

 Document control number: JSSEC-TECA-SC-GD20160201BE

Android Application

Secure Design/Secure Coding

Guidebook

February 1st, 2016 Edition

Japan Smartphone Security Association (JSSEC)

Secure Coding Group

 The content of this guide is up to date as of the time of publication, but standards and environments are constantly evolving.

When using sample code, make sure you are adhering to the latest coding standards and best practices.

 JSSEC and the writers of this guide are not responsible for how you use this document. Full responsibility lies with you, the user

of the information provided.

 Android™ is a trademark or a registered trademark of Google Inc.

The company names, product names and service names appearing in this document are generally the registered trademarks or

trademarks of their respective companies.

Further, the registered trademark ®, trademark (TM) and copyright © symbols are not used throughout this document.

 Parts of this document are copied from or based on content created and provided by Google, Inc. They are used here in

accordance with the provisions of the Creative Commons Attribution 3.0 License

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 1

Android Application Secure Design/Secure Coding Guidebook
- Beta version -

February 1st, 2016

Japan Smartphone Security Association

Secure Coding Group

Index

1. Introduction .. 11

1.1. Building a Secure Smartphone Society ... 11

1.2. Timely Feedback on a Regular Basis Through the Beta Version ... 12

1.3. Usage Agreement of the Guidebook .. 13

1.4. Correction articles of June 1 2015 edition ... 14

2. Composition of the Guidebook .. 16

2.1. Developer's Context .. 16

2.2. Sample Code, Rule Book, Advanced Topics .. 17

2.3. The Scope of the Guidebook ... 20

2.4. Literature on Android Secure Coding ... 21

2.5. Steps to Install Sample Codes into Android Studio ... 22

3. Basic Knowledge of Secure Design and Secure Coding ... 35

3.1. Android Application Security ... 35

3.2. Handling Input Data Carefully and Securely ... 48

4. Using Technology in a Safe Way ... 50

4.1. Creating/Using Activities .. 50

4.2. Receiving/Sending Broadcasts ... 95

4.3. Creating/Using Content Providers ... 128

4.4. Creating/Using Services .. 178

4.5. Using SQLite ... 223

4.6. Handling Files ... 241

4.7. Using Browsable Intent .. 269

4.8. Outputting Log to LogCat .. 273

4.9. Using WebView ... 285

4.10. Using Notifications .. 297

5. How to use Security Functions ... 306

5.1. Creating Password Input Screens ... 306

5.2. Permission and Protection Level .. 321

5.3. Add In-house Accounts to Account Manager ... 355

5.4. Communicating via HTTPS .. 375

5.5. Handling privacy data ... 399

5.6. Using Cryptography .. 433

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

2 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

5.7. Using fingerprint authentication features .. 462

6. Difficult Problems ... 473

6.1. Risk of Information Leakage from Clipboard .. 473

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 3

Revision history

Date Revised contents

2014-04-01  Initial English Edition

2014-07-01  Added new articles below

 5.5 Handling privacy data

 5.6 Using Cryptography

2015-06-01  We have reviewed the entire document in accordance with the following policy

 Change of development environment (Eclipse -> Android Studio)

 Responding to Android latest version Lollipop

 Change of API Level (8 or later -> 15 or later)

2016-02-01  Added new articles below

 4.10 Using Notifications

 5.7 Using fingerprint authentication features

 Revised article below

 5.2 Permission and Protection Level

 New editions of the guidebook updated based on public opinions and comments.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

4 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

- Published by -

Japan Smartphone Security Association

Secure Coding Group, Application Working Group, Smartphone Technology Committee

Leader Masaru Matsunami Sony Digital Network Applications, Inc.

Member Msaomi Adachi Android Security Japan

 Tohru Ohzono Cisco Systems, Inc.

 Shigenori Takei NTT Software Corporation

 Masahiro Kasahara SoftBank Mobile Corp.

 Ikuya Fukumono Software Research Associates, Inc.

 Eiji Hoshimoto Software Research Associates, Inc.

 Akira Ando Sony Digital Network Applications, Inc.

 Ken Okuyama Sony Digital Network Applications, Inc.

 Mitake Ohtani Sony Digital Network Applications, Inc.

 Muneaki Nishimura Sony Digital Network Applications, Inc.

 Setsuko Kaji Sony Digital Network Applications, Inc.

 Taeko Ito Sony Digital Network Applications, Inc.

 Hidenori Yamaji Sony Mobile Communications Inc.

 Eiji Shimano Tao Software, Inc.

 Gaku Taniguchi Tao Software, Inc.

 (In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 5

- Authors of June 1, 2015 Edition -

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Tohru Ohzono Cisco Systems, Inc.

Akio Kondo, Kazuma Mitake, Kyosuke

Imanishi, Masato Shintani, Naohiko

Shimura, Ryuji Fujita, Shohei

Hara, Tomoyuki Fujisawa, Yutaka

Kawahara

BRILLIANTSERVICE co., Ltd.

Shigeru Yatabe Fomalhaut Techno Solutions

Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigenori Takei NTT Software Corporation

Masahiro Kasahara SoftBank Mobile Corp.

Eiji Hoshimoto Software Research Associates, Inc.

Akira Ando, Ken Okuyama, Muneaki

Nishimura

Sony Digital Network Applications, Inc.

Eiji Shimano , Gaku Taniguchi Tao Software, Inc.

(In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

6 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

- Authors of July 1, 2014 English Edition -

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Tohru Ohzono Cisco Systems, Inc.

Shigeru Yatabe Fomalhaut Techno Solutions

Keisuke Takemori, Takamasa Isohara KDDI CORPORATION

Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigenori Takei NTT Software Corporation

Masahiro Kasahara SoftBank Mobile Corp.

Eiji Hoshimoto, Tsutomu Kumazawa Software Research Associates, Inc.

Akira Ando, Ken Okuyama, Setsuko Kaji,

Taeko Ito, Yoshinori Kataoka

Sony Digital Network Applications, Inc.

Eiji Shimano , Gaku Taniguchi Tao Software, Inc.

Michiyoshi Sato Tokyo System House Co., Ltd.

(In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 7

- Authors of April 1, 2014 English Edition -

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Tomoyuki Hasegawa Android Security Japan

Mayumi Nishiyama BJIT Inc.

Tohru Ohzono Cisco Systems, Inc.

Masaki Kubo Japan Computer Emergency Response Team

Coordination Center (JPCERT/CC)

Daniel Burrowes, Zachary Mathis Kobe Digital Labo Inc.

Renta Futamura NextGen, Inc.

Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigenori Takei NTT Software Corporation

Ikuya Fukumono, Tsutomu Kumazawa Software Research Associates, Inc.

Akira Ando, Hiroko Nakajima, Ken

Okuyama, Satoshi Fujimura, Setsuko

Kaji, Taeko Ito, Yoshinori Kataoka

Sony Digital Network Applications, Inc.

Hidenori Yamaji, Takuya Nishibayashi Sony Mobile Communications Inc.

Koji Isoda Symantec Japan, Inc.

Gaku Taniguchi Tao Software, Inc.

Michiyoshi Sato Tokyo System House Co., Ltd.

(In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

8 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

- Authors of April 1, 2013 Japanese Edition -

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Masaomi Adachi, Tomoyuki Hasegawa Android Security Japan

Yuki Abe, Tomomi Oouchi, Tsutomu

Kumazawa, Toshimi Sawada, Kiyoshi

Hata, Youichi Higa, Yuu Fukui, Ikuya

Fukumoto, Eiji Hoshimoto, Shun Yokoi,

Takakazu Yoshizawa

Software Research Associates, Inc.

Takeshi Fujiwara NRI SecureTechnologies, Ltd.

Shigenori Takei NTT Software Corporation

Masaki Kubo, Hiroshi Kumagai, Yozo

Toda

Japan Computer Emergency Response Team

Coordination Center (JPCERT/CC)

Tohru Ohzono Cisco Systems, Inc.

Toru Asano, Akira Ando, Ryohji Ikebe,

Jun Ogiso, Ken Okuyama, Yoshinori

Kataoka, Muneaki Nishimura, Koji

Furusawa, Kenji Yamaoka

Sony Digital Network Applications, Inc.

Gaku Taniguchi Tao Software, Inc.

Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigeru Yatabe Fomalhaut Techno Solutions

 (In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 9

- Authors of November 1, 2012 Japanese Edition -

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato, Nakaguchi Akihiko Android Security Japan

Tomomi Oouchi, Naoyuki Ohira,

Tsutomu Kumazawa, Miki Sekikawa,

Seigo Nakano, Youichi Higa, Ikuya

Fukumoto, Eiji Hoshimoto, Shoichi

Yasuda, Tadayuki Yahiro, Takakazu

Yoshizawa

Software Research Associates, Inc.

Shigenori Takei NTT Software Corporation

Keisuke Takemori KDDI CORPORATION

Masaki Kubo, Hiroshi Kumagai, Yozo

Toda

Japan Computer Emergency Response Team

Coordination Center (JPCERT/CC)

Tohru Ohzono Cisco Systems, Inc.

Toru Asano, Akira Ando, Ryohji Ikebe,

Shigeru Ichikawa, Mitake Ohtani, Jun

Ogiso, Ken Okuyama, Yoshinori

Kataoka, Ikue Sato, Muneaki Nishimura,

Kazuo Yamaoka, Takeru Kikkawa

Sony Digital Network Applications, Inc.

Gaku Taniguchi, Eiji Shimano, Hisao

Kitamura

Tao Software, Inc.

Takao Yamakawa Japan Online Game Association

Masaki Ishihara, Yasuaki Mori Nippon System Kaihatsu Co., Ltd.

Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigeru Yatabe Fomalhaut Techno Solutions

Shigeki Fujii UNIADEX, Ltd.

 (In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

10 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

- Authors of June 1, 2012 Japanese Edition-

Leader

Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato Android Security Japan

Tomomi Oouchi, Youichi Higa, Eiji

Hoshimoto

Software Research Associates, Inc.

Shigenori Takei NTT Software Corporation

Masaki Kubo, Hiroshi Kumagai, Yozo

Toda

Japan Computer Emergency Response Team

Coordination Center (JPCERT/CC)

Masaaki Chida GREE, Inc.

Tohru Ohzono Cisco Systems, Inc.

Yoichi Taguchi System House. ING Co., Ltd.

Masahiko Sakamoto Secure Sky Technology, Inc.

Akira Ando, Shigeru Ichikawa, Ken

Okuyama, Ikue Sato, Muneaki

Nishimura, Kazuo Yamaoka

Sony Digital Network Applications, Inc.

Gaku Taniguchi, Eiji Shimano, Hisao

Kitamura

Tao Software, Inc.

Michiyoshi Sato Tokyo System House Co., Ltd.

Masakazu Hattori Trend Micro Incorporated.

