Guidebook

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

We need your consent for the following two precautionary statements when using the Guidebook.

1. The information contained in the Guidebook may be inaccurate. Please use the information
written here by your own discretion.

In case of finding any mistakes contained in the Guidebook, please send us an e-mail to the

address listed below. However, we cannot guarantee a reply or any revisions thereof.

Japan Smartphone Security Association
Secure Coding Group Inquiry

E-mail: jssec-securecoding-gqa@googlegroups.com
Subject: [Comment] Android Secure Coding Guidebook 20160201EN
Content:

Name (optional), Affiliation (optional), E-mail (optional), Comment (required) and
Other matters (optional)

All rights reserved © Japan Smartphone Security Association. Usage Agreement of the Guidebook 13

mailto:jssec-securecoding-qa@googlegroups.com

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

m" February 1st, 2016 Edition
SECURITY
ASSOCIATION

I 1.4. Correction articles of June 1 2015 edition

This section provides a list of corrections and modifications for the previous edition from the
viewpoint of security, as a result of further studies.

In correcting articles, we adopted the outcomes of our studies and the valuable opinions of those
who read the former editions of this guidebook.

Especially, taking in readers' opinions is considered as a key factor in making the document highly
practical.

We recommend, for those who use a previous edition of the document as a reference, taking a look at
the list below. Note that the list does not include the following kinds of changes and error
corrections: fixes of typos, new articles added in this edition, organizational changes, and

improvements in expression.

Any comments, opinions or suggestions on this guidebook are greatly appreciated.

Correction articles list

Correction points of June 1,
2015 edition

Correction articles of

this edition

Correction argument

4.1.3.6 Protecting
against Fragment
Injection in

PreferenceActivity

Added

measures to ExportedPreferenceActivity

cautions and preventative
to address an attack method known as

Fragment Injection.

4.1. Creating/Using Activities
4.2. Receiving/Sending
Broadcasts

4.4. Creating/Using Services

4.1 Creating/Using
Activities

4.2 Receiving/Sending
Broadcasts

4.4 Creating/Using

Services

In conjunction with the fact that
information on background applications
can no longer be obtained in Android
5.0,

implementing

reconsidered methods for
partner-restricted

Activity, Receiver, and Service.

4.2.3.6 Items to Keep in
Mind When Placing an
App Shortcut on the

Home Screen

Added precautions relevant to the

placement of shortcuts on home screens

4.8. Outputting Log to LogCat

4.8 Outputting Log to
LogCat

the discussion of

project.properties, which is no longer

Removed

necessary in Android Studio.

4.9.3.3 Specifying a
Sender Origin When
Using Web Messaging

Added a discussion of the proper
handling of WebMessage, added in

Android 6.0.

5.2. Permission and

5.2 Permission and

Added a discussion of the Permission

14 All rights reserved © Japan Smartphone Security Association.

Correction articles of June 1 2015 edition

SE I

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

Protection Level

Protection Level

mechanism that was modified in
Android 6.0.

5.4. Communicating via
HTTPS

5.4 Communicating via
HTTPS

Added a statement to the effect that
Apache-style APIs are no longer
supported in Android 6.0.

5.5.1.1. Both broad consent
and specific consent are
granted: Applications that
incorporate

application privacy policy

5.5.1.1 Both broad
consent and specific
consent are granted:
Applications that
incorporate application

privacy policy

Updated the source code to reflect the
fact that, based on individual
agreements, it is not necessary to obtain
separate approval for each individual

transmission when sending information.

All rights reserved © Japan Smartphone Security Association.

Correction articles of June 1 2015 edition 15

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

2. Composition of the Guidebook

I 2.1. Developer's Context

““l’;ﬁ?ﬁwm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

Many guidebooks that have been written on secure coding include warnings about harmful coding
practices and their suggested revisions. Although this approach can be useful at the time of
reviewing the source code that has already been coded, it can be confusing for developers that are
about to start coding, as they do not know which article to refer to.

The Guidebook has focused on the developer's context of "What is a developer trying to do at this
moment?" Equally, we have taken steps to prepare articles that are aligned with the developer's
context. For example, we have divided articles into project units by presuming that a developer will
be involved in operations such as [Creating/Using Activities], [Using SQLite], etc.

We believe that by publishing articles that support the developer's context, developers will be able to
easily locate necessary articles that will be instantly useful in their projects.

16 All rights reserved © Japan Smartphone Security Association. Developer's Context

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 2.2. Sample Code, Rule Book, Advanced Topics

Each article is comprised of three sections: Sample Code, Rule Book, and Advanced Topics. If you are
in a hurry, please look up the Sample Code and Rule Book sections. The content is provided in a way
where it can be reused to a certain degree. For those who have issues that go beyond these, please
refer the Advanced Topics section. We have given descriptions that will be helpful in finding solutions
for individual cases.

Unless it is specifically noted, our focus of development will be targeted to platforms concerning
Android 4.0.3 (API Level 15) and later. Since we have not verified the operational capability of any
versions pertaining to Android versions under 4.0.3 (APl Level 15), the measures described may
prove ineffective on these older systems. In addition, even for versions that are covered under the
scope of focus, it is important to verify their operational capability by testing them on your own
environment before releasing them publically.

2.2.1. Sample Code

Sample code that serves as the basic model within the developer's context and functions as the
theme of an article is published in the Sample Code section. If there are multiple patterns, we have
provided source code for the different patterns and classified them accordingly. We have strived to
make our commentaries as simple as possible. For example, when we want to direct the reader's
attention to a security issue that requires attention, a bullet-point number will appear next to "Point"
in the article. We will also comment on the sample code that corresponds to the bullet-point number
by writing "*** Point (Number) ***." Please note that a single point may correspond to multiple
pieces of sample code. There are sections throughout the entire source code, albeit very little
compared to the entire code, which requires our attention for security. In order to be able to survey
the sections that call for scrutiny, we try to post the entire class unit of sample code.

Please note that only a portion of sample code is posted in the Guidebook. A compressed file, which
contains the entire sample code, is made public in the URL listed below. It is made public by the
Apache License, Version 2.0; therefore, please feel free to copy and paste it. Please note that we have
minimized the code for error processing in the sample code to prevent it from becoming too long.

® http://www.jssec.org/dl/android_securecoding_en.zip = Sample Codes Archive

The projects/keystore file that is attached in the sample code is the keystore file that contains the
developer key for the signature of the APK. The password is "android." Please use it when singing the
APK in the In-house sample code.

We have provided the keystore file, debug.keystore, for debugging purposes. When using Android
Studio for development, it is convenient for verifying the operational capability of the In-house
sample code if the keystore is set for each project. In addition, for sample code that is comprised of
multiple APKs, it is necessary to match the android:debuggable setting contained inside each
AndroidManifest.xml in order to verify the cooperation between each APK. If the android:debuggable

All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics 17

http://www.jssec.org/dl/android_securecoding_en.zip

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

setting is not explicit set when installing the APK from Android Studio, it will automatically become
android:debuggable= "true."

For embedding the sample code as well as keystore file into Android Studio, please refer to "2.5 Steps
to Install Sample Codes into Android Studio"

2.2.2. Rule Book

Rules and matters that need to be considered regarding security within the developer's context will
be published in the Rule Book section. Rules to be handled in that section will be listed in a table
format at the beginning and will be divided into two levels: "Required" and "Recommended." The
rules will consist of two types of affirmative and negative statements. For example, an affirmative
statement that expresses that a rule is required will say "Required." An affirmative statement that
expresses a recommendation will say "Recommended." For a negative statement that expresses the
requisite nature of the rule would say, "Definitely not do." For a negative sentence that expresses a
recommendation would say, "Not recommended." Since these differentiations of levels are based on
the subjective viewpoint of the author, it should only be used as a point of reference.

Sample code that is posted in the Sample Code section reflect these rules and matters that need to be
considered, and a detailed explanation on them is available in the Rule Book section. Furthermore,
rules and matters that need to be considered that are not dealt with in the Sample Code section are
handled in the Rule Book section.

2.2.3. Advanced Topics
Iltems that require our attention, but that could not be covered in the Sample Code and Rule Book
sections within the developer's context will be published in the Advanced Topics section. The
Advanced Topics section can be utilized to explore ways to solve separate issues that could not be
solved in the Sample Code or Rule Book sections. For example, subject matters that contain personal
opinions as well as topics on the limitations of Android OS in relation the developer's context will be
covered in the Advanced Topics section.

Developers are always busy. Many developers are expected to have basic knowledge of security and
produce many Android applications as quickly as possible in a somewhat safe manner rather than to
really understand the deep security matters. However, there are certain applications out there that
require a high level of security design and implementation from the beginning. For developers of
such applications, it is necessary for them to have a deep understanding concerning the security of
Android OS.

In order to benefit both developers who emphasize development speed and also those who
emphasize security, all articles of the Guidebook are divided into the three sections of Sample Code,
Rule Book, and Advanced Topics. The aim of the Sample Code and Rule Book sections is to provide
generalizations about security that anyone can benefit from and source code that will work with a
minimal amount of customization and hopefully by just copying and pasting. In the Advanced Topics
section, we offer materials that will help developers think in a certain way when they are facing

18 All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

specific problems. It is the aim of the Advanced Topics section to help developers examine optimal
secure design and coding when they are involved in building individual applications.

All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics 19

SECURITY

l“"’;ﬂ:mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

I 2.3. The Scope of the Guidebook

The purpose of the Guidebook is to collect security best practices that are necessary for general
Android application developers. Consequently, our scope is focused mainly on security tips (The
"Application Security" section in figure below) for the development of Android applications that are
distributed primarily in a public market.

APPLICATIONS

Application
Contacts Phone Browser S .
ecurity
APPLICATION FRAMEWORK N
Window Content
Activity Manager Manager Providers

Telephony Resource Location Notification
Package Manager Manager Manager Manager Manager
LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework D .
S evice
OpenGL | ES FreeType WebKit Machirg " > S . t
ecurity
libe
LINUX KERNEL

Display Flash Memory Binder (IPC)
Driver Camera Driver Driver Driver
Sy Audio Power

Keypad Driver WiFi Driver Difvers Management

/

Figure 2.3-1

Security regarding the implementation of components in the Device Security of the above figure is
outside the scope of this guidebook. There are differences in the viewpoint of security between
general applications that are installed by users and pre-installed applications by device
manufacturers. The Guidebook only handles the former and does not deal with the latter. In the
current version, tips only on the implementation by Java are posted, but in future versions, we plan
on posting tips on JNI implementations as well.

Also as of now we do not handle threats that results from an attacker obtaining root privileges. We
will assume the premise of a secure Android device in which it is not possible to obtain root privileges
and base our security advice on utilizing the Android OS security model. For handling of assets and
threats, we have provided a detailed description on "3.1.3 Asset Classification and Protective
Countermeasures."

20 All rights reserved © Japan Smartphone Security Association. The Scope of the Guidebook

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

I 2.4. Literature on Android Secure Coding

Since we are not able to discuss all of Android's secure coding in the Guidebook, we recommend that
you read the literature mentioned below in conjunction with the Guidebook.

® Android Security: Anzenna Application Wo Sakusei Surutameni (Secured Programming in
Android)
Author: Taosoftware Co., Ltd. ISBN: 978-4-8443-3134-6
http://www.amazon.co.jp/dp/4844331345/

® The CERT Oracle Secure Coding Standard for Java
Authors: Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, David Svoboda
http://www.amazon.com/dp/0321803957

All rights reserved © Japan Smartphone Security Association. Literature on Android Secure Coding 21

http://www.amazon.co.jp/dp/4844331345/
http://www.amazon.com/dp/0321803957

SECURITY

““lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocmion http://www.jssec.org/dl/android_securecoding_en.pdf

I 2.5. Steps to Install Sample Codes into Android Studio

This section explains how to install sample code into Android Studio. Sample code is divided into
multiple projects depending on the purpose. Installing the sample code is described in, "2.5.1
Installing the Sample Project." After the installation is completed, please refer to "2.5.2 Setup the

debug.keystore" and install the debug.keystore file into Android Studio. We have verified the
following steps in the following environment:

® OS
» Windows 7 Ultimate SP1
® Android Studio
> 1.1.0
® Android SDK
> Android 5.0(API 21)
< Sample projects can be built through Android 5.0 (APl 21) unless otherwise stated.

2.5.1. Installing the Sample Project

1. Download the sample code.
Acquire the sample code from the URL shown in "2.2.1 Sample Code"

2. Extract the sample code.

Right click on the sample code that has been compressed into zip file, and click on "Extract All"
as shown below.

Extract All...

Figure 2.5-1

22 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

““IZ:.T&.HM Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Designate where to deploy.
Create a workspace under the name "C:¥android_securecoding" by designating "C:¥" and
clicking on the "Extract" button.

Select a Destination and Extract Files

Files will be extracted to this folder:

Select a Destination and Extract Files

Files will be extracted to this folder
C,

(s | el |

Figure 2.5-2

After clicking on the "Extract" button, right underneath "C:¥" a folder called
"android_securecoding" will be created.

BT 202090909000 ey
29 FEDEEENED ETTETEE

Organize = Share with = Burn Mew folder == » [l @

e

W Favorites B Mame B
BE Desktop | eroid_securecodiD
4 Downloads 1 | PerflLegs -
=] Recent Plac ./ Program Files [

./ Program Files (x86)

= Libraries ProgramData
@ Document: . Users -
@' Music v 4| m 5

7 items

&

Figure 2.5-3

The sample code is contained in the “android_securecoding" folder. For example, when you want
to refer to the sample code within "4.1.1.3 Creating/Using Partner Activities" of "4.1
Creating/Using Activities" please look below.

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 23

SECURITY

““IZ:.T&.HM Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

android_securecoding
LCreate Use Activity
LActivity PartnerActivity

In this way, the sample code project will be located under the chapter title in the
"android_securecoding" folder.

4. Designate workspace by starting up Android Studio
Launch Android Studio from the start menu or from a desktop icon.

Android

/X Studio

Powered by the Intelli) Platform

Figure 2.5-4
After launching, import project from the dialog that appears.

Recent Projects Quick Start
@ Stact 3 new Androwd Studio project

fa Open an existing Android Studio project

@ Import an Android code sample

Vés Chck cut project from Version Control

@ Import project (Eclipse ADT, Gradie, etc.)

ANGIORE 0050 1.3 0 DUl 135 17490770 Chack Ko LpSates now.

Figure 2.5-5

24 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

If you have

already opened a project, close the project window.

| AccountManager AL

Edit View Navigate Code Analyze Re
New Project... b
New Module...

Import Project... -
Import Module... N

Import Sample...

New... Alt+Insert

3 Open...

Reopen Project

Close Project

J~ Settings... Chrl+Alt+5
[Project Structure... Ctrl+Alt+5hift+5
Other Settings »
Import Settings...
Export Settings...
=l Sawve All Ctrl+S
¢ Synchronize Chrl+AlE+Y

Invalidate Caches [Restart...

Figure 2.5-6

5. Start importing

Click "Import project (Eclipse ADT, Gradle, etc.)" from the dialog that is displayed.

% Welcome to Android Studio
va

Recent Projects Quick Start

Start a new Android Studic project

Open an existing Android Studio project
Import an Android code sample

Check out project from Version Control
o

E Import project (Eclipse ADT, Gradle, etc.)

é Configure

rE. Docs and How-Taos

Android Studic 1.1.0 Build 135.1740770. Check for updates now.

Figure 2.5-7

All rights reserved © Japan Smartphone Security Association.

Steps to Install Sample Codes into Android Studio 25

SECURITY

““Iiﬁpfk"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

6. Select the project

Select the project

% Select Eclipse or Gradle Project to Import @

Select your Eclipse project folder, build.gradle or settings.gradle

ACenL R X O = Hide path
| roprietary Account to Account ManagerAccountManager Authenticator
B

[android_securecoding
[Add Proprietary Account to Account Manager
[AccountManager User
1 Common
[Communicate by HTTPS
[Create Password Input Screen
[Create Use Activity
[Create Use Content Provider
[Create Use Service
[Handling Files
[Output Log to LogCat
[Permission and Protection Level
[Receive Send Broadcast
[Risk of Information Leakage from Clipboard

| __ W LT

D'E; and drop = file into the space sbove

Figure 2.5-8

7. Reload the project

When importing the project, a dialog box prompting to change Language level is displayed. So,
Click “Yes”.

% Language Level Changed ﬂ

E Language level changes will take effect on project reload.
Would you like to reload project "AccountManager Authenticator” now?

=

Figure 2.5-9

26 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

SECURITY

l““ anmevone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

8. Finish importing
Automatically the project is imported.

File Edit View Navigate Code Analyze Refactor Build Run Iools VCS Window Help

DHO ¢4 XOMQRA ¢ Wb &wh $E|CLER ? aQm

nmmhm)

» (& Gradle Scripts

apei9 5 spafoig e 5

1 7: Structure

o 2: Favorites

4% Build Variants

[E Terminal = 0: Messages i G:Andraid B 1000 " peentlog [E] Gradie Console
Gradle build finished in 85 449ms (a minute age) ¢ Indexing... [a &
S

Figure 2.5-10

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 27

SECURITY

““Iiﬁp&"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Android Studio, unlike Eclipse, will display a single project in a window. If you want to open and
import a different project, click "File -> Import Project ...".

Iiﬁ Edit View MNavigate Code Analyze Re

New Project...
New Module...

Import Project...

Import Module... _

Import Sample...

New... Alt+Insert
3 Open...

Close Project

55 Settings... Ctrl+Alt+5S
[Z Project Structure... Ctrl+Alt+5hift+5
Other Settings »
Import Settings...
Export Settings...
&l Save All Ctrl+S
3 Synchronize Ctri+Alt+Y
Invalidate Caches / Restart...

Figure 2.5-11

28 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

SECURITY

““Ilﬁpfk"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

2.5.2. Setup the debug.keystore to run and test the Sample Code

A signature is needed in order to activate a sample-code-generated application onto an Android
device or emulator. Install the debugging key file "debug.keystore" that will be used for the signature
into Android Studio.

1. Click on File ->Project Structure...

AccountManager Au

b

'IHE Edit View Navigate Code Analyze Re

New Project...

New Module...

Import Project...

Import Module... s

Impert Sample...
Mew... Alt+Insert

Close Project

25 Settings... Ctri+Alt+5

Other Settings »
Import Settings...
Export Settings...

I=l Save All Ctrl+5
3 Synchronize Chri+Alt+Y
Invalidate Caches / Restart...

Figure 2.5-12

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 29

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

““l’;ﬁrj‘.{imm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
2. Add Signing

Select a project from Module list in left pane, selecting “Signing” tab, and then click “+” button.

® Project Structure &J

e Properties Sigm’r\g‘ Flavors | Build Types | Dependencies

SDK Location + [vame: | ‘

Project

Modules

e | \
Key Password ‘ ‘
Store File | |D
Store Password ‘ ‘

Kl

Figure 2.5-13

30 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

SECURITY

““Ilﬁpfk"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

3. Select "debug.keystore"

Debug.keystore is contained in the sample code (underneath the android_securecoding folder)

' Select Path ==
ACP o GX O Hide path
Chandroid_securecoding'\debug.keystore |&

[Create Password Input Screen
[Create Use Activity

[Create Use Content Provider

[Create Use Service

[Handling Files

[Qutput Log to LogCat

[Permission and Protection Level
7] Receive Send Broadcast

[Risk of Information Leakage from Clipboard
[Use Browsable Intent

[Use Cryptography

[Use Privacy Data

[Use sQLite
[Use WebView
=] .gitignore
debug.keystore
[~
Drag znd drop 2 file into the space above to quickly locate it in the tree

m Cancel | Help |

Figure 2.5-14

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 31

SECURITY

““Ilﬁpfk"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

4. Type Sighing hame

r
Project Structure M
+ - Properties 579"7“9| F\avors‘ Build Types‘ Dependenc\es‘
SO Locaton EEC T -+ |neme: [debug |
Project N
Modules i

i Key Password | ‘

:: Store File ‘ C:¥android_securecoding¥debug.keystore | -

;| Store Password | ‘

“ Cancel | Apply ‘

Figure 2.5-15

32 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

SMARTPHONE

SE!

““IJAPAN Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
CURITY . . .
assocmion http://www.jssec.org/dl/android_securecoding_en.pdf

5. Set Signing Config

Select the Build Types tab, select signing name typed in the previous step, and then click “OK”.

r
Project Structure ﬁ
+ — Propert\e5| Swgnmg‘ Flavors ~ Build TVDG‘—‘=| Dependencies
SDi¢ Loction + {name: [dzbug |
Project release i

Modules i
| ni Debuggable ‘\false} n

Signing Config @n
Renderscript Debuggable Eﬂ
éé Renderscript Optim Level ‘ (3
: Minify Enabled Eﬂ
éé Pseudo Locales Enabled :ﬂ
Proguard File | |D

Application 1d Suffix ‘ |

“| version Name Suffix

Zip Align Enabled ‘ (true)

m Cancel | Apply |

Figure 2.5-16

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 33

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

6. Confirm build.gradle file

The path of debug.keystore file you selected is displayed in signingConfigs, signingConfig
appears in debug section of buildTypes.

- (3* build.gradle

- 1o | &app x

fapply plugin: “com.android.epplication”

é}android {

ger Auther B sizninglonfigs {
5] debug {
storeFile filel”C:fandroid_securecoding/debuz. kevstore™)
2] 1
ST
compi leSdk¥ersion 21
buildToolsVersion “21.1.2"
2 defaultConfiz {
applicat ionld “org. jssec.android.accountnanager.authent icator”
minddkYersion 1%
targetSdkWersion 21
versionbode 1
versionflane “1.07
=] 1
B buildTypes {
= release {
minifvErabled false
proguardFiles getDefaultProguardFilel” proguard-android.txt™), “proguard-rules.txt’
& 1
] debuz {
signinzConf iz gizgningConf izs.debug
] 1
oo
o

édependenc jes {

&)

compile “com.android. support:support-v4:21.0.%37

Figure 2.5-17

34

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

3. Basic Knowledge of Secure Design and Secure Coding

Although the Guidebook is a collection of security advice concerning Android application
development, this chapter will deal with the basic knowledge on general secure design and secure
coding of Android smartphones and tablets. Since we will be referring to secure design and coding
concepts in the later chapters we recommend that you familiarize yourself with the content contained
in this chapter first.

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

I 3.1. Android Application Security

There is a commonly accepted way of thinking when examining security issues concerning systems
or applications. First, we need to have a grasp over the objects we want to protect. We will call these
assets. Next, we want to gain an understanding over the possible attacks that can take place on an
asset. We will call these threats. Finally, we will examine and implement measures to protect assets
from the various threats. We will call these countermeasures.

What we mean by countermeasures here is secure design and secure coding, and will deal with these
subjects after Chapter 4. In this section, we will focus on explaining assets and threats.

3.1.1. Asset: Object of Protection

There are two types of objects of protection within a system or an application: information and
functions. We will call these information assets and function assets. An information asset refers to
the type of information that can be referred to or changed only by people who have permission. It is
a type of information that cannot be referred to or changed by anyone who does not have the
permission. A function asset refers to a function that can be used only by people who have
permission and no one else.

Below, we will introduce types of information assets and functional assets that exist in Android
smartphones and tablets. We would like you to use the following as a point of reference to deliberate
on matters with regard to assets when developing a system that utilizes Android applications or
Android smartphones/tablets. For the sake of simplicity, we will collectively call Android
smartphones/tablets as Android smartphones.

3.1.1.1. Information Asset of an Android Smartphone

Table 3.1-1 and Table 3.1-2 represent examples of information contained on an Android
smartphone. Appropriate protection is necessary since this information is equivalent to personal
information, confidential information or information that belongs to both.

All rights reserved © Japan Smartphone Security Association. Android Application Security 35

l“"’;ﬁ":ﬁ"wm Android Application Secure Design/Secure Coding Guidebook
SE!)

February 1st, 2016 Edition

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

Table 3.1-1 Examples of Information Managed by an Android Smartphone

Information Remarks

Phone number Telephone number of the smartphone itself

Call history Time and date of incoming and outgoing calls as well as phone numbers
IMEI Device ID of the smartphone

IMSI Subscriber ID

Sensor information

GPS, geomagnetic, rate of acceleration, etc.

Various setup

Wi-Fi setting value, etc...

information
Account information Various account information, authentication information, etc.
Media data Pictures, videos, music, recording, etc...

Table 3.1-2 Examples of Information Managed by an Application
Information Remarks
Contacts Contacts of acquaintances

E-mail address

User's e-mail address

E-mail mail box

Content of incoming and outgoing e-mail, attachments, etc.

Web bookmarks

Bookmarks

Web browsing history

Browsing history

Calendar Plans, to-do list, events, etc.
Facebook SNS content, etc.
Twitter SNS content, etc.

The type of information seen in Table 3.1-1 is mainly the type of information that is stored on the
Android smartphone itself or on an SD card. Similarly, the type of information seen in Table 3.1-2 is
primarily managed by an application. In particular, the type of information seen in Table 3.1-2 grows
in proportion to the number of applications installed on the device.

Table 3.1-3 is the amount of information contained in one entry case of contacts. The information
here is not of the smartphone user's, but of the smartphone user's friends. In other words, we must

be aware that a smartphone not only contains information on the user, but of other people too.

Table 3.1-3 Examples of Information Contained in One Contact Entry

Information Content

Phone number Home phone number, mobile phone number, FAX, MMS, etc.

E-mail address Home e-mail, work e-mail, mobile phone e-mail, etc.

Photo Thumbnail image, large image, etc.

IM address AIM, MSN, Yahoo, Skype, QQ, Google Talk, ICQ, Jabber, Net meeting, etc.
Nicknames Acronymes, initials, maiden names, nicknames, etc.

Address Country, postal code, region, area, town, street name, etc.

Group membership Favorites, family, friends, coworkers, etc.

Website Blogs, profile site, homepage, FTP server, home, office, etc.

Events Birthdays, anniversaries, others, etc.
36 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Relation Spouse, children, father, mother, manager, assistants, domestic partner,
partners, etc.
SIP address Home, work, other, etc.

Until now, we have primarily focused on information about smartphone users, however, application
possesses other important information as well. Figure 3.1-1 displays a typical view of the
information inside an application divided into the program portion and data portion. The program
portion mainly consists of information about the application developer, and the data portion mostly
pertains to user information. Since there could be information that an application developer may not
want a user to have access to, it is important to provide protective countermeasures to prohibit a user
from referring to or making changes to such information.

User’s Information

Program

Plctu re M a n a g e r [Application Vendor’s Information]
Z

Data

/data/app/com.sonydna.picturemanager.apk
| AndroidManifest.xml

| classes.dex Java Code (Binary)

| resources.arsc Resources (e.g. Strings)
[

F—assets

/data/data/com.sonydna.picturemanager
—cache

| —webviewCache

Cache of WebView

AppAbout_en.html Bundled Data

—res

—drawable-hdpi

—databases

\ label.db DB for Application
| metadata.db

| webview.db DB for WebView

webviewCache.db

—files

Medialistl.dat

F—lib

L—shared_prefs

DB for WebView Cache

Application Data Files

Preference File

| broken_image.png Image Files
|
—layout
| about.xml Layout Information
\
—xml
setting.xml XML Files

com.sonydna.picturemanager_preferences.xml

Figure 3.1-1 Information Contained in an Application

When creating an Android application, it is important to employ appropriate protective
countermeasures for information that an application manages itself, such as shown in Figure 3.1-1.
However, it is equally important to have robust security measure in place for information contained in
the Android smartphone itself as well as for information that has been gained from other
applications such as shown in Table 3.1-1, Table 3.1-2, and Table 3.1-3.

3.1.1.2. Function Assets of an Android Smartphone

Table 3.1-4 shows examples of features that an Android OS provides to an application. When these
features are exploited by a malware, etc., damages in the form of unexpected charges or loss of
privacy may be incurred by a user. Therefore, appropriate protective counter-measures that are
equal the one extended to information asset should be set in place.

All rights reserved © Japan Smartphone Security Association. Android Application Security 37

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Table 3.1-4 Examples of Features an Android OS Provides to an Application

Function Function

Sending and receiving SMS messages Camera

Calling Volume

Network communication Reading the Contract List and Status of the
Mobile Phone

GPS SD card

Bluetooth communication Change system setup

NFC communication Reading Log Data

Internet communication (SIP) Obtaining Information of a Running Application

In addition to the functions that the Android OS provides to an application, the inter-application
communication components of Android applications are included as part of the function assets as
well. Android applications can allow other applications to utilize features by accessing their internal
components. We call this inter-application communication. This is a convenient feature, however,
there have been instances where access to functions that should only be used inside a particular
application are mistakenly given to other applications due the lack of knowledge regarding secure
coding on the part of the developer. There are functions provided by the application that could be
exploited by malware that resides locally on the device. Therefore, it is necessary to have appropriate
protective countermeasures to only allow legitimate applications to access these functions.

3.1.2. Threats: Attacks that Threaten Assets

In the previous section, we talked about the assets of an Android smartphone. In this section, we will
explain about attacks that can threaten an asset. Put simply, a threat to an asset is when a third party
who should not have permission, accesses, changes, deletes or creates an information asset or
illicitly uses a function asset. The act of directly or indirectly attacking such assets is called a "threat."
Furthermore, the malicious person or applications that commit these acts are referred to as the
source of the threats. Malicious attackers and malware are the sources of threats but are not the
threats themselves. The relationship between our definitions of assets, threats, threat sources,
vulnerabilities, and damage are shown below in Figure 3.1-2.

38 All rights reserved © Japan Smartphone Security Association. Android Application Security

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Application

.o d\ssetsy Threat(Attack)

mpac Threat(Attack)

0 Vulnerapility Threat Source

Figure 3.1-2 Relation between Asset, Threat, Threat Source, Vulnerability, and Damage

Figure 3.1-3 shows a typical environment that an Android application behaves in. From now on, in
order to expand on the explanation concerning the type of threats an Android application faces by
using this figure as a base, we will first learn how to view this figure.

Smartphone Security Area (Conventional) Server Security Area

4 N

Smartphone

Server

Web
Service

Application 3G/AG/Wi-Fi

One user

Information All users

information

Figure 3.1-3 Typical Environment an Android Application Behaves in

The figure above depicts the smartphone on the left and server on the right. The smartphone and
server communicate through the Internet over 3G/4G/Wi-Fi. Although multiple applications exist
within a smartphone, we are only showing a single application in the figure in order to explain the
threats clearly. Smartphone-based applications mainly handle user information, but the
server-based web services collectively manage information of all of its users. Consequently, there is
no change the importance of server security as usual. We will not touch upon issues relating to server
security as it falls outside of the scope of the Guidebook.

All rights reserved © Japan Smartphone Security Association. Android Application Security 39

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

We will use the following figure to describe the type of threats that exist towards Android
applications.

3.1.2.1. Network-based Third-Party

Smartphone Security Area (Conventional) Server Security Area

4 N

Smartphone !

i Attack () Attack i
i 3G/4G/Wi-Fi — Service i

Server

Malicious attacker on network

Information

of all users

Figure 3.1-4 Network-Based Malicious Third Party Attacking an Application

Generally, a smartphone application manages user information on a server so the information assets
will move between the networks connecting them. As indicated in Figure 3.1-4, a network-based
malicious third party may access (sniff) any information during this communication or try to change
information (data manipulation). The malicious attacker in the middle (also referred to as "Man in The
Middle") can also pretend to be the real server tricking the application. Without saying,
network-based malicious third parties will usually try to attack the server as well.

40 All rights reserved © Japan Smartphone Security Association. Android Application Security

SECURITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

3.1.2.2. Threat Due to User-Installed Malware

Smartphone Security Area (Conventional) Server Security Area

4 I
Smartphone Server
Web
Service
Information
Careless of all users
user
- %

| i
1 1
: |
| Market| [Mal-] Attack :
| > "
! ware :
| |
1 1
1 1
1 1
1 1
1 1
1 1

Figure 3.1-5 Malware Installed by a User Attacks an Application

The biggest selling point of a smartphone is in its ability to acquire numerous applications from the
market in order to expand on its features. The downside to users being able to freely install many
applications is that they will sometimes mistakenly install malware. As shown in Figure 3.1-5,
malware may exploit the inter-application communication functions or a vulnerability in the
application in order to gain access to information or function assets.

3.1.2.3. Threat of an Malicious File that Exploits a Vulnerability in an Application

Smartphone Security Area (Conventional) Server Security Area

4 I
Smartphone server
Web
Service

Passive

Information
Careless

user >
SD

of all users

Figure 3.1-6 Attack from Malicious Files that Exploit a Vulnerability in an Application

Various types of files such as music, images, videos and documents are widely available on the

All rights reserved © Japan Smartphone Security Association. Android Application Security 41

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Internet and typically users will download many files to their SD card in order to use them on their
smartphone. Furthermore, it is also common to download attached files sent in an e-mail. These files
are later opened by a viewing or editing application.

If there is any vulnerability in the function of an application that processes these files, an attacker can
use a malicious file to exploit it and gain access to information or function assets of the application.
In particular, vulnerabilities are often present in processing a file format with a complex data
structure. The attacker can fulfill many different goals when exploiting an application in this way.

As shown in Figure 3.1-6, an attack file stays dormant until it is opened by a vulnerable application.
Once it is opened, it will start causing havoc by taking advantage of an application's vulnerability. In
comparison to an active attack, we call this attack method a "Passive Attack."

3.1.2.4. Threats from a Malicious Smartphone User

Smartphone Security Area (Conventional) Server Security Area

4 N
Smartphone server
Web
Service
Attack
Sm.a.rtpholne Information
~db USB malicious qlser of all users
debug « i
_ J :

Figure 3.1-7 Attacks from a Malicious Smartphone User

With regard to application development for an Android smartphone, the environment as well as
features that help to develop and analyze an application are openly provided to the general user.
Among the features that are provided, the useful ADB debugging feature can be accessed by anyone
without registration or screening. This feature allows an Android smartphone user to easily perform
OS or application analysis.

As it is shown in Figure 3.1-7, a smartphone user with malicious intent can analyze an application by
taking advantage of the debugging feature of ADB and try to gain access to information or function
assets of an application. If the actual asset contained in the application belongs to the user, it poses
no problem, but if the asset belongs to someone other than the user, such as the application
developer, then it will become a concern. Accordingly, we need to be aware that the legitimate
smartphone user can maliciously target the assets within an application.

42 All rights reserved © Japan Smartphone Security Association. Android Application Security

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

3.1.2.5. Threats from Third Party in the Proximity of a Smartphone

Smartphone Security Area (Conventional) Server Security Area

Malicious attacker
standing by smartphone

1 1 1 1
! 1 1 1
! 1 1 1
1 1 1 1
! 1 1 1
1 1 1 1
! 1 1 1
! 1 1 1
1 1 1 1
! 1 1 1
i P i
| Attack i i |
| x Y Ll . |
: 4 h Lo !
! Smartphone Attac P Server :
i Lo Web i
| o Service !
: - Information !
i i i of all users i
: - J b :

Figure 3.1-8 Attacks from a Malicious Third Party in the Proximity of a Smartphone

Due to face that most smartphones possess a variety of near-field communication mechanisms, such
as NFC, Bluetooth and Wi-Fi, we must not forget that attacks can occur from a malicious attacker who
is in physical proximity of a smartphone. An attacker can shoulder surf a password while peeping
over a user who is inputting it in. Or, as indicated in Figure 3.1-8, an attacker can be more
sophisticated and attack the Bluetooth functionality of an application from a remote distance. There
is also the threat that a malicious person could steal the smartphone creating a risk of data leakage
or even destroy the smartphone causing a loss of critical information. Developers need to take these
risks into consideration as well as early as the design stage.

All rights reserved © Japan Smartphone Security Association. Android Application Security 43

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

3.1.2.6. Summary of Threats

Smartphone Security Area

Malicious attacker
standing by smartphone

(Conventional) Server Security Area

! Attack i
| { Ell |
| - S :
! Smartphone | Attac ! Server '
! Attack () Attack !
| Market| [Mal-] Attack < N’ - Web i
i g i-Fi — Service :
! 3G/4G/Wi-Fi Malicious attacker on the network i
: Srr?a.rtpholne ! Information :
i Careless USB malicious qlseri of all users i
| user > I i
| SD b |
! J Lo !

Figure 3.1-9 Summary of the Various Attacks on Smartphone Applications

Figure 3.1-9 summarizes the main types of threats explained
are surrounded by a wide variety of threats and the figure
Through our daily information gathering, we need to spread

in the previous sections. Smartphones
above does not include all of them.
the awareness concerning the various

threats that surround an Android application and be aware of them during the application's secure
design and coding. The following literature that was created by Japan's Smartphone Security

Association (JSSEC) contains other valuable information on the threats to smartphone security.

® Security Guidebook for Using Smartphones and Tablets

http://www.jssec.org/dl/quidelines_v2.pdf [Version 2](Japanese)
http://www.jssec.org/dl/Guidebook2012Enew_v1.0.pdf [Version 1] (English)

® Implementation Guidebook for Smartphone Network Security[Version 1]
http://www.jssec.org/dl/NetworkSecurityGuidel.pdf (Japanese)

® Cloud Usage Guidebook for Business Purposes of Smartphones [Beta Version]
http://www.jssec.org/dl/cloudguide2012_beta.pdf (Japanese)

® Guidebook for Reviewing the Implementation/Operation of MDM [Version1]

http://www.jssec.org/dl/MDMGuideV1.pdf (Japanese)

44 All rights reserved © Japan Smartphone Security Association.

Android Application Security

http://www.jssec.org/dl/guidelines_v2.pdf
http://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
http://www.jssec.org/dl/NetworkSecurityGuide1.pdf
http://www.jssec.org/dl/cloudguide2012_beta.pdf
http://www.jssec.org/dl/MDMGuideV1.pdf

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

3.1.3. Asset Classification and Protective Countermeasures

As was discussed in the previous sections, Android smartphones are surrounded by a variety of
threats. Protecting every asset in an application from such threats could prove to be very difficult
given the time it takes for development and due to technical limitations. Consequently, Android
application developers should examine feasible countermeasures for their assets. This should be
done according to priority level based on the developer's judgement criteria. This is a subjective
matter that is based on how the importance of an asset is viewed and what the accepted level of
damage is.

In order to help decide on the protective countermeasures for each asset, we will classify them and
stipulate the level of protective countermeasures for each group. This will be achieved by examining
the legal basis, pertaining to the level of importance regarding the impact of any damages that can
occur and the social responsibility of the developer (or organization). These will prove to be the
judgement criteria when deciding on how to handle each asset and the implementation of the type of
countermeasures. Since this will become a standard for application developers and organizations on
determining how to handle an asset and provide protective countermeasures, it is necessary to
specify the classification methods and pertaining countermeasures in accordance the application
developer's (or organization's) circumstances.

Asset classification and protective countermeasure levels that are adopted in the Guidebook are
shown below for reference:

All rights reserved © Japan Smartphone Security Association. Android Application Security 45

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

Table 3.1-5 Asset Classification and Protective Countermeasure Levels

Asset
Classification

Asset Level

Level of Protective
Counter-Measures

High

The amount of damage the asset
causes is fatal and catastrophic to
the organization or an individual's
activity.

i.e.) When an asset at this level is
damaged, the organization
will not be able to continue its
business.

* Provide protection against
sophisticated attacks that break
through the Android OS security
model and prevent root privilege
compromises and attacks that alter
the dex portion of an APK.

* Ensure security takes priority over
other elements such as user
experience, etc.

causes has a limited impact on

the organization or an individual's

activity.

l.e.) When an asset at this level is
damaged, the organization's
profit level will be affected
but is able to compensate its
losses from other resources.

Medium The amount of damage the asset |« Utilize the Android OS security
causes has a substantial impact model. It will provide protection
the organization or an individual's | covered under its scope.
activity. e Ensure security takes priority over
i.e.) When an asset at this level is | other elements such as user

damaged, the organization's experience, etc.
profit level deteriorates,
adversely affecting its
business.
Low The amount of damage the asset |eUtilize the Android OS security

model. It will provide protection
covered under its scope.

* Compare security countermeasures
with other elements such as user
experience, etc. At this level, it is
possible for non-security issues to
take precedence over security
issues.

sn204 Jo adodS s o0gapiny Siyl

Asset classification and protective countermeasures described in the Guidebook are proposed under
the premise of a secure Android device where root privilege has not been compromised. Furthermore,
it is based on the security measures that utilize the security model of Android OS. Specifically, we are
hypothetically devising protective countermeasures by utilizing the Android OS security model on the
premise of a functioning Android OS security model against assets that are classified lower than or
equal to the medium level asset. On the other hand, we also believe in the necessity of protecting
high level assets from attacks that are caused due the breaching of the Android OS security model.
Such attacks include the compromise of root privileges and attacks that analyze or alter the APK
binary. To protect these types of assets, we need to design sophisticated defensive countermeasures
against such threats through the combination of multiple methods such as encryption, obfuscation,
hardware support and server support. As the collection of know-how regarding these defenses
cannot be easily written in this guidebook, and since appropriate defensive design differ in
accordance to individual circumstances, we have deemed them to be outside of the Guidebook's
scope. We recommend that you consult with a security specialist who is well versed in tamper
resistant designs of Android if your device requires protection from sophisticated attacks that
include attacks resulting from the compromise of root privileges or attacks caused by the analysis or
alteration of an APK file.

46 All rights reserved © Japan Smartphone Security Association. Android Application Security

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

3.1.4. Sensitive Information

The term "sensitive information"”, instead of information asset, will be used from now on in the
Guidebook. As it has been aforementioned in the previous section, we have to determine the asset

level and the level of protective countermeasures for each information asset that an application
handles.

All rights reserved © Japan Smartphone Security Association. Android Application Security 47

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 3.2. Handling Input Data Carefully and Securely

Validating input data is the easiest and yet most effective secure coding method. All data that is
inputted into the application either directly or indirectly by an outside source needs to be properly
validated. To illustrate best practices of input data validation, the following is an example of an
Activity as used in a program that receives data from Intent.

It is possible that an Activity can receive data from an Intent that was tampered by an attacker. By
sending data with a format or a value that a programmer is not expecting, the attacker can induce a
malfunction in the application that leads to some sort of security incident. We must not forget that a
user can become an attacker as well.

Intents are configured by action, data and extras, and we must be careful when accepting all forms of
data that can be controlled by an attacker. We always need to validate the following items in any code
that handles data from an untrusted source.

(@) Does the received data match the format that was expected by the programmer and does the
value fall in the expected scope?

(b) Even if you have received the expected format and value, can you guarantee that the code which
handles that data will not behave unexpectedly?

The next example is a simple sample where HTML is acquired from a remote web page in a
designated URL and the code is displayed in TextView. However, there is a bug.

Sample Code that Displays HTML of a Remote Web page in TextView
TextView tv = (TextView) findViewById(R.id.textview);
InputStreamReader isr = null;
char[] text = new char[1024];
int read;
try {
String urlstr = getIntent().getStringExtra("WEBPAGE_URL");
URL url = new URL(urlstr);
isr = new InputStreamReader(url.openConnection().getInputStream());
while ((read=isr.read(text)) != -1) {
tv.append(new String(text, 0, read));

}
} catch (MalformedURLException e) { ...

From the viewpoint of (a), "urlstr is the correct URL", verified through the non-occurrence of a
MalformedURLException by a new URL(). However, this is not sufficient. Furthermore, when a
"file://..." formatted URL is designated by urlstr, the file of the internal file system is opened and is
displayed in TextView rather than the remote web page. This does not fulfill the viewpoint of (b),
since it does not guarantee the behavior which was expected by the programmer.

The next example shows a revision to fix the security bugs. Through the viewpoint of (a), the input
data is validated by checking that "urlstr is a legitimate URL and the protocol is limited to http or
https." As a result, even by the viewpoint of (b), the acquisition of an Internet-routed InputStream is
guaranteed through url.openConnection().getinputStream().

48 All rights reserved © Japan Smartphone Security Association. Handling Input Data Carefully and Securely

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Revised sample code that displays HTML of Internet-based Web page in TextView
TextView tv = (TextView) findViewById(R.id.textview);
InputStreamReader isr = null;
char[] text = new char[1024];
int read;
try {
String urlstr = getIntent().getStringExtra("WEBPAGE_URL");
URL url = new URL(urlstr);
String prot = url.getProtocol();
if (!"http".equals(prot) && !"https".equals(prot)) {
throw new MalformedURLException("invalid protocol");
¥
isr = new InputStreamReader(url.openConnection().getInputStream());
while ((read=isr.read(text)) != -1) {
tv.append(new String(text, @, read));
¥
} catch (MalformedURLException e) { ...

Validating the safety of input data is called "Input Validation" and it is a fundamental secure coding
method. Surmising from the sense of the word of Input Validation, it is quite often the case where the
viewpoint of (a) is heeded but the viewpoint of (b) is forgotten. It is important to remember that
damage does not take place when data enters the program but when the program uses that data in
an incorrect way. We hope that you will refer the URLs listed below.

® The CERT Oracle Secure Coding Standard for Java
https://www.securecoding.cert.org/confluence/x/Ux (English)

® Application of CERT Oracle Secure Coding Standard for Android Application Development
https://www.securecoding.cert.org/confluence/x/C4AiBw (English)

® Rules Applicable Only to the Android Platform (DRD)
https://www.securecoding.cert.org/confluence/x/H4CIBg (English)

® |PA "Secure Programming Course"
http://www.ipa.go.jp/security/awareness/vendor/programmingv?2 /clanguage.html (Japanese)

All rights reserved © Japan Smartphone Security Association. Handling Input Data Carefully and Securely 49

https://www.securecoding.cert.org/confluence/x/Ux
https://www.securecoding.cert.org/confluence/x/C4AiBw
https://www.securecoding.cert.org/confluence/x/H4ClBg
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/clanguage.html

SECURITY

““l’;ﬁ?ﬁwm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

4. Using Technology in a Safe Way

In Android, there are many specific security related issues that pertain only to certain technologies
such as Activities or SQLite. If a developer does not have enough knowledge about each of the
different security issues regarding each technology when designing and coding, then unexpected
vulnerabilities may arise. This chapter will explain about the different scenarios that developers will
need to know when using their application components.

I 4.1. Creating/Using Activities

4.1.1. Sample Code

The risks and countermeasures of using Activities differ depending on how that Activity is being used.
In this section, we have classified 4 types of Activities based on how the Activity is being used. You
can find out which type of activity you are supposed to create through the following chart shown
below. Since the secure coding best practice varies according to how the activity is used, we will also
explain about the implementation of the Activity as well.

Table 4.1-1 Definition of Activity Types

Type

Definition

Private Activity

An activity that cannot be launched by another application, and
therefore is the safest activity

Public Activity

An activity that is supposed to be used by an unspecified large
number of applications.

Partner Activity

An activity that can only be used by specific applications made by a
trusted partner company.

In-house Activity

An activity that can only be used by other in—house applications.

Yes

Private Activity

Use only in
the same application?

Allow unspecified number
applications to use?

Allow specified company’ s
applications to use

Public Activity Partner Activity In—house Activity

Figure 4.1-1

50 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.1. Creating/Using Private Activities

Private Activities are Activities which cannot be launched by the other applications and therefore it is
the safest Activity.

When using Activities that are only used within the application (Private Activity), as long as you use
explicit Intents to the class then you do not have to worry about accidently sending it to any other
application. However, there is a risk that a third party application can read an Intent that is used to
start the Activity. Therefore it is necessary to make sure that if you are putting sensitive information
inside an Intent used to start an Activity that you take countermeasures to make sure that it cannot
be read by a malicious third party.

Sample code of how to create a Private Activity is shown below.

Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Explicitly set the exported attribute to false.

4. Handle the received intent carefully and securely, even though the intent was sent from the same
application.

5. Sensitive information can be sent since it is sending and receiving all within the same application.

To make the Activity private, set the "exported" attribute of the Activity element in the
AndroidManifest.xml to false.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.privateactivity" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher”
android:label="@string/app_name" >

<!-- Private activity -->
<l-- *** POINT 1 *** Do not specify taskAffinity -->
<¢l-- *¥* POINT 2 *** Do not specify launchMode -->
<l-- *¥*% pOINT 3 *** Explicitly set the exported attribute to false. -->
<activity
android:name=".PrivateActivity"
android:label="@string/app_name"
android:exported="false" />

<!-- Public activity launched by launcher -->
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 51

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

PrivateActivity.java
package org.jssec.android.activity.privateactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.private_activity);

// *** POINT 4 *** Handle the received Intent carefully and securely, even though the Intent was sent from the
same application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *** POINT 5 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult(RESULT_OK, intent);

finish();

52 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next, we show the sample code for how to use the Private Activity.

Point (Using an Activity):

6. Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.

7. Use the explicit Intents with the class specified to call an activity in the same application.

8. Sensitive information can be sent only by putExtra() since the destination activity is in the same
application.!

9. Handle the received result data carefully and securely, even though the data comes from an
activity within the same application.

PrivateUserActivity.java
package org.jssec.android.activity.privateactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateUserActivity extends Activity {
private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.user_activity);

public void onUseActivityClick(View view) {

// *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.

// *** POINT 7 *** Use the explicit Intents with the class specified to call an activity in the same applicati
on.

Intent intent = new Intent(this, PrivateActivity.class);

// *** POINT 8 *** Sensitive information can be sent only by putExtra() since the destination activity is in t
he same application.
intent.putExtra("PARAM", "Sensitive Info");
startActivityForResult(intent, REQUEST_CODE);
@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:

1 Caution: Unless points 1, 2 and 6 are abided by, there is a risk that Intents may be read by a third party.
Please refer to sections 4.1.2.2 and 4.1.2.3 for more details.

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 53

SMARTPHONE
SECURITY

ll“lupm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

String result = data.getStringExtra("RESULT");

// *** POINT 9 *** Handle the received data carefully and securely,

// even though the data comes from an activity within the same application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();

break;

54 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.2. Creating/Using Public Activities

Public Activities are Activities which are supposed to be used by an unspecified large number of
applications. It is necessary to be aware that Public Activities may receive Intents sent from malware.
In addition, when using Public Activities, it is necessary to be aware of the fact that malware can also
receive or read the Intents sent to them.

The sample code to create a Public Activity is shown below.

Points (Creating an Activity):

1. Explicitly set the exported attribute to true.

2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.publicactivity" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Public Activity -->
<l-- ®%* POINT 1 *** Explicitly set the exported attribute to true. -->
<activity

android:name=".PublicActivity"

android:label="@string/app_name"

android:exported="true">

<!-- Define intent filter to receive an implicit intent for a specified action -->
<intent-filter>
<action android:name="org.jssec.android.activity.MY_ACTION" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
</manifest>

PublicActivity.java

package org.jssec.android.activity.publicactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PublicActivity extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 55

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY . . .
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// *** POINT 2 *** Handle the received intent carefully and securely.

// Since this is a public activity, it is possible that the sending application may be malware.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely.’
String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *** POINT 3 *** When returning a result, do not include sensitive information.

// Since this is a public activity, it is possible that the receiving application may be malware.
// If there is no problem if the data gets received by malware, then it can be returned as a result.
Intent intent = new Intent();

intent.putExtra("RESULT", "Not Sensitive Info");

setResult(RESULT_OK, intent);

finish();

56

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Next, Herein after sample code of Public Activity user side.

Points (Using an Activity):
4. Do not send sensitive information.
5. When receiving a result, handle the data carefully and securely.

PublicUserActivity.java

package org.jssec.android.activity.publicuser;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PublicUserActivity extends Activity {
private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

public void onUseActivityClick(View view) {

try {
// *** POINT 4 *** Do not send sensitive information.

Intent intent = new Intent("org.jssec.android.activity.MY_ACTION");
intent.putExtra("PARAM", "Not Sensitive Info");
startActivityForResult(intent, REQUEST_CODE);

} catch (ActivityNotFoundException e) {
Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

// *** POINT 5 *** When receiving a result, handle the data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (resultCode != RESULT_OK) return;
switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");
Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
break;

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 57

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.3. Creating/Using Partner Activities

Partner activities are Activities that can only be used by specific applications. They are used between
cooperating partner companies that want to securely share information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.
Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent
used to start an Activity that you take countermeasures to make sure that it cannot be read by a
malicious third party

Sample code for creating a Partner Activity is shown below.

Points (Creating an Activity):

1. Do not specify taskAffinity.

Do not specify launchMode.

Do not define the intent filter and explicitly set the exported attribute to true.

Verify the requesting application's certificate through a predefined whitelist.

Handle the received intent carefully and securely, even though the intent was sent from a partner
application.

6. Only return Information that is granted to be disclosed to a partner application.

v h W N

Please refer to "4.1.3.2 Validating the Requesting Application” for how to validate an application by a
white list. Also, please refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate"
for how to verify the certificate hash value of a destination application which is specified in the
whitelist.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical”
android:padding="5dp" >
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginTop="20dp"
android:text="@string/description” />
<Button
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginTop="20dp"
android:onClick="onReturnResultClick"
android:text="@string/return_result" />
</LinearLayout>

PartnerActivity.java
package org.jssec.android.activity.partneractivity;

58 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PartnerActivity extends Activity {

// *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application org.jssec.android.activity.partneruser.
sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"1F@39BB5 7861C27A 3916C778 8E78CEQQ 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register the other partner applications in the same way.

¥

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
if (!checkPartner(this, getCallingActivity().getPackageName())) {
Toast.makeText(this,
"Requesting application is not a partner application.”,
Toast.LENGTH_LONG) .show();
finish();
return;

// *** POINT 5 *** Handle the received intent carefully and securely, even though the intent was sent from a p
artner application.

// Omitted, since this is a sample. Refer to "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *** POINT 6 *** Only return Information that is granted to be disclosed to a partner application.
Intent intent = new Intent();
intent.putExtra("RESULT", "Information for partner applications");
setResult(RESULT_OK, intent);
finish();
X

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 59

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
b

PkgCertWhitelists.java

package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != @) return false; // found non hex char

mwhitelists.put(pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash value which corresponds to pkgname.
String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {
public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

60 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

try {
PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 61

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Sample code for using a Partner Activity is described below.

Points (Using an Activity):

7.
8.
9.

10.

11

Verify if the certificate of the target application has been registered in a whitelist.

Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.

Only send information that is granted to be disclosed to a Partner Activity only by putExtra().
Use explicit intent to call a Partner Activity.

. Use startActivityForResult() to call a Partner Activity.
12.

Handle the received result data carefully and securely, even though the data comes from a
partner application.

Refer to "4.1.3.2 Validating the Requesting Application" for how to validate applications by white list.
Also please refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate" for how to
verify the certificate hash value of a destination application which is to be specified in a white list.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.partneruser" >

<application

android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<activity
android:name="org.jssec.android.activity.partneruser.PartnerUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>
</manifest>

PartnerUserActivity.java
package org.jssec.android.activity.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerUserActivity extends Activity {

62

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 7 *** Verify if the certificate of a target application has been registered in a white list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register the certificate hash value of partner application org.jssec.android.activity.partneractivity.
sWhitelists.add("org.jssec.android.activity.partneractivity”, isdebug °?

// The certificate hash value of "androiddebugkey" is in debug.keystore.

"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

// The certificate hash value of "my company key" is in the keystore.

"D397D343 AS5CBC1OF 4EDDEB7C A10062DE 5690984F 1FBOE8SB D7B3A7C2 42E142CA");

// Register the other partner applications in the same way.

¥

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

private static final int REQUEST_CODE = 1;
// Information related the target partner activity
private static final String TARGET_PACKAGE = "org.jssec.android.activity.partneractivity";
private static final String TARGET_ACTIVITY = "org.jssec.android.activity.partneractivity.PartnerActivity";
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

public void onUseActivityClick(View view) {

// *** POINT 7 *** Verify if the certificate of the target application has been registered in the own white 1li

st.
if (!checkPartner(this, TARGET_PACKAGE)) {
Toast.makeText(this, "Target application is not a partner application.", Toast.LENGTH_LONG).show();
return;
}
try {
// *** POINT 8 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.
Intent intent = new Intent();
// *** POINT 9 *** Only send information that is granted to be disclosed to a Partner Activity only by put
Extra().
intent.putExtra("PARAM", "Info for Partner Apps");
// *** POINT 1@ *** Use explicit intent to call a Partner Activity.
intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
// *** POINT 11 *** Use startActivityForResult() to call a Partner Activity.
startActivityForResult(intent, REQUEST_CODE);
}

catch (ActivityNotFoundException e) {
Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 63

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// *** POINT 12 *** Handle the received data carefully and securely,
// even though the data comes from a partner application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
Toast.makeText(this,
String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
break;

PkgCertWhitelists.java

package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != @) return false; // found non hex char

mwhitelists.put(pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash value which corresponds to pkgname.
String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.
return PkgCert.test(ctx, pkgname, correctHash);

64 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 65

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.4. Creating/Using In-house Activities

In-house activities are the Activities which are prohibited to be used by applications other than other
in-house applications. They are used in applications developed internally that want to securely share
information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.
Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent
used to start an Activity that you take countermeasures to make sure that it cannot be read by a
malicious third party.

Sample code for creating an In-house Activity is shown below.

Points (Creating an Activity):

Define an in-house signature permission.

Do not specify taskAffinity.

Do not specify launchMode.

Require the in-house signature permission.

Do not define an intent filter and explicitly set the exported attribute to true.

Verify that the in-house signature permission is defined by an in-house application.

Handle the received intent carefully and securely, even though the intent was sent from an
in-house application.

8. Sensitive information can be returned since the requesting application is in-house.

9. When exporting an APK, sign the APK with the same developer key as the destination application.

N O vl N =

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.inhouseactivity" >

<l-- **¥*¥ POINT 1 *** Define an in-house signature permission -->
<permission

android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION
android:protectionLevel="signature" />

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- In-house Activity -->
<l-- *** POINT 2 *** Do not specify taskAffinity -->
<l-- *¥* POINT 3 *** Do not specify launchMode -->

<l-- *** POINT 4 *** Require the in-house signature permission -->
¢l-- *¥* pOINT 5 *** Do not define the intent filter and explicitly set the exported attribute to true -->
<activity

android:name="org.jssec.android.activity.inhouseactivity.InhouseActivity"
android:exported="true"
android:permission="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

</application>

66 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

</manifest>

InhouseActivity.java
package org.jssec.android.activity.inhouseactivity;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class InhouseActivity extends Activity {

// In-house Signature Permission
private static final String MY_PERMISSION = "org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 ASCBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

}
}
return sMyCertHash;
¥
@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// *** POINT 6 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText(this, "The in-house signature permission is not declared by in-house application.”,
Toast.LENGTH_LONG) .show();
finish();
return;

// *** POINT 7 *** Handle the received intent carefully and securely, even though the intent was sent from an
in-house application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *** POINT 8 *** Sensitive information can be returned since the requesting application is in-house.