Naonobu Yatsukawa Nihon Unisys, Ltd.

Shigeru Yatabe Fomalhaut Techno Solutions

Shigeki Fujii UNIADEX, Ltd.

 (In no particular order)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 11

1. Introduction

1.1. Building a Secure Smartphone Society

This guidebook is a collection of tips concerning the know-how of secure designs and secure coding

for Android application developers. Our intent is to have as many Android application developers as

possible take advantage of this, and for that reason we are making it public.

In recent years, the smartphone market has witnessed a rapid expansion, and its momentum seems

unstoppable. Its accelerated growth is brought on due to the diverse range of applications. An

unspecified large number of key functions of mobile phones that were once not accessible due to

security restrictions on conventional mobile phones have been made open to smartphone

applications. Subsequently, the availability of varied applications that were once closed to

conventional mobile phones is what makes smartphones more attractive.

With great power that comes from smartphone applications comes great responsibility from their

developers. The default security restrictions on conventional mobile phones had made it possible to

maintain a relative level of security even for applications that were developed without security

awareness. As it has been aforementioned with regard to smartphones, since the key advantage of a

smartphone is that they are open to application developers, if the developers design or code their

applications without the knowledge of security issues then this could lead to risks of users' personal

information leakage or exploitation by malware causing financial damage such as from illicit calls to

premium-rate numbers.

Due to Android being a very open model allowing access to many functions on the smartphone, it is

believed that Android application developers need to take more care about security issues than iOS

application developers. In addition, responsibility for application security is almost solely left to the

application developers. For example, applications can be released to the public without any

screening from a marketplace such as Google Play (former Android Market), though this is not

possible for iOS applications.

In conjunction with the rapid growth of the smartphone market, there has been a sudden influx of

software engineers from different areas in the smartphone application development market. As a

result, there is an urgent call for the sharing knowledge of secure design and consolidation of secure

coding know-how for specific security issues related to mobile applications.

Due to these circumstances, Japan's Smartphone Security Association (JSSEC) has launched the

Secure Coding Group, and by collecting the know-how of secure design as well as secure coding of

Android applications, it has decided to make all of the information public with this guidebook. It is

our intention to raise the security level of many of the Android applications that are released in the

market by having many Android application developers become acquainted with the know-how of

secure design and coding. As a result, we believe we will be contributing to the creation of a more

reliable and safe smartphone society.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

12 All rights reserved © Japan Smartphone Security Association. Timely Feedback on a Regular Basis Through the

Beta Version

1.2. Timely Feedback on a Regular Basis Through the Beta Version

We, the JSSEC Secure Coding Group, will do our best to keep the content contained in the Guidebook

as accurate as possible, but we cannot make any guarantees. We believe it is our priority to publicize

and share the know-how in a timely fashion. Equally, we will upload and publicize what we consider

to be the latest and most accurate correct information at that particular juncture, and will update it

with more accurate information once we receive any feedback or corrections. In other words, we are

taking the beta version approach on a regular basis. We think this approach would be meaningful for

many of the Android application developers who are planning on using the Guidebook.

The latest version of the Guidebook and sample codes can be obtained from the URL below.

 http://www.jssec.org/dl/android_securecoding_en.pdf Guidebook (English)

 http://www.jssec.org/dl/android_securecoding_en.zip Sample Codes (English)

The latest Japanese version can be obtained from the URL below.

 http://www.jssec.org/dl/android_securecoding.pdf Guidebook (Japanese)

 http://www.jssec.org/dl/android_securecoding.zip Sample Codes (Japanese)

http://www.jssec.org/dl/android_securecoding_en.pdf
http://www.jssec.org/dl/android_securecoding_en.zip
http://www.jssec.org/dl/android_securecoding.pdf
http://www.jssec.org/dl/android_securecoding.zip

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Usage Agreement of the Guidebook 13

1.3. Usage Agreement of the Guidebook

We need your consent for the following two precautionary statements when using the Guidebook.

1. The information contained in the Guidebook may be inaccurate. Please use the information

written here by your own discretion.

2. In case of finding any mistakes contained in the Guidebook, please send us an e-mail to the

address listed below. However, we cannot guarantee a reply or any revisions thereof.

Japan Smartphone Security Association

Secure Coding Group Inquiry

E-mail: jssec-securecoding-qa@googlegroups.com

Subject: [Comment] Android Secure Coding Guidebook 20160201EN

Content: Name (optional), Affiliation (optional), E-mail (optional), Comment (required) and

Other matters (optional)

mailto:jssec-securecoding-qa@googlegroups.com

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

14 All rights reserved © Japan Smartphone Security Association. Correction articles of June 1 2015 edition

1.4. Correction articles of June 1 2015 edition

This section provides a list of corrections and modifications for the previous edition from the

viewpoint of security, as a result of further studies.

In correcting articles, we adopted the outcomes of our studies and the valuable opinions of those

who read the former editions of this guidebook.

Especially, taking in readers' opinions is considered as a key factor in making the document highly

practical.

We recommend, for those who use a previous edition of the document as a reference, taking a look at

the list below. Note that the list does not include the following kinds of changes and error

corrections: fixes of typos, new articles added in this edition, organizational changes, and

improvements in expression.

Any comments, opinions or suggestions on this guidebook are greatly appreciated.

Correction articles list

Correction points of June 1,

2015 edition

Correction articles of

this edition
Correction argument

-

4.1.3.6 Protecting

against Fragment

Injection in

PreferenceActivity

Added cautions and preventative

measures to ExportedPreferenceActivity

to address an attack method known as

Fragment Injection.

4.1. Creating/Using Activities

4.2. Receiving/Sending

Broadcasts

4.4. Creating/Using Services

4.1 Creating/Using

Activities

4.2 Receiving/Sending

Broadcasts

4.4 Creating/Using

Services

In conjunction with the fact that

information on background applications

can no longer be obtained in Android

5.0, reconsidered methods for

implementing partner-restricted

Activity, Receiver, and Service.

-

4.2.3.6 Items to Keep in

Mind When Placing an

App Shortcut on the

Home Screen

Added precautions relevant to the

placement of shortcuts on home screens

4.8. Outputting Log to LogCat
4.8 Outputting Log to

LogCat

Removed the discussion of

project.properties, which is no longer

necessary in Android Studio.

-

4.9.3.3 Specifying a

Sender Origin When

Using Web Messaging

Added a discussion of the proper

handling of WebMessage, added in

Android 6.0.

5.2. Permission and 5.2 Permission and Added a discussion of the Permission

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Correction articles of June 1 2015 edition 15

Protection Level Protection Level mechanism that was modified in

Android 6.0.

5.4. Communicating via

HTTPS

5.4 Communicating via

HTTPS

Added a statement to the effect that

Apache-style APIs are no longer

supported in Android 6.0.

5.5.1.1. Both broad consent

and specific consent are

granted: Applications that

incorporate

application privacy policy

5.5.1.1 Both broad

consent and specific

consent are granted:

Applications that

incorporate application

privacy policy

Updated the source code to reflect the

fact that, based on individual

agreements, it is not necessary to obtain

separate approval for each individual

transmission when sending information.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

16 All rights reserved © Japan Smartphone Security Association. Developer's Context

2. Composition of the Guidebook

2.1. Developer's Context

Many guidebooks that have been written on secure coding include warnings about harmful coding

practices and their suggested revisions. Although this approach can be useful at the time of

reviewing the source code that has already been coded, it can be confusing for developers that are

about to start coding, as they do not know which article to refer to.

The Guidebook has focused on the developer's context of "What is a developer trying to do at this

moment?" Equally, we have taken steps to prepare articles that are aligned with the developer's

context. For example, we have divided articles into project units by presuming that a developer will

be involved in operations such as [Creating/Using Activities], [Using SQLite], etc.

We believe that by publishing articles that support the developer's context, developers will be able to

easily locate necessary articles that will be instantly useful in their projects.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics 17

2.2. Sample Code, Rule Book, Advanced Topics

Each article is comprised of three sections: Sample Code, Rule Book, and Advanced Topics. If you are

in a hurry, please look up the Sample Code and Rule Book sections. The content is provided in a way

where it can be reused to a certain degree. For those who have issues that go beyond these, please

refer the Advanced Topics section. We have given descriptions that will be helpful in finding solutions

for individual cases.

Unless it is specifically noted, our focus of development will be targeted to platforms concerning

Android 4.0.3 (API Level 15) and later. Since we have not verified the operational capability of any

versions pertaining to Android versions under 4.0.3 (API Level 15), the measures described may

prove ineffective on these older systems. In addition, even for versions that are covered under the

scope of focus, it is important to verify their operational capability by testing them on your own

environment before releasing them publically.

2.2.1. Sample Code

Sample code that serves as the basic model within the developer's context and functions as the

theme of an article is published in the Sample Code section. If there are multiple patterns, we have

provided source code for the different patterns and classified them accordingly. We have strived to

make our commentaries as simple as possible. For example, when we want to direct the reader's

attention to a security issue that requires attention, a bullet-point number will appear next to "Point"

in the article. We will also comment on the sample code that corresponds to the bullet-point number

by writing "*** Point (Number) ***." Please note that a single point may correspond to multiple

pieces of sample code. There are sections throughout the entire source code, albeit very little

compared to the entire code, which requires our attention for security. In order to be able to survey

the sections that call for scrutiny, we try to post the entire class unit of sample code.

Please note that only a portion of sample code is posted in the Guidebook. A compressed file, which

contains the entire sample code, is made public in the URL listed below. It is made public by the

Apache License, Version 2.0; therefore, please feel free to copy and paste it. Please note that we have

minimized the code for error processing in the sample code to prevent it from becoming too long.

 http://www.jssec.org/dl/android_securecoding_en.zip Sample Codes Archive

The projects/keystore file that is attached in the sample code is the keystore file that contains the

developer key for the signature of the APK. The password is "android." Please use it when singing the

APK in the In-house sample code.

We have provided the keystore file, debug.keystore, for debugging purposes. When using Android

Studio for development, it is convenient for verifying the operational capability of the In-house

sample code if the keystore is set for each project. In addition, for sample code that is comprised of

multiple APKs, it is necessary to match the android:debuggable setting contained inside each

AndroidManifest.xml in order to verify the cooperation between each APK. If the android:debuggable

http://www.jssec.org/dl/android_securecoding_en.zip

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

18 All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics

setting is not explicit set when installing the APK from Android Studio, it will automatically become

android:debuggable= "true."