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 67

SECURITY

““l’;ﬁ"&"wm Android Application Secure Design/Secure Coding Guidebook
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

Intent intent = new Intent();
intent.putExtra("RESULT", "Sensitive Info");
setResult(RESULT_OK, intent);

finish();

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

public static String hash(Context ctx, String sigPermName) {
if (sigPermName == null) return null;
try {

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi;

pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

// Get the package name of the application which declares a permission named sigPermName.

// Return the certificate hash value of the application which declares a permission named sigPermName.

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

68 All rights reserved © Japan Smartphone Security Association.

Creating/Using Activities

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 69

SECURITY

““Iiﬁ":ﬂmm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point9 *** When exporting an APK, sign the APK with the same developer key as the destination
application,

| #® Generate Signed APK ==
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: | +er+- |
Key alias: <mmmn@ L|
e []
] Remember passwords
Previous | Cancel | | Help |

Figure 4.1-2

70 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Sample code for using an In-house Activity is described below.

Points (Using an activity):

10. Declare that you want to use the in-house signature permission.

11. Verify that the in-house signature permission is defined by an in-house application.

12. Verify that the destination application is signed with the in-house certificate.

13. Sensitive information can be sent only by putExtra() since the destination application is in-house.

14. Use explicit intents to call an In-house Activity.

15. Handle the received data carefully and securely, even though the data came from an in-house
application.

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.inhouseuser" >

<l-- **¥* POINT 10 *** Declare to use the in-house signature permission -->
<uses-permission
android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<activity
android:name="org.jssec.android.activity.inhouseuser.InhouseUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

InhouseUserActivity.java
package org.jssec.android.activity.inhouseuser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 71

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public class InhouseUserActivity extends Activity {

// Target Activity information
private static final String TARGET_PACKAGE = "org.jssec.android.activity.inhouseactivity";
private static final String TARGET_ACTIVITY = "org.jssec.android.activity.inhouseactivity.InhouseActivity";

// In-house Signature Permission
private static final String MY_PERMISSION = "org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA";

}

return sMyCertHash;

private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

public void onUseActivityClick(View view) {

// *** POINT 11 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",
Toast.LENGTH_LONG) .show();
return;

// ** POINT 12 *** Verify that the destination application is signed with the in-house certificate.

if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
Toast.makeText(this, "Target application is not an in-house application.", Toast.LENGTH_LONG).show();
return;

try {
Intent intent = new Intent();

// *** POINT 13 *** Sensitive information can be sent only by putExtra() since the destination application
is in-house.

intent.putExtra("PARAM", "Sensitive Info");

// *** POINT 14 *** Use explicit intents to call an In-house Activity.
intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
startActivityForResult(intent, REQUEST_CODE);

}

catch (ActivityNotFoundException e) {
Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

72

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// *** POINT 15 *** Handle the received data carefully and securely,

// even though the data came from an in-house application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
break;

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

}

public static String hash(Context ctx, String sigPermName) {
if (sigPermName == null) return null;
try {

// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();

PermissionInfo pi;

pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 73

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

74 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

““Iiﬁ":ﬂmm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination
application.

| #® Generate Signed APK ==
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: | +er+- |
Key alias: <mmmn@ L|
e []
] Remember passwords
Previous | Cancel | | Help |

Figure 4.1-3

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 75

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

4.1.2. Rule Book

Be sure to follow the rules below when creating or sending an Intent to an activity.

1. Activities that are Used Only Internally to the Application Must be Set Private (Required)
2. Do Not Specify taskAffinity (Required)
3. Do Not Specify launchMode (Required)
4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)
5. Handling the Received Intent Carefully and Securely (Required)
6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House
Application (Required)
7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)
8. Use the explicit Intents if the destination Activity is predetermined. (Required)
9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)
10. Verify the Destination Activity if Linking with Another Company's Application
(Required)
11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of
Protection (Required)
12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

4.1.2.1. Activities that are Used Only Internally to the Application Must be Set Private (Required)

Activities which are only used in a single application are not required to be able to receive any Intents
from other applications. Developers often assume that Activities intended to be private will not be
attacked but it is necessary to explicitly make these Activities private in order to stop malicious
Intents from being received.

AndroidManifest.xml

<!-- Private activity -->
<l-- ®%* POINT 3 *** Explicitly set the exported attribute to false. -->
<activity

android:name=".PrivateActivity"
android:label="@string/app_name"
android:exported="false" />

Intent filters should not be set on activities that are only used in a single application. Due to the
characteristics of Intent filters, Due to the characteristics of how Intent filters work, even if you intend
to send an Intent to a Private Activity internally, if you send the Intent through an Intent filter than you
may unintentionally start another Activity. Please see Advanced Topics "4.1.3.1Combining Exported
Attributes and Intent Filter Settings (For Activities)" for more details.

AndroidManifest.xml(Not recommended)
<!-- Private activity -->
<l-- *¥*% pPOINT 3 *** Explicitly set the exported attribute to false. -->
<activity

76 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

android:name=".PictureActivity"
android:label="@string/picture_name"
android:exported="false" >
<intent-filter>
<action android:name="org.jssec.android.activity.OPEN />
</intent-filter>
</activity>

4.1.2.2. Do Not Specify taskAffinity (Required)

In Android OS, Activities are managed by tasks. Task names are determined by the affinity that the
root Activity has. On the other hand, for Activities other than root Activities, the task to which the
Activity belongs is not determined by the Affinity only, but also depends on the Activity's launch
mode. Please refer to "4.1.3.4 Root Activity" for more details.

In the default setting, each Activity uses its package name as its affinity. As a result, tasks are
allocated according to application, so all Activities in a single application will belong to the same task.
To change the task allocation, you can make an explicit declaration for the affinity in the
AndroidManifest.xml file or you can set a flag in an Intent sent to an Activity. However, if you change
task allocations, there is a risk that another application could read the Intents sent to Activities
belonging to another task.

Be sure not to specify android:taskAffinity in the AndroidManifest.xml file and use the default setting
keeping the affinity as the package name in order to prevent sensitive information inside sent or

received Intents from being read by another application.

Below is an example AndroidManifest.xml file for creating and using Private Activities.

AndroidManifest.xml
<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Private activity -->
¢l-- **%*% POINT 1 *** Do not specify taskAffinity -->
<activity

android:name=".PrivateActivity"
android:label="@string/app_name"
android:exported="false" />

</application>

Please refer to the "Google Android Programming guide"2, the Google Developer’s APl Guide "Tasks
and Back Stack"3, "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity" for more

2 Author Egawa, Fujii, Asano, Fujita, Yamada, Yamaoka, Sano, Takebata, “Google Android Programming
Guide”, ASCIlI Media Works, July 2009
3 http://developer.android.com/guide/components/tasks-and-back-stack.html

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 77

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

details about tasks and affinities.

4.1.2.3. Do Not Specify launchMode (Required)

The Activity launch mode is used to control the settings for creating new tasks and Activity instances
when starting an Activity. By default it is set to "standard". In the "standard" setting, new instances
are always created when starting an Activity, tasks follow the tasks belonging to the calling Activity,
and it is not possible to create a new task. When a new task is created, it is possible for other
applications to read the contents of the calling Intent so it is required to use the "standard" Activity
launch mode setting when sensitive information is included in an Intent.

The Activity launch mode can be explicitly set in the android:launchMode attribute in the
AndroidManifest.xml file, but because of the reason explained above, this should not be set in the
Activity declaration and the value should be kept as the default "standard".

AndroidManifest.xml
<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Private activity -->
<l-- *¥* POINT 2 *** Do not specify launchMode -->
<activity

android:name=".PrivateActivity"
android:label="@string/app_name"
android:exported="false" />

</application>

Please refer to "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity."

4.1.2.4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity(Required)

The launch mode of an Activity can be changed when executing startActivity() or
startActivityForResult() and in some cases a new task may be generated. Therefore it is necessary to
not change the launch mode of Activity during execution.

To change the Activity launch mode, set the Intent flags by using setFlags() or addFlags() and use that
Intent as an argument to startActivity() or startActivityForResult(). FLAG_ACTIVITY_NEW_TASK is the
flag used to create a new task. When the FLAG_ACTIVITY_NEW_TASK is set, a new task will be created
if the called Activity does not exist in the background or foreground.

The FLAG_ACTIVITY_MULTIPLE_TASK flag can be set simultaneously with FLAG_ACTIVITY_NEW_TASK.
In this case, a new task will always be created. New tasks may be created with either setting so these
should not be set with Intents that handle sensitive information.

Example of sending an intent
// *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent to start an activity.
Intent intent = new Intent(this, PrivateActivity.class);
intent.putExtra("PARAM", "Sensitive Info");

78 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

startActivityForResult(intent, REQUEST_CODE);

In addition, you may think that there is a way to prevent the contents of an Intent from being read
even if a new task was created by explicitly setting the FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS
flag. However, even by using this method, the contents can be read by a third party so you should
avoid any usage of FLAG_ACTIVITY_NEW_TASK.

Please refer to "4.1.3.1Combining Exported Attributes and Intent Filter Settings (For Activities)"
"4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity."

4.1.2.5. Handling the Received Intent Carefully and Securely (Required)

Risks differ depending on the types of Activity, but when processing a received Intent data, the first
thing you should do is input validation.

Since Public Activities can receive Intents from untrusted sources, they can be attacked by malware.
On the other hand, Private Activities will never receive any Intents from other applications directly,
but it is possible that a Public Activity in the targeted application may forward a malicious Intent to a
Private Activity so you should not assume that Private Activities cannot receive any malicious input.
Since Partner Activities and In-house Activities also have the risk of a malicious intent being
forwarded to them as well, it is necessary to perform input validation on these Intents as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.1.2.6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House

Application (Required)

Make sure to protect your in-house Activities by defining an in-house signature permission when
creating the Activity. Since defining a permission in the AndroidManifest.xml file or declaring a
permission request does not provide adequate security, please be sure to refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission."

4.1.2.7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)

When you use setResult() to return data, the reliability of the destination application will depend on
the Activity type. When Public Activities are used to return data, the destination may turn out to be
malware in which case that information could be used in a malicious way. For Private and In-house
Activities, there is not much need to worry about data being returned to be used maliciously because
they are being returned to an application you control. Partner Activities are somewhat in the middle.

As above, when returning data from Activities, you need to pay attention to information leakage from

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 79

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

the destination application.

|Example of returning data.

public void onReturnResultClick(View view) {

// *** POINT 6 *** Information that is granted to be disclosed to a partner application can be return
ed.

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult(RESULT_OK, intent);

finish();

4.1.2.8. Use the explicit Intents if the destination Activity is predetermined. (Required)

When using an Activity by implicit Intents, the Activity in which the Intent gets sent to is determined
by the Android OS. If the Intent is mistakenly sent to malware then Information leakage can occur. On
the other hand, when using an Activity by explicit Intents, only the intended Activity will receive the
Intent so this is much safer.

Unless it is absolutely necessary for the user to determine which application's Activity the intent
should be sent to, you should use explicit intents and specify the destination in advance.

Using an Activity in the same application by an explicit Intent
Intent intent = new Intent(this, PictureActivity.class);
intent.putExtra("BARCODE", barcode);
startActivity(intent);

Using other applicaion's Public Activity by an explicit Intent

Intent intent = new Intent();

intent.setClassName(
"org.jssec.android.activity.publicactivity"”,
"org.jssec.android.activity.publicactivity.PublicActivity");

startActivity(intent);

However, even when using another application's Public Activity by explicit Intents, it is possible that
the destination Activity could be malware. This is because even if you limit the destination by
package name, it is still possible that a malicious application can fake the same package name as the
real application. To eliminate this type of risk, it is necessary to consider using a Partner or In-house.

Please refer to "4.1.3.1Combining Exported Attributes and Intent Filter Settings (For Activities)"

4.1.2.9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

While the risks differ slightly according to what type of Activity you accessing, when processing Intent

data received as a returned value, you always need to perform input validation on the received data.
80 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SE I

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
assocunon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Public Activities have to accept returned Intents from untrusted sources so when accessing a Public
Activity it is possible that, the returned Intents are actually sent by malware. It is often mistakenly
thought that all returned Intents from a Private Activity are safe because they are originating from the
same application. However, since it is possible that an intent received from an untrusted source is
indirectly forwarded, you should not blindly trust the contents of that Intent. Partner and In-house
Activities have a risk somewhat in the middle of Private and Public Activities. Be sure to input validate
these Activities as well.

Please refer to "3.2 Handling Input Data Carefully and Securely" for more information.

4.1.2.10. Verify the Destination Activity if Linking with Another Company's Application
(Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by
saving a copy of the company's certificate hash inside your application and checking it with the
certificate hash of the destination application. This will prevent a malicious application from being
able to spoof Intents. Please refer to sample code section "4.1.1.3 Creating/Using Partner Activities"
for the concrete implementation method. For technical details, please refer to "4.1.3.2 Validating the
Requesting Application."

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 81

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

4.1.2.11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of
Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole
because an application with permissions to an asset can act as a proxy and allow access to an
unprivileged application. Substantially this is the same as re-delegating a permission so it is referred
to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4 Permission Re-delegation
Problem."

4.1.2.12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

You should not send sensitive information to untrusted parties. Even when you are linking with a
specific application, there is still a chance that you unintentionally send an Intent to a different
application or that a malicious third party can steal your Intents. Please refer to "4.1.3.5 Log Output
When using Activities."

You need to consider the risk of information leakage when sending sensitive information to an
Activity. You must assume that all data in Intents sent to a Public Activity can be obtained by a
malicious third party. In addition, there is a variety of risks of information leakage when sending
Intents to Partner or In-house Activities as well depending on the implementation. Even when
sending data to Private Activities, there is a risk that the data in the Intent could be leaked through
LogCat. Information in the extras part of the Intent is not output to LogCat so it is best to store
sensitive information there.

However, not sending sensitive data in the first place is the only perfect solution to prevent
information leakage therefore you should limit the amount of sensitive information being sent as
much as possible. When it is necessary to send sensitive information, the best practice is to only send
to a trusted Activity and to make sure the information cannot be leaked through LogCat.

In addition, sensitive information should never be sent to the root Activity. Root Activities are
Activities that are called first when a task is created. For example, the Activity which is launched from
launcher is always the root Activity.

Please refer to "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity" for more
details on root Activities.

82 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocmon ttp://www.jssec.org/dl/android_securecoding_en.pdf

4.1.3. Advanced Topics
4.1.3.1. Combining Exported Attributes and Intent Filter Settings (For Activities)

We have explained how to implement the four types of Activities in this guidebook: Private Activities,
Public Activities, Partner Activities, and In-house Activities. The various combinations of permitted
settings for each type of exported attribute defined in the AndroidManifest.xml file and the
intent-filter elements are defined in the table below. Please verify the compatibility of the exported
attribute and intent-filter element with the Activity you are trying to create.

Table 4.1-2
Value of exported attribute
True False Not specified
Intent Filter defined Public (Do not Use) (Do not Use)
Intent Filter Not | Public, Partner, AndroidManifest.xml | (Do not Use)
Defined In- house

The reason why an undefined intent filter and an exported attribute of false should not be used is
that there is a loophole in Android's behavior, and because of how Intent filters work, other
application's Activities can be called unexpectedly. The following two figures below show this
explanation. Figure 4.1-4 is an example of normal behavior in which a Private Activity (Application A)
can be called by an implicit Intent only from the same application. The Intent filter (action = "X") is
defined to work only inside Application A, so this is the expected behavior.

()

Application A
Call an activity with
the implicit intent

Intent(“X”)
Application C

Private Activity A—1 Call the activity with
exported="false” the implicit intent

action="“X" @

Since the activity A-1 is private one,
it can be called only by the application A.

Android device

Figure 4.1-4

Figure 4.1-5 below shows a scenario in which the same Intent filter (action="X") is defined in
Application B as well as Application A. Application A is trying to call a Private Activity in the same
application by sending an implicit Intent, but this time a dialogue box asking the user which
application to select is displayed, and the Public Activity B-1 in Application B called by mistake due to

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 83

SECURITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

the user selection. Due to this loophole, it is possible that sensitive information can be sent to other
applications or application may receive an unexpected retuned value.

4 N

Application A

Call an activity with Application

the implicit intent selector

B-1
Private Activity A—1
exported="“false” _)
action="X"

Application B

Public Activity B-1
exported="“true”
action="X"

When the activity B—1 that has the
same action exists, OS display the
selector dialog, and public activity B—1is
called depends on user selection.

Android device

Figure 4.1-5

As shown above, using Intent filters to send implicit Intents to Private Activities may result in
unexpected behavior so it is best to avoid this setting. In addition, we have verified that this behavior
does not depend on the installation order of Application A and Application B.

4.1.3.2. Validating the Requesting Application

Here we explain the technical information about how to implement a Partner Activity. Partner
applications permit that only particular applications which are registered in a whitelist are allowed
access and all other applications are denied. Because applications other than in—house applications
also need access permission, we cannot use signature permissions for access control.

Simply speaking, we want to validate the application trying to use the Partner Activity by checking if it
is registered in a predefined whitelist and allow access if it is and deny access if it is not. Application
validation is done by obtaining the certificate from the application requesting access and comparing
its hash with the one in the whitelist.

Some developers may think that it is sufficient to just compare the package name without obtaining
the certificate, however, it is easy to spoof the package name of a legitimate application so this is not
a good method to check for authenticity. Arbitrarily assignable values should not be used for
authentication. On the other hand, because only the application developer has the developer key for
signing its certificate, this is a better method for identification. Since the certificate cannot be easily

84 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

spoofed, unless a malicious third party can steal the developer key, there is a very small chance that
malicious application will be trusted. While it is possible to store the entire certificate in the whitelist,
it is sufficient to only store the SHA-256 hash value in order to minimize the file size.

There are two restrictions for using this method.

® The requesting application has to use startActivityForResult() instead of startActivity().
® The requesting application can only call from an Activity.

The second restriction is the restriction imposed as a result of the first restriction, so technically
there is only a single restriction.

This restriction occurs due to the restriction of Activity.getCallingPackage() which gets the package
name of the calling application. Activity.getCallingPackage() returns the package name of source
(requesting) application only in case it is called by startActivityForResult(), but unfortunately, when it
is called by startActivity(), it only returns null. Because of this, when using the method explained here,
the source (requesting) application needs to use startActivityForResult() even if it does not need to
obtain a return value. In addition, startActivityForResult() can be used only in Activity classes, so the
source (requester) is limited to Activities.

PartnerActivity.java
package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PartnerActivity extends Activity {

// *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application org.jssec.android.activity.partneruser.
sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"1F@39BB5 7861C27A 3916C778 8E78CEQ0 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register the other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 85

SE!

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
CURITY . . .
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
if (!checkPartner(this, getCallingActivity().getPackageName())) {
Toast.makeText(this,
"Requesting application is not a partner application.”,
Toast.LENGTH_LONG).show();
finish();
return;

// *** POINT 5 *** Handle the received intent carefully and securely, even though the intent was sent from a p
artner application.

// Omitted, since this is a sample. Refer to "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {

// *** POINT 6 *** Only return Information that is granted to be disclosed to a partner application.
Intent intent = new Intent();

intent.putExtra("RESULT", "Information for partner applications");

setResult(RESULT_OK, intent);

finish();

PkgCertWhitelists.java

package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != @) return false; // found non hex char

mwhitelists.put(pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash value which corresponds to pkgname.
String correctHash = mWhitelists.get(pkgname);

86 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

““l’;ﬁ"&"wm Android Application Secure Design/Secure Coding Guidebook
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

// Compare the actual hash value of pkgname with the correct hash value.
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();

Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

}

PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

All rights reserved © Japan Smartphone Security Association.

Creating/Using Activities

87

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

4.1.3.3. Reading Intents Sent to an Activity

In Android 5.0 (API Level 21) and later, the information retrieved with getRecentTasks() has been
limited to the caller's own tasks and possibly some other tasks such as home that are known to not
be sensitive. However applications, which support the versions under Android 5.0 (APl Level 21),
should protect against leaking sensitive information.

The following describes the contents of this problem occurring in Android 5.0 and earlier version.

Intents that are sent to the task's root Activity are added to the task history. A root Activity is the first
Activity started in a task. It is possible for any application to read the Intents added to the task history
by using the ActivityManager class.

Sample code for reading the task history from an application is shown below. To browse the task
history, specify the GET_TASKS permission in the AndroidManifest.xml file.

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.intent.maliciousactivity" >

<!-- Use GET_TASKS Permission -->
<uses-permission android:name="android.permission.GET_TASKS" />

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name=".MaliciousActivity"
android:label="@string/title_activity_main"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

MaliciousActivity.java
package org.jssec.android.intent.maliciousactivity;

import java.util.List;
import java.util.Set;

import android.app.Activity;
import android.app.ActivityManager;
import android.content.Intent;

import android.os.Bundle;

88 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

import android.util.lLog;

public class MaliciousActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.malicious_activity);

// Get am ActivityManager instance.
ActivityManager activityManager = (ActivityManager) getSystemService(ACTIVITY_SERVICE);
// Get 100 recent task info.
List<ActivityManager.RecentTaskInfo> list = activityManager
.getRecentTasks (100, ActivityManager.RECENT_WITH_EXCLUDED);
for (ActivityManager.RecentTaskInfo r : list) {
// Get Intent sent to root Activity and Log it.
Intent intent = r.baselntent;
Log.v("baseIntent", intent.toString());
Log.v(" action:", intent.getAction());
Log.v(" data:", intent.getDataString());
if (r.origActivity != null) {
Log.v(" pkg:", r.origActivity.getPackageName() + r.origActivity.getClassName());
}
Bundle extras = intent.getExtras();
if (extras != null) {
Set<String> keys = extras.keySet();
for(String key : keys) {
Log.v(" extras:", key + "=" + extras.get(key).toString());

You can obtain specified entries of the task history by using the getRecentTasks() function of the
AcitivityManager class. Information about each task is stored in an instance of the
ActivityManager.RecentTaskInfo class, but Intents that were sent to the task's root Activity are stored
in its member variable baselntent. Since the root Activity is the Activity which was started when the
task was created, please be sure to not fulfill the following two conditions when calling an Activity.

® A new task is created when the Activity is called.
® The called Activity is the task's root Activity which already exists in the background or
foreground.

4.1.3.4. Root Activity

The root Activity is the Activity which is the starting point of a task. In other words, this is the Activity
which was launched when task was created. For example, when the default Activity is launched by
launcher, this Activity will be the root Activity. According to the Android specifications, the contents
of Intents sent to the root Activity can be read from arbitrary applications. So, it is necessary to take
countermeasures not to send sensitive information to the root Activity. In this guidebook, the
following three rules have been made to avoid a called Activity to become root Activity.

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 89

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

® taskAffinity should not be specified.
® launchMode should not be specified.
® The FLAG_ACTIVITY_NEW_TASK flag should not be set in an Intent sent to an Activity.

We consider the situations that an Activity can become the root Activity below. A called Activity
becoming a root Activity depends on the following.

® The launch mode of the called Activity
® The task of a called Activity and its launch mode

First of all, let me explain the "Launch mode of called Activity." Launch mode of Activity can be set by
writing android:launchMode in AndroidManifest.xml. When it's not written, it's considered as
"standard". In addition, launch mode can be also changed by a flag to set to Intent. Flag
"FLAG_ACTIVITY_NEW_TASK" launches Activity by "singleTask" mode.

The launch modes that can be specified are as per below. [I'll explain about the relation with the root
activity, mainly.

standard
Activity which is called by this mode won't be root, and it belongs to the caller side task. Every
time it's called, Instance of Activity is to be generated.

singleTop
This launch mode is the same as "standard", except for that the instance is not generated when
launching an Activity which is displayed in most front side of foreground task.

singleTask
This launch mode determines the task to which the activity would be belonging by Affinity value.
When task which is matched with Activity's affinity doesn't exist either in background or in
foreground, a new task is generated along with Activity's instance. When task exists, neither of
them is to be generated. In the former one, the launched Activity's Instance becomes root.

singlelnstance
Same as "singleTask", but following point is different. Only root Activity can belongs to the newly
generated task. So instance of Activity which was launched by this mode is always root activity.
Now, we need to pay attention to the case that the class name of called Activity and the class
name of Activity which is included in a task are different although the task which has the same
name of called Activity's affinity already exists.

From as above, we can get to know that Activity which was launched by "singleTask" or
"singlelnstance" has the possibility to become root. In order to secure the application's safety, it
should not be launched by these modes.

90 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next, I'll explain about "Task of the called Activity and its launch mode". Even if Activity is called by
"standard" mode, it becomes root Activity in some cases depends on the task state to which Activity
belongs.

For example, think about the case that called Activity's task has being run already in background.
The problem here is the case that Activity Instance of the task is launched by singlelnstance". When
the affinity of Activity which was called by "standard" is same with the task, new task is to be
generated by the restriction of existing "singlelnstance" Activity. However, when class name of each
Activity is same, task is not generated and existing activity Instance is to be used. In any cases, that
called Activity becomes root Activity.

As per above, the conditions that root Activity is called are complicated, for example it depends on
the state of execution. So when developing applications, it's better to contrive that Activity is called
by "standard".

As an example of that Intent which is sent to Private Activity is read out form other application, the
sample code shows the case that caller side Activity of private Activity is launched by "singleinstance”
mode. In this sample code, private activity is launched by "standard" mode, but this private Activity
becomes root Activity of new task due the "singlelnstance" condition of caller side Activity. At this
moment, sensitive information that is sent to Private Activity is recorded task history, so it can be
read out from other applications. FYI, both caller side Activity and Private Activity have the same
affinity.

AndroidManifest.xml(Not recommended)

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.activity.singleinstanceactivity" >

<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<!-- Set the launchMode of the root Activity to "singleInstance". -->
<!-- Do not use taskAffinity -->
<activity

android:name="org.jssec.android.activity.singleinstanceactivity.PrivateUserActivity"
android:label="@string/app_name"
android:launchMode="singleInstance"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

<!-- Private activity -->

<!-- Set the launchMode to "standard." -->
<!-- Do not use taskAffinity -->

<activity

android:name="org.jssec.android.activity.singleinstanceactivity.PrivateActivity"
android:label="@string/app_name"

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 91

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

android:exported="false" />
</application>
</manifest>

Private Activity only returns the results to the received Intent.

PrivateActivity.java
package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.private_activity);

// Handle intent securely, even though the intent sent from the same application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

public void onReturnResultClick(View view) {
Intent intent = new Intent();
intent.putExtra("RESULT", "Sensitive Info");
setResult(RESULT_OK, intent);
finish();

In caller side of Private Activity, Private Activity is launched by "standard" mode without setting flag to
Intent.

PrivateUserActivity.java
package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateUserActivity extends Activity {
private static final int REQUEST_CODE = 1;
@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

92 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

setContentView(R.layout.user_activity);

public void onUseActivityClick(View view) {

// Start the Private Activity with "standard" lanchMode.
Intent intent = new Intent(this, PrivateActivity.class);
intent.putExtra("PARAM", "Sensitive Info");

startActivityForResult(intent, REQUEST_CODE);

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {
case REQUEST_CODE:
String result = data.getStringExtra("RESULT");

// Handle received result data carefully and securely,

// even though the data came from the Activity in the same application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
break;

4.1.3.5. Log Output When using Activities

When using an activity, the contents of intent are output to LogCat by ActivityManager. The following
contents are to be output to LogCat, so in this case, sensitive information should not be included
here.

® Destination Package name
® Destination Class name

® URI which is set by Intent#setData()

For example, when an application sent mails, the mail address is unfortunately outputted to LogCat if
the application would specify the mail address to URI. So, better to send by setting Extras.

When sending a mail as below, mail address is shown to the logCat.

MainActivity.java
// URI is output to the LogCat.
Uri uri = Uri.parse("mailtoest@gmail.com");
Intent intent = new Intent(Intent.ACTION_SENDTO, uri);
startActivity(intent);

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 93

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

When using Extras, mail address is no more shown to the logCat.

MainActivity.java
// Contents which was set to Extra, is not output to the LogCat.
Uri uri = Uri.parse("mailto:");
Intent intent = new Intent(Intent.ACTION_SENDTO, uri);
intent.putExtra(Intent.EXTRA_EMAIL, new String[] {"test@gmail.com"});
startActivity(intent);

However, there are cases where other applications can read the Extras data of intent using
ActivityManager#getRecentTasks(). Please refer to “4.1.2.2 Do Not Specify taskAffinity (Required)®,
“4.1.2.3 Do Not Specify launchMode (Required)* and “4.1.2.4 Do Not Set the
FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)*.

4.1.3.6. Protecting against Fragment Injection in PreferenceActivity

When a class derived from PreferenceActivity is a public Activity, a problem known as Fragment
Injection4 may arise. To prevent this problem from arising, it is necessary to override
PreferenceActivity.IsValidFragment() and check the validity of its arguments to ensure that the
Activity does not handle any Fragments without intention. (For more on the safety of input data, see
Section "3.2 Handling Input Data Carefully and Securely".)

Below we show a sample in which IsValidFragment() has been overridden. Note that, if the source
code has been obfuscated, class names and the results of parameter-value comparisons may change.
In this case it is necessary to pursue alternative countermeasures.

Example of an overridden isValidFragment() method
protected boolean isValidFragment(String fragmentName) {
// If the source code is obfuscated, we must pursue alternative strategies
return PreferenceFragmentA.class.getName().equals(fragmentName)
|| PreferenceFragmentB.class.getName().equals(fragmentName)
|| PreferenceFragmentC.class.getName().equals(fragmentName)
|| PreferenceFragmentD.class.getName().equals(fragmentName);

Note that if the app's targetSdkVersion is 19 or greater, failure to override
PreferenceActivity.isValidFragment() will result in a security exception and the termination of the app
whenever a Fragment is inserted [when isValidFragment() is called], so in this case overriding
PreferenceActivity.isValidFragment() is mandatory.

4 For more information on Fragment Injection, consult this URL:
https://securityintelligence.com/new-vulnerability-android-framework-fragment-injection/

94 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 4.2. Receiving/Sending Broadcasts

4.2.1. Sample Code

Creating Broadcast Receiver is required to receive Broadcast. Risks and countermeasures of using
Broadcast Receiver differ depending on the type of the received Broadcast.

You can find your Broadcast Receiver in the following judgment flow. The receiving applications
cannot check the package names of Broadcast-sending applications that are necessary for linking
with the partners. As a result, Broadcast Receiver for the partners cannot be created.

Table 4.2-1 Definition of broadcast receiver types

Type Definition

Private broadcast | A broadcast receiver that can receive broadcasts only from the same
receiver application, therefore is the safest broadcast receiver

Public broadcast | A broadcast receiver that can receive broadcasts from an

receiver unspecified large number of applications

In-house A broadcast receiver that can receive broadcasts only from other

broadcast receiver | In-house applications

=

No

Receive broadcasts only
from the same application?

Receive broadcasts only
from unspecified number
application?

Yes

\ 4 \ 4 A\ 4
Private Broadcast Receiver Public Broadcast Receiver In—house Broadcast Receiver
Figure 4.2-1

In addition, Broadcast Receiver can be divided into 2 types based on the definition methods, Static
Broadcast Receiver and Dynamic Broadcast Receiver. The differences between them can be found in
the following figure. In the sample code, an implementation method for each type is shown. The
implementation method for sending applications is also described because the countermeasure for
sending information is determined depending on the receivers.

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 95

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

Table 4.2-2

Definition method

Characteristic

Static Broadcast Define by writing ® There is a restriction that some Broadcasts
Receiver <receiver> elements in (e.g. ACTION_BATTERY_CHANGED) sent by
AndroidManifest.xml system cannot be received.
® Broadcast can be received from
application's initial boot till uninstallation.
Dynamic Broadcast By calling ® Broadcasts which cannot be received by
Receiver registerReceiver() and static Broadcast Receiver can be received.
unregisterReceiver() ina | ® The period of receiving Broadcasts can be
program, controlled by the program. For example,
register/unregister Broadcasts can be received only while
Broadcast Receiver Activity is on the front side.
dynamically. ® Private Broadcast Receiver cannot be
created.
96 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.1. Private Broadcast Receiver - Receiving/Sending Broadcasts

Private Broadcast Receiver is the safest Broadcast Receiver because only Broadcasts sent from within
the application can be received. Dynamic Broadcast Receiver cannot be registered as Private, so

Private Broadcast Receiver consists of only Static Broadcast Receivers.

Points (Receiving Broadcasts):
1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from within

the same application.

3. Sensitive information can be sent as the returned results since the requests come from within the

same application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.broadcast.privatereceiver" >

<application
android:icon="@drawable/ic_launcher”
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Private Broadcast Receiver -->
<l-- *%*% pOINT 1 *** Explicitly set the exported attribute to false. -->
<receiver

android:name=".PrivateReceiver"
android:exported="false" />

<activity
android:name=".PrivateSenderActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

PrivateReceiver.java
package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PrivateReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

97

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 2 *** Handle the received intent carefully and securely,

// even though the intent was sent from within the same application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String param = intent.getStringExtra("PARAM");

Toast.makeText(context,

String.format("Received param: ¥"%s¥
Toast.LENGTH_SHORT) .show();

, param),

// *** POINT 3 *** Sensitive information can be sent as the returned results since the requests come from with

in the same application.

setResultCode(Activity.RESULT_OK);
setResultData("Sensitive Info from Receiver");
abortBroadcast();

98

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

The sample code for sending Broadcasts to private Broadcast Receiver is shown below. Please pay
attention that Sticky cannot be used here though the method of sending Broadcasts to private
Broadcast Receiver is said to be safe from the security point of view.

Points (Sending Broadcasts):

4. Use the explicit Intent with class specified to call a receiver within the same application.

5. Sensitive information can be sent since the destination Receiver is within the same application.

6. Handle the received result data carefully and securely, even though the data came from the
Receiver within the same application.

PrivateSenderActivity.java
package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateSenderActivity extends Activity {

public void onSendNormalClick(View view) {
// *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same application

Intent intent = new Intent(this, PrivateReceiver.class);

// *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applica
tion.

intent.putExtra("PARAM", "Sensitive Info from Sender");

sendBroadcast(intent);

public void onSendOrderedClick(View view) {
// *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same application

Intent intent = new Intent(this, PrivateReceiver.class);

// *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applica
tion.

intent.putExtra("PARAM", "Sensitive Info from Sender");

sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

// *** POINT 6 *** Handle the received result data carefully and securely,
// even though the data came from the Receiver within the same application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String data = getResultData();
PrivateSenderActivity.this.loglLine(
String.format("Received result: ¥"%s¥"", data));

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 99

SECURITY

““l’;ﬁ"&"wm Android Application Secure Design/Secure Coding Guidebook

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

¥
private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void logLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

100

All rights reserved © Japan Smartphone Security Association.

Receiving/Sending Broadcasts

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.2. Public Broadcast Receiver — Receiving/Sending Broadcasts

Public Broadcast Receiver is the Broadcast Receiver that can receive Broadcasts from unspecified
large number of applications, so it's necessary to pay attention that it may receive Broadcasts from
malware.

Points (Receiving Broadcasts):

1. Explicitly set the exported attribute to true.

2. Handle the received Intent carefully and securely.

3. When returning a result, do not include sensitive information.

Public Receiver which is the sample code for public Broadcast Receiver can be used both in static
Broadcast Receiver and Dynamic Broadcast Receiver.

PublicReceiver.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PublicReceiver extends BroadcastReceiver {

private static final String MY_BROADCAST_PUBLIC =
"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

public boolean isDynamic = false;
private String getName() {
return isDynamic ? "Public Dynamic Broadcast Receiver" : "Public Static Broadcast Receiver";

@Override
public void onReceive(Context context, Intent intent) {

// *** POINT 2 *** Handle the received Intent carefully and securely.
// Since this is a public broadcast receiver, the requesting application may be malware.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely.
if (MY_BROADCAST_PUBLIC.equals(intent.getAction())) {
String param = intent.getStringExtra("PARAM");

Toast.makeText(context,
String.format("%s:¥nReceived param: ¥"%s¥"", getName(), param),
Toast.LENGTH_SHORT).show();

// *** POINT 3 *** When returning a result, do not include sensitive information.

// Since this is a public broadcast receiver, the requesting application may be malware.
// If no problem when the information is taken by malware, it can be returned as result.
setResultCode(Activity.RESULT_OK);

setResultData(String.format("Not Sensitive Info from %s", getName()));
abortBroadcast();

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 101

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
b

Static Broadcast Receive is defined in AndroidManifest.xml.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.broadcast.publicreceiver"” >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Public Static Broadcast Receiver -->
<l-- ®¥* POINT 1 *** Explicitly set the exported attribute to true. -->
<receiver

android:name=".PublicReceiver"
android:exported="true" >
<intent-filter>
<action android:name="org.jssec.android.broadcast.MY_BROADCAST_PUBLIC" />
</intent-filter>
</receiver>

<service
android:name=".DynamicReceiverService"
android:exported="false" />

<activity
android:name=".PublicReceiverActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

In Dynamic Broadcast Receiver, registration/unregistration is executed by calling registerReceiver()
or unregisterReceiver() in the program. In order to execute registration/unregistration by button
operations, the button is allocated on PublicReceiverActivity. Since the scope of Dynamic Broadcast
Receiver Instance is longer than PublicReceiverActivity, it cannot be kept as the member variable of
PublicReceiverActivity. In this case, keep the Dynamic Broadcast Receiver Instance as the member
variable of DynamicReceiverService, and then start/end DynamicReceiverService from
PublicReceiverActivity to register/unregister Dynamic Broadcast Receiver indirectly.

DynamicReceiverService.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Service;
import android.content.Intent;

102 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.IntentFilter;
import android.os.IBinder;
import android.widget.Toast;

public class DynamicReceiverService extends Service {

private static final String MY_BROADCAST_PUBLIC =
"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

private PublicReceiver mReceiver;

@Override
public IBinder onBind(Intent intent) {
return null;

@Override
public void onCreate() {
super.onCreate();

// Register Public Dynamic Broadcast Receiver.
mReceiver = new PublicReceiver();
mReceiver.isDynamic = true;
IntentFilter filter = new IntentFilter();
filter.addAction(MY_BROADCAST PUBLIC);
filter.setPriority(1); // Prioritize Dynamic Broadcast Receiver, rather than Static Broadcast Receiver.
registerReceiver(mReceiver, filter);
Toast.makeText(this,
"Registered Dynamic Broadcast Receiver.",
Toast.LENGTH_SHORT) .show();

@Override
public void onDestroy() {
super.onDestroy();

// Unregister Public Dynamic Broadcast Receiver.
unregisterReceiver(mReceiver);
mReceiver = null;
Toast.makeText(this,
"Unregistered Dynamic Broadcast Receiver.",
Toast.LENGTH_SHORT) .show();

PublicReceiverActivity.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PublicReceiverActivity extends Activity {
@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 103

SE!

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
CURITY . . .
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

setContentView(R.layout.main);

public void onRegisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
startService(intent);

public void onUnregisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
stopService(intent);

104 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next, the sample code for sending Broadcasts to public Broadcast Receiver is shown. When sending
Broadcasts to public Broadcast Receiver, it's necessary to pay attention that Broadcasts can be
received by malware.

Points (Sending Broadcasts):
4. Do not send sensitive information.
5. When receiving a result, handle the result data carefully and securely.

PublicSenderActivity.java

package org.jssec.android.broadcast.publicsender;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicSenderActivity extends Activity {

private static final String MY_BROADCAST_PUBLIC =
"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

public void onSendNormalClick(View view) {
// *** POINT 4 *** Do not send sensitive information.
Intent intent = new Intent(MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
sendBroadcast(intent);

public void onSendOrderedClick(View view) {
// *** POINT 4 *** Do not send sensitive information.
Intent intent = new Intent(MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
sendOrderedBroadcast(intent, null, mResultReceiver, null, @, null, null);

public void onSendStickyClick(View view) {
// *** POINT 4 *** Do not send sensitive information.
Intent intent = new Intent(MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
//sendStickyBroadcast is deprecated at API Level 21
sendStickyBroadcast(intent);

public void onSendStickyOrderedClick(View view) {
// *** POINT 4 *** Do not send sensitive information.
Intent intent = new Intent(MY_BROADCAST_PUBLIC);
intent.putExtra("PARAM", "Not Sensitive Info from Sender");
//sendStickyOrderedBroadcast is deprecated at API Level 21
sendStickyOrderedBroadcast(intent, mResultReceiver, null, @, null, null);

public void onRemoveStickyClick(View view) {
Intent intent = new Intent(MY_BROADCAST_PUBLIC);
//removeStickyBroadcast is deprecated at API Level 21

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 105

wresone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

““l Associarion http://www.jssec.org/dl/android_securecoding_en.pdf

removeStickyBroadcast(intent);

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

// *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String data = getResultData();
PublicSenderActivity.this.logLine(
String.format("Received result: ¥"%s¥"", data));

}s

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

106

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.3. In-house Broadcast Receiver - Receiving/Sending Broadcasts

In-house Broadcast Receiver is the Broadcast Receiver that will never receive any Broadcasts sent
from other than in-house applications. It consists of several in-house applications, and it's used to
protect the information or functions that in—house application handles.

Points (Receiving Broadcasts):

N O vl AW N =

®

Define an in-house signature permission to receive Broadcasts.

Declare to use the in-house signature permission to receive results.

Explicitly set the exported attribute to true.

Require the in-house signature permission by the Static Broadcast Receiver definition.

Require the in-house signature permission to register Dynamic Broadcast Receiver.

Verify that the in-house signature permission is defined by an in-house application.

Handle the received intent carefully and securely, even though the Broadcast was sent from an
in-house application.

Sensitive information can be returned since the requesting application is in-house.

When Exporting an APK, sign the APK with the same developer key as the sending application.

In-house Receiver which is a sample code of in—-house Broadcast Receiver is to be used both in Static

Broadcast Receiver and Dynamic Broadcast Receiver.

InhouseReceiver.java
package org.jssec.android.broadcast.inhousereceiver;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class InhouseReceiver extends BroadcastReceiver {

// In-house Signature Permission
private static final String MY_PERMISSION = "org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 ASCBC10F 4EDDEB7C A10062DE 5690984F 1FBO9E88B D7B3A7C2 42E142CA";

}

return sMyCertHash;

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 107

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

private static final String MY_BROADCAST_INHOUSE =
"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

public boolean isDynamic = false;
private String getName() {
return isDynamic ? "In-house Dynamic Broadcast Receiver" : "In-house Static Broadcast Receiver";

@Override
public void onReceive(Context context, Intent intent) {

// *** POINT 6 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(context, MY_PERMISSION, myCertHash(context))) {
Toast.makeText(context, "The in-house signature permission is not declared by in-house application.",
Toast.LENGTH_LONG) .show();
return;

// *** POINT 7 *** Handle the received intent carefully and securely,
// even though the Broadcast was sent from an in-house application..
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (MY_BROADCAST_INHOUSE.equals(intent.getAction())) {
String param = intent.getStringExtra("PARAM");
Toast.makeText (context,

String.format("%s:¥nReceived param: ¥"%s¥"", getName(), param),
Toast.LENGTH_SHORT).show();

// *** POINT 8 *** Sensitive information can be returned since the requesting application is in-house.
setResultCode(Activity.RESULT_OK);

setResultData(String.format("Sensitive Info from %s", getName()));

abortBroadcast();

Static Broadcast Receiver is to be defined in AndroidManifest.xml.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.broadcast.inhousereceiver" >

¢l-- **¥*¥ POINT 1 *** Define an in-house signature permission to receive Broadcasts -->
<permission
android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION"
android:protectionLevel="signature" />

<l-- **%*¥ POINT 2 *** Declare to use the in-house signature permission to receive results. -->
<uses-permission
android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

108 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

¢l-- **%*% pPOINT 3 *** Explicitly set the exported attribute to true. -->
<l-- *¥* POINT 4 *** Require the in-house signature permission by the Static Broadcast Receiver definition. -

<receiver
android:name=".InhouseReceiver"
android:permission="org.jssec.android.broadcast.inhousereceiver .MY_PERMISSION"
android:exported="true">
<intent-filter>

<action android:name="org.jssec.android.broadcast.MY_BROADCAST_INHOUSE" />

</intent-filter>

</receiver>

<service
android:name=".DynamicReceiverService"
android:exported="false" />

<activity
android:name=".InhouseReceiverActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Dynamic Broadcast Receiver executes registration/unregistration by calling registerReceiver() or
unregisterReceiver() in the program. In order to execute registration/unregistration by the button
operations, the button is arranged on InhouseReceiverActivity. Since the scope of Dynamic Broadcast
Receiver Instance is longer than InhouseReceiverActivity, it cannot be kept as the member variable of
InhouseReceiverActivity. So, keep Dynamic Broadcast Receiver Instance as the member variable of
DynamicReceiverService, and then start/end DynamicReceiverService from InhouseReceiverActivity
to register/unregister Dynamic Broadcast Receiver indirectly.

InhouseReceiverActivity.java
package org.jssec.android.broadcast.inhousereceiver;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class InhouseReceiverActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

public void onRegisterReceiverClick(View view) {
Intent intent = new Intent(this, DynamicReceiverService.class);
startService(intent);

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 109

SECURITY

““l’;ﬁpﬁ"wm Android Application Secure Design/Secure Coding Guidebook

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

}

1}

public void onUnregisterReceiverClick(View view) {

Intent intent = new Intent(this, DynamicReceiverService.class);
stopService(intent);

import
import
import
import
import

public

DynamicReceiverService.java
package org.jssec.android.broadcast.inhousereceiver;

android.app.Service;
android.content.Intent;
android.content.IntentFilter;
android.os.IBinder;
android.widget.Toast;

class DynamicReceiverService extends Service {

private static final String MY_BROADCAST_INHOUSE =

"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

private InhouseReceiver mReceiver;

@Override
public IBinder onBind(Intent intent) {

return null;

@Override
public void onCreate() {

super.onCreate();

mReceiver = new InhouseReceiver();
mReceiver.isDynamic = true;

IntentFilter filter = new IntentFilter();
filter.addAction(MY_BROADCAST_INHOUSE);

filter.setPriority(1); // Prioritize Dynamic Broadcast Receiver, rather than Static Broadcast Receiver.

// *** POINT 5 *** When registering a dynamic broadcast receiver, require the in-house signature permission.

registerReceiver(mReceiver, filter, "org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION", null);

Toast.makeText(this,
"Registered Dynamic Broadcast Receiver.",
Toast.LENGTH_SHORT) .show();

@Override
public void onDestroy() {

super.onDestroy();

unregisterReceiver(mReceiver);

mReceiver = null;

Toast.makeText(this,
"Unregistered Dynamic Broadcast Receiver.",
Toast.LENGTH_SHORT) .show();

110

All rights reserved © Japan Smartphone Security Association.

Receiving/Sending Broadcasts

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

}

public static String hash(Context ctx, String sigPermName) {
if (sigPermName == null) return null;
try {

// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();

PermissionInfo pi;

pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 111

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

112 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

““Iiﬁ":ﬂmm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 9 *** When exporting an APK, sign the APK with the same developer key as the sending
application.

| #® Generate Signed APK ==
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: | +er+- |
Key alias: <mmmn@ L|
e []
] Remember passwords
Previous | Cancel | | Help |

Figure 4.2-2

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 113

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next, the sample code for sending Broadcasts to in-house Broadcast Receiver is shown. When
sending Broadcasts to in-house Broadcast Receiver, it's necessary to require In-house-defined
Signature Permission of Broadcast Receiver side. So it's necessary to pay attention that there is a
restriction that Sticky cannot be used.

Points (Sending Broadcasts):

10. Define an in-house signature permission to receive results.

11. Declare to use the in-house signature permission to receive Broadcasts.

12. Verify that the in-house signature permission is defined by an in-house application.

13. Sensitive information can be returned since the requesting application is the in-house one.

14. Require the in—house signature permission of Receivers.

15. Handle the received result data carefully and securely.

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.broadcast.inhousesender" >

<uses-permission android:name="android.permission.BROADCAST_STICKY"/>

<l-- *¥* POINT 10 *** Define an in-house signature permission to receive results. -->
<permission
android:name="org.jssec.android.broadcast.inhousesender .MY_PERMISSION"
android:protectionLevel="signature" />

<l-- *k* POINT 11 *** Declare to use the in-house signature permission to receive Broadcasts. -->
<uses-permission
android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<activity
android:name="org.jssec.android.broadcast.inhousesender.InhouseSenderActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

InhouseSenderActivity.java
package org.jssec.android.broadcast.inhousesender;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

114 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class InhouseSenderActivity extends Activity {

// In-house Signature Permission
private static final String MY_PERMISSION = "org.jssec.android.broadcast.inhousesender.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA";

}

return sMyCertHash;

private static final String MY_BROADCAST_INHOUSE =
"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

public void onSendNormalClick(View view) {

// *** POINT 12 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText(this, "The in-house signature permission is not declared by in-house application.”,
Toast.LENGTH_LONG) .show();
return;

// *** POINT 13 *** Sensitive information can be returned since the requesting application is in-house.
Intent intent = new Intent(MY_BROADCAST_INHOUSE);
intent.putExtra("PARAM", "Sensitive Info from Sender");

// *** POINT 14 *** Require the in-house signature permission to limit receivers.
sendBroadcast(intent, "org.jssec.android.broadcast.inhousesender.MY_PERMISSION");

public void onSendOrderedClick(View view) {

// *¥** POINT 12 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText(this, "The in-house signature permission is not declared by in-house application.”,
Toast.LENGTH_LONG).show();
return;

// *** POINT 13 *** Sensitive information can be returned since the requesting application is in-house.
Intent intent = new Intent(MY_BROADCAST_INHOUSE);

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 115

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

intent.putExtra("PARAM", "Sensitive Info from Sender");

// *** POINT 14 *** Require the in-house signature permission to limit receivers.
sendOrderedBroadcast(intent, "org.jssec.android.broadcast.inhousesender.MY_PERMISSION",
mResultReceiver, null, 0, null, null);

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

// *** POINT 15 *** Handle the received result data carefully and securely,

// even though the data came from an in-house application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String data = getResultData();

InhouseSenderActivity.this.loglLine(String.format("Received result: ¥"%s¥"", data));

};

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

¥

public static String hash(Context ctx, String sigPermName) {
if (sigPermName == null) return null;
try {

// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();

PermissionInfo pi;

pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

116 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

amrenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 117

SECURITY

““Iiﬁpfk"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));

¥

return hexadecimal.toString();

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination
application.

| #® Generate Signed APK S |
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: | --+---- |
Key alias: <E, company key‘ D L|
et -]
B
revious | m | cancel | | Help |

Figure 4.2-3

118 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

4.2.2. Rule Book

Follow the rules below to Send or receive Broadcasts.

1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)
2. Handle the Received Intent Carefully and Securely (Required)
3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house
Application (Required)
4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the
Destination Application (Required)
5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)
Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)
7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be
Delivered (Required)
8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)
9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection
Level (Required)

4.2.2.1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)

Broadcast Receiver which is used only in the application should be set as private to avoid from
receiving any Broadcasts from other applications unexpectedly. It will prevent the application
function abuse or the abnormal behaviors.

Receiver used only within the same application should not be designed with setting Intent-filter.
Because of the Intent-filter characteristics, a public Receiver of other application may be called
unexpectedly by calling through Intent-filter even though a private Receiver within the same
application is to be called.

AndroidManifest.xml(Not recommended)
<!-- Private Broadcast Receiver -->
<l-- *¥*% pPOINT 1 *** Set the exported attribute to false explicitly. -->
<receiver
android:name=".PrivateReceiver"
android:exported="false" >
<intent-filter>
<action android:name="org.jssec.android.broadcast.MY_ACTION" />
</intent-filter>

</receiver>

Please refer to "4.2.3.1 Combinations of the exported Attribute and the Intent-filter setting (For
Receiver)."

4.2.2.2. Handle the Received Intent Carefully and Securely (Required)

Though risks are different depending on the types of the Broadcast Receiver, firstly verify the safety

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 119

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

of Intent when processing received Intent data.

Since Public Broadcast Receiver receives the Intents from unspecified large number of applications, it
may receive malware's attacking Intents. Private Broadcast Receiver will never receive any Intent from
other applications directly, but Intent data which a public Component received from other
applications may be forwarded to Private Broadcast Receiver. So don't think that the received Intent is
totally safe without any qualification. In-house Broadcast Receivers have some degree of the risks, so
it also needs to verify the safety of the received Intents.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.2.2.3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house
Application (Required)

In-house Broadcast Receiver which receives only Broadcasts sent by an In-house application should
be protected by in-house-defined Signature Permission. Permission definition/Permission request
declarations in AndroidManifest.xml are not enough to protecting, so please refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission." ending
Broadcasts by specifying in—house-defined Signature Permission to receiverPermission parameter
requires verification in the same way.

4.2.2.4. When Returning a Result Information, Pay Attention to the Result Information Leakage from

the Destination Application (Required)

The Reliability of the application which returns result information by setResult() varies depending on
the types of the Broadcast Receiver. In case of Public Broadcast Receiver, the destination application
may be malware, and there may be a risk that the result information is used maliciously. In case of
Private Broadcast Receiver and In-house Broadcast Receiver, the result destination is In-house
developed application, so no need to mind the result information handling.

Need to pay attention to the result information leakage from the destination application when result
information is returned from Broadcast Receivers as above.

4.2.2.5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver

(Required)
Broadcast is the created system to broadcast information to unspecified large number of applications
or notify them of the timing at once. So, broadcasting sensitive information requires the careful

designing for preventing the illicit obtainment of the information by malware.

For broadcasting sensitive information, only reliable Broadcast Receiver can receive it, and other
Broadcast Receivers cannot. The following are some examples of Broadcast sending methods.

® The method is to fix the address by Broadcast-sending with an explicit Intent for sending

120 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Broadcasts to the intended reliable Broadcast Receivers only. There are 2 patterns in this method.

> When it's addressed to a Broadcast Receiver within the same application, specify the address
by Intent#setClass(Context, Class). Refer to sample code section "4.2.1.1 Private Broadcast
Receiver - Receiving/Sending Broadcast" for the concrete code.

> When it's addressed to a Broadcast Receiver in other applications, specify the address by
Intent#setClassName(String, String). Confirm the permitted application by comparing the
developer key of the APK signature in the destination package with the white list to send
Broadcasts. Actually the following method of using implicit Intents is more practical.

® The Method is to send Broadcasts by specifying in-house-defined Signature Permission to
receiverPermission parameter and make the reliable Broadcast Receiver declare to use this
Signature Permission. Refer to the sample code section "4.2.1.3 In-house Broadcast Receiver -
Receiving/Sending Broadcast" for the concrete code. In addition, implementing this
Broadcast-sending method needs to apply the rule "4.2.2.3 Use the In-house Defined Signature
Permission after Verifying that it's Defined by an In-house Application (Required)."

4.2.2.6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

Usually, the Broadcasts will be disappeared when they are processed to be received by the available
Broadcast Receivers. On the other hand, Sticky Broadcasts (hereafter, Sticky Broadcasts including
Sticky Ordered Broadcasts), will not be disappeared from the system even when they processed to be
received by the available Broadcast Receivers and will be able to be received by registerReceiver().
When Sticky Broadcast becomes unnecessary, it can be deleted anytime arbitrarily with
removeStickyBroadcast().

As it's presupposed that Sticky Broadcast is used by the implicit Intent. Broadcasts with specified
receiverPermission Parameter cannot be sent. So information sent by Sticky Broadcast may be taken
by unspecified large number of applications including malware. As a result, sensitive information
should not be sent by Sticky Broadcast.

4.2.2.7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not

Be Delivered (Required)

Ordered Broadcast without specified receiverPermission Parameter can be received by unspecified
large number of applications including malware. Ordered Broadcast is used to receive the returned
information from Receiver, and to make several Receivers execute processing one by one. Broadcasts
are sent to the Receivers in order of priority. So if the high- priority malware receives Broadcast first
and executes abortBroadcast(), Broadcasts won't be delivered to the following Receivers.

4.2.2.8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely

(Required)

Basically the result data should be processed safely considering the possibility that received results
may be the attacking data though the risks vary depending on the types of the Broadcast Receiver

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 121

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

which has returned the result data.

When sender (source) Broadcast Receiver is public Broadcast Receiver, it receives the returned data
from unspecified large number of applications. So it may also receive malware's attacking data. When
sender (source) Broadcast Receiver is private Broadcast Receiver, it seems no risk. However the data
received by other applications may be forwarded as result data indirectly. So the result data should
not be considered as safe without any qualification. When sender (source) Broadcast Receiver is
In-house Broadcast Receiver, it has some degree of the risks. So it should be processed in a safe way
considering the possibility that the result data may be an attacking data.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.2.2.9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection
Level (Required)

When information or function assets protected by Permission are provided to other applications
secondarily, it's necessary to keep the protection standard by claiming the same Permission of the
destination application. In the Android Permission security models, privileges are managed only for
the direct access to the protected assets from applications. Because of the characteristics, acquired
assets may be provided to other applications without claiming Permission which is necessary for
protection. This is actually same as re-delegating Permission, as it is called, Permission
re-delegation problem. Please refer to "5.2.3.4 Permission Re-delegation Problem."

122 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SE ITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
xssonon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

4.2.3. Advanced Topics

4.2.3.1. Combinations of the exported Attribute and the Intent-filter setting (For Receiver)

Table 4.2 2 represents the permitted combination of export settings and Intent-filter elements when
implementing Receivers. The reason why the usage of exported="false" with Intent-filter definition is
principally prohibited, is described below.