For embedding the sample code as well as keystore file into Android Studio, please refer to "2.5 Steps

to Install Sample Codes into Android Studio"

2.2.2. Rule Book

Rules and matters that need to be considered regarding security within the developer's context will

be published in the Rule Book section. Rules to be handled in that section will be listed in a table

format at the beginning and will be divided into two levels: "Required" and "Recommended." The

rules will consist of two types of affirmative and negative statements. For example, an affirmative

statement that expresses that a rule is required will say "Required." An affirmative statement that

expresses a recommendation will say "Recommended." For a negative statement that expresses the

requisite nature of the rule would say, "Definitely not do." For a negative sentence that expresses a

recommendation would say, "Not recommended." Since these differentiations of levels are based on

the subjective viewpoint of the author, it should only be used as a point of reference.

Sample code that is posted in the Sample Code section reflect these rules and matters that need to be

considered, and a detailed explanation on them is available in the Rule Book section. Furthermore,

rules and matters that need to be considered that are not dealt with in the Sample Code section are

handled in the Rule Book section.

2.2.3. Advanced Topics

Items that require our attention, but that could not be covered in the Sample Code and Rule Book

sections within the developer's context will be published in the Advanced Topics section. The

Advanced Topics section can be utilized to explore ways to solve separate issues that could not be

solved in the Sample Code or Rule Book sections. For example, subject matters that contain personal

opinions as well as topics on the limitations of Android OS in relation the developer's context will be

covered in the Advanced Topics section.

Developers are always busy. Many developers are expected to have basic knowledge of security and

produce many Android applications as quickly as possible in a somewhat safe manner rather than to

really understand the deep security matters. However, there are certain applications out there that

require a high level of security design and implementation from the beginning. For developers of

such applications, it is necessary for them to have a deep understanding concerning the security of

Android OS.

In order to benefit both developers who emphasize development speed and also those who

emphasize security, all articles of the Guidebook are divided into the three sections of Sample Code,

Rule Book, and Advanced Topics. The aim of the Sample Code and Rule Book sections is to provide

generalizations about security that anyone can benefit from and source code that will work with a

minimal amount of customization and hopefully by just copying and pasting. In the Advanced Topics

section, we offer materials that will help developers think in a certain way when they are facing

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics 19

specific problems. It is the aim of the Advanced Topics section to help developers examine optimal

secure design and coding when they are involved in building individual applications.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

20 All rights reserved © Japan Smartphone Security Association. The Scope of the Guidebook

2.3. The Scope of the Guidebook

The purpose of the Guidebook is to collect security best practices that are necessary for general

Android application developers. Consequently, our scope is focused mainly on security tips (The

"Application Security" section in figure below) for the development of Android applications that are

distributed primarily in a public market.

Figure 2.3-1

Security regarding the implementation of components in the Device Security of the above figure is

outside the scope of this guidebook. There are differences in the viewpoint of security between

general applications that are installed by users and pre-installed applications by device

manufacturers. The Guidebook only handles the former and does not deal with the latter. In the

current version, tips only on the implementation by Java are posted, but in future versions, we plan

on posting tips on JNI implementations as well.

Also as of now we do not handle threats that results from an attacker obtaining root privileges. We

will assume the premise of a secure Android device in which it is not possible to obtain root privileges

and base our security advice on utilizing the Android OS security model. For handling of assets and

threats, we have provided a detailed description on "3.1.3 Asset Classification and Protective

Countermeasures."

Application
Security

Device
Security

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Literature on Android Secure Coding 21

2.4. Literature on Android Secure Coding

Since we are not able to discuss all of Android's secure coding in the Guidebook, we recommend that

you read the literature mentioned below in conjunction with the Guidebook.

 Android Security: Anzenna Application Wo Sakusei Surutameni (Secured Programming in

Android)

Author: Taosoftware Co., Ltd. ISBN: 978-4-8443-3134-6

http://www.amazon.co.jp/dp/4844331345/

 The CERT Oracle Secure Coding Standard for Java

Authors: Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, David Svoboda

http://www.amazon.com/dp/0321803957

http://www.amazon.co.jp/dp/4844331345/
http://www.amazon.com/dp/0321803957

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

22 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

2.5. Steps to Install Sample Codes into Android Studio

This section explains how to install sample code into Android Studio. Sample code is divided into

multiple projects depending on the purpose. Installing the sample code is described in, "2.5.1

Installing the Sample Project." After the installation is completed, please refer to "2.5.2 Setup the

debug.keystore" and install the debug.keystore file into Android Studio. We have verified the

following steps in the following environment:

 OS

 Windows 7 Ultimate SP1

 Android Studio

 1.1.0

 Android SDK

 Android 5.0(API 21)

 Sample projects can be built through Android 5.0 (API 21) unless otherwise stated.

2.5.1. Installing the Sample Project

1. Download the sample code.

Acquire the sample code from the URL shown in "2.2.1 Sample Code"

2. Extract the sample code.

Right click on the sample code that has been compressed into zip file, and click on "Extract All"

as shown below.

Figure 2.5-1

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 23

3. Designate where to deploy.

Create a workspace under the name "C:¥android_securecoding" by designating "C:¥" and

clicking on the "Extract" button.

Figure 2.5-2

After clicking on the "Extract" button, right underneath "C:¥" a folder called

"android_securecoding" will be created.

Figure 2.5-3

The sample code is contained in the “android_securecoding" folder. For example, when you want

to refer to the sample code within "4.1.1.3 Creating/Using Partner Activities" of "4.1

Creating/Using Activities" please look below.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

24 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

android_securecoding

 ┗Create Use Activity

 ┗Activity PartnerActivity

In this way, the sample code project will be located under the chapter title in the

"android_securecoding" folder.

4. Designate workspace by starting up Android Studio

Launch Android Studio from the start menu or from a desktop icon.

Figure 2.5-4

After launching, import project from the dialog that appears.

Figure 2.5-5

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 25

If you have already opened a project, close the project window.

Figure 2.5-6

5. Start importing

Click "Import project (Eclipse ADT, Gradle, etc.)" from the dialog that is displayed.

Figure 2.5-7

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

26 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

6. Select the project

Select the project

Figure 2.5-8

7. Reload the project

When importing the project, a dialog box prompting to change Language level is displayed. So,

Click “Yes”.

Figure 2.5-9

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 27

8. Finish importing

Automatically the project is imported.

Figure 2.5-10

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

28 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

Android Studio, unlike Eclipse, will display a single project in a window. If you want to open and

import a different project, click "File -> Import Project ...".

Figure 2.5-11

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 29

2.5.2. Setup the debug.keystore to run and test the Sample Code

A signature is needed in order to activate a sample-code-generated application onto an Android

device or emulator. Install the debugging key file "debug.keystore" that will be used for the signature

into Android Studio.

1. Click on File ->Project Structure...

Figure 2.5-12

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

30 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

2. Add Signing

Select a project from Module list in left pane, selecting “Signing” tab, and then click “+” button.

Figure 2.5-13

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 31

3. Select "debug.keystore"

Debug.keystore is contained in the sample code (underneath the android_securecoding folder)

Figure 2.5-14

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

32 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

4. Type Signing name

Figure 2.5-15

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio 33

5. Set Signing Config

Select the Build Types tab, select signing name typed in the previous step, and then click “OK”.

Figure 2.5-16

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

34 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Android Studio

6. Confirm build.gradle file

The path of debug.keystore file you selected is displayed in signingConfigs, signingConfig

appears in debug section of buildTypes.

Figure 2.5-17

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 35

3. Basic Knowledge of Secure Design and Secure Coding

Although the Guidebook is a collection of security advice concerning Android application

development, this chapter will deal with the basic knowledge on general secure design and secure

coding of Android smartphones and tablets. Since we will be referring to secure design and coding

concepts in the later chapters we recommend that you familiarize yourself with the content contained

in this chapter first.

3.1. Android Application Security

There is a commonly accepted way of thinking when examining security issues concerning systems

or applications. First, we need to have a grasp over the objects we want to protect. We will call these

assets. Next, we want to gain an understanding over the possible attacks that can take place on an

asset. We will call these threats. Finally, we will examine and implement measures to protect assets

from the various threats. We will call these countermeasures.

What we mean by countermeasures here is secure design and secure coding, and will deal with these

subjects after Chapter 4. In this section, we will focus on explaining assets and threats.

3.1.1. Asset: Object of Protection

There are two types of objects of protection within a system or an application: information and

functions. We will call these information assets and function assets. An information asset refers to

the type of information that can be referred to or changed only by people who have permission. It is

a type of information that cannot be referred to or changed by anyone who does not have the

permission. A function asset refers to a function that can be used only by people who have

permission and no one else.

Below, we will introduce types of information assets and functional assets that exist in Android

smartphones and tablets. We would like you to use the following as a point of reference to deliberate

on matters with regard to assets when developing a system that utilizes Android applications or

Android smartphones/tablets. For the sake of simplicity, we will collectively call Android

smartphones/tablets as Android smartphones.

3.1.1.1. Information Asset of an Android Smartphone

Table 3.1-1 and Table 3.1-2 represent examples of information contained on an Android

smartphone. Appropriate protection is necessary since this information is equivalent to personal

information, confidential information or information that belongs to both.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

36 All rights reserved © Japan Smartphone Security Association. Android Application Security

Table 3.1-1 Examples of Information Managed by an Android Smartphone

Information Remarks

Phone number Telephone number of the smartphone itself

Call history Time and date of incoming and outgoing calls as well as phone numbers

IMEI Device ID of the smartphone

IMSI Subscriber ID

Sensor information GPS, geomagnetic, rate of acceleration, etc.

Various setup

information

Wi-Fi setting value, etc...

Account information Various account information, authentication information, etc.

Media data Pictures, videos, music, recording, etc...

...

Table 3.1-2 Examples of Information Managed by an Application

Information Remarks

Contacts Contacts of acquaintances

E-mail address User's e-mail address

E-mail mail box Content of incoming and outgoing e-mail, attachments, etc.

Web bookmarks Bookmarks

Web browsing history Browsing history

Calendar Plans, to-do list, events, etc.

Facebook SNS content, etc.

Twitter SNS content, etc.

...

The type of information seen in Table 3.1-1 is mainly the type of information that is stored on the

Android smartphone itself or on an SD card. Similarly, the type of information seen in Table 3.1-2 is

primarily managed by an application. In particular, the type of information seen in Table 3.1-2 grows

in proportion to the number of applications installed on the device.

Table 3.1-3 is the amount of information contained in one entry case of contacts. The information

here is not of the smartphone user's, but of the smartphone user's friends. In other words, we must

be aware that a smartphone not only contains information on the user, but of other people too.

Table 3.1-3 Examples of Information Contained in One Contact Entry

Information Content

Phone number Home phone number, mobile phone number, FAX, MMS, etc.

E-mail address Home e-mail, work e-mail, mobile phone e-mail, etc.

Photo Thumbnail image, large image, etc.

IM address AIM, MSN, Yahoo, Skype, QQ, Google Talk, ICQ, Jabber, Net meeting, etc.

Nicknames Acronyms, initials, maiden names, nicknames, etc.