Table 4.2-3 Usable or not; Combination of exported attribute and intent-filter elements
Value of exported attribute

True False Not specified
Intent-filter defined OK (Do not Use) | (Do not Use)
Intent Filter Not oK OK (Do not Use)
Defined

Public Receivers in other applications may be called unexpectedly even though Broadcasts are sent to
the private Receivers within the same applications. This is the reason why specifying
exported="false" with Intent-filter definition is prohibited. The following 2 figures show how the
unexpected calls occur.

Figure 4.2-4 is an example of the normal behaviors which a private Receiver (application A) can be
called by implicit Intent only within the same application. Intent-filter (in the figure, action="X") is
defined only in application A, so this is the expected behavior.

()

Application A
Send a broadcast with
the implicit intent

Intent(“X”)

Private Receiver A—1
exported="“false”
action="X"

Application C
Send a broadcast with
the implicit intent

Intent(“X”)

Since the receiver A—1 is private one,
it can receive broadcasts only from the
application A.

Android device

Figure 4.2-4

Figure 4.2-5 is an example that Intent-filter (see action="X" in the figure) is defined in the
application B as well as in the application A. First of all, when another application (application C)
sends Broadcasts by implicit Intent, they are not received by a private Receiver (A-1) side. So there
won't be any security problem. (See the orange arrow marks in the Figure.)

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 123

SECURITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocmon ttp://www.jssec.org/dl/android_securecoding_en.pdf

From security point of view, the problem is application A's call to the private Receiver within the same
application. When the application A broadcasts implicit Intent, not only Private Receiver within the
same application, but also public Receiver (B-1) with the same Intent-filter definition can also receive
the Intent. (Red arrow marks in the Figure). In this case, sensitive information may be sent from the
application A to B. When the application B is malware, it will cause the leakage of sensitive
information. When the Broadcast is Ordered Broadcast, it may receive the unexpected result
information.

Application A
Send a broadcast with
the implicit intent

l Intent(“X”) :
Application C

Private Receiver A-1 Send a broadcast with
exported="“false” the implicit intent

action="X" @

Application B

Public Receiver B—1
exported="“true”
action="“X"

When several applications that have

the receiver defining the same action

(intent—filter) are installed, intents
are sent to all receivers.

Android device

_ J
Figure 4.2-5

However, exported="false" with Intent-filter definition should be used when Broadcast Receiver to
receive only Broadcast Intent sent by the system is implemented. Other combination should not be
used. This is based on the fact that Broadcast Intent sent by the system can be received by
exported="false". If other applications send Intent which has same ACTION with Broadcast Intent
sent by system, it may cause an unexpected behavior by receiving it. However, this can be prevented
by specifying exported="false".

4.2.3.2. Receiver Won't Be Registered before Launching the Application in Android 3.1 or later

In Android 3.1 or later, it's necessary to pay attention that Broadcast Receiver which is statically
defined in AndroidManifest.xml won't be enable by just installing. By launching an application once,
then it will be able to receive Broadcasts. After installing, processes cannot be launched by receiving
Broadcasts as a trigger. By setting Intent to Intent.FLAG_INCLUDE_STOPPED_PACKAGES in Broadcast
sender side, the application can receive the Broadcasts even though the application has never been
launched.

124 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.3.3. Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID

Application

Same UID can be provided to several applications. Even if it's private Broadcast Receiver, the

Broadcasts sent from the same UID application can be received.

However, it won't be a security problem. Since it's guaranteed that applications with the same UID
have the consistent developer keys for signing APK. It means that what private Broadcast Receiver

receives is only the Broadcast sent from In-house applications.

4.2.3.4. Types and Features of Broadcasts

Regarding Broadcasts, there are 4 types based on the combination of whether it's Ordered or not, and

Sticky or not. Based on Broadcast sending methods, a type of Broadcast to send is determined.

Table 4.2-4
Type of Broadcast Method for sending Ordered? | Sticky?
Normal Broadcast sendBroadcast() No No
Ordered Broadcast sendOrderedBroadcast() Yes No
Sticky Broadcast sendStickyBroadcast() No Yes
Sticky Ordered Broadcast sendStickyOrderedBroadcast() Yes Yes

The feature of each Broad cast is described.

Table 4.2-5

Type of Broadcast

Features for each type of Broadcast

Normal Broadcast

Normal Broadcast disappears when it is sent to receivable Broadcast
Receiver. Broadcasts are received by several Broadcast Receivers
simultaneously. This is a difference from Ordered Broadcast.
Broadcasts are allowed to be received by the particular Broadcast
Receivers.

Ordered Broadcast

Ordered Broadcast is characterized by receiving Broadcasts one by
one in order with receivable Broadcast Receivers. The
higher-priority Broadcast Receiver receives earlier. Broadcasts will
disappear when Broadcasts are delivered to all Broadcast Receivers
or a Broadcast Receiver in the process calls abortBroadcast().
Broadcasts are allowed to be received by the Broadcast Receivers
which declare the specified Permission. In addition, the result
information sent from Broadcast Receiver can be received by the
sender with Ordered Broadcasts. The Broadcast of SMS-receiving
notice (SMS_RECEIVED) is a representative example of Ordered
Broadcast.

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 125

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Sticky Broadcast Sticky Broadcast does not disappear and remains in the system, and
then the application that calls registerReceiver() can receive Sticky
Broadcast later. Since Sticky Broadcast is different from other
Broadcasts, it will never disappear automatically. So when Sticky
Broadcast is not necessary, calling removeStickyBroadcast()
explicitly is required to delete Sticky Broadcast. Also, Broadcasts
cannot be received by the limited Broadcast Receivers with
particular Permission. The Broadcast of changing battery-state
notice (ACTION_BATTERY_CHANGED) is the representative example
of Sticky Broadcast.

Sticky Ordered Broadcast | This is the Broadcast which has both characteristics of Ordered
Broadcast and Sticky Broadcast. Same as Sticky Broadcast, it cannot
allow only Broadcast Receivers with the particular Permission to
receive the Broadcast.

From the Broadcast characteristic behavior point of view, above table is conversely arranged in the
following one.

Table 4.2-6
Characteristic behavior of Normal Ordered Sticky Sticky Ordered
Broadcast Broadcast Broadcast Broadcast Broadcast

Limit Broadcast Receivers
which can receive Broadcast, OK OK - -
by Permission

Get the results of process from

_ - OK - OK
Broadcast Receiver
Make Broadcast Receivers
_ - OK - OK
process Broadcasts in order
Receive Broadcasts later, which
- - OK OK

have been already sent

4.2.3.5. Broadcasted Information May be Output to the LogCat

Basically sending/receiving Broadcasts is not output to LogCat. However, the error log will be output
when lacking Permission causes errors in receiver/sender side. Intent information sent by Broadcast
is included in the error log, so after an error occurs it's necessary to pay attention that Intent
information is displayed in LogCat when Broadcast is sent.

Erorr of lacking Permission in sender side

W/ActivityManager(266): Permission Denial: broadcasting Intent { act=org.jssec.android.broadcastreceiver.creating.ac
tion.MY_ACTION } from org.jssec.android.broadcast.sending (pid=4685, uid=10058) requires org.jssec.android.permissio
n.MY_PERMISSION due to receiver org.jssec.android.broadcastreceiver.creating/org.jssec.android.broadcastreceiver.cre
ating.CreatingType3Receiver

126 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

SE!

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
assocunon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

Erorr of lacking Permission in receiver side
W/ActivityManager(275): Permission Denial: receiving Intent { act=org.jssec.android.broadcastreceiver.creating.actio
n.MY_ACTION } to org.jssec.android.broadcastreceiver.creating requires org.jssec.android.permission.MY_PERMISSION du

e to sender org.jssec.android.broadcast.sending (uid 10158)

4.2.3.6. Items to Keep in Mind When Placing an App Shortcut on the Home Screen

In what follows we discuss a number of items to keep in mind when creating a shortcut button for
launching an app from the home screen or for creating URL shortcuts such as bookmarks in web
browsers. As an example, we consider the implementation shown below.

Place an app shortcut on the home screen
Intent targetIntent = new Intent(this, TargetActivity.class);

// Intent to request shortcut creation
Intent intent = new Intent("com.android.launcher.action.INSTALL_SHORTCUT");

// Specify an Intent to be launched when the shortcut is tapped
intent.putExtra(Intent.EXTRA_SHORTCUT_INTENT, targetIntent);

Parcelable icon = Intent.ShortcutIconResource.fromContext(context, iconResource);
intent.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE, icon);
intent.putExtra(Intent.EXTRA_SHORTCUT_NAME, title);

intent.putExtra("duplicate", false);

// Use Broadcast to send the system our request for shortcut creation
context.sendBroadcast(intent);

In the Broadcast sent by the above code snippet, the receiver is the home-screen app, and it is
difficult to identify the package name; one must take care to remember that this is a transmission to
a public receiver with an implicit intent. Thus the Broadcast sent by this snippet could be received by
any arbitrary app, including malware; for this reason, the inclusion of sensitive information in the
Intent may create the risk of a damaging leak of information. It is particularly important to note that,
when creating a URL-based shortcut, secret information may be contained in the URL itself.

As countermeasures, it is necessary to follow the points listed in "4.2.1.2 Public Broadcast Receiver -
Receiving/Sending Broadcasts” and to ensure that the transmitted Intent does not contain sensitive
information.

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 127

SECURITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 4.3. Creating/Using Content Providers

Since the interface of ContentResolver and SQLiteDatabase are so much alike, it's often
misunderstood that Content Provider is so closely related to SQLiteDatabase. However, actually
Content Provider simply provides the interface of inter-application data sharing, so it's necessary to
pay attention that it does not interfere each data saving format. To save data in Content Provider,
SQLiteDatabase can be used, and other saving formats, such as an XML file format, also can be used.
Any data saving process is not included in the following sample code, so please add it if needed.

4.3.1. Sample Code

The risks and countermeasures of using Content Provider differ depending on how that Content
Provider is being used. In this section, we have classified 5 types of Content Provider based on how
the Content Provider is being used. You can find out which type of Content Provider you are
supposed to create through the following chart shown below.

Table 4.3-1 Definition of content provider types

Type Definition

Private Content A content provider that cannot be used by another application, and
Provider therefore is the safest content provider

Public Content A content provider that is supposed to be used by an unspecified
Provider large number of applications

Partner Content A content provider that can be used by specific applications made
Provider by a trusted partner company.

In-house Content | A content provider that can only be used by other in-house
Provider applications

Temporary permit [A content provider that is basically private content provider, but
Content Provider permits specific applications to access the particular URI.

v Vv

Temporary

Private Content Provider Public Content Provider Partner Content Provider In—house Content Provider .
Content Provider

Figure 4.3-1

128 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
Associarion http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.1. Creating/Using Private Content Providers

Private Content Provider is the Content Provider which is used only in the single application, and the
safest Content Provider. However, it's necessary to pay attention that private setting for Content
Provider does not work in Android 2.2 (API Level 8) or earlier.

Sample code of how to implement a private Content Provider is shown below.

Points (Creating a Content Provider):

1.
2.
3.

4.

Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.
Explicitly set the exported attribute to false.

Handle the received request data carefully and securely, even though the data comes from the
same application.

Sensitive information can be sent since it is sending and receiving all within the same application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.provider.privateprovider">

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<l-- ®%* POINT 2 *** Explicitly set the exported attribute to false. -->
<provider
android:name=".PrivateProvider"
android:authorities="org.jssec.android.provider.privateprovider"
android:exported="false" />

</application>
</manifest>

PrivateProvider.java
package org.jssec.android.provider.privateprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

public class PrivateProvider extends ContentProvider {

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 129

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public static final String AUTHORITY = "org.jssec.android.provider.privateprovider";
public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";
public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID CODE = 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID CODE = 4;

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_ CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID CODE);

// Since this is a sample program,
// query method returns the following fixed result always without using database.
private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "Longon" });
sAddressCursor.addRow(new String[] { "3", "Paris" });

}
private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
}
@Override

public boolean onCreate() {
return true;

@Override
public String getType(Uri uri) {
// *** POINT 3 *** Handle the received request data carefully and securely,
// even though the data comes from the same application.
// Here, whether uri is within expectations or not, is verified by UriMatcher#tmatch() and switch case.
// Checking for other parameters are omitted here, due to sample.
// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.
// However, the result of getType rarely has the sensitive meaning.
switch (sUriMatcher.match(uri)) {

130 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

case DOWNLOADS_CODE:
case ADDRESSES_CODE:
return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
// It depends on application whether the query result has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#tmatch() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
// It depends on application whether the issued ID has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 131

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

throw new IllegalArgumentException("Invalid URI:" + uri);

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
// It depends on application whether the number of updated records has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
// It depends on application whether the number of deleted records has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

132 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

““l’;ﬁ"&"wm Android Application Secure Design/Secure Coding Guidebook

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

default:
throw new IllegalArgumentException("Invalid URI:

+ uri);

All rights reserved © Japan Smartphone Security Association.

Creating/Using Content Providers

133

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next is an example of Activity which uses Private Content Provider.

Points (Using a Content Provider):

5. Sensitive information can be sent since the destination provider is in the same application.

6. Handle received result data carefully and securely, even though the data comes from the same
application.

PrivateUserActivity.java
package org.jssec.android.provider.privateprovider;

import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PrivateUserActivity extends Activity {
public void onQueryClick(View view) {
logLine("[Query]");

Cursor cursor = null;
try {
// *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same applica
tion.
cursor = getContentResolver().query(
PrivateProvider.Download.CONTENT_URI, null, null, null, null);

// *** POINT 6 *** Handle received result data carefully and securely,
// even though the data comes from the same application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (cursor == null) {
logLine(" null cursor");
} else {
boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format(" %d, %s", cursor.getInt(®), cursor.getString(1)));
moved = cursor.moveToNext();

}
finally {
if (cursor != null) cursor.close();

public void onInsertClick(View view) {
logLine("[Insert]");
// *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application

Uri uri = getContentResolver().insert(PrivateProvider.Download.CONTENT_URI, null);

// *** POINT 6 *** Handle received result data carefully and securely,

134 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// even though the data comes from the same application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(" wuri:" + uri);

public void onUpdateClick(View view) {
logLine("[Update]");
// *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application
int count = getContentResolver().update(PrivateProvider.Download.CONTENT_URI, null, null, null);
// *** POINT 6 *** Handle received result data carefully and securely,
// even though the data comes from the same application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records updated", count));
public void onDeleteClick(View view) {
logLine("[Delete]");
// *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application

int count = getContentResolver().delete(
PrivateProvider.Download.CONTENT_URI, null, null);

// *** POINT 6 *** Handle received result data carefully and securely,

// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records deleted", count));

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 135

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.2. Creating/Using Public Content Providers

Public Content Provider is the Content Provider which is supposed to be used by unspecified large
number of applications. It's necessary to pay attention that since this doesn't specify clients, it may
be attacked and tampered by Malware. For example, a saved data may be taken by select(), a data
may be changed by update(), or a fake data may be inserted/deleted by insert()/delete().

In addition, when using a custom Public Content Provider which is not provided by Android OS, it's
necessary to pay attention that request parameter may be received by Malware which masquerades
as the custom Public Content Provider, and also the attack result data may be sent. Contacts and
MediaStore provided by Android OS are also Public Content Providers, but Malware cannot
masquerades as them.

Sample code to implement a Public Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Handle the received request data carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.provider.publicprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<l-- ®%* POINT 1 *** Explicitly set the exported attribute to true. -->
<provider
android:name=".PublicProvider"
android:authorities="org.jssec.android.provider.publicprovider"
android:exported="true" />
</application>
</manifest>

PublicProvider.java
package org.jssec.android.provider.publicprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

public class PublicProvider extends ContentProvider {

public static final String AUTHORITY = "org.jssec.android.provider.publicprovider";

136 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype”;
public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID CODE = 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID CODE = 4;

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID CODE);

// Since this is a sample program,
// query method returns the following fixed result always without using database.
private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" });

}
private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
}
@Override

public boolean onCreate() {
return true;

@Override
public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:

+ uri);

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

137

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive information.
// It depends on application whether the query result has sensitive meaning or not.
// If no problem when the information is taken by malware, it can be returned as result.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive information.
// It depends on application whether the issued ID has sensitive meaning or not.
// If no problem when the information is taken by malware, it can be returned as result.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

138 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 3 *** When returning a result, do not include sensitive information.
// It depends on application whether the number of updated records has sensitive meaning or not.
// If no problem when the information is taken by malware, it can be returned as result.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive information.
// It depends on application whether the number of deleted records has sensitive meaning or not.
// If no problem when the information is taken by malware, it can be returned as result.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

139

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Next is an example of Activity which uses Public Content Provider.

Points (Using a Content Provider):
4. Do not send sensitive information.
5. When receiving a result, handle the result data carefully and securely.

PublicUserActivity.java

package org.jssec.android.provider.publicuser;

import android.app.Activity;

import android.content.ContentValues;
import android.content.pm.ProviderInfo;
import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicUserActivity extends Activity {

// Target Content Provider Information
private static final String AUTHORITY = "org.jssec.android.provider.publicprovider";
private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

public void onQueryClick(View view) {
logLine("[Query]");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

Cursor cursor = null;
try {
// *** POINT 4 *** Do not send sensitive information.
// since the target Content Provider may be malware.
// If no problem when the information is taken by malware, it can be included in the request.
cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

// *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (cursor == null) {

logLine(" null cursor");
} else {

boolean moved = cursor.moveToFirst();

while (moved) {

loglLine(String.format(" %d, %s", cursor.getInt(®), cursor.getString(1)));

moved = cursor.moveToNext();

}
}
}
finally {
if (cursor != null) cursor.close();
)j

140 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

}

public void onInsertClick(View view) {

logLine("[Insert]");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware, it can be included in the request.
ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

logLine(" wuri:" + uri);

public void onUpdateClick(View view) {

logLine("[Update]");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware, it can be included in the request.
ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = ?";

String[] args = { "4" };

int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

// *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records updated", count));

public void onDeleteClick(View view) {

logLine("[Delete]");

if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware, it can be included in the request.
int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 141

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records deleted", count));

private boolean providerExists(Uri uri) {
ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);
return (pi != null);

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

142 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.3. Creating/Using Partner Content Providers

Partner Content Provider is the Content Provider which can be used only by the particular applications.
The system consists of a partner company's application and In-house application, and it is used to
protect the information and features which are handled between a partner application and an
In-house application.

Sample code to implement a partner-only Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Verify if the certificate of a requesting application has been registered in the own white list.

3. Handle the received request data carefully and securely, even though the data comes from a
partner application.

4. Information that is granted to disclose to partner applications can be returned.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.provider.partnerprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<l-- ®%* POINT 1 *** Explicitly set the exported attribute to true. -->
<provider
android:name=".PartnerProvider"
android:authorities="org.jssec.android.provider.partnerprovider"
android:exported="true" />
</application>
</manifest>

PartnerProvider.java
package org.jssec.android.provider.partnerprovider;

import java.util.List;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.ActivityManager;

import android.app.ActivityManager.RunningAppProcessInfo;
import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

import android.os.Binder;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 143

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import android.os.Build;

public class PartnerProvider extends ContentProvider {

public static final String AUTHORITY = "org.jssec.android.provider.partnerprovider";
public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype"”;
public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype"”;

// Expose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID CODE = 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID CODE = 4;

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_ CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

// Since this is a sample program,
// query method returns the following fixed result always without using database.
private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" });

}
private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
}

// *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white lis

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context);
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application org.jssec.android.provider.partneruser.
sWhitelists.add("org.jssec.android.provider.partneruser", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"1F@39BB5 7861C27A 3916C778 8E78CEQ0 690B3974 3EB8259F E2627B8D 4COEC35A");

144 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SE!

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
CURITY . . .
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// Register following other partner applications in the same way.
}
private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);
}
// Get the package name of the calling application.
private String getCallingPackage(Context context) {
String pkgname;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
pkgname = super.getCallingPackage();
} else {
pkgname = null;
ActivityManager am = (ActivityManager) context.getSystemService(Context.ACTIVITY_SERVICE);
List<RunningAppProcessInfo> proclList = am.getRunningAppProcesses();
int callingPid = Binder.getCallingPid();
if (procList != null) {
for (RunningAppProcessInfo proc : procList) {
if (proc.pid == callingPid) {
pkgname = proc.pkglList[proc.pkgList.length - 1];

break;
}
}
}

}

return pkgname;
}
@Override

public boolean onCreate() {
return true;

@Override
public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
if (!lcheckPartner(getContext(), getCallingPackage(getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 145

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
// It depends on application whether the query result can be disclosed or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
// It depends on application whether the issued ID has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
if (!lcheckPartner(getContext(), getCallingPackage(getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

}

146 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
// It depends on application whether the number of updated records has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
throw new SecurityException("Calling application is not a partner application.");

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
// It depends on application whether the number of deleted records has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 20;

case ADDRESSES_ID_CODE:
return 1;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);

}

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 147

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

148 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Next is an example of Activity which use partner only Content Provider.

Points (Using a Content Provider):

5. Verify if the certificate of the target application has been registered in the own white list.

6. Information that is granted to disclose to partner applications can be sent.

7. Handle the received result data carefully and securely, even though the data comes from a
partner application.

PartnerActivity.java
package org.jssec.android.provider.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;
import android.content.Context;

import android.content.pm.ProviderInfo;
import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PartnerUserActivity extends Activity {

// Target Content Provider Information
private static final String AUTHORITY = "org.jssec.android.provider.partnerprovider";
private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

// *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application org.jssec.android.provider.partnerprovider.
sWhitelists.add("org.jssec.android.provider.partnerprovider"”, isdebug °?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"D397D343 ASCBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA");

// Register following other partner applications in the same way.
}
private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

// Get package name of target content provider.
private String providerPkgname(Uri uri) {
String pkgname = null;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 149

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);
if (pi != null) pkgname = pi.packageName;
return pkgname;

public void onQueryClick(View view) {

loglLine("[Queryl");

// *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white 1i
st.
if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

Cursor cursor = null;

try {
// *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

// *** POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (cursor == null) {
logLine(" null cursor");
} else {
boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format(" %d, %s", cursor.getInt(®), cursor.getString(1)));
moved = cursor.moveToNext();

}
}
}
finally {
if (cursor != null) cursor.close();
}

public void onInsertClick(View view) {

logLine("[Insert]");

// *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white 1i
st.
if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

// *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *** POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

logLine(" wuri:" + uri);

150 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public void onUpdateClick(View view) {

logLine("[Update]");

// *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white 1i

st.

if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;

// *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = ?";

String[] args = { "4" };

int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

// *** POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records updated", count));
public void onDeleteClick(View view) {

loglLine("[Delete]");

// *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white 1i

st.

if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
logLine(" The target content provider is not served by partner applications.");
return;
}
// *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
int count = getContentResolver().delete(Address.CONTENT_URI, null, null);
// *** POINT 6 *** Handle the received result data carefully and securely,
// even though the data comes from a partner application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records deleted", count));
}
private TextView mLogView;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);
}
private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 151

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

PkgCertWhitelists.java

package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != @) return false; // found non hex char

mWhitelists.put(pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash value which corresponds to pkgname.
String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();

152 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 153

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.4. Creating/Using In-house Content Providers

In-house Content Provider is the Content Provider which prohibits to be used by applications other
than In house only applications.

Sample code of how to implement an In house only Content Provider is shown below.

Points (Creating a Content Provider):

Define an in-house signature permission.

Require the in-house signature permission.

Explicitly set the exported attribute to true.

Verify if the in—house signature permission is defined by an in-house application.

Verify the safety of the parameter even if it's a request from In house only application.

Sensitive information can be returned since the requesting application is in-house.

When exporting an APK, sign the APK with the same developer key as that of the requesting
application.

N O vl A WN =

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.provider.inhouseprovider">

<l-- **¥* POINT 1 *** Define an in-house signature permission -->

<permission
android:name="org.jssec.android.provider.inhouseprovider .MY_PERMISSION"
android:protectionLevel="signature" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<l-- *** POINT 2 *** Require the in-house signature permission -->
<l-- *¥* pOINT 3 *** Explicitly set the exported attribute to true. -->
<provider

android:name=".InhouseProvider"
android:authorities="org.jssec.android.provider.inhouseprovider"
android:permission="org.jssec.android.provider.inhouseprovider.MY_PERMISSION"
android:exported="true" />
</application>
</manifest>

InhouseProvider.java
package org.jssec.android.provider.inhouseprovider;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;

import android.content.UriMatcher;

154 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;

public class InhouseProvider extends ContentProvider {

public static final String AUTHORITY = "org.jssec.android.provider.inhouseprovider";
public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype"”;
public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1;
private static final int DOWNLOADS_ID CODE = 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID_ CODE
private static UriMatcher sUriMatcher;
static {
sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

1
IN
b

// Since this is a sample program,
// query method returns the following fixed result always without using database.
private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });
sAddressCursor.addRow(new String[] { "3", "Paris" });

}
private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
}

// In-house Signature Permission
private static final String MY_PERMISSION = "org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

155

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA";

}
}
return sMyCertHash;
¥
@Override

public boolean onCreate() {
return true;

@Override
public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared by in-house application.")

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
// It depends on application whether the query result has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_ CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:

+ uri);

156 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

@Override
public Uri insert(Uri uri, ContentValues values) {

// *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared by in-house application.")

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
// It depends on application whether the issued ID has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared by in-house application.")

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
// It depends on application whether the number of updated records has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:
return 1;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 157

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

default:

//
if

//
//
//
//
//

//
//

throw new IllegalArgumentException("Invalid URI:" + uri);

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

*¥** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
(!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
throw new SecurityException("The in-house signature permission is not declared by in-house application.")

¥¥* POINT 5 *** Handle the received request data carefully and securely,

even though the data came from an in-house application.

Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
Checking for other parameters are omitted here, due to sample.

Refer to "3.2 Handle Input Data Carefully and Securely."

*¥** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
It depends on application whether the number of deleted records has sensitive meaning or not.

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 20;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

import
import
import
import

public

SigPerm.java
package org.jssec.android.shared;

android.content.Context;

android.content.pm.PackageManager;

android.content.pm.PackageManager.NameNotFoundException;

android.content.pm.PermissionInfo;

class SigPerm {

if

public static boolean test(Context ctx, String sigPermName, String correctHash) {

(correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, sigPermName));

public static String hash(Context ctx, String sigPermName) {

158

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

if (sigPermName == null) return null;
try {
// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();
PermissionInfo pi;
pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.

return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {

try {
return MessageDigest.getInstance("SHA-256").digest(data);

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

159

““Iiﬁpfk"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

Associarion http://www.jssec.org/dl/android_securecoding_en.pdf

} catch (NoSuchAlgorithmException e) {
return null;
¥
}

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
¥

return hexadecimal.toString();

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting
application.

| #® Generate Signed APK S |
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: [-+ |
Key alias: <—nTy' company key‘ D L|
Key password: e |
B
| | Help |

Figure 4.3-2

160 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next is the example of Activity which uses In house only Content Provider.

Point (Using a Content Provider):

8. Declare to use the in-house signature permission.

9. Verify if the in-house signature permission is defined by an in-house application.

10. Verify if the destination application is signed with the in-house certificate.

11. Sensitive information can be sent since the destination application is in-house one.

12. Handle the received result data carefully and securely, even though the data comes from an
in-house application.

13. When exporting an APK, sign the APK with the same developer key as that of the destination
application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.provider.inhouseuser">

<l-- **¥* POINT 8 *** Declare to use the in-house signature permission. -->
<uses-permission
android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher”
android:label="@string/app_name" >
<activity
android:name=".InhouseUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

InhouseUserActivity.java
package org.jssec.android.provider.inhouseuser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;
import android.content.Context;

import android.content.pm.PackageManager;
import android.content.pm.ProviderInfo;
import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 161

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public class InhouseUserActivity extends Activity {

// Target Content Provider Information
private static final String AUTHORITY = "org.jssec.android.provider.inhouseprovider";
private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI = Uri.parse(“content://" + AUTHORITY + "/" + PATH);

// In-house Signature Permission
private static final String MY_PERMISSION = "org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of "androiddebugkey" in the debug.keystore.
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of "my company key" in the keystore.
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA";

}

return sMyCertHash;

// Get package name of target content provider.

private static String providerPkgname(Context context, Uri uri) {
String pkgname = null;
PackageManager pm = context.getPackageManager();
ProviderInfo pi = pm.resolveContentProvider(uri.getAuthority(), 0);
if (pi != null) pkgname = pi.packageName;
return pkgname;

public void onQueryClick(View view) {

logLine("[Query]");

// *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

logLine(" The in-house signature permission is not declared by in-house application.");

return;

// *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.
String pkgname = providerPkgname(this, Address.CONTENT_URI);
if (!PkgCert.test(this, pkgname, myCertHash(this))) {

logLine(" The target content provider is not served by in-house applications.");

return;

Cursor cursor = null;

try {
// *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

// *** POINT 12 *** Handle the received result data carefully and securely,
// even though the data comes from an in-house application.

162 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (cursor == null) {
logLine(" null cursor");
} else {
boolean moved = cursor.moveToFirst();
while (moved) {
logLine(String.format(" %d, %s", cursor.getInt(®), cursor.getString(1)));
moved = cursor.moveToNext();

¥
}
}
finally {
if (cursor != null) cursor.close();
}

public void onInsertClick(View view) {
logLine("[Insert]");

// *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
String correctHash = myCertHash(this);
if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

logLine(" The in-house signature permission is not declared by in-house application.");

return;

// *** POINT 1@ *** Verify if the destination application is signed with the in-house certificate.
String pkgname = providerPkgname(this, Address.CONTENT_URI);
if (!PkgCert.test(this, pkgname, correctHash)) {

logLine(" The target content provider is not served by in-house applications.");

return;

// *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *** POINT 12 *** Handle the received result data carefully and securely,
// even though the data comes from an in-house application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

logLine(" wuri:" + uri);

public void onUpdateClick(View view) {
logLine("[Update]");

// *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
String correctHash = myCertHash(this);
if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

logLine(" The in-house signature permission is not declared by in-house application.");

return;

// *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.
String pkgname = providerPkgname(this, Address.CONTENT_URI);
if (!PkgCert.test(this, pkgname, correctHash)) {

loglLine(" The target content provider is not served by in-house applications.");

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 163

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

return;

// *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = ?";

String[] args = { "4" };

int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

// *** POINT 12 *** Handle the received result data carefully and securely,

// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records updated", count));

public void onDeleteClick(View view) {
logLine("[Delete]");

// *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
String correctHash = myCertHash(this);
if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

logLine(" The target content provider is not served by in-house applications.");

return;

// *** POINT 1@ *** Verify if the destination application is signed with the in-house certificate.
String pkgname = providerPkgname(this, Address.CONTENT_URI);
if (!PkgCert.test(this, pkgname, correctHash)) {

logLine(" The target content provider is not served by in-house applications.");

return;

// *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

// *** POINT 12 *** Handle the received result data carefully and securely,

// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
logLine(String.format(" %s records deleted", count));

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

164 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

}

public static String hash(Context ctx, String sigPermName) {
if (sigPermName == null) return null;
try {

// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();

PermissionInfo pi;

pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 165

SECURITY

l“"’;ﬂ:mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

if (pkgname == null) return null;
try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

*** Point 13 *** When exporting an APK, sign the APK with the same developer key as that of the
destination application.

Generate Signed APK @

Key store path: C:¥jssec¥Projects¥keystore

| Create new... | | Choose existing... |

Key store password: | ------- |

Key alias: <T1,r company key D |\|

K.E'lyr pa Bgﬂord : | |

[| Remember passwords

Figure 4.3-3

166 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.5. Creating/Using Temporary permit Content Providers

Temporary permit Content Provider is basically a private Content Provider, but this permits the
particular applications to access the particular URI. By sending an Intent which special flag is
specified to the target applications, temporary access permission is provided to those applications.
Contents provider side application can give the access permission actively to other applications, and
it can also give access permission passively to the application which claims the temporary access
permission.

Sample code of how to implement a temporary permit Content Provider is shown below.

Points (Creating a Content Provider):

1. Do not (Cannot) implement temporary permit content provider in Android 2.2 (APl Level 8) or
earlier.

2. Explicitly set the exported attribute to false.

3. Specify the path to grant access temporarily with the grant-uri-permission.

4. Handle the received request data carefully and securely, even though the data comes from the

application granted access temporarily.

Information that is granted to disclose to the temporary access applications can be returned.

Specify URI for the intent to grant temporary access.

Specify access rights for the intent to grant temporary access.

Send the explicit intent to an application to grant temporary access.

Return the intent to the application that requests temporary access.

© © N oW

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.provider.temporaryprovider">

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<activity
android:name=".TemporaryActiveGrantActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

<!-- Temporary Content Provider -->

<l-- **¥*% POINT 2 *** Explicitly set the exported attribute to false. -->
<provider

android:name=".TemporaryProvider"
android:authorities="org.jssec.android.provider.temporaryprovider"
android:exported="false" >

<l-- **¥* POINT 3 *** Specify the path to grant access temporarily with the grant-uri-permission. -->

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 167

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

<grant-uri-permission android:path="/addresses" />

</provider>

<activity
android:name=".TemporaryPassiveGrantActivity"
android:label="@string/app_name"
android:exported="true" />
</application>
</manifest>

TemporaryProvider.java
package org.jssec.android.provider.temporaryprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;

import android.database.MatrixCursor;
import android.net.Uri;

public class TemporaryProvider extends ContentProvider {
public static final String AUTHORITIY = "org.jssec.android.provider.temporaryprovider";
public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype”;
public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype”;

// Expose the interface that the Content Provider provides.
public interface Download {
public static final String PATH = "downloads";
public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITIY + "/" + PATH);
}
public interface Address {
public static final String PATH = "addresses";
public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITIY + "/" + PATH);

// UriMatcher
private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID_CODE = 2;
private static final int ADDRESSES_CODE = 3;
private static final int ADDRESSES_ID_ CODE = 4;

private static UriMatcher sUriMatcher;

static {
sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
sUriMatcher.addURI(AUTHORITIY, Download.PATH, DOWNLOADS_CODE);
sUriMatcher.addURI(AUTHORITIY, Download.PATH + "/#", DOWNLOADS_ID CODE);
sUriMatcher.addURI(AUTHORITIY, Address.PATH, ADDRESSES_CODE);
sUriMatcher.addURI(AUTHORITIY, Address.PATH + "/#", ADDRESSES_ID_CODE);

// Since this is a sample program,
// query method returns the following fixed result always without using database.
private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
static {
sAddressCursor.addRow(new String[] { "1", "New York" });
sAddressCursor.addRow(new String[] { "2", "London" });

sAddressCursor.addRow(new String[] { "3", "Paris" });

168 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
static {
sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

@Override
public boolean onCreate() {
return true;

@Override
public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:
case ADDRESSES_ID_CODE:
return CONTENT_ITEM_TYPE;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
@Override

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

// *** POINT 4 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access temporarily.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne

// It depends on application whether the query result can be disclosed or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
case DOWNLOADS_ID_ CODE:
return sDownloadCursor;

case ADDRESSES_CODE:
case ADDRESSES_ID_CODE:
return sAddressCursor;

default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 4 *** Handle the received request data carefully and securely,

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 169

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// even though the data comes from the application granted access temporarily.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne

// It depends on application whether the issued ID has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:
return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:
throw new IllegalArgumentException("Invalid URI:

+ uri);

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

// *** POINT 4 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access temporarily.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne
// It depends on application whether the number of updated records has sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:
return 1;

case ADDRESSES_CODE:
return 15;

case ADDRESSES_ID_CODE:

return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
}
@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 4 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access temporarily.

// Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

170 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne
d.
// It depends on application whether the number of deleted records has sensitive meaning or not.
switch (sUriMatcher.match(uri)) {
case DOWNLOADS_CODE:
return 10; // Return number of deleted records
case DOWNLOADS_ID_CODE:
return 1;
case ADDRESSES_CODE:
return 20;
case ADDRESSES_ID_CODE:
return 1;
default:
throw new IllegalArgumentException("Invalid URI:" + uri);
}
¥
¥
TemporaryActiveGrantActivity.java
package org.jssec.android.provider.temporaryprovider;
import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;
public class TemporaryActiveGrantActivity extends Activity {
// User Activity Information
private static final String TARGET_PACKAGE = "org.jssec.android.provider.temporaryuser"”;
private static final String TARGET_ACTIVITY = "org.jssec.android.provider.temporaryuser.TemporaryUserActivity";
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.active_grant);
¥
// In the case that Content Provider application grants access permission to other application actively.
public void onSendClick(View view) {
try {
Intent intent = new Intent();
// *** POINT 6 *** Specify URI for the intent to grant temporary access.
intent.setData(TemporaryProvider.Address.CONTENT_URI);
// *** POINT 7 *** Specify access rights for the intent to grant temporary access.
intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
// *** POINT 8 *** Send the explicit intent to an application to grant temporary access.
intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
startActivity(intent);

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 171

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

} catch (ActivityNotFoundException e) {
Toast.makeText(this, "User Activity not found.", Toast.LENGTH_LONG).show();

TemporaryPassiveGrantActivity.java
package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class TemporaryPassiveGrantActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.passive_grant);

// In the case that Content Provider application passively grants access permission
// to the application that requested Content Provider access.
public void onGrantClick(View view) {

Intent intent = new Intent();

// *** POINT 6 *** Specify URI for the intent to grant temporary access.
intent.setData(TemporaryProvider.Address.CONTENT_URI);

// *** POINT 7 *** Specify access rights for the intent to grant temporary access.
intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

// *** POINT 9 *** Return the intent to the application that requests temporary access.
setResult(Activity.RESULT_OK, intent);
finish();

public void onCloseClick(View view) {
finish();

172 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Next is the example of temporary permit Content Provider.

Points (Using a Content Provider):
10. Do not send sensitive information.
11. When receiving a result, handle the result data carefully and securely.

TemporaryUserActivity.java
package org.jssec.android.provider.temporaryuser;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Intent;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class TemporaryUserActivity extends Activity {

// Information of the Content Provider's Activity to request temporary content provider access.

private static final String TARGET_PACKAGE = "org.jssec.android.provider.temporaryprovider";

private static final String TARGET_ACTIVITY = "org.jssec.android.provider.temporaryprovider.TemporaryPassiveGran
tActivity";

// Target Content Provider Information
private static final String AUTHORITY = "org.jssec.android.provider.temporaryprovider";
private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

private static final int REQUEST_CODE = 1;
public void onQueryClick(View view) {
logLine("[Query]");

Cursor cursor = null;
try {
if (!providerExists(Address.CONTENT_URI)) {
logLine(" Content Provider doesn't exist.");
return;

// *** POINT 1@ *** Do not send sensitive information.
// If no problem when the information is taken by malware, it can be included in the request.
cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

// *** POINT 11 *** When receiving a result, handle the result data carefully and securely.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
if (cursor == null) {
logLine(" null cursor");
} else {
boolean moved = cursor.moveToFirst();
while (moved) {

logLine(String.format(" %d, %s", cursor.getInt(®), cursor.getString(1)));

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 173

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

moved = cursor.moveToNext();

}
} catch (SecurityException ex) {

logLine(" Exception:" + ex.getMessage());

}
finally {

if (cursor != null) cursor.close();
}

// In the case that this application requests temporary access to the Content Provider
// and the Content Provider passively grants temporary access permission to this application.
public void onGrantRequestClick(View view) {
Intent intent = new Intent();
intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
try {
startActivityForResult(intent, REQUEST_CODE);
} catch (ActivityNotFoundException e) {
logLine("Content Provider's Activity not found.");

private boolean providerExists(Uri uri) {
ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);
return (pi != null);

private TextView mLogView;

// In the case that the Content Provider application grants temporary access
// to this application actively.
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mLogView = (TextView)findViewById(R.id.logview);

private void loglLine(String line) {
mLogView.append(line);
mLogView.append("¥n");

174 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AesociaTion http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.2. Rule Book

Be sure to follow the rules below when Implementing or using a content provider.

Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API Level

8) or Earlier (Required)
Content Provider that Is Used Only in an Application Must Be Set as Private (Required)
Handle the Received Request Parameter Carefully and Securely (Required)
Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house
Application (Required)
When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)
When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of
Protection (Required)

And user side should follow the below rules, too.

7.

Handle the Returned Result Data from the Content Provider Carefully and Securely
(Required)

4.3.2.1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API

Level 8) or Earlier (Required)

Private setting for a Content Provider does not work in Android 2.2 (API Level 8) or earlier. To share a
data in the same application, access a data storage location such as a data base instead of using a
Content Provider.

4.3.2.2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

Content Provider which is used only in a single application is not necessary to be accessed by other
applications, and the access which attacks the Content Provider is not often considered by
developers. A Content Provider is basically the system to share data, so it's handled as public by

default. A Content Provider which is used only in a single application should be set as private
explicitly, and it should be a private Content Provider. In Android 2.3.1 (API Level 9) or later, a
Content Provider can be set as private by specifying android:exported="false" in provider element.

-->

AndroidManifest.xml

<l-- *%* POINT 1 *** Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.

<uses-sdk android:minSdkVersion="9" />

-abbreviation-

<l-- **%* POINT 2 *** Set false for the exported attribute explicitly. -->
<provider
android:name=".PrivateProvider"
android:authorities="org.jssec.android.provider.privateprovider"
android:exported="false" />

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 175

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

4.3.2.3. Handle the Received Request Parameter Carefully and Securely (Required)

Risks differ depending on the types of Content Providers, but when processing request parameters,
the first thing you should do is input validation.

Although each method of a Content Provider has the interface which is supposed to receive the
component parameter of SQL statement, actually it simply hands over the arbitrary character string in
the system, so it's necessary to pay attention that Contents Provider side needs to suppose the case
that unexpected parameter may be provided.

Since Public Content Providers can receive requests from untrusted sources, they can be attacked by
malware. On the other hand, Private Content Providers will never receive any requests from other
applications directly, but it is possible that a Public Activity in the targeted application may forward a
malicious Intent to a Private Content Provider so you should not assume that Private Content
Providers cannot receive any malicious input.

Since other Content Providers also have the risk of a malicious intent being forwarded to them as well,
it is necessary to perform input validation on these requests as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.3.2.4. Use anIn-house Defined Signature Permission after Verifying that it is Defined by an In-house
Application (Required)

Make sure to protect your in-house Content Providers by defining an in—-house signature permission
when creating the Content Provider. Since defining a permission in the AndroidManifest.xml file or
declaring a permission request does not provide adequate security, please be sure to refer to "5.2.1.2
How to Communicate Between In-house Applications with In-house-defined Signature Permission."

4.3.2.5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)

In case of query() or insert(), Cursor or Uri is returned to the request sending application as a result
information. When sensitive information is included in the result information, the information may be
leaked from the destination application. In case of update() or delete(), number of updated/deleted
records is returned to the request sending application as a result information. In rare cases,
depending on some application specs, the number of updated/deleted records has the sensitive
meaning, so please pay attention to this.

4.3.2.6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of
Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been

granted proper permissions can directly access a protected asset. However, there is a loophole
176 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

because an application with permissions to an asset can act as a proxy and allow access to an
unprivileged application. Substantially this is the same as re-delegating a permission, so it is referred
to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4 Permission Re-delegation
Problem."

4.3.2.7. Handle the Returned Result Data from the Content Provider Carefully and Securely
(Required)

Risks differ depending on the types of Content Provider, but when processing a result data, the first
thing you should do is input validation.

In case that the destination Content Provider is a public Content Provider, Malware which
masquerades as the public Content Provider may return the attack result data. On the other hand, in
case that the destination Content Provider is a private Content Provider, it is less risk because it
receives the result data from the same application, but you should not assume that private Content
Providers cannot receive any malicious input.Since other Content Providers also have the risk of a
malicious data being returned to them as well, it is necessary to perform input validation on that
result data as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 177

SECURITY

““F:‘P::W)NE Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 4.4. Creating/Using Services

4.4.1. Sample Code

The risks and countermeasures of using Services differ depending on how that Service is being used.
You can find out which type of Service you are supposed to create through the following chart shown
below. Since the secure coding best practice varies according to how the service is created, we will
also explain about the implementation of the Service as well.

Table 4.4-1 Definition of service types

Type Definition

Private Service A service that cannot be used another application, and therefore is
the safest service.

Public Service A service that is supposed to be used by an unspecified large
number of applications

Partner Service A service that can only be used by the specific applications made by
a trusted partner company.

In-house Service [A service that can only be used by other in-house applications.

=

Use only in
the same application?,

Allow unspecified number
applications to use?

Allow specified company s
applications to use

Private Service Public Service Partner Service In-house Service

Figure 4.4-1

There are several implementation methods for Service, and you will select the method which matches
with the type of Service that you suppose to create. The items of vertical columns in the table show
the implementation methods, and these are divided into 5 types. "OK" stands for the possible
combination and others show impossible/difficult combinations in the table.

Please refer to "4.4.3.2 How to Implement Service" and Sample code of each Service type (with * mark
in a table) for detailed implementation methods of Service.

178 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Table 4.4-2
Private Public Partner In-house
Category Service Service Service Service

startService type OK* OK - oK
IntentService type OK OK* - oK
local bind type OK - - -
Messenger bind oK OK ~ OK*
type

AIDL bind type OK OK OK* OK

Sample code for each security type of Service are shown as below, by using combination of * mark in
Table 4.4-2.

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 179

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.1. Creating/Using Private Services

Private Services are Services which cannot be launched by the other applications and therefore it is
the safest Service.

When using Private Services that are only used within the application, as long as you use explicit
Intents to the class then you do not have to worry about accidently sending it to any other
application.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):

1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from the same
application.

3. Sensitive information can be sent since the requesting application is in the same application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.privateservice" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >
<activity
android:name=".PrivateUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<!-- Private Service derived from Service class -->

<l-- ®%* POINT 1 *** Explicitly set the exported attribute to false. -->
<service android:name=".PrivateStartService" android:exported="false"/>
<!-- Private Service derived from IntentService class -->

¢l-- **%*% POINT 1 *** Explicitly set the exported attribute to false. -->
<service android:name=".PrivateIntentService" android:exported="false"/>

</application>

</manifest>

PrivateStartService.java
package org.jssec.android.service.privateservice;

import android.app.Service;

import android.content.Intent;

180 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import android.os.IBinder;
import android.widget.Toast;

public class PrivateStartService extends Service {

// The onCreate gets called only one time when the service starts.
@Override
public void onCreate() {
Toast.makeText(this, "PrivateStartService - onCreate()", Toast.LENGTH_SHORT).show();

// The onStartCommand gets called each time after the startService gets called.
@Override
public int onStartCommand(Intent intent, int flags, int startId) {
// *** POINT 2 *** Handle the received intent carefully and securely,
// even though the intent was sent from the same application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String param = intent.getStringExtra("PARAM");
Toast.makeText(this,
String.format("PrivateStartService¥nReceived param: ¥"%s¥"", param),
Toast.LENGTH_LONG) .show();

return Service.START_NOT_STICKY;

// The onDestroy gets called only one time when the service stops.
@Override
public void onDestroy() {
Toast.makeText(this, "PrivateStartService - onDestroy()", Toast.LENGTH_SHORT).show();

@Override

public IBinder onBind(Intent intent) {
// This service does not provide binding, so return null
return null;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 181

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Next is sample code for Activity which uses Private Service.

Points (Using a Service):

4.
5.
6.

Use the explicit intent with class specified to call a service in the same application.

Sensitive information can be sent since the destination service is in the same application.
Handle the received result data carefully and securely, even though the data came from a service
in the same application.

PrivateUserActivity.java
package org.jssec.android.service.privateservice;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PrivateUserActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.privateservice_activity);

// --- StartService control ---

public void onStartServiceClick(View v) {
// *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.
Intent intent = new Intent(this, PrivateStartService.class);

// *** POINT 5 *** Sensitive information can be sent since the destination service is in the same application.
intent.putExtra("PARAM", "Sensitive information");

startService(intent);

public void onStopServiceClick(View v) {
doStopService();

@Override

public void onStop() {
super.onStop();
// Stop service if the service is running.
doStopService();

private void doStopService() {
// *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.
Intent intent = new Intent(this, PrivateStartService.class);
stopService(intent);

// --- IntentService control ---

public void onIntentServiceClick(View v) {
// *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.

182 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

Intent intent = new Intent(this, PrivateIntentService.class);

// *** POINT 5 *** Sensitive information can be sent since the destination service is in the same application.
intent.putExtra("PARAM", "Sensitive information");

startService(intent);

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 183

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.2. Creating/Using Public Services

Public Service is the Service which is supposed to be used by the unspecified large number of
applications. It's necessary to pay attention that it may receive the information (Intent etc.) which was
sent by Malware. In case using public Service, It's necessary to pay attention that information(lntent
etc.) to send may be received by Malware.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):

1. Explicitly set the exported attribute to true.

2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.publicservice" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Most standard Service -->
<l-- ®%* POINT 1 *** Explicitly set the exported attribute to true. -->
<service android:name=".PublicStartService" android:exported="true">
<intent-filter>
<action android:name="org.jssec.android.service.publicservice.action.startservice" />
</intent-filter>
</service>

<!-- Public Service derived from IntentService class -->
<l-- ®%* POINT 1 *** Explicitly set the exported attribute to true. -->
<service android:name=".PublicIntentService" android:exported="true">
<intent-filter>
<action android:name="org.jssec.android.service.publicservice.action.intentservice" />
</intent-filter>
</service>

</application>

</manifest>

PublicintentService.java
package org.jssec.android.service.publicservice;

import android.app.IntentService;
import android.content.Intent;

import android.widget.Toast;

public class PublicIntentService extends IntentService{

184 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

/**
* Default constructor must be provided when a service extends IntentService class.
* If it does not exist, an error occurs.
*/
public PublicIntentService() {
super("CreatingTypeBService");

// The onCreate gets called only one time when the Service starts.
@Override
public void onCreate() {

super.onCreate();

Toast.makeText(this, this.getClass().getSimpleName() + " - onCreate()", Toast.LENGTH_SHORT).show();

// The onHandleIntent gets called each time after the startService gets called.
@Override
protected void onHandleIntent(Intent intent) {
// *** POINT 2 *** Handle intent carefully and securely.
// Since it's public service, the intent may come from malicious application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String param = intent.getStringExtra("PARAM");

Toast.makeText(this, String.format("Recieved parameter ¥"%s¥"", param), Toast.LENGTH_LONG).show();

// The onDestroy gets called only one time when the service stops.
@Override
public void onDestroy() {
Toast.makeText(this, this.getClass().getSimpleName() + " - onDestroy()", Toast.LENGTH_SHORT).show();

All rights reserved © Japan Smartphone Security Association. Creating/Using Services

185

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next is sample code for Activity which uses Public Service.

Points (Using a Service):
4. Do not send sensitive information.
5. When receiving a result, handle the result data carefully and securely.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.publicserviceuser" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >
<activity
android:name=".PublicUserActivity"
android:label="@string/app_name"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>

</manifest>

PublicUserActivity.java

package org.jssec.android.service.publicserviceuser;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PublicUserActivity extends Activity {
// Using Service Info
private static final String TARGET_PACKAGE = "org.jssec.android.service.publicservice";
private static final String TARGET_START_CLASS = "org.jssec.android.service.publicservice.PublicStartService";
private static final String TARGET_INTENT_CLASS = "org.jssec.android.service.publicservice.PublicIntentService";
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.publicservice_activity);

// --- StartService control ---

public void onStartServiceClick(View v) {
Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice");

186 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// *** POINT 4 *** Call service by Explicit Intent
intent.setClassName(TARGET_PACKAGE, TARGET_START_CLASS);

// *** POINT 5 *** Do not send sensitive information.

intent.putExtra("PARAM", "Not sensitive information");

startService(intent);
// *** POINT 6 *** When receiving a result, handle the result data carefully and securely.
// This sample code uses startService(), so receiving no result.

public void onStopServiceClick(View v) {
doStopService();

// --- IntentService control ---

public void onIntentServiceClick(View v) {
Intent intent = new Intent("org.jssec.android.service.publicservice.action.intentservice");

// *** POINT 4 *** Call service by Explicit Intent
intent.setClassName(TARGET_PACKAGE, TARGET_INTENT_CLASS);

// *** POINT 5 *** Do not send sensitive information.

intent.putExtra("PARAM", "Not sensitive information");

startService(intent);

@Override

public void onStop(){
super.onStop();
// Stop service if the service is running.
doStopService();

// Stop service
private void doStopService() {
Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice");

// *** POINT 4 *** Call service by Explicit Intent
intent.setClassName (TARGET_PACKAGE, TARGET_START_CLASS);

stopService(intent);

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 187

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.3. Creating/Using Partner Services

Partner Service is Service which can be used only by the particular applications. System consists of
partner company's application and In house application, this is used to protect the information and
features which are handled between a partner application and In house application.

Following is an example of AIDL bind type Service.

Points (Creating a Service):

1. Do not define the intent filter and explicitly set the exported attribute to true.

2. Verify that the certificate of the requesting application has been registered in the own white list.

3. Do not (Cannot) recognize whether the requesting application is partner or not by onBind
(onStartCommand, onHandlelntent).

4. Handle the received intent carefully and securely, even though the intent was sent from a partner
application.

5. Return only information that is granted to be disclosed to a partner application.

In addition, refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate" for how to
verify the certification hash value of destination application which is specified to white list.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.partnerservice.aidl" >

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Service using AIDL -->
<l-- *%* POINT 1 *** Do not define the intent filter and explicitly set the exported attribute to true. -->
<service

android:name="org.jssec.android.service.partnerservice.aidl.PartnerAIDLService"
android:exported="true" />
</application>

</manifest>

In this example, 2 AIDL files are to be created. One is for callback interface to give data from Service
to Activity. The other one is Interface to give data from Activity to Service and to get information. In
addition, package name that is described in AIDL file should be consistent with directory hierarchy in
which AIDL file is created, same like package name described in java file.

IExclusiveAlDLServiceCallback.aidl

package org.jssec.android.service.exclusiveservice.aidl;

interface IExclusiveAIDLServiceCallback {
/**

188 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

* It's called when the value is changed.
*/
void valueChanged(String info);

I[ExclusiveAlDLService.aidl
package org.jssec.android.service.exclusiveservice.aidl;

import org.jssec.android.service.exclusiveservice.aidl.IExclusiveAIDLServiceCallback;
interface IExclusiveAIDLService {

/**

* Register Callback.

*/

void registerCallback(IExclusiveAIDLServiceCallback cb);

/**

* Get Information

*/

String getInfo(String param);

/**
* Unregister Callback
*/
void unregisterCallback(IExclusiveAIDLServiceCallback cb);

PartnerAIDLService.java
package org.jssec.android.service.partnerservice.aidl;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Service;

import android.content.Context;
import android.content.Intent;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteCallbackList;
import android.os.RemoteException;
import android.widget.Toast;

public class PartnerAIDLService extends Service {
private static final int REPORT_MSG = 1;
private static final int GETINFO_MSG = 2;

// The value which this service informs to client
private int mValue = ©;

// *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the own white
list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {
boolean isdebug = Utils.isDebuggable(context);
sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application "org.jssec.android.service.partnerservice.aidluser"

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 189

SMARTPHONE
SE!

l“"lAPAN Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
CURITY . . .
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

sWhitelists.add("org.jssec.android.service.partnerservice.aidluser", isdebug ?
// Certificate hash value of debug.keystore "androiddebugkey"
"OQEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
// Certificate hash value of keystore "partner key"
"1F@39BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4COEC35A");

// Register other partner applications in the same way

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

// Object to register callback

// Methods which RemoteCallbackList provides are thread-safe.

private final RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks =
new RemoteCallbackList<IPartnerAIDLServiceCallback>();

// Handler to send data when callback is called.
private static class ServiceHandler extends Handler{

private Context mContext;
private RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks;

private int mvalue = 0;

public ServiceHandler(Context context, RemoteCallbackList<IPartnerAIDLServiceCallback> callback, int value){
this.mContext = context;
this.mCallbacks = callback;
this.mvalue = value;

@0verride
public void handleMessage(Message msg) {
switch (msg.what) {
case REPORT_MSG: {
if(mCallbacks == null){
return;
}
// Start broadcast
// To call back on to the registered clients, use beginBroadcast().
// beginBroadcast() makes a copy of the currently registered callback list.
final int N = mCallbacks.beginBroadcast();
for (int 1 = 0; 1 < N; i++) {
IPartnerAIDLServiceCallback target = mCallbacks.getBroadcastItem(i);

try {
// *** POINT 5 *** Information that is granted to disclose to partner applications can be retur

ned.
target.valueChanged("Information disclosed to partner application (callback from Service) No."

+ (++mValue));

} catch (RemoteException e) {
// Callbacks are managed by RemoteCallbackList, do not unregister callbacks here.

// RemoteCallbackList.kill() unregister all callbacks

}

// finishBroadcast() cleans up the state of a broadcast previously initiated by calling beginBroadcast

O-

mCallbacks.finishBroadcast();

190 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SE!