Address Country, postal code, region, area, town, street name, etc.

Group membership Favorites, family, friends, coworkers, etc.

Website Blogs, profile site, homepage, FTP server, home, office, etc.

Events Birthdays, anniversaries, others, etc.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 37

Relation Spouse, children, father, mother, manager, assistants, domestic partner,

partners, etc.

SIP address Home, work, other, etc.

... ...

Until now, we have primarily focused on information about smartphone users, however, application

possesses other important information as well. Figure 3.1-1 displays a typical view of the

information inside an application divided into the program portion and data portion. The program

portion mainly consists of information about the application developer, and the data portion mostly

pertains to user information. Since there could be information that an application developer may not

want a user to have access to, it is important to provide protective countermeasures to prohibit a user

from referring to or making changes to such information.

Figure 3.1-1 Information Contained in an Application

When creating an Android application, it is important to employ appropriate protective

countermeasures for information that an application manages itself, such as shown in Figure 3.1-1.

However, it is equally important to have robust security measure in place for information contained in

the Android smartphone itself as well as for information that has been gained from other

applications such as shown in Table 3.1-1, Table 3.1-2, and Table 3.1-3.

3.1.1.2. Function Assets of an Android Smartphone

Table 3.1-4 shows examples of features that an Android OS provides to an application. When these

features are exploited by a malware, etc., damages in the form of unexpected charges or loss of

privacy may be incurred by a user. Therefore, appropriate protective counter-measures that are

equal the one extended to information asset should be set in place.

/data/app/com.sonydna.picturemanager.apk
│ AndroidManifest.xml
│ classes.dex Java Code (Binary)

│ resources.arsc Resources (e.g. Strings)

│ …
├─assets
│ AppAbout_en.html Bundled Data
│ …
└─res

│ …
├─drawable-hdpi
│ broken_image.png Image Files
│ …
├─layout
│ about.xml Layout Information
│ …
└─xml

setting.xml XML Files

Program

/data/data/com.sonydna.picturemanager
├─cache
│ └─webviewCache Cache of WebView
│
├─databases
│ label.db DB for Application
│ metadata.db
│ webview.db DB for WebView
│ webviewCache.db DB for WebView Cache
│
├─files
│ MediaList1.dat Application Data Files
│
├─lib
│
└─shared_prefs Preference File

com.sonydna.picturemanager_preferences.xml

Data

Picture Manager User’s InformationApplication Vendor’s Information

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

38 All rights reserved © Japan Smartphone Security Association. Android Application Security

Table 3.1-4 Examples of Features an Android OS Provides to an Application

Function Function

Sending and receiving SMS messages Camera

Calling Volume

Network communication Reading the Contract List and Status of the

Mobile Phone

GPS SD card

Bluetooth communication Change system setup

NFC communication Reading Log Data

Internet communication (SIP) Obtaining Information of a Running Application

... ...

In addition to the functions that the Android OS provides to an application, the inter-application

communication components of Android applications are included as part of the function assets as

well. Android applications can allow other applications to utilize features by accessing their internal

components. We call this inter-application communication. This is a convenient feature, however,

there have been instances where access to functions that should only be used inside a particular

application are mistakenly given to other applications due the lack of knowledge regarding secure

coding on the part of the developer. There are functions provided by the application that could be

exploited by malware that resides locally on the device. Therefore, it is necessary to have appropriate

protective countermeasures to only allow legitimate applications to access these functions.

3.1.2. Threats: Attacks that Threaten Assets

In the previous section, we talked about the assets of an Android smartphone. In this section, we will

explain about attacks that can threaten an asset. Put simply, a threat to an asset is when a third party

who should not have permission, accesses, changes, deletes or creates an information asset or

illicitly uses a function asset. The act of directly or indirectly attacking such assets is called a "threat."

Furthermore, the malicious person or applications that commit these acts are referred to as the

source of the threats. Malicious attackers and malware are the sources of threats but are not the

threats themselves. The relationship between our definitions of assets, threats, threat sources,

vulnerabilities, and damage are shown below in Figure 3.1-2.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 39

Figure 3.1-2 Relation between Asset, Threat, Threat Source, Vulnerability, and Damage

Figure 3.1-3 shows a typical environment that an Android application behaves in. From now on, in

order to expand on the explanation concerning the type of threats an Android application faces by

using this figure as a base, we will first learn how to view this figure.

 Figure 3.1-3 Typical Environment an Android Application Behaves in

The figure above depicts the smartphone on the left and server on the right. The smartphone and

server communicate through the Internet over 3G/4G/Wi-Fi. Although multiple applications exist

within a smartphone, we are only showing a single application in the figure in order to explain the

threats clearly. Smartphone-based applications mainly handle user information, but the

server-based web services collectively manage information of all of its users. Consequently, there is

no change the importance of server security as usual. We will not touch upon issues relating to server

security as it falls outside of the scope of the Guidebook.

Threat(Attack)

Threat(Attack)

Vulnerability

Assets

Impact

Threat Source

Application

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

3G/4G/Wi-Fi

Web
Service

Application

All users
information

One user
Information

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

40 All rights reserved © Japan Smartphone Security Association. Android Application Security

We will use the following figure to describe the type of threats that exist towards Android

applications.

3.1.2.1. Network-based Third-Party

Figure 3.1-4 Network-Based Malicious Third Party Attacking an Application

Generally, a smartphone application manages user information on a server so the information assets

will move between the networks connecting them. As indicated in Figure 3.1-4, a network-based

malicious third party may access (sniff) any information during this communication or try to change

information (data manipulation). The malicious attacker in the middle (also referred to as "Man in The

Middle") can also pretend to be the real server tricking the application. Without saying,

network-based malicious third parties will usually try to attack the server as well.

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

3G/4G/Wi-Fi

Web
Service

Malicious attacker on network

Attack Attack

App

Information
of all users

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 41

3.1.2.2. Threat Due to User-Installed Malware

Figure 3.1-5 Malware Installed by a User Attacks an Application

The biggest selling point of a smartphone is in its ability to acquire numerous applications from the

market in order to expand on its features. The downside to users being able to freely install many

applications is that they will sometimes mistakenly install malware. As shown in Figure 3.1-5,

malware may exploit the inter-application communication functions or a vulnerability in the

application in order to gain access to information or function assets.

3.1.2.3. Threat of an Malicious File that Exploits a Vulnerability in an Application

Figure 3.1-6 Attack from Malicious Files that Exploit a Vulnerability in an Application

Various types of files such as music, images, videos and documents are widely available on the

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Mal-
ware

Attack

Careless
user

Web
Service

Market
App

Information
of all users

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Careless
user

Web
Service

SD

Attack
file

Passive
attack

App

Information
of all users

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

42 All rights reserved © Japan Smartphone Security Association. Android Application Security

Internet and typically users will download many files to their SD card in order to use them on their

smartphone. Furthermore, it is also common to download attached files sent in an e-mail. These files

are later opened by a viewing or editing application.

If there is any vulnerability in the function of an application that processes these files, an attacker can

use a malicious file to exploit it and gain access to information or function assets of the application.

In particular, vulnerabilities are often present in processing a file format with a complex data

structure. The attacker can fulfill many different goals when exploiting an application in this way.

As shown in Figure 3.1-6, an attack file stays dormant until it is opened by a vulnerable application.

Once it is opened, it will start causing havoc by taking advantage of an application's vulnerability. In

comparison to an active attack, we call this attack method a "Passive Attack."

3.1.2.4. Threats from a Malicious Smartphone User

Figure 3.1-7 Attacks from a Malicious Smartphone User

With regard to application development for an Android smartphone, the environment as well as

features that help to develop and analyze an application are openly provided to the general user.

Among the features that are provided, the useful ADB debugging feature can be accessed by anyone

without registration or screening. This feature allows an Android smartphone user to easily perform

OS or application analysis.

As it is shown in Figure 3.1-7, a smartphone user with malicious intent can analyze an application by

taking advantage of the debugging feature of ADB and try to gain access to information or function

assets of an application. If the actual asset contained in the application belongs to the user, it poses

no problem, but if the asset belongs to someone other than the user, such as the application

developer, then it will become a concern. Accordingly, we need to be aware that the legitimate

smartphone user can maliciously target the assets within an application.

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

adb
debug

Smartphone
malicious user

USB

Attack

Web
Service

App

Information
of all users

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 43

3.1.2.5. Threats from Third Party in the Proximity of a Smartphone

Figure 3.1-8 Attacks from a Malicious Third Party in the Proximity of a Smartphone

Due to face that most smartphones possess a variety of near-field communication mechanisms, such

as NFC, Bluetooth and Wi-Fi, we must not forget that attacks can occur from a malicious attacker who

is in physical proximity of a smartphone. An attacker can shoulder surf a password while peeping

over a user who is inputting it in. Or, as indicated in Figure 3.1-8, an attacker can be more

sophisticated and attack the Bluetooth functionality of an application from a remote distance. There

is also the threat that a malicious person could steal the smartphone creating a risk of data leakage

or even destroy the smartphone causing a loss of critical information. Developers need to take these

risks into consideration as well as early as the design stage.

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Web
Service

BT

Malicious attacker
standing by smartphone

Attack

App

Attack

Information
of all users

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

44 All rights reserved © Japan Smartphone Security Association. Android Application Security

3.1.2.6. Summary of Threats

Figure 3.1-9 Summary of the Various Attacks on Smartphone Applications

Figure 3.1-9 summarizes the main types of threats explained in the previous sections. Smartphones

are surrounded by a wide variety of threats and the figure above does not include all of them.

Through our daily information gathering, we need to spread the awareness concerning the various

threats that surround an Android application and be aware of them during the application's secure

design and coding. The following literature that was created by Japan's Smartphone Security

Association (JSSEC) contains other valuable information on the threats to smartphone security.

 Security Guidebook for Using Smartphones and Tablets

http://www.jssec.org/dl/guidelines_v2.pdf [Version 2](Japanese)

http://www.jssec.org/dl/Guidebook2012Enew_v1.0.pdf [Version 1] (English)

 Implementation Guidebook for Smartphone Network Security[Version 1]

http://www.jssec.org/dl/NetworkSecurityGuide1.pdf (Japanese)

 Cloud Usage Guidebook for Business Purposes of Smartphones [Beta Version]

http://www.jssec.org/dl/cloudguide2012_beta.pdf (Japanese)

 Guidebook for Reviewing the Implementation/Operation of MDM [Version1]

http://www.jssec.org/dl/MDMGuideV1.pdf (Japanese)

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Mal-
ware

adb
debug

USB

Attack

Attack

Careless
user

3G/4G/Wi-Fi

Web
Service

Malicious attacker on the network

Attack Attack

BT

Malicious attacker
standing by smartphone

SD

Attack
file

Passive
attack

Market

Attack

App

Attack

Information
of all users

Smartphone
malicious user

http://www.jssec.org/dl/guidelines_v2.pdf
http://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
http://www.jssec.org/dl/NetworkSecurityGuide1.pdf
http://www.jssec.org/dl/cloudguide2012_beta.pdf
http://www.jssec.org/dl/MDMGuideV1.pdf

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 45

3.1.3. Asset Classification and Protective Countermeasures

As was discussed in the previous sections, Android smartphones are surrounded by a variety of

threats. Protecting every asset in an application from such threats could prove to be very difficult

given the time it takes for development and due to technical limitations. Consequently, Android

application developers should examine feasible countermeasures for their assets. This should be

done according to priority level based on the developer's judgement criteria. This is a subjective

matter that is based on how the importance of an asset is viewed and what the accepted level of

damage is.