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
CURITY . . .
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// Repeat after 10 seconds
sendEmptyMessageDelayed (REPORT_MSG, 10000);
break;

¥

case GETINFO_MSG: {
if(mContext != null) {

Toast.makeText(mContext,
(String) msg.obj, Toast.LENGTH_LONG).show();
¥
break;
}

default:
super.handleMessage(msg);
break;

} // switch

protected final ServiceHandler mHandler = new ServiceHandler(this, mCallbacks, mValue);

// Interfaces defined in AIDL
private final IPartnerAIDLService.Stub mBinder = new IPartnerAIDLService.Stub() {
private boolean checkPartner() {
Context ctx = PartnerAIDLService.this;
if (!PartnerAIDLService.checkPartner(ctx, Utils.getPackageNameFromUid(ctx, getCallinguid()))) {
mHandler.post(new Runnable(){
@0verride
public void run(){
Toast.makeText(PartnerAIDLService.this, "Requesting application is not partner application."”, T
oast.LENGTH_LONG) .show();
}
1

return false;

}

return true;
}
public void registerCallback(IPartnerAIDLServiceCallback cb) {
// *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow
n white list.
if (!checkPartner()) {
return;

}
if (cb != null) mCallbacks.register(cb);

}
public String getInfo(String param) {
// *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow
n white list.
if (!checkPartner()) {
return null;

}

// *** POINT 4 *** Handle the received intent carefully and securely,

// even though the intent was sent from a partner application

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
Message msg = new Message();

msg.what = GETINFO_MSG;

msg.obj = String.format("Method calling from partner application. Recieved ¥"%s¥"", param);
PartnerAIDLService.this.mHandler.sendMessage(msg);

// *** POINT 5 *** Return only information that is granted to be disclosed to a partner application.
return "Information disclosed to partner application (method from Service)";

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 191

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public void unregisterCallback(IPartnerAIDLServiceCallback cb) {
// *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow
n white list.
if (!checkPartner()) {

return;
}
if (cb != null) mCallbacks.unregister(cb);
}
s
@Override

public IBinder onBind(Intent intent) {
// *** POINT 3 *** Verify that the certificate of the requesting application has been registered in the own wh
ite list.
// So requesting application must be validated in methods defined in AIDL every time.
return mBinder;

@Override
public void onCreate() {
Toast.makeText(this, this.getClass().getSimpleName() + " - onCreate()", Toast.LENGTH_SHORT).show();

// During service is running, inform the incremented number periodically.

mHandler.sendEmptyMessage (REPORT_MSG);

@Override
public void onDestroy() {
Toast.makeText(this, this.getClass().getSimpleName() + " - onDestroy()", Toast.LENGTH_SHORT).show();

// Unregister all callbacks
mCallbacks.kill();

mHandler.removeMessages (REPORT_MSG);

PkgCertWhitelists.java

package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");
if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
sha256 = sha256.toUpperCase();

192 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

if (sha256.replaceAll("[0-9A-F]+", "").length() != @) return false; // found non hex char

mWhitelists.put(pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash value which corresponds to pkgname.
String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 193

““l’;ﬁ"&"wm Android Application Secure Design/Secure Coding Guidebook
AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));

}
return hexadecimal.toString();
}
}
194 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
Associarion http://www.jssec.org/dl/android_securecoding_en.pdf

Next is sample code of Activity which uses partner only Service.

Points (Using a Service):

6.

7.
8.
9

Verify if the certificate of the target application has been registered in the own white list.
Return only information that is granted to be disclosed to a partner application.

Use the explicit intent to call a partner service.

Handle the received result data carefully and securely, even though the data came from a partner
application.

ExclusiveAlIDLUserActivity.java
package org.jssec.android.service.partnerservice.aidluser;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLService;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLServiceCallback;
import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;

import android.content.ServiceConnection;
import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteException;
import android.view.View;

import android.widget.Toast;

public class PartnerAIDLUserActivity extends Activity {

private boolean mIsBound;
private Context mContext;

private final static int MGS_VALUE_CHANGED = 1;

// *** POINT 6 *** Verify if the certificate of the target application has been registered in the own white list.
private static PkgCertWhitelists sWhitelists = null;
private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner service application "org.jssec.android.service.partnerservice.a

idl"

sWhitelists.add("org.jssec.android.service.partnerservice.aidl", isdebug ?
// Certificate hash value of debug.keystore "androiddebugkey"
"OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE BO9DB34BC 1E29DD26 F77C8255" :
// Certificate hash value of keystore "my company key"
"D397D343 ASCBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA");

// Register other partner service applications in the same way

}

private static boolean checkPartner(Context context, String pkgname) {
if (sWhitelists == null) buildWhitelists(context);
return sWhitelists.test(context, pkgname);

}

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 195

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// Information about destination (requested) partner activity.
private static final String TARGET_PACKAGE = "org.jssec.android.service.partnerservice.aidl";
private static final String TARGET_CLASS = "org.jssec.android.service.partnerservice.aidl.PartnerAIDLService";

private static class ReceiveHandler extends Handler{

private Context mContext;

public ReceiveHandler(Context context){
this.mContext = context;

@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MGS_VALUE_CHANGED: {
String info = (String)msg.obj;
Toast.makeText(mContext, String.format("Received ¥"%s¥" with callback.", info), Toast.LENGTH_SHORT

).show();
break;
}
default:
super.handleMessage(msg);
break;
} // switch
}
¥

private final ReceiveHandler mHandler = new ReceiveHandler(this);

// Interfaces defined in AIDL. Receive notice from service
private final IPartnerAIDLServiceCallback.Stub mCallback =
new IPartnerAIDLServiceCallback.Stub() {
@0verride
public void valueChanged(String info) throws RemoteException {
Message msg = mHandler.obtainMessage(MGS_VALUE_CHANGED, info);
mHandler.sendMessage(msg);

}s

// Interfaces defined in AIDL. Inform service.
private IPartnerAIDLService mService = null;

// Connection used to connect with service. This is necessary when service is implemented with bindService().
private ServiceConnection mConnection = new ServiceConnection() {

// This is called when the connection with the service has been established.

@Override

public void onServiceConnected(ComponentName className, IBinder service) {
mService = IPartnerAIDLService.Stub.asInterface(service);

try{
// connect to service
mService.registerCallback(mCallback);

}catch(RemoteException e){
// service stopped abnormally

196 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

e

Toast.makeText(mContext, "Connected to service", Toast.LENGTH_SHORT).show();

// This is called when the service stopped abnormally and connection is disconnected.

@Override

public void onServiceDisconnected(ComponentName className) {
Toast.makeText(mContext, "Disconnected from service", Toast.LENGTH_SHORT).show();

}s

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.partnerservice _activity);

mContext = this;

// --- StartService control ---

public void onStartServiceClick(View v) {
// Start bindService
doBindService();

public void onGetInfoClick(View v) {
getServiceinfo();

public void onStopServiceClick(View v) {
doUnbindService();

@Override

public void onDestroy() {
super.onDestroy();
doUnbindService();

/**
* Connect to service
*/
private void doBindService() {
if (ImIsBound){
// *** POINT 6 *** Verify if the certificate of the target application has been registered in the own whit
list.
if (!checkPartner(this, TARGET_PACKAGE)) {
Toast.makeText(this, "Destination(Requested) sevice application is not registered in white list.", Toa

st.LENGTH_LONG) .show();

return;

Intent intent = new Intent();

// *** POINT 7 *** Return only information that is granted to be disclosed to a partner application.
intent.putExtra("PARAM", "Information disclosed to partner application");

// *** POINT 8 *** Use the explicit intent to call a partner service.
intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 197

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

bindService(intent, mConnection, Context.BIND_AUTO_CREATE);
mIsBound = true;

/**
* Disconnect service
*/
private void doUnbindService() {
if (mIsBound) {
// Unregister callbacks which have been registered.
if(mService != null){
try{
mService.unregisterCallback(mCallback);
}catch(RemoteException e){
// Service stopped abnormally
// Omitted, since it' s sample.

unbindService(mConnection);
Intent intent = new Intent();

// *** POINT 8 *** Use the explicit intent to call a partner service.
intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

stopService(intent);

mIsBound = false;

/**
* Get information from service
*/
void getServiceinfo() {
if (mIsBound && mService != null) {
String info = null;

try {
// *** POINT 7 *** Return only information that is granted to be disclosed to a partner application.

info = mService.getInfo("Information disclosed to partner application (method from activity)");
} catch (RemoteException e) {
e.printStackTrace();
}
// *** POINT 9 *** Handle the received result data carefully and securely,
// even though the data came from a partner application.
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
Toast.makeText(mContext, String.format("Received ¥"%s¥" from service.", info), Toast.LENGTH_SHORT).show()

PkgCertWhitelists.java

package org.jssec.android.shared;

import java.util.HashMap;

198 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {
if (pkgname == null) return false;
if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != @) return false; // found non hex char

mWhitelists.put(pkgname, sha256);
return true;

public boolean test(Context ctx, String pkgname) {
// Get the correct hash value which corresponds to pkgname.
String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.
return PkgCert.test(ctx, pkgname, correctHash);

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 199

wresone Android Application Secure Design/Secure Coding Guidebook

““l Associarion http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

200

All rights reserved © Japan Smartphone Security Association.

Creating/Using Services

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.4. Creating/Using In-house Services

In-house Services are the Services which are prohibited to be used by applications other than
in-house applications. They are used in applications developed internally that want to securely share
information and functionality.

Following is an example which uses Messenger bind type Service.

Points (Creating a Service):

1. Define an in-house signature permission.

Require the in-house signature permission.

Do not define the intent filter and explicitly set the exported attribute to true.

Verify that the in-house signature permission is defined by an in-house application.

Handle the received intent carefully and securely, even though the intent was sent from an
in-house application.

Sensitive information can be returned since the requesting application is in-house.

7. When exporting an APK, sign the APK with the same developer key as the requesting application.

vl D W N

o

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.inhouseservice.messenger" >

<l-- **¥* POINT 1 *** Define an in-house signature permission -->

<permission
android:name="org.jssec.android.service.inhouseservice.messenger .MY_PERMISSION"
android:protectionLevel="signature" />

<application
android:icon="@drawable/ic_launcher”
android:label="@string/app_name"
android:allowBackup="false" >

<!-- Service using Messenger -->

<l-- *** POINT 2 *** Require the in-house signature permission -->

¢l-- *¥*% pPOINT 3 *** Do not define the intent filter and explicitly set the exported attribute to true. -->
<service

android:name="org.jssec.android.service.inhouseservice.messenger.InhouseMessengerService"

android:exported="true"

android:permission="org.jssec.android.service.inhouseservice.messenger .MY_PERMISSION" />
</application>

</manifest>

InhouseMessengerService.java

package org.jssec.android.service.inhouseservice.messenger;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import java.lang.reflect.Array;

import java.util.Arraylist;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 201

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import java.util.Iterator;

import android.app.Service;

import android.content.Context;
import android.content.Intent;
import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;
import android.os.RemoteException;
import android.widget.Toast;

public class InhouseMessengerService extends Service{
// In-house signature permission
private static final String MY_PERMISSION = "org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of debug.keystore "androiddebugkey"
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of keystore "my company key"
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA";

}

return sMyCertHash;

// Manage clients(destinations of sending data) in a list
private ArraylList<Messenger> mClients = new ArrayList<Messenger>();

// Messenger used when service receive data from client
private final Messenger mMessenger = new Messenger(new ServiceSideHandler(mClients));

// Handler which handles message received from client
private static class ServiceSideHandler extends Handler{

private ArraylList<Messenger> mClients;

public ServiceSideHandler(ArrayList<Messenger> clients){
mClients = clients;

@Override
public void handleMessage(Message msg){
switch(msg.what){
case CommonValue.MSG_REGISTER_CLIENT:
// Add messenger received from client
mClients.add(msg.replyTo);
break;
case CommonValue.MSG_UNREGISTER_CLIENT:
mClients.remove(msg.replyTo);
break;
case CommonValue.MSG_SET_VALUE:
// Send data to client

202 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

sendMessageToClients(mClients);

break;
default:
super.handleMessage(msg);
break;
}
}
¥
/**
* Send data to client
*/

private static void sendMessageToClients(ArrayList<Messenger> mClients){

// *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
String sendValue = "Sensitive information (from Service)";

// Send data to the registered client one by one.

// Use iterator to send all clients even though clients are removed in the loop process.
Iterator<Messenger> ite = mClients.iterator();

while(ite.hasNext()){

try {
Message sendMsg = Message.obtain(null, CommonValue.MSG_SET_VALUE, null);

Bundle data = new Bundle();
data.putString("key", sendvValue);
sendMsg.setData(data);

Messenger next = ite.next();
next.send(sendMsg);

} catch (RemoteException e) {
// If client does not exits, remove it from a list.
ite.remove();

@Override
public IBinder onBind(Intent intent) {

// *** POINT 4 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText(this, "In-house defined signature permission is not defined by in-house application.", Toa
st.LENGTH_LONG) .show();
return null;

// *** POINT 5 *** Handle the received intent carefully and securely,

// even though the intent was sent from an in-house application.

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
String param = intent.getStringExtra("PARAM");

Toast.makeText(this, String.format("Received parameter ¥"%s¥".", param), Toast.LENGTH_LONG).show();

return mMessenger.getBinder();
@Override

public void onCreate() {
Toast.makeText(this, "Service - onCreate()", Toast.LENGTH_SHORT).show();

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 203

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

}

@Override
public void onDestroy() {
Toast.makeText(this, "Service - onDestroy()", Toast.LENGTH_SHORT).show();

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

public static String hash(Context ctx, String sigPermName) {

if (sigPermName == null) return null;

try {
// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();
PermissionInfo pi;
pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

204 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {
PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);

} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 205

SECURITY

““Iiﬁ":ﬂmm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting
application.

| #® Generate Signed APK ==
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: | +er+- |
Key alias: <mmmn@ L|
e []
] Remember passwords
Previous | Cancel | | Help |

Figure 4.4-2

206 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Next is the sample code of Activity which uses in house only Service.

Points (Using a Service):

8. Declare to use the in-house signature permission.

9. Verify that the in-house signature permission is defined by an in-house application.

10. Verify that the destination application is signed with the in-house certificate.

11. Sensitive information can be sent since the destination application is in-house.

12. Use the explicit intent to call an in-house service.

13. Handle the received result data carefully and securely, even though the data came from an
in-house application.

14. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jssec.android.service.inhouseservice.messengeruser"” >

<l-- **¥* POINT 8 *** Declare to use the in-house signature permission. -->
<uses-permission
android:name="org.jssec.android.service.inhouseservice.messenger .MY_PERMISSION" />

<application
android:icon="@drawable/ic_launcher”
android:label="@string/app_name"
android:allowBackup="false" >
<activity
android:name="org.jssec.android.service.inhouseservice.messengeruser.InhouseMessengerUserActivity"
android:label="@string/app_name"
android:exported="true" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

InhouseMessengerUserActivity.java

package org.jssec.android.service.inhouseservice.messengeruser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;
import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 207

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

im
im
im
im

pu

er

port android.os.Messenger;

port android.os.RemoteException;
port android.view.View;

port android.widget.Toast;

blic class InhouseMessengerUserActivity extends Activity {

private boolean mIsBound;
private Context mContext;

// Destination (Requested) service application information

private static final String TARGET_PACKAGE = "org.jssec.android.service.inhouseservice.messenger";
private static final String TARGET_CLASS = "org.jssec.android.service.inhouseservice.messenger.InhouseMessengersS
vice";

// In-house signature permission
private static final String MY_PERMISSION = "org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

// In-house certificate hash value
private static String sMyCertHash = null;
private static String myCertHash(Context context) {
if (sMyCertHash == null) {
if (Utils.isDebuggable(context)) {
// Certificate hash value of debug.keystore "androiddebugkey"
sMyCertHash = "OEFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
} else {
// Certificate hash value of keystore "my company key"
sMyCertHash = "D397D343 AS5CBC10F 4EDDEB7C A10062DE 5690984F 1FBOE88B D7B3A7C2 42E142CA";

}

return sMyCertHash;

// Messenger used when this application receives data from service.
private Messenger mServiceMessenger = null;

// Messenger used when this application sends data to service.
private final Messenger mActivityMessenger = new Messenger(new ActivitySideHandler());

// Handler which handles message received from service
private class ActivitySideHandler extends Handler {
@0verride
public void handleMessage(Message msg) {
switch (msg.what) {
case CommonValue.MSG_SET_VALUE:
Bundle data = msg.getData();
String info = data.getString("key");
// *** POINT 13 *** Handle the received result data carefully and securely,
// even though the data came from an in-house application
// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely

o,

Toast.makeText(mContext, String.format("Received ¥"%s¥" from service.", info),
Toast.LENGTH_SHORT) .show();
break;
default:

super.handleMessage(msg);

208 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

// Connection used to connect with service. This is necessary when service is implemented with bindService().
private ServiceConnection mConnection = new ServiceConnection() {

// This is called when the connection with the service has been established.
@Override
public void onServiceConnected(ComponentName className, IBinder service) {
mServiceMessenger = new Messenger(service);
Toast.makeText(mContext, "Connect to service", Toast.LENGTH_SHORT).show();

try {
// Send own messenger to service
Message msg = Message.obtain(null, CommonValue.MSG_REGISTER_CLIENT);
msg.replyTo = mActivityMessenger;
mServiceMessenger.send(msg);
} catch (RemoteException e) {
// Service stopped abnormally

// This is called when the service stopped abnormally and connection is disconnected.
@0verride
public void onServiceDisconnected(ComponentName className) {

mServiceMessenger = null;

Toast.makeText(mContext, "Disconnected from service", Toast.LENGTH_SHORT).show();

};

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.inhouseservice_activity);

mContext = this;

// --- StartService control ---

public void onStartServiceClick(View v) {
// Start bindService
doBindService();

public void onGetInfoClick(View v) {
getServiceinfo();

public void onStopServiceClick(View v) {
doUnbindService();

@Override

protected void onDestroy() {
super.onDestroy();
doUnbindService();

/**
* Connect to service
*/

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 209

SECURITY

ll“lg:;’::wuNE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

void doBindService() {
if (!mIsBound){
// *** POINT 9 *** Verify that the in-house signature permission is defined by an in-house application.
if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
Toast.makeText(this, "In-house defined signature permission is not defined by in-house application.”,
Toast.LENGTH_LONG).show();
return;

// *** POINT 1@ *** Verify that the destination application is signed with the in-house certificate.
if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
Toast.makeText(this, "Destination(Requested) service application is not in-house application.", Toast
.LENGTH_LONG) .show();
return;

Intent intent = new Intent();

// *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
intent.putExtra("PARAM", "Sensitive information");

// *** POINT 12 *** Use the explicit intent to call an in-house service.
intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

bindService(intent, mConnection, Context.BIND_AUTO_CREATE);
mIsBound = true;

/**
* Disconnect service
*/
void doUnbindService() {
if (mIsBound) {
unbindService(mConnection);
mIsBound = false;

/**
* Get information from service
*/
void getServiceinfo() {
if (mServiceMessenger != null) {
try {
// Request sending information
Message msg = Message.obtain(null, CommonValue.MSG_SET_VALUE);
mServiceMessenger.send(msg);
} catch (RemoteException e) {
// Service stopped abnormally

SigPerm.java
package org.jssec.android.shared;

210 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, sigPermName));

}

public static String hash(Context ctx, String sigPermName) {
if (sigPermName == null) return null;
try {

// Get the package name of the application which declares a permission named sigPermName.
PackageManager pm = ctx.getPackageManager();

PermissionInfo pi;

pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature Permission
if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

// Return the certificate hash value of the application which declares a permission named sigPermName.
return PkgCert.hash(ctx, pkgname);

} catch (NameNotFoundException e) {
return null;

PkgCert.java

package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {
if (correctHash == null) return false;
correctHash = correctHash.replaceAll(" ", "");
return correctHash.equals(hash(ctx, pkgname));

public static String hash(Context ctx, String pkgname) {
if (pkgname == null) return null;
try {

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 211

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

PackageManager pm = ctx.getPackageManager();
PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
Signature sig = pkginfo.signatures[0];
byte[] cert = sig.toByteArray();
byte[] sha256 = computeSha256(cert);
return byte2hex(sha256);
} catch (NameNotFoundException e) {
return null;

private static byte[] computeSha256(byte[] data) {
try {
return MessageDigest.getInstance("SHA-256").digest(data);
} catch (NoSuchAlgorithmException e) {
return null;

private static String byte2hex(byte[] data) {
if (data == null) return null;
final StringBuilder hexadecimal = new StringBuilder();
for (final byte b : data) {
hexadecimal.append(String.format("%02X", b));
}

return hexadecimal.toString();

212 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

““Iiﬁp&"mm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point14 *** When exporting an APK, sign the APK with the same developer key as the destination
application.

[#® Generate Signed APK |
Key store path: C:¥jssec¥Projects¥keystore
| Create new... | | Choose existing... |
Key store password: | |
Key alias: < _my company lcev,.r‘D L|
o e BB |

[] Remember passwords

Previous | Cancel | | Help |

Figure 4.4-3

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 213

RITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SE

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.2.

Rule Book

Implementing or using service, follow the rules below.

1. Service that Is Used Only in an application, Must Be Set as Private (Required)
2. Handle the Received Data Carefully and Securely (Required)
3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house
Application (Required)
4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)
5. When Returning a Result Information, Pay Attention the Result Information Leakage from the
Destination Application (Required)
6. Use the Explicit Intent if the Destination Service Is fixed (Required)
7. Verify the Destination Service If Linking with the Other Company's Application (Required)
8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level
Protection (Required)
9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)
4.4.2.1. Service that Is Used Only in an application, Must Be Set as Private (Required)

Service that is used only in an application (or in same UID) must be set as Private. It avoids the
application from receiving Intents from other applications unexpectedly and eventually prevents
from damages such as application functions are used or application behavior becomes abnormal.

All you have to do in implementation is set exported attribute false when defining Service in
AndroidManifest.xml.

AndroidManifest.xml

<!-- Private Service derived from Service class -->
<l-- ®%* POINT 1 *** Set false for the exported attribute explicitly. -->
<service android:name=".PrivateStartService" android:exported="false"/>

In addition, this is a rare case, but do not set Intent Filter when service is used only within the
application. The reason is that, due to the characteristics of Intent Filter, public service in other
application may be called unexpectedly though you intend to call Private Service within the

application.

AndroidManifest.xml(Not recommended)

<!-- Private Service derived from Service class -->
<l-- *** POINT 1 *** Set false for the exported attribute explicitly. -->
<service android:name=".PrivateStartService" android:exported="false">
<intent-filter>
<action android:name="org.jssec.android.service.OPEN />
</intent-filter>

</service>

214

All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

See "4.4.3.1 Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)."

4.4.2.2. Handle the Received Data Carefully and Securely (Required)

Same like Activity, In case of Service, when processing a received Intent data, the first thing you
should do is input validation. Also in Service user side, it's necessary to verify the safety of result
information from Service. Please refer to "4.1.2.5 Handling the Received Intent Carefully and Securely

(Required)" and "4.1.2.9 Handle the Returned Data from a Requested Activity Carefully and
Securely (Required)."

In Service, you should also implement calling method and exchanging data by Message carefully.
Please refer to "3.2 Handling Input Data Carefully and Securely"

4.4.2.3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house
Application (Required)

Make sure to protect your in-house Services by defining in-house signature permission when
creating the Service. Since defining a permission in the AndroidManifest.xml file or declaring a
permission request does not provide adequate security, please be sure to refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission."

4.4.2.4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

Security checks such as Intent parameter verification or in-house-defined Signature Permission
verification should not be included in onCreate, because when receiving new request during Service
is running, process of onCreate is not executed. So, when implementing Service which is started by
startService, judgment should be executed by onStartCommand (In case of using IntentService,
judgment should be executed by onHandlelntent.) It's also same in the case when implementing
Service which is started by bindService, judgment should be executed by onBind.

4.4.2.5. When Returning a Result Information, Pay Attention the Result Information Leakage from the

Destination Application (Required)

Depends on types of Service, the reliability of result information destination application (callback
receiver side/ Message destination) are different. Need to consider seriously about the information
leakage considering the possibility that the destination may be Malware.

See, Activity "4.1.2.7 When Returning a Result, Pay Attention to the Possibility of Information
Leakage of that Result from the Destination Application (Required)", for details.

4.4.2.6. Use the Explicit Intent if the Destination Service Is fixed (Required)

When using a Service by implicit Intents, in case the definition of Intent Filter is same, Intent is sent to
All rights reserved © Japan Smartphone Security Association. Creating/Using Services 215

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

the Service which was installed earlier. If Malware with the same Intent Filter defined intentionally was
installed earlier, Intent is sent to Malware and information leakage occurs. On the other hand, when
using a Service by explicit Intents, only the intended Service will receive the Intent so this is much
safer.

There are some other points which should be considered, please refer to "4.1.2.8 Use the explicit
Intents if the destination Activity is predetermined. (Required)."

4.4.2.7. Verify the Destination Service If Linking with the Other Company's Application (Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by
saving a copy of the company's certificate hash inside your application and checking it with the
certificate hash of the destination application. This will prevent a malicious application from being
able to spoof Intents. Please refer to sample code section "4.4.1.3 Creating/Using Partner Service" for
the concrete implementation method.

4.4.2.8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level

Protection (Required)

When an information or function asset, which is protected by permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole
because an application with permissions to an asset can act as a proxy and allow access to an
unprivileged application. Substantially this is the same as re-delegating permission so it is referred
to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4 Permission Re-delegation
Problem."

4.4.2.9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

You should not send sensitive information to untrusted parties.

You need to consider the risk of information leakage when exchanging sensitive information with a
Service. You must assume that all data in Intents sent to a Public Service can be obtained by a
malicious third party. In addition, there is a variety of risks of information leakage when sending
Intents to Partner or In-house Services as well depending on the implementation.

Not sending sensitive data in the first place is the only perfect solution to prevent information
leakage therefore you should limit the amount of sensitive information being sent as much as
possible. When it is necessary to send sensitive information, the best practice is to only send to a
trusted Service and to make sure the information cannot be leaked through LogCat

216 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.3. Advanced Topics

4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)

We have explained how to implement the four types of Services in this guidebook: Private Services,
Public Services, Partner Services, and In-house Services. The various combinations of permitted
settings for each type of exported attribute defined in the AndroidManifest.xml file and the
intent-filter elements are defined in the table below. Please verify the compatibility of the exported
attribute and intent-filter element with the Service you are trying to create.

Table 4.4-3
Value of exported attribute
True False Not specified
Intent Filter defined Public (Do not Use) (Do not Use)
Intent Filter Not | Public, Partner, Private (Do not Use)
Defined In-house

The reason why an undefined intent filter and an exported attribute of false should not be used is
that there is a loophole in Android's behavior, and because of how Intent filters work, other
application's Services can be called unexpectedly.

Concretely, Android behaves as per below, so it's necessary to consider carefully when application
designing.

® When multiple Services define the same content of intent-filter, the definition of Service within
application installed earlier is prioritized.
® In case explicit Intent is used, prioritized Service is automatically selected and called by OS.

The system that unexpected call is occurred due to Android's behavior is described in the three
figures below. Figure 4.4-4 is an example of normal behavior that Private Service (application A) can
be called by implicit Intent only from the same application. Because only application A defines
Intent-filter (action="X" in the Figure), it behaves normally. This is the normal behavior.

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 217

SECURITY

““lxww}NE Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocmon ttp://www.jssec.org/dl/android_securecoding_en.pdf

Application A
Call a service with
the implicit intent

Intent(“X”)

Application C
Private Service A-1 Call the service with
exported="“false” the implicit intent

action="“X" @

N

Since the service A—1 is private one,
it can be called only by the application A.

Android device

Figure 4.4-4

Figure 4.4-5 and Figure 4.4-6 below show a scenario in which the same Intent filter (action="X") is
defined in Application B as well as Application A.

Figure 4.4-5 shows the scenario that applications are installed in the order, application A ->
application B. In this case, when application C sends implicit Intent, calling Private Service (A-1) fails.
On the other hand, since application A can successfully call Private Service within the application by
implicit Intent as expected, there won't be any problems in terms of security (counter-measure for
Malware).

218 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

li“l CURITY

JAPAN
SMARTPHONE
SE!
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook

http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

Figure

r

Application A
Call a service with
the implicit intent

Private Service A—-1
exported="“false”
action="“X"

Application B

Public Service B—1

exported="“true”
action="X"

Android device

Application C
Call the service with
the implicit intent

Intent(“X”)

When application A that has private
service is installed earlier than
applications else, and it does not accept
any intents from other applications.

4.4-6

shows the scenario
applicationB->applicationA. There is a problem here, in terms of security. It shows an example that
application A tries to call Private Service within the application by sending implicit Intent, but actually
Public Activity (B-1) in application B which was installed earlier, is called. Due to this loophole, it is
possible that sensitive information can be sent from applicationA to applicationB. If applicationB is

Figure 4.4-5

that applications are installed in the

Malware, it will lead the leakage of sensitive information.

order,

All rights reserved © Japan Smartphone Security Association.

Creating/Using Services

219

SECURITY

““l’;ﬁ?ﬁwm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

4)

Application C
Call the service with
the implicit intent

Application B

Public Service B—1
exported="“true”
action="“X"

Intent(“X”)

Application A
Call a service with
the implicit intent

l Intent(“X”) :

Private Service A-1

When application BA that has public
service is installed earlier than
applications else, and it is only enabled
and service B—1 is called unintentionally
from application A.

exported="“false”
action="“X"

Android device

Figure 4.4-6

As shown above, using Intent filters to send implicit Intents to Private Service may result in
unexpected behavior so it is best to avoid this setting.

4.4.3.2. How to Implement Service

Because methods for Service implementation are various and should be selected with consideration
of security type which is categorized by sample code, each characteristics are briefly explained. It's
divided roughly into the case using startService and the case using bindService. And it's also possible
to create Service which can be used in both startService and bindService. Following items should be
investigated to determine the implementation method of Service.