In order to help decide on the protective countermeasures for each asset, we will classify them and

stipulate the level of protective countermeasures for each group. This will be achieved by examining

the legal basis, pertaining to the level of importance regarding the impact of any damages that can

occur and the social responsibility of the developer (or organization). These will prove to be the

judgement criteria when deciding on how to handle each asset and the implementation of the type of

countermeasures. Since this will become a standard for application developers and organizations on

determining how to handle an asset and provide protective countermeasures, it is necessary to

specify the classification methods and pertaining countermeasures in accordance the application

developer's (or organization's) circumstances.

Asset classification and protective countermeasure levels that are adopted in the Guidebook are

shown below for reference:

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

46 All rights reserved © Japan Smartphone Security Association. Android Application Security

Table 3.1-5 Asset Classification and Protective Countermeasure Levels

Asset

Classification

Asset Level Level of Protective

Counter-Measures

High The amount of damage the asset
causes is fatal and catastrophic to

the organization or an individual's
activity.
i.e.) When an asset at this level is

damaged, the organization
will not be able to continue its
business.

 Provide protection against
sophisticated attacks that break

through the Android OS security
model and prevent root privilege
compromises and attacks that alter

the dex portion of an APK.
 Ensure security takes priority over

other elements such as user

experience, etc.

Medium The amount of damage the asset
causes has a substantial impact

the organization or an individual's
activity.
i.e.) When an asset at this level is

damaged, the organization's
profit level deteriorates,
adversely affecting its

business.

 Utilize the Android OS security
model. It will provide protection

covered under its scope.
 Ensure security takes priority over

other elements such as user

experience, etc.

Low The amount of damage the asset

causes has a limited impact on
the organization or an individual's
activity.

I.e.) When an asset at this level is
damaged, the organization's
profit level will be affected

but is able to compensate its
losses from other resources.

 Utilize the Android OS security

model. It will provide protection
covered under its scope.
 Compare security countermeasures

with other elements such as user
experience, etc. At this level, it is
possible for non-security issues to

take precedence over security
issues.

Asset classification and protective countermeasures described in the Guidebook are proposed under

the premise of a secure Android device where root privilege has not been compromised. Furthermore,

it is based on the security measures that utilize the security model of Android OS. Specifically, we are

hypothetically devising protective countermeasures by utilizing the Android OS security model on the

premise of a functioning Android OS security model against assets that are classified lower than or

equal to the medium level asset. On the other hand, we also believe in the necessity of protecting

high level assets from attacks that are caused due the breaching of the Android OS security model.

Such attacks include the compromise of root privileges and attacks that analyze or alter the APK

binary. To protect these types of assets, we need to design sophisticated defensive countermeasures

against such threats through the combination of multiple methods such as encryption, obfuscation,

hardware support and server support. As the collection of know-how regarding these defenses

cannot be easily written in this guidebook, and since appropriate defensive design differ in

accordance to individual circumstances, we have deemed them to be outside of the Guidebook's

scope. We recommend that you consult with a security specialist who is well versed in tamper

resistant designs of Android if your device requires protection from sophisticated attacks that

include attacks resulting from the compromise of root privileges or attacks caused by the analysis or

alteration of an APK file.

T
h
is

 G
u
id

e
b
o
o
k
’s

 S
c
o
p
e
 o

f F
o
c
u
s

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Android Application Security 47

3.1.4. Sensitive Information

The term "sensitive information", instead of information asset, will be used from now on in the

Guidebook. As it has been aforementioned in the previous section, we have to determine the asset

level and the level of protective countermeasures for each information asset that an application

handles.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

48 All rights reserved © Japan Smartphone Security Association. Handling Input Data Carefully and Securely

3.2. Handling Input Data Carefully and Securely

Validating input data is the easiest and yet most effective secure coding method. All data that is

inputted into the application either directly or indirectly by an outside source needs to be properly

validated. To illustrate best practices of input data validation, the following is an example of an

Activity as used in a program that receives data from Intent.

It is possible that an Activity can receive data from an Intent that was tampered by an attacker. By

sending data with a format or a value that a programmer is not expecting, the attacker can induce a

malfunction in the application that leads to some sort of security incident. We must not forget that a

user can become an attacker as well.

Intents are configured by action, data and extras, and we must be careful when accepting all forms of

data that can be controlled by an attacker. We always need to validate the following items in any code

that handles data from an untrusted source.

(a) Does the received data match the format that was expected by the programmer and does the

value fall in the expected scope?

(b) Even if you have received the expected format and value, can you guarantee that the code which

handles that data will not behave unexpectedly?

The next example is a simple sample where HTML is acquired from a remote web page in a

designated URL and the code is displayed in TextView. However, there is a bug.

Sample Code that Displays HTML of a Remote Web page in TextView
TextView tv = (TextView) findViewById(R.id.textview);

InputStreamReader isr = null;

char[] text = new char[1024];

int read;

try {

 String urlstr = getIntent().getStringExtra("WEBPAGE_URL");

 URL url = new URL(urlstr);

 isr = new InputStreamReader(url.openConnection().getInputStream());

 while ((read=isr.read(text)) != -1) {

 tv.append(new String(text, 0, read));

 }

} catch (MalformedURLException e) { ...

From the viewpoint of (a), "urlstr is the correct URL", verified through the non-occurrence of a

MalformedURLException by a new URL(). However, this is not sufficient. Furthermore, when a

"file://..." formatted URL is designated by urlstr, the file of the internal file system is opened and is

displayed in TextView rather than the remote web page. This does not fulfill the viewpoint of (b),

since it does not guarantee the behavior which was expected by the programmer.

The next example shows a revision to fix the security bugs. Through the viewpoint of (a), the input

data is validated by checking that "urlstr is a legitimate URL and the protocol is limited to http or

https." As a result, even by the viewpoint of (b), the acquisition of an Internet-routed InputStream is

guaranteed through url.openConnection().getInputStream().

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Input Data Carefully and Securely 49

Revised sample code that displays HTML of Internet-based Web page in TextView
TextView tv = (TextView) findViewById(R.id.textview);

InputStreamReader isr = null;

char[] text = new char[1024];

int read;

try {

 String urlstr = getIntent().getStringExtra("WEBPAGE_URL");

 URL url = new URL(urlstr);

 String prot = url.getProtocol();

 if (!"http".equals(prot) && !"https".equals(prot)) {

 throw new MalformedURLException("invalid protocol");

 }

 isr = new InputStreamReader(url.openConnection().getInputStream());

 while ((read=isr.read(text)) != -1) {

 tv.append(new String(text, 0, read));

 }

} catch (MalformedURLException e) { ...

Validating the safety of input data is called "Input Validation" and it is a fundamental secure coding

method. Surmising from the sense of the word of Input Validation, it is quite often the case where the

viewpoint of (a) is heeded but the viewpoint of (b) is forgotten. It is important to remember that

damage does not take place when data enters the program but when the program uses that data in

an incorrect way. We hope that you will refer the URLs listed below.

 The CERT Oracle Secure Coding Standard for Java

https://www.securecoding.cert.org/confluence/x/Ux (English)

 Application of CERT Oracle Secure Coding Standard for Android Application Development

https://www.securecoding.cert.org/confluence/x/C4AiBw (English)

 Rules Applicable Only to the Android Platform (DRD)

https://www.securecoding.cert.org/confluence/x/H4ClBg (English)

 IPA "Secure Programming Course"

http://www.ipa.go.jp/security/awareness/vendor/programmingv2/clanguage.html (Japanese)

https://www.securecoding.cert.org/confluence/x/Ux
https://www.securecoding.cert.org/confluence/x/C4AiBw
https://www.securecoding.cert.org/confluence/x/H4ClBg
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/clanguage.html

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

50 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

4. Using Technology in a Safe Way

In Android, there are many specific security related issues that pertain only to certain technologies

such as Activities or SQLite. If a developer does not have enough knowledge about each of the

different security issues regarding each technology when designing and coding, then unexpected

vulnerabilities may arise. This chapter will explain about the different scenarios that developers will

need to know when using their application components.

4.1. Creating/Using Activities

4.1.1. Sample Code

The risks and countermeasures of using Activities differ depending on how that Activity is being used.

In this section, we have classified 4 types of Activities based on how the Activity is being used. You

can find out which type of activity you are supposed to create through the following chart shown

below. Since the secure coding best practice varies according to how the activity is used, we will also

explain about the implementation of the Activity as well.

Table 4.1-1 Definition of Activity Types

Type Definition

Private Activity An activity that cannot be launched by another application, and

therefore is the safest activity

Public Activity An activity that is supposed to be used by an unspecified large

number of applications.

Partner Activity An activity that can only be used by specific applications made by a

trusted partner company.

In-house Activity An activity that can only be used by other in-house applications.

Figure 4.1-1

Start

Use only in
the same application?

In-house ActivityPrivate Activity Partner ActivityPublic Activity

Allow unspecified number
applications to use?

Allow specified company’s
applications to use

Yes No

Yes No

Yes No

Use only

in an

applica

tion

in an

applica

tion

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 51

4.1.1.1. Creating/Using Private Activities

Private Activities are Activities which cannot be launched by the other applications and therefore it is

the safest Activity.

When using Activities that are only used within the application (Private Activity), as long as you use

explicit Intents to the class then you do not have to worry about accidently sending it to any other

application. However, there is a risk that a third party application can read an Intent that is used to

start the Activity. Therefore it is necessary to make sure that if you are putting sensitive information

inside an Intent used to start an Activity that you take countermeasures to make sure that it cannot

be read by a malicious third party.

Sample code of how to create a Private Activity is shown below.

Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Explicitly set the exported attribute to false.

4. Handle the received intent carefully and securely, even though the intent was sent from the same

application.

5. Sensitive information can be sent since it is sending and receiving all within the same application.

To make the Activity private, set the "exported" attribute of the Activity element in the

AndroidManifest.xml to false.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.activity.privateactivity" >

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- Private activity -->

 <!-- *** POINT 1 *** Do not specify taskAffinity -->

 <!-- *** POINT 2 *** Do not specify launchMode -->

 <!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->

 <activity

 android:name=".PrivateActivity"

 android:label="@string/app_name"

 android:exported="false" />

 <!-- Public activity launched by launcher -->

 <activity

 android:name=".PrivateUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

52 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

PrivateActivity.java
package org.jssec.android.activity.privateactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.private_activity);

 // *** POINT 4 *** Handle the received Intent carefully and securely, even though the Intent was sent from the

 same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = getIntent().getStringExtra("PARAM");

 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

 }

 public void onReturnResultClick(View view) {

 // *** POINT 5 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Sensitive Info");

 setResult(RESULT_OK, intent);

 finish();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 53

Next, we show the sample code for how to use the Private Activity.

Point (Using an Activity):

6. Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.

7. Use the explicit Intents with the class specified to call an activity in the same application.

8. Sensitive information can be sent only by putExtra() since the destination activity is in the same

application.1

9. Handle the received result data carefully and securely, even though the data comes from an

activity within the same application.

PrivateUserActivity.java
package org.jssec.android.activity.privateactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateUserActivity extends Activity {

 private static final int REQUEST_CODE = 1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.user_activity);

 }

 public void onUseActivityClick(View view) {

 // *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.

 // *** POINT 7 *** Use the explicit Intents with the class specified to call an activity in the same applicati

on.

 Intent intent = new Intent(this, PrivateActivity.class);

 // *** POINT 8 *** Sensitive information can be sent only by putExtra() since the destination activity is in t

he same application.

 intent.putExtra("PARAM", "Sensitive Info");

 startActivityForResult(intent, REQUEST_CODE);

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {

 case REQUEST_CODE:

1 Caution: Unless points 1, 2 and 6 are abided by, there is a risk that Intents may be read by a third party.

 Please refer to sections 4.1.2.2 and 4.1.2.3 for more details.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

54 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 String result = data.getStringExtra("RESULT");

 // *** POINT 9 *** Handle the received data carefully and securely,

 // even though the data comes from an activity within the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();

 break;

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 55

4.1.1.2. Creating/Using Public Activities

Public Activities are Activities which are supposed to be used by an unspecified large number of

applications. It is necessary to be aware that Public Activities may receive Intents sent from malware.

In addition, when using Public Activities, it is necessary to be aware of the fact that malware can also

receive or read the Intents sent to them.

The sample code to create a Public Activity is shown below.

Points (Creating an Activity):

1. Explicitly set the exported attribute to true.

2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.activity.publicactivity" >

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- Public Activity -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

 <activity

 android:name=".PublicActivity"

 android:label="@string/app_name"

 android:exported="true">

 <!-- Define intent filter to receive an implicit intent for a specified action -->

 <intent-filter>

 <action android:name="org.jssec.android.activity.MY_ACTION" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

 </application>

</manifest>

PublicActivity.java
package org.jssec.android.activity.publicactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PublicActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

56 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // *** POINT 2 *** Handle the received intent carefully and securely.

 // Since this is a public activity, it is possible that the sending application may be malware.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = getIntent().getStringExtra("PARAM");

 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

 }

 public void onReturnResultClick(View view) {

 // *** POINT 3 *** When returning a result, do not include sensitive information.

 // Since this is a public activity, it is possible that the receiving application may be malware.

 // If there is no problem if the data gets received by malware, then it can be returned as a result.

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Not Sensitive Info");

 setResult(RESULT_OK, intent);

 finish();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 57

Next, Herein after sample code of Public Activity user side.

Points (Using an Activity):

4. Do not send sensitive information.

5. When receiving a result, handle the data carefully and securely.

PublicUserActivity.java
package org.jssec.android.activity.publicuser;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PublicUserActivity extends Activity {

 private static final int REQUEST_CODE = 1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onUseActivityClick(View view) {

 try {

 // *** POINT 4 *** Do not send sensitive information.

 Intent intent = new Intent("org.jssec.android.activity.MY_ACTION");

 intent.putExtra("PARAM", "Not Sensitive Info");

 startActivityForResult(intent, REQUEST_CODE);

 } catch (ActivityNotFoundException e) {

 Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

 }

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 // *** POINT 5 *** When receiving a result, handle the data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {

 case REQUEST_CODE:

 String result = data.getStringExtra("RESULT");

 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();

 break;

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

58 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

4.1.1.3. Creating/Using Partner Activities

Partner activities are Activities that can only be used by specific applications. They are used between

cooperating partner companies that want to securely share information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.

Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent

used to start an Activity that you take countermeasures to make sure that it cannot be read by a

malicious third party

Sample code for creating a Partner Activity is shown below.

Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Do not define the intent filter and explicitly set the exported attribute to true.

4. Verify the requesting application's certificate through a predefined whitelist.

5. Handle the received intent carefully and securely, even though the intent was sent from a partner

application.

6. Only return Information that is granted to be disclosed to a partner application.

Please refer to "4.1.3.2 Validating the Requesting Application" for how to validate an application by a

white list. Also, please refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate"

for how to verify the certificate hash value of a destination application which is specified in the

whitelist.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical"

 android:padding="5dp" >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dp"

 android:text="@string/description" />

 <Button

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dp"

 android:onClick="onReturnResultClick"

 android:text="@string/return_result" />

</LinearLayout>

PartnerActivity.java
package org.jssec.android.activity.partneractivity;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 59

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerActivity extends Activity {

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.activity.partneruser.

 sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // Certificate hash value of "partner key" in the keystore.

 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register the other partner applications in the same way.

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.

 if (!checkPartner(this, getCallingActivity().getPackageName())) {

 Toast.makeText(this,

 "Requesting application is not a partner application.",

 Toast.LENGTH_LONG).show();

 finish();

 return;

 }

 // *** POINT 5 *** Handle the received intent carefully and securely, even though the intent was sent from a p

artner application.

 // Omitted, since this is a sample. Refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

 }

 public void onReturnResultClick(View view) {

 // *** POINT 6 *** Only return Information that is granted to be disclosed to a partner application.

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Information for partner applications");

 setResult(RESULT_OK, intent);

 finish();

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

60 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 61

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

62 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Sample code for using a Partner Activity is described below.

Points (Using an Activity):

7. Verify if the certificate of the target application has been registered in a whitelist.

8. Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.

9. Only send information that is granted to be disclosed to a Partner Activity only by putExtra().

10. Use explicit intent to call a Partner Activity.

11. Use startActivityForResult() to call a Partner Activity.

12. Handle the received result data carefully and securely, even though the data comes from a

partner application.

Refer to "4.1.3.2 Validating the Requesting Application" for how to validate applications by white list.

Also please refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate" for how to

verify the certificate hash value of a destination application which is to be specified in a white list.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.activity.partneruser" >

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name="org.jssec.android.activity.partneruser.PartnerUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

PartnerUserActivity.java
package org.jssec.android.activity.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerUserActivity extends Activity {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 63

 // *** POINT 7 *** Verify if the certificate of a target application has been registered in a white list.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register the certificate hash value of partner application org.jssec.android.activity.partneractivity.

 sWhitelists.add("org.jssec.android.activity.partneractivity", isdebug ?

 // The certificate hash value of "androiddebugkey" is in debug.keystore.

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // The certificate hash value of "my company key" is in the keystore.

 "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA");

 // Register the other partner applications in the same way.

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

 private static final int REQUEST_CODE = 1;

 // Information related the target partner activity

 private static final String TARGET_PACKAGE = "org.jssec.android.activity.partneractivity";

 private static final String TARGET_ACTIVITY = "org.jssec.android.activity.partneractivity.PartnerActivity";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onUseActivityClick(View view) {

 // *** POINT 7 *** Verify if the certificate of the target application has been registered in the own white li

st.

 if (!checkPartner(this, TARGET_PACKAGE)) {

 Toast.makeText(this, "Target application is not a partner application.", Toast.LENGTH_LONG).show();

 return;

 }

 try {

 // *** POINT 8 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.

 Intent intent = new Intent();

 // *** POINT 9 *** Only send information that is granted to be disclosed to a Partner Activity only by put

Extra().

 intent.putExtra("PARAM", "Info for Partner Apps");

 // *** POINT 10 *** Use explicit intent to call a Partner Activity.

 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

 // *** POINT 11 *** Use startActivityForResult() to call a Partner Activity.

 startActivityForResult(intent, REQUEST_CODE);

 }

 catch (ActivityNotFoundException e) {

 Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

64 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {

 case REQUEST_CODE:

 String result = data.getStringExtra("RESULT");

 // *** POINT 12 *** Handle the received data carefully and securely,

 // even though the data comes from a partner application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(this,

 String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();

 break;

 }

 }

}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 65

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

66 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

4.1.1.4. Creating/Using In-house Activities

In-house activities are the Activities which are prohibited to be used by applications other than other

in-house applications. They are used in applications developed internally that want to securely share

information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.

Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent

used to start an Activity that you take countermeasures to make sure that it cannot be read by a

malicious third party.

Sample code for creating an In-house Activity is shown below.

Points (Creating an Activity):

1. Define an in-house signature permission.

2. Do not specify taskAffinity.

3. Do not specify launchMode.

4. Require the in-house signature permission.

5. Do not define an intent filter and explicitly set the exported attribute to true.

6. Verify that the in-house signature permission is defined by an in-house application.

7. Handle the received intent carefully and securely, even though the intent was sent from an

in-house application.

8. Sensitive information can be returned since the requesting application is in-house.

9. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.activity.inhouseactivity" >

 <!-- *** POINT 1 *** Define an in-house signature permission -->

 <permission

 android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION"

 android:protectionLevel="signature" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- In-house Activity -->

 <!-- *** POINT 2 *** Do not specify taskAffinity -->

 <!-- *** POINT 3 *** Do not specify launchMode -->

 <!-- *** POINT 4 *** Require the in-house signature permission -->

 <!-- *** POINT 5 *** Do not define the intent filter and explicitly set the exported attribute to true -->

 <activity

 android:name="org.jssec.android.activity.inhouseactivity.InhouseActivity"

 android:exported="true"

 android:permission="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

 </application>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 67

</manifest>

InhouseActivity.java
package org.jssec.android.activity.inhouseactivity;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class InhouseActivity extends Activity {

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" in the keystore.

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // *** POINT 6 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",

 Toast.LENGTH_LONG).show();

 finish();

 return;

 }

 // *** POINT 7 *** Handle the received intent carefully and securely, even though the intent was sent from an

in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = getIntent().getStringExtra("PARAM");

 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

 }

 public void onReturnResultClick(View view) {

 // *** POINT 8 *** Sensitive information can be returned since the requesting application is in-house.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

68 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Sensitive Info");

 setResult(RESULT_OK, intent);

 finish();

 }

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 69

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

70 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

*** Point9 *** When exporting an APK, sign the APK with the same developer key as the destination

application.