Whether to disclose Service to other applications or not (Disclosure of Service)
Whether to exchange data during running or not (Mutual sending /receiving data)
Whether to control Service or not (Launch or complete)

Whether to execute as another process (communication between processes)

Whether to execute multiple processes in parallel (Parallel process)

Table 4.4-3 shows category of implementation methods and feasibility of each item.
"NG" stands for impossible case or case that another frame work which is different from the provided
function is required.

220 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook

February 1st, 2016 Edition

JAPAN
SMARTPHONE
SECURITY

ASSOCIATION

http://www.jssec.org/dl/android_securecoding_en.pdf

Table 4.4-4 Category of implementation methods for Service

Category Disclosure of Mutual Control Service | Communication | Parallel
Service sending/receiving (Boot /Exit) between process
data processes
startService type OK NG OK OK NG
IntentService OK NG NG oK NG
type
local bind type NG OK oK NG NG
Messenger bind OK OK OK OK NG
type
AIDL bind type OK OK OK OK OK

startService type

This is the most basic Service. This inherits Service class, and executes processes by
onStartCommand.

In user side, specify Service by Intent, and call by startService. Because data such as results
cannot be returned to source of Intent directly, it should be achieved in combination with another
method such as Broadcast. Please refer to "4.4.1.1 Creating/Using Private Service" for the
concrete example.

Checking in terms of security should be done by onStartCommand, but it cannot be used for
partner only Service since the package name of the source cannot be obtained.

IntentService type

IntentService is the class which was created by inheriting Service. Calling method is same as
startService type. Following are characteristics compared with standard service (startService

type.)

® Processing Intent is done by onHandlelntent (onStartCommand is not used.)
® |t's executed by another thread.
® Process is to be queued.

Call is immediately returned because process is executed by another thread, and process
towards Intents is sequentially executed by Queuing system. Each Intent is not processed in
parallel, but it is also selectable depending on the product's requirement, as an option to simplify
implementation. Since data such as results cannot be returned to source of Intent, it should be
achieved in combination with another method such as Broadcast. Please refer to “4.4.1.2
Creating/Using Public Service" for the concrete example of implementation.

Checking in terms of security should be done by onHandlelntent, but it cannot be used for
partner only Service since the package name of the source cannot be obtained.

local bind type

This is a method to implement local Service which works only within the process same as an

All rights reserved © Japan Smartphone Security Association.

Creating/Using Services 221

RITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SE

AssociTion http://www.jssec.org/dl/android_securecoding_en.pdf

application. Define the class which was derived from Binder class, and prepare to provide the
feature (method) which was implemented in Service to caller side.

From user side, specify Service by Intent and call Service by using bindService. This is the most
simple implementation method among all methods of binding Service, but it has limited usages
since it cannot be launched by another process and also Service cannot be disclosed. See project
"Service PrivateServiceLocalBind" which is included in Sample code, for the concrete
implementation example.

From the security point of view, only private Service can be implemented.

Messenger bind type

This is the method to achieve the linking with Service by using Messenger system.

Since Messenger can be given as a Message destination from Service user side, the mutual data
exchanging can be achieved comparatively easily. In addition, since processes are to be queued,
it has a characteristic that behaves "thread-safe"ly. Parallel process for each process is not
possible, but it is also selectable as an option to simplify the implementation depending on the
product's requirement. Regarding user side, specify Service by Intent, and call Service by using
bindService. See "4.4.1.4 Creating/Using In-house Service" for the concrete implementation
example.

Security check in onBind or by Message Handler is necessary, however, it cannot be used for
partner only Service since package name of source cannot be obtained.

AIDL bind type

This is a method to achieve linking with Service by using AIDL system. Define interface by AIDL,
and provide features that Service has as a method. In addition, call back can be also achieved by
implementing interface defined by AIDL in user side, Multi-thread calling is possible, but it's
necessary to implement explicitly in Service side for exclusive process.

User side can call Service, by specifying Intent and using bindService. Please refer to "4.4.1.3
Creating/Using Partner Service" for the concrete implementation example.

Security must be checked in onBind for In-house only Service and by each method of interface
defined by AIDL for partner only Service.

This can be used for all security types of Service which are described in this Guidebook.

222

All rights reserved © Japan Smartphone Security Association. Creating/Using Services

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

l 4.5. Using SQLite

Herein after, some cautions in terms of security when creating/operating database by using SQLite.
Main points are appropriate setting of access right to database file, and counter-measures for SQL
injection. Database which permits reading/writing database file from outside directly (sharing among
multiple applications) is not supposed here, but suppose the usage in backend of Content Provider
and in an application itself. In addition, it is recommended to adopt counter-measures mentioned
below in case of handling not so much sensitive information, though handling a certain level of
sensitive information is supposed here.

4.5.1. Sample Code

4.5.1.1. Creating/Operating Database

When handling database in Android application, appropriate arrangements of database files and
access right setting (Setting for denying other application's access) can be achieved by using
SQLiteOpenHelpers. Here is an example of easy application that creates database when it's launched,
and executes searching /adding/changing/deleting data through Ul. Sample code is what
counter-measure for SQL injection is done, to avoid from incorrect SQL being executed against the
input from outside.

5 As regarding file storing, the absolute file path can be specified as the 2nd parameter (name) of
SQLiteOpenHelper constructor. Therefore, need attention that the stored files can be read and written
by the other applications if the SDCard path is specified.

All rights reserved © Japan Smartphone Security Association. Using SQLite 223

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Tap or longclick an item.

Points:
1. SQLiteOpenHelper should be used for database creation.
2. Use place holder.
3. Validate the input value according the application requirements.

Name of User-1
Name of User-2
Name of User-3
Name of User-4
Name of User-5
Name of User-6
Name of User-7
Name of User-8
Name of User-9
Name of User-10
Name of User-11
Name of User-12
Name of User-13
Name of User-14
Name of User-15
Name of User-16
Name of User-17
Name of User-18
Name of User-19
Name of User-20
Name of User-21
Name of User-22
Name of User-23
Name of User-24
Name of User-25

Name of User-26

g

Info of User-1
Info of User-2
Info of User-3
Info of User-4
Info of User-5
Info of User-6
Info of User-7
Info of User-8
Info of User-9
Info of User-10
Info of User-11
Info of User-12
Info of User-13
Info of User-14
Info of User-15
Info of User-16
Info of User-17
Info of User-18
Info of User-19
Info of User-20
Info of User-21
Info of User-22
Info of User-23
Info of User-24
Info of User-25
Info of User-26

=

Figure 4.5-1

Android Application Secure Design/Secure Coding Guidebook
http://www.jssec.org/dl/android_securecoding_en.pdf

February 1st, 2016 Edition

Information of User-7

import
import
import
import
import
import

{

android.
android.
android.
android.
android.
android.

SampleDbOpenHelper.java

package org.jssec.android.sqlite;

content.Context;

util.Log;
widget.Toast;

database.SQLException;
database.sqlite.SQLiteDatabase;
database.sqlite.SQLiteOpenHelper;

mSampleDb;

public class SampleDbOpenHelper extends SQLiteOpenHelper {

private SQLiteDatabase //Database to store the data to be handled

public static SampleDbOpenHelper newHelper(Context context)

//*** POINT 1 *** SQLiteOpenHelper should be used for database creation.
return new SampleDbOpenHelper(context);

public SQLiteDatabase getDb() {

return mSampleDb;

//0Open DB by Writable mode

224

All rights reserved © Japan Smartphone Security Association.

Using SQLite

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

public void openDatabaseWithHelper() {
try {
if (mSampleDb != null && mSampleDb.isOpen()) {
if (!mSampleDb.isReadOnly())// Already opened by writable mode
return;
mSampleDb.close();
}
mSampleDb = getWritableDatabase(); //It's opened here.
} catch (SQLException e) {
//In case fail to construct database, output to log
Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));
Toast.makeText(mContext, R.string.DATABASE_OPEN_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

//0Open DB by ReadOnly mode.
public void openDatabaseReadOnly() {
try {
if (mSampleDb != null & mSampleDb.isOpen()) {
if (mSampleDb.isReadOnly())// Already opened by ReadOnly.
return;
mSampleDb.close();
}
SQLiteDatabase.openDatabase(mContext.getDatabasePath(CommonData.DBFILE_NAME).getPath(), null, SQLiteDatab
ase.OPEN_READONLY);
} catch (SQLException e) {
//In case failed to construct database, output to log
Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));
Toast.makeText(mContext, R.string.DATABASE_OPEN_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

//Database Close
public void closeDatabase() {
try {
if (mSampleDb != null && mSampleDb.isOpen()) {
mSampleDb.close();
}
} catch (SQLException e) {
//In case failed to construct database, output to log
Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_CLOSE_ERROR_MESSAGE));
Toast.makeText(mContext, R.string.DATABASE_CLOSE_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

//Remember Context
private Context mContext;

//Table creation command
private static final String CREATE_TABLE_COMMANDS
= "CREATE TABLE " + CommonData.TABLE_NAME + " ("
"_id INTEGER PRIMARY KEY AUTOINCREMENT, "
"idno INTEGER UNIQUE, "
"name VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ") NOT NULL, "
"info VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ")"

D

+ o+ o+ + o+

public SampleDbOpenHelper(Context context) {
super(context, CommonData.DBFILE_NAME, null, CommonData.DB_VERSION);
mContext = context;

All rights reserved © Japan Smartphone Security Association. Using SQLite 225

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

}
@Override
public void onCreate(SQLiteDatabase db) {
try {
db.execSQL(CREATE_TABLE_COMMANDS); //Execute DB construction command
} catch (SQLException e) {
//In case failed to construct database, output to log
Log.e(this.getClass().toString(), mContext.getString(R.string.DATABASE_CREATE_ERROR_MESSAGE));
}
¥
@Override

public void onUpgrade(SQLiteDatabase argd, int argl, int arg2) {
// It's to be executed when database version up. Write processes like data transition.

DataSearchTask.java (SQLite Database project)

package org.jssec.android.sqlite.task;

import org.jssec.android.sqlite.CommonData;
import org.jssec.android.sqlite.DataValidator;
import org.jssec.android.sqlite.MainActivity;
import org.jssec.android.sqlite.R;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;
import android.os.AsyncTask;

import android.util.log;

//Data search task

public class DataSearchTask extends AsyncTask<String, Void, Cursor> {
private MainActivity mActivity;
private SQLiteDatabase mSampleDB;

public DataSearchTask(SQLiteDatabase db, MainActivity activity) {

mSampleDB = db;
mActivity = activity;
}
@Override

protected Cursor doInBackground(String... params) {
String idno = params[@];
String name = params[1];

String info = params[2];

String cols[] = {"_id", "idno","name","info"};

Cursor cur;

//*** POINT 3 *** Validate the input value according the application requirements.
if (!Datavalidator.validateData(idno, name, info))

{

return null;

}

226 All rights reserved © Japan Smartphone Security Association. Using SQLite

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

//When all parameters are null, execute all search
if ((idno == null || idno.length() == @) &&
(name == null || name.length() == @) &&
(info == null || info.length() == 0)) {
try {
cur = mSampleDB.query(CommonData.TABLE_NAME, cols, null, null, null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
return null;

}

return cur;

//When No is specified, execute searching by No
if (idno != null && idno.length() > @) {
String selectionArgs[] = {idno};

try {
//*** POINT 2 *** Use place holder.

cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "idno = ?", selectionArgs, null, null, null);
} catch (SQLException e) {

Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

return null;

}

return cur;

//When Name is specified, execute perfect match search by Name
if (name != null && name.length() > @) {
String selectionArgs[] = {name};
try {
//*** POINT 2 *** Use place holder.
cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "name = ?", selectionArgs, null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
return null;

}

return cur;

//0ther than above, execute partly match searching with the condition of info.

String argString = info.replaceAll("@", "@@"); //Escape $ in info which was received as input.
argString = argString.replaceAll("%", "@%"); //Escape % in info which was received as input.
argString = argString.replaceAll("_", "@_");, //Escape _ in info which was received as input.
String selectionArgs[] = {argString};

try {
//*** POINT 2 *** Use place holder.
cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "info LIKE '%' || ? || '%' ESCAPE '@'", selectionArgs,

null, null, null);
} catch (SQLException e) {
Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
return null;

}

return cur;
}
@Override

protected void onPostExecute(Cursor resultCur) {

All rights reserved © Japan Smartphone Security Association. Using SQLite 227

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

mActivity.updateCursor(resultCur);

DataValidator.java
package org.jssec.android.sqlite;

public class DataValidator {
//Validate the Input value
//validate numeric characters
public static boolean validateNo(String idno) {
//null and blank are OK
if (idno == null || idno.length() == @) {
return true;

//Validate that it's numeric character.
try {
if (!idno.matches("[1-9][0-9]1*")) {
//Error if it's not numeric value
return false;
}
} catch (NullPointerException e) {
//Detected an error
return false;

return true;

// Validate the length of a character string
public static boolean validatelLength(String str, int max_length) {
//null and blank are OK
if (str == null || str.length() == @) {
return true;

//Validate the length of a character string is less than MAX
try {
if (str.length() > max_length) {
//When it's longer than MAX, error
return false;
}
} catch (NullPointerException e) {
//Bug
return false;

return true;

// Validate the Input value
public static boolean validateData(String idno, String name, String info) {
if (!validateNo(idno)) {
return false;
}
if (!validateLength(name, CommonData.TEXT_DATA_LENGTH_MAX)) {
return false;

228 All rights reserved © Japan Smartphone Security Association. Using SQLite

SECURITY

l“";:m”m Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

}else if(!validatelLength(info, CommonData.TEXT_DATA_LENGTH_MAX)) {
return false;

}

return true;

All rights reserved © Japan Smartphone Security Association. Using SQLite 229

SECURITY

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

4.5.2. Rule Book

Using SQLite, follow the rules below accordingly.

1. Set DB File Location and Access Right Correctly (Required)
2. Use Content Provider for Access Control When Sharing DB Data with Other Application
(Required)
3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.
(Required)

4.5.2.1. Set DB File Location and Access Right Correctly (Required)

Considering the protection of DB file data, DB file location and access right setting is the very
important elements that need to be considered together.

For example, even if file access right is set correctly, a DB file can be accessed from anybody in case
that it is arranged in a location which access right cannot be set, e.g. SD card. And in case that it's
arranged in application directory, if the access right is not correctly set, it will eventually allow the
unexpected access. Following are some points to be met regarding the correct allocation and access
right setting, and the methods to realize them.

About location and access right setting, considering in terms of protecting DB file (data), it's
necessary to execute 2 points as per below.

1. Location
Locate in file path that can be obtained by Context#getDatabasePath(String name), or in some
cases, directory that can be obtained by Context#getFilesDir®.

2. Access right
Set to MODE_PRIVATE (=it can be accessed only by the application which creates file) mode.

By executing following 2 points, DB file which cannot be accessed by other applications can be
created. Here are some methods to execute them.

1. Use SQLiteOpenHelper
2. Use Context#openOrCreateDatabase

When creating DB file, SQLiteDatabase#openOrCreateDatabase can be used. However, when using
this method, DB files which can be read out from other applications are created, in some Android
smartphone devices. So it is recommended to avoid this method, and using other methods. Each
characteristics for the above 2 methods are as per below.

6 Both methods provide the path under (package) directory which is able to be read and written only by
the specified application.

230 All rights reserved © Japan Smartphone Security Association. Using SQLite

JAPAN

sunerenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

AesociaTion http://www.jssec.org/dl/android_securecoding_en.pdf

Using SQLiteOpenHelper

When using SQLiteOpenHelper, developers don't need to be worried about many things. Create a
class derived from SQLiteOpenHelper, and specify DB name (which is used for file name)? to
constructer's parameter, then DB file which meets above security requirements, are to be created
automatically.

Refer to specific usage method for "4.5.1.1 Creating/Operating Database" for how to use.

Using Context#openOrCreateDatabase

When creating DB by using Context#openOrCreateDatabase method, file access right should be
specified by option, in this case specify MODE_PRIVATE explicitly.

Regarding file arrangement, specifying DB name (which is to be used to file name) can be done as
same as SQLiteOpenHelper, a file is to be created automatically, in the file path which meets the
above mentioned security requirements. However, full path can be also specified, so it's
necessary to pay attention that when specifying SD card, even though specifying MODE_PRIVATE,
other applications can also access.

Example to execute accsee permission setting to DB explicitly:MainActivity.java
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//Construct database
try {
//Create DB by setting MODE_PRIVATE
db = Context.openOrCreateDatabase("Sample.db",
MODE_PRIVATE, null);
} catch (SQLException e) {
//In case failed to construct DB, log output
Log.e(this.getClass().toString(), getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));
return;

}

//0mmit other initial process

FYl, there are following 3 types of access right setting including MODE_PRIVATE.
MODE_WORLD_READABLE and MODE_WORLD_WRITABLE can be specified together by OR
operator. Since modes other than MODE_PRIVATE are deplicated in API Level 17 or later, you
need to carefully consider the use of them along with the application requirements.

® MODE_PRIVATE Only creator application can read and write
® MODE_WORLD_READABLE Creator application can read and write, Others can only read in

7 (Undocumented in Android reference) Since the full file path can be specified as the database name in
SQLiteOpenHelper implementation, need attention that specifying the place (path) which does not have
access control feature (e.g. sdcards) unintentionally.

All rights reserved © Japan Smartphone Security Association. Using SQLite 231

l“"i:f::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

® MODE_WORLD_WRITABLE Creator application can read and write, Others can only write in

4.5.2.2. Use Content Provider for Access Control When Sharing DB Data with Other Application
(Required)

The method to share DB data with other application is that create DB file as WORLD_READABLE,
WORLD_WRITABLE, to other applications to access directly. However, this method cannot limit
applications which access to DB or operations to DB, so data can be read-in or written by unexpected
party (application). As a result, it can be considered that some problems may occur in confidentiality
or consistency of data, or it may be an attack target of Malware.

As mentioned above, when sharing DB data with other applications in Android, it's strongly
recommended to use Content Provider. By using Content Provider, there are some merits, not only
the merits from the security point of view which is the access control on DB can be achieved, but also
merits from the designing point of view which is DB scheme structure can be hidden into Content
Provider.

4.5.2.3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.
(Required)

In the sense that preventing from SQL injection, when incorporating the arbitrary input value to SQL
statement, placeholder should be used. There are 2 methods as per below to execute SQL using
placeholder.

1. Get SQLiteStatement by using SQLiteDatabase#compileStatement(), and after that place
parameter to placeholder by using SQLiteStatement#bindString() or bindLong() etc.

2. When calling execSQL(), insert(), update(), delete(), query(), rawQuery() and replace() in
SQLiteDatabese class, use SQL statement which has placeholder.

In addition, when executing SELECT command, by using SQLiteDatabase#compileStatement(), there
is a limitation that "only the top 1 element can be obtained as a result of SELECT command," so
usages are limited.

In either method, the data content which is given to placeholder is better to be checked in advance
according the application requirements. Following is the further explanation for each method.

When Using SQLiteDatabase#compileStatement():
Data is given to placeholder in the following steps.

1. Get the SQL statement which includes placeholder by using
SQLiteDatabase#compileStatement(), as SQLiteStatement.

2. Set the created as SQLiteStatement objects to placeholder by using the method like
bindLong() and bindString().

3. Execute SQL by method like execute() of ExecSQLiteStatement object.

232 All rights reserved © Japan Smartphone Security Association. Using SQLite

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

Use case of placeholder:DatalnsertTask.java (an extra)
//Adding data task
public class DataInsertTask extends AsyncTask<String, Void, Void> {
private MainActivity mActivity;
private SQLiteDatabase mSampleDB;

public DataInsertTask(SQLiteDatabase db, MainActivity activity) {

mSampleDB = db;
mActivity = activity;
¥
@Override

protected Void doInBackground(String... params) {

String idno = params[@];
String name = params[1];

String info = params[2];

//*** POINT 3 *** Validate the input value according the application requirements.
if (!Datavalidator.validateData(idno, name, info))
{
return null;
}
// Adding data task
//*** POINT 2 *** Use place holder
String commandString = "INSERT INTO " + CommonData.TABLE_NAME + " (idno, name, info) VALUES (?, ?, ?)";
SQLiteStatement sqlStmt = mSampleDB.compileStatement(commandString);
sqlStmt.bindString(1, idno);
sqlStmt.bindString(2, name);
sqlStmt.bindString(3, info);
try {
sqlStmt.executeInsert();
} catch (SQLException e) {
Log.e(DataInsertTask.class.toString(), mActivity.getString(R.string.UPDATING_ERROR_MESSAGE));
} finally {
sqlStmt.close();
}

return null;

. Abbreviation ...

This is a type that SQL statement to be executed as object is created in advance, and parameters
are allocated to it. The process to execute is fixed, so there's no room for SQL injection to occur.
In addition, there is a merit that process efficiency is enhanced by reutilizing SQLiteStatement
object.

In the Case Using Method for Each Process which SQLiteDatabase provides:
There are 2 types of DB operation methods that SQLiteDatabase provides. One is what SQL
statement is used, and another is what SQL statement is not used. Methods that SQL statement is

used are SQLiteDatabase# execSQL()/rawQuery() and it's executed in the following steps.

1. Prepare SQL statement which includes placeholder.
2. Create data to allocate to placeholder.

All rights reserved © Japan Smartphone Security Association. Using SQLite 233

SECURITY

l“"ﬁ::wm Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
assocamon http://www.jssec.org/dl/android_securecoding_en.pdf

3. Send SQL statement and data as parameter, and execute a method for process.

On the other hand, SQLiteDatabase#insert()/update()/delete()/query()/replace() is the method
that SQL statement is not used. When using them, data should be sent as per the following steps.

1. In case there's data to insert /update to DB, register to ContentValues.
2. Send ContentValues as parameter, and execute a method for each process (In the following
example, SQLiteDatabase#insert())

Use case of metod for each process (SQLiteDatabase#insert())
private SQLiteDatabase mSampleDB;
private void addUserData(String idno, String name, String info) {

//Validity check of the value(Type, range), escape process

if (!validateInsertData(idno, name, info)) {
//1f failed to pass the validation, log output
Log.e(this.getClass().toString(), getString(R.string.VALIDATION_ERROR_MESSAGE));
return

//Prepare data to insert

ContentValues insertValues = new ContentValues();
insertValues.put("idno", idno);
insertValues.put("name", name);
insertValues.put("info", info);

//Execute Inser

try {
mSampleDb.insert("SampleTable", null, insertValues);

} catch (SQLException e) {
Log.e(this.getClass().toString(), getString(R.string.DB_INSERT_ERROR_MESSAGE));
return;

In this example, SQL command is not directly written, for instead, a method for inserting which
SQLiteDatabase provides, is used. SQL command is not directly used, so there's no room for SQL
injection in this method, too.

234 All rights reserved © Japan Smartphone Security Association. Using SQLite

amrenone Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
SECURITY

assocumion ttp://www.jssec.org/dl/android_securecoding_en.pdf

4.5.3. Advanced Topics

4.5.3.1. When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be

Implemented

When using character string which includes wild card (%, _) of LIKE predicate, as input value of place
holder, it will work as a wild card unless it is processed properly, so it's necessary to implement
escape process in advance according the necessity. It is the case which escape process is necessary

that wild card should be used as a single character ("%" or "_").

The actual escape process is executed by using ESCAPE clause as per below sample code.

Example of ESCAPE process in case of using LIKE
//Data search task
public class DataSearchTask extends AsyncTask<String, Void, Cursor> {

private MainActivity mActivity;
private SQLiteDatabase mSampleDB;
private ProgressDialog mProgressDialog;

public DataSearchTask(SQLiteDatabase db, MainActivity activity) {
mSampleDB = db;
mActivity = activity;

}
@Override
protected Cursor doInBackground(String... params) {
String idno = params[@];
String name = params[1];
String info = params[2];
String cols[] = {"_id", "idno","name","info"};
Cursor cur;
. Abbreviation ...
//Execute like search(partly match) with the condition of info
//Point:Escape process should be performed on characters which is applied to wild card
String argString = info.replaceAll("@", "@@"); // Escape $ in info which was received as input
argString = argString.replaceAll("%", "@%"); // Escape % in info which was received as input
argString = argString.replaceAll("_", "@_"); // Escape _ in info which was received as input
String selectionArgs[] = {argString};
try {
//Point:Use place holder
cur = mSampleDB.query("SampleTable", cols, "info LIKE '%' || ? || '%' ESCAPE '@'",
selectionArgs, null, null, null);
} catch (SQLException e) {
Toast.makeText(mActivity, R.string.SERCHING_ERROR_MESSAGE, Toast.LENGTH_LONG).show();
return null;
}
return cur;
}
@Override

protected void onPostExecute(Cursor resultCur) {

All

rights reserved © Japan Smartphone Security Association. Using SQLite 235

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February Tst, 2016 Edition
wssocumon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

mProgressDialog.dismiss();
mActivity.updateCursor(resultCur);

4.5.3.2. Use External Input to SQL Command in which Place Holder Cannot Be Used

When executing SQL statement which process targets are DB objects like table creation/deletion etc.,
placeholder cannot be used for the value of table name. Basically, DB should not be designed using
arbitrary character string which was input from outside in case that placeholder cannot be used for
the value.

When placeholder cannot be used due to the restriction of specifications or features, whether the
Input value is dangerous or not, should be verified before execution, and it's necessary to implement
necessary processes.

Basically,

1. When using as character string parameter, escape or quote process for character should be
made.

2. When using as numeric value parameter, verify that characters other than numeric value are not
included.

3. When using as identifier or command, verify whether characters which cannot be used are not
included, along with 1.

should be executed.

Reference: http://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf (Japanese)

4.5.3.3. Take a Countermeasure that Database Is Not Overwritten Unexpectedly

In case getting instance of DB by SQLiteOpenHelper#getReadableDatabase, getWritableDatabase,

DB is to be opened in readable/writable state by using either method8. In addition, it's same to
Context#openOrCreateDatabase, SQLiteDatabase#openOrCreateDatabase, etc. It means that
contents of DB may be overwritten unexpectedly by application operation or by defects in
implementation. Basically, it can be supported by the application's spec and range of implementation,
but when implementing the function which requires only read in function like application's searching
function etc., opening database by read-only, it may lead to simplify designing or inspection and
furthermore, lead to enhance application quality, so it's recommended depends on the situation.

8 getReableDatabase() returns the same object which can be got by getWritableDatabase. This spec is,
in case writable object cannot be generated due to disc full etc., it will return Read- only object.
(getWritableDatabase() will be execution error under the situation like disc full etc.)

236 All rights reserved © Japan Smartphone Security Association. Using SQLite

http://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

Specifically, open database by specifying OPEN_READONLY to SQLiteDatabase#openDatabase.

Open database by read-only
. Ommit ...
// Open DB(DB should be created in advance)
SQLiteDatabase db
= SQLiteDatabase.openDatabase(SQLiteDatabase.getDatabasePath("Sample.db"), null, OPEN_READONLY);

Reference: http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.ht
ml#getReadableDatabase()

4.5.3.4. Verify the Validity of Input/Output Data of DB, According to Application's Requirement

SQLite is the database which is tolerant types, and it can store character type data into columns which
is declared as Integer in DB. Regarding data in database, all data including numeric value type is
stored in DB as character data of plain text. So searching of character string type, can be executed to
Integer type column. (LIKE '%123%' etc.) In addition, the limitation for the value in SQLite (validity
verification) is untrustful since data which is longer than limitation can be input in some case, e.g.
VARCHAR(100).

So, applications which use SQLite, need to be very careful about this characteristics of DB, and it is
necessary take actions according to application requirements, not to store unexpected data to DB
or not to get unexpected data. Countermeasures are as per below 2 points.

1. When storing data in database, verify that type and length are matched.
2. When getting the value from database, verify whether data is beyond the supposed type and

length, or not.

Following is an example of the code which verifies that the Input value is more than 1.

Verify that the Input value is more than 1 (Extract from MainActivity.java)
public class MainActivity extends Activity {

. Abbreviation ...

//Process for adding
private void addUserData(String idno, String name, String info) {
//Check for No
if (!validateNo(idno, CommonData.REQUEST_NEW)) {
return;

}

//Inserting data process
DataInsertTask task = new DataInsertTask(mSampleDbyhis);
task.execute(idno, name, info);

. Abbreviation ...

private boolean validateNo(String idno, int request) {

All rights reserved © Japan Smartphone Security Association. Using SQLite 237

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#getReadableDatabase()
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#getReadableDatabase()

SECURITY

l“";mm“ Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition
wssocumon http://www.jssec.org/dl/android_securecoding_en.pdf

if (idno == null || idno.length() == @) {

if (request == CommonData.REQUEST_SEARCH) {
//When search process, unspecified is considered as OK.
return true;

} else {
//0ther than search process, null and blank are error.
Toast.makeText(this, R.string.IDNO_EMPTY_MESSAGE, Toast.LENGTH_LONG).show();
return false;

}

//Verify that it's numeric character
try {
// Value which is more than 1
if (!idno.matches("[1-9][0-9]1*")) {
//In case of not numeric character, error
Toast.makeText(this, R.string.IDNO_NOT_NUMERIC_MESSAGE, Toast.LENGTH_LONG) .show();
return false;
}
} catch (NullPointerException e) {
//It never happen in this case
return false;

return true;

. Abbreviation...

4.5.3.5. Consideration - the Data Stored into Database

In SQLite implementation, when storing data to file is as per below.

® All data including numeric va