Figure 4.1-2

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 71

Sample code for using an In-house Activity is described below.

Points (Using an activity):

10. Declare that you want to use the in-house signature permission.

11. Verify that the in-house signature permission is defined by an in-house application.

12. Verify that the destination application is signed with the in-house certificate.

13. Sensitive information can be sent only by putExtra() since the destination application is in-house.

14. Use explicit intents to call an In-house Activity.

15. Handle the received data carefully and securely, even though the data came from an in-house

application.

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.activity.inhouseuser" >

 <!-- *** POINT 10 *** Declare to use the in-house signature permission -->

 <uses-permission

 android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name="org.jssec.android.activity.inhouseuser.InhouseUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

InhouseUserActivity.java
package org.jssec.android.activity.inhouseuser;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

72 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

public class InhouseUserActivity extends Activity {

 // Target Activity information

 private static final String TARGET_PACKAGE = "org.jssec.android.activity.inhouseactivity";

 private static final String TARGET_ACTIVITY = "org.jssec.android.activity.inhouseactivity.InhouseActivity";

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" in the keystore.

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 private static final int REQUEST_CODE = 1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onUseActivityClick(View view) {

 // *** POINT 11 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",

 Toast.LENGTH_LONG).show();

 return;

 }

 // ** POINT 12 *** Verify that the destination application is signed with the in-house certificate.

 if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {

 Toast.makeText(this, "Target application is not an in-house application.", Toast.LENGTH_LONG).show();

 return;

 }

 try {

 Intent intent = new Intent();

 // *** POINT 13 *** Sensitive information can be sent only by putExtra() since the destination application

 is in-house.

 intent.putExtra("PARAM", "Sensitive Info");

 // *** POINT 14 *** Use explicit intents to call an In-house Activity.

 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

 startActivityForResult(intent, REQUEST_CODE);

 }

 catch (ActivityNotFoundException e) {

 Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 73

 }

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {

 case REQUEST_CODE:

 String result = data.getStringExtra("RESULT");

 // *** POINT 15 *** Handle the received data carefully and securely,

 // even though the data came from an in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();

 break;

 }

 }

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

74 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 75

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination

application.

Figure 4.1-3

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

76 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

4.1.2. Rule Book

Be sure to follow the rules below when creating or sending an Intent to an activity.

1. Activities that are Used Only Internally to the Application Must be Set Private (Required)

2. Do Not Specify taskAffinity (Required)

3. Do Not Specify launchMode (Required)

4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)

5. Handling the Received Intent Carefully and Securely (Required)

6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House

Application (Required)

7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)

8. Use the explicit Intents if the destination Activity is predetermined. (Required)

9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

10. Verify the Destination Activity if Linking with Another Company's Application

 (Required)

11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of

Protection (Required)

12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

4.1.2.1. Activities that are Used Only Internally to the Application Must be Set Private (Required)

Activities which are only used in a single application are not required to be able to receive any Intents

from other applications. Developers often assume that Activities intended to be private will not be

attacked but it is necessary to explicitly make these Activities private in order to stop malicious

Intents from being received.

AndroidManifest.xml
 <!-- Private activity -->

 <!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->

 <activity

 android:name=".PrivateActivity"

 android:label="@string/app_name"

 android:exported="false" />

Intent filters should not be set on activities that are only used in a single application. Due to the

characteristics of Intent filters, Due to the characteristics of how Intent filters work, even if you intend

to send an Intent to a Private Activity internally, if you send the Intent through an Intent filter than you

may unintentionally start another Activity. Please see Advanced Topics "4.1.3.1Combining Exported

Attributes and Intent Filter Settings (For Activities)" for more details.

AndroidManifest.xml(Not recommended)
 <!-- Private activity -->

 <!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->

 <activity

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 77

 android:name=".PictureActivity"

 android:label="@string/picture_name"

 android:exported="false" >

 <intent-filter>

 <action android:name="org.jssec.android.activity.OPEN />

 </intent-filter>

 </activity>

4.1.2.2. Do Not Specify taskAffinity (Required)

In Android OS, Activities are managed by tasks. Task names are determined by the affinity that the

root Activity has. On the other hand, for Activities other than root Activities, the task to which the

Activity belongs is not determined by the Affinity only, but also depends on the Activity's launch

mode. Please refer to "4.1.3.4 Root Activity" for more details.

In the default setting, each Activity uses its package name as its affinity. As a result, tasks are

allocated according to application, so all Activities in a single application will belong to the same task.

To change the task allocation, you can make an explicit declaration for the affinity in the

AndroidManifest.xml file or you can set a flag in an Intent sent to an Activity. However, if you change

task allocations, there is a risk that another application could read the Intents sent to Activities

belonging to another task.

Be sure not to specify android:taskAffinity in the AndroidManifest.xml file and use the default setting

keeping the affinity as the package name in order to prevent sensitive information inside sent or

received Intents from being read by another application.

Below is an example AndroidManifest.xml file for creating and using Private Activities.

AndroidManifest.xml
 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- Private activity -->

 <!-- *** POINT 1 *** Do not specify taskAffinity -->

 <activity

 android:name=".PrivateActivity"

 android:label="@string/app_name"

 android:exported="false" />

 </application>

Please refer to the "Google Android Programming guide"2, the Google Developer’s API Guide "Tasks

and Back Stack"3, "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity" for more

2 Author Egawa, Fujii, Asano, Fujita, Yamada, Yamaoka, Sano, Takebata, “Google Android Programming

Guide”, ASCII Media Works, July 2009

3 http://developer.android.com/guide/components/tasks-and-back-stack.html

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

78 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

details about tasks and affinities.

4.1.2.3. Do Not Specify launchMode (Required)

The Activity launch mode is used to control the settings for creating new tasks and Activity instances

when starting an Activity. By default it is set to "standard". In the "standard" setting, new instances

are always created when starting an Activity, tasks follow the tasks belonging to the calling Activity,

and it is not possible to create a new task. When a new task is created, it is possible for other

applications to read the contents of the calling Intent so it is required to use the "standard" Activity

launch mode setting when sensitive information is included in an Intent.

The Activity launch mode can be explicitly set in the android:launchMode attribute in the

AndroidManifest.xml file, but because of the reason explained above, this should not be set in the

Activity declaration and the value should be kept as the default "standard".

AndroidManifest.xml
 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- Private activity -->

 <!-- *** POINT 2 *** Do not specify launchMode -->

 <activity

 android:name=".PrivateActivity"

 android:label="@string/app_name"

 android:exported="false" />

 </application>

Please refer to "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity."

4.1.2.4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity(Required)

The launch mode of an Activity can be changed when executing startActivity() or

startActivityForResult() and in some cases a new task may be generated. Therefore it is necessary to

not change the launch mode of Activity during execution.

To change the Activity launch mode, set the Intent flags by using setFlags() or addFlags() and use that

Intent as an argument to startActivity() or startActivityForResult(). FLAG_ACTIVITY_NEW_TASK is the

flag used to create a new task. When the FLAG_ACTIVITY_NEW_TASK is set, a new task will be created

if the called Activity does not exist in the background or foreground.

The FLAG_ACTIVITY_MULTIPLE_TASK flag can be set simultaneously with FLAG_ACTIVITY_NEW_TASK.

In this case, a new task will always be created. New tasks may be created with either setting so these

should not be set with Intents that handle sensitive information.

Example of sending an intent
 // *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent to start an activity.

 Intent intent = new Intent(this, PrivateActivity.class);

 intent.putExtra("PARAM", "Sensitive Info");

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 79

 startActivityForResult(intent, REQUEST_CODE);

In addition, you may think that there is a way to prevent the contents of an Intent from being read

even if a new task was created by explicitly setting the FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS

flag. However, even by using this method, the contents can be read by a third party so you should

avoid any usage of FLAG_ACTIVITY_NEW_TASK.

Please refer to "4.1.3.1Combining Exported Attributes and Intent Filter Settings (For Activities)"

"4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity."

4.1.2.5. Handling the Received Intent Carefully and Securely (Required)

Risks differ depending on the types of Activity, but when processing a received Intent data, the first

thing you should do is input validation.

Since Public Activities can receive Intents from untrusted sources, they can be attacked by malware.

On the other hand, Private Activities will never receive any Intents from other applications directly,

but it is possible that a Public Activity in the targeted application may forward a malicious Intent to a

Private Activity so you should not assume that Private Activities cannot receive any malicious input.

Since Partner Activities and In-house Activities also have the risk of a malicious intent being

forwarded to them as well, it is necessary to perform input validation on these Intents as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.1.2.6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House

Application (Required)

Make sure to protect your in-house Activities by defining an in-house signature permission when

creating the Activity. Since defining a permission in the AndroidManifest.xml file or declaring a

permission request does not provide adequate security, please be sure to refer to "5.2.1.2 How to

Communicate Between In-house Applications with In-house-defined Signature Permission."

4.1.2.7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)

When you use setResult() to return data, the reliability of the destination application will depend on

the Activity type. When Public Activities are used to return data, the destination may turn out to be

malware in which case that information could be used in a malicious way. For Private and In-house

Activities, there is not much need to worry about data being returned to be used maliciously because

they are being returned to an application you control. Partner Activities are somewhat in the middle.

As above, when returning data from Activities, you need to pay attention to information leakage from

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

80 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

the destination application.

Example of returning data.

 public void onReturnResultClick(View view) {

 // *** POINT 6 *** Information that is granted to be disclosed to a partner application can be return

ed.

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Sensitive Info");

 setResult(RESULT_OK, intent);

 finish();

 }

4.1.2.8. Use the explicit Intents if the destination Activity is predetermined. (Required)

When using an Activity by implicit Intents, the Activity in which the Intent gets sent to is determined

by the Android OS. If the Intent is mistakenly sent to malware then Information leakage can occur. On

the other hand, when using an Activity by explicit Intents, only the intended Activity will receive the

Intent so this is much safer.

Unless it is absolutely necessary for the user to determine which application's Activity the intent

should be sent to, you should use explicit intents and specify the destination in advance.

Using an Activity in the same application by an explicit Intent
 Intent intent = new Intent(this, PictureActivity.class);

 intent.putExtra("BARCODE", barcode);

 startActivity(intent);

Using other applicaion's Public Activity by an explicit Intent

 Intent intent = new Intent();

 intent.setClassName(

 "org.jssec.android.activity.publicactivity",

 "org.jssec.android.activity.publicactivity.PublicActivity");

 startActivity(intent);

However, even when using another application's Public Activity by explicit Intents, it is possible that

the destination Activity could be malware. This is because even if you limit the destination by

package name, it is still possible that a malicious application can fake the same package name as the

real application. To eliminate this type of risk, it is necessary to consider using a Partner or In-house.

Please refer to "4.1.3.1Combining Exported Attributes and Intent Filter Settings (For Activities)"

4.1.2.9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

While the risks differ slightly according to what type of Activity you accessing, when processing Intent

data received as a returned value, you always need to perform input validation on the received data.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 81

Public Activities have to accept returned Intents from untrusted sources so when accessing a Public

Activity it is possible that, the returned Intents are actually sent by malware. It is often mistakenly

thought that all returned Intents from a Private Activity are safe because they are originating from the

same application. However, since it is possible that an intent received from an untrusted source is

indirectly forwarded, you should not blindly trust the contents of that Intent. Partner and In-house

Activities have a risk somewhat in the middle of Private and Public Activities. Be sure to input validate

these Activities as well.

Please refer to "3.2 Handling Input Data Carefully and Securely" for more information.

4.1.2.10. Verify the Destination Activity if Linking with Another Company's Application

 (Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by

saving a copy of the company's certificate hash inside your application and checking it with the

certificate hash of the destination application. This will prevent a malicious application from being

able to spoof Intents. Please refer to sample code section "4.1.1.3 Creating/Using Partner Activities"

for the concrete implementation method. For technical details, please refer to "4.1.3.2 Validating the

Requesting Application."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

82 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

4.1.2.11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of

Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another

application secondhand, you need to make sure that it has the same required permissions needed to

access the asset. In the Android OS permission security model, only an application that has been

granted proper permissions can directly access a protected asset. However, there is a loophole

because an application with permissions to an asset can act as a proxy and allow access to an

unprivileged application. Substantially this is the same as re-delegating a permission so it is referred

to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4 Permission Re-delegation

Problem."

4.1.2.12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

You should not send sensitive information to untrusted parties. Even when you are linking with a

specific application, there is still a chance that you unintentionally send an Intent to a different

application or that a malicious third party can steal your Intents. Please refer to "4.1.3.5 Log Output

When using Activities."

You need to consider the risk of information leakage when sending sensitive information to an

Activity. You must assume that all data in Intents sent to a Public Activity can be obtained by a

malicious third party. In addition, there is a variety of risks of information leakage when sending

Intents to Partner or In-house Activities as well depending on the implementation. Even when

sending data to Private Activities, there is a risk that the data in the Intent could be leaked through

LogCat. Information in the extras part of the Intent is not output to LogCat so it is best to store

sensitive information there.

However, not sending sensitive data in the first place is the only perfect solution to prevent

information leakage therefore you should limit the amount of sensitive information being sent as

much as possible. When it is necessary to send sensitive information, the best practice is to only send

to a trusted Activity and to make sure the information cannot be leaked through LogCat.

In addition, sensitive information should never be sent to the root Activity. Root Activities are

Activities that are called first when a task is created. For example, the Activity which is launched from

launcher is always the root Activity.

Please refer to "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity" for more

details on root Activities.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 83

4.1.3. Advanced Topics

4.1.3.1. Combining Exported Attributes and Intent Filter Settings (For Activities)

We have explained how to implement the four types of Activities in this guidebook: Private Activities,

Public Activities, Partner Activities, and In-house Activities. The various combinations of permitted

settings for each type of exported attribute defined in the AndroidManifest.xml file and the

intent-filter elements are defined in the table below. Please verify the compatibility of the exported

attribute and intent-filter element with the Activity you are trying to create.

Table 4.1-2

 Value of exported attribute

True False Not specified

Intent Filter defined Public (Do not Use) (Do not Use)

Intent Filter Not

Defined

Public, Partner,

In- house

AndroidManifest.xml (Do not Use)

The reason why an undefined intent filter and an exported attribute of false should not be used is

that there is a loophole in Android's behavior, and because of how Intent filters work, other

application's Activities can be called unexpectedly. The following two figures below show this

explanation. Figure 4.1-4 is an example of normal behavior in which a Private Activity (Application A)

can be called by an implicit Intent only from the same application. The Intent filter (action = "X") is

defined to work only inside Application A, so this is the expected behavior.

Figure 4.1-4

Figure 4.1-5 below shows a scenario in which the same Intent filter (action="X") is defined in

Application B as well as Application A. Application A is trying to call a Private Activity in the same

application by sending an implicit Intent, but this time a dialogue box asking the user which

application to select is displayed, and the Public Activity B-1 in Application B called by mistake due to

Android device

Application A
Call an activity with
the implicit intent

Private Activity A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Call the activity with
the implicit intent

Intent(“X”)

Since the activity A-1 is private one,
it can be called only by the application A.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

84 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

the user selection. Due to this loophole, it is possible that sensitive information can be sent to other

applications or application may receive an unexpected retuned value.

Figure 4.1-5

As shown above, using Intent filters to send implicit Intents to Private Activities may result in

unexpected behavior so it is best to avoid this setting. In addition, we have verified that this behavior

does not depend on the installation order of Application A and Application B.

4.1.3.2. Validating the Requesting Application

Here we explain the technical information about how to implement a Partner Activity. Partner

applications permit that only particular applications which are registered in a whitelist are allowed

access and all other applications are denied. Because applications other than in-house applications

also need access permission, we cannot use signature permissions for access control.

Simply speaking, we want to validate the application trying to use the Partner Activity by checking if it

is registered in a predefined whitelist and allow access if it is and deny access if it is not. Application

validation is done by obtaining the certificate from the application requesting access and comparing

its hash with the one in the whitelist.

Some developers may think that it is sufficient to just compare the package name without obtaining

the certificate, however, it is easy to spoof the package name of a legitimate application so this is not

a good method to check for authenticity. Arbitrarily assignable values should not be used for

authentication. On the other hand, because only the application developer has the developer key for

signing its certificate, this is a better method for identification. Since the certificate cannot be easily

Android device

Application A
Call an activity with
the implicit intent

Private Activity A-1
exported=“false”

action=“X”

When the activity B-1 that has the
same action exists, OS display the
selector dialog, and public activity B-1is
called depends on user selection.

Application B

Public Activity B-1
exported=“true”

action=“X”

Intent(“X”)

Application
selector

A-1

B-1

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 85

spoofed, unless a malicious third party can steal the developer key, there is a very small chance that

malicious application will be trusted. While it is possible to store the entire certificate in the whitelist,

it is sufficient to only store the SHA-256 hash value in order to minimize the file size.

There are two restrictions for using this method.

 The requesting application has to use startActivityForResult() instead of startActivity().

 The requesting application can only call from an Activity.

The second restriction is the restriction imposed as a result of the first restriction, so technically

there is only a single restriction.

This restriction occurs due to the restriction of Activity.getCallingPackage() which gets the package

name of the calling application. Activity.getCallingPackage() returns the package name of source

(requesting) application only in case it is called by startActivityForResult(), but unfortunately, when it

is called by startActivity(), it only returns null. Because of this, when using the method explained here,

the source (requesting) application needs to use startActivityForResult() even if it does not need to

obtain a return value. In addition, startActivityForResult() can be used only in Activity classes, so the

source (requester) is limited to Activities.

PartnerActivity.java
package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerActivity extends Activity {

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.activity.partneruser.

 sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // Certificate hash value of "partner key" in the keystore.

 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register the other partner applications in the same way.

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

86 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.

 if (!checkPartner(this, getCallingActivity().getPackageName())) {

 Toast.makeText(this,

 "Requesting application is not a partner application.",

 Toast.LENGTH_LONG).show();

 finish();

 return;

 }

 // *** POINT 5 *** Handle the received intent carefully and securely, even though the intent was sent from a p

artner application.

 // Omitted, since this is a sample. Refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

 }

 public void onReturnResultClick(View view) {

 // *** POINT 6 *** Only return Information that is granted to be disclosed to a partner application.

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Information for partner applications");

 setResult(RESULT_OK, intent);

 finish();

 }

}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 87

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

88 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

4.1.3.3. Reading Intents Sent to an Activity

In Android 5.0 (API Level 21) and later, the information retrieved with getRecentTasks() has been

limited to the caller's own tasks and possibly some other tasks such as home that are known to not

be sensitive. However applications, which support the versions under Android 5.0 (API Level 21),

should protect against leaking sensitive information.

The following describes the contents of this problem occurring in Android 5.0 and earlier version.

Intents that are sent to the task's root Activity are added to the task history. A root Activity is the first

Activity started in a task. It is possible for any application to read the Intents added to the task history

by using the ActivityManager class.

Sample code for reading the task history from an application is shown below. To browse the task

history, specify the GET_TASKS permission in the AndroidManifest.xml file.

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.intent.maliciousactivity" >

 <!-- Use GET_TASKS Permission -->

 <uses-permission android:name="android.permission.GET_TASKS" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MaliciousActivity"

 android:label="@string/title_activity_main"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

MaliciousActivity.java
package org.jssec.android.intent.maliciousactivity;

import java.util.List;

import java.util.Set;

import android.app.Activity;

import android.app.ActivityManager;

import android.content.Intent;

import android.os.Bundle;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 89

import android.util.Log;

public class MaliciousActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.malicious_activity);

 // Get am ActivityManager instance.

 ActivityManager activityManager = (ActivityManager) getSystemService(ACTIVITY_SERVICE);

 // Get 100 recent task info.

 List<ActivityManager.RecentTaskInfo> list = activityManager

 .getRecentTasks(100, ActivityManager.RECENT_WITH_EXCLUDED);

 for (ActivityManager.RecentTaskInfo r : list) {

 // Get Intent sent to root Activity and Log it.

 Intent intent = r.baseIntent;

 Log.v("baseIntent", intent.toString());

 Log.v(" action:", intent.getAction());

 Log.v(" data:", intent.getDataString());

 if (r.origActivity != null) {

 Log.v(" pkg:", r.origActivity.getPackageName() + r.origActivity.getClassName());

 }

 Bundle extras = intent.getExtras();

 if (extras != null) {

 Set<String> keys = extras.keySet();

 for(String key : keys) {

 Log.v(" extras:", key + "=" + extras.get(key).toString());

 }

 }

 }

 }

}

You can obtain specified entries of the task history by using the getRecentTasks() function of the

AcitivityManager class. Information about each task is stored in an instance of the

ActivityManager.RecentTaskInfo class, but Intents that were sent to the task's root Activity are stored

in its member variable baseIntent. Since the root Activity is the Activity which was started when the

task was created, please be sure to not fulfill the following two conditions when calling an Activity.

 A new task is created when the Activity is called.

 The called Activity is the task's root Activity which already exists in the background or

foreground.

4.1.3.4. Root Activity

The root Activity is the Activity which is the starting point of a task. In other words, this is the Activity

which was launched when task was created. For example, when the default Activity is launched by

launcher, this Activity will be the root Activity. According to the Android specifications, the contents

of Intents sent to the root Activity can be read from arbitrary applications. So, it is necessary to take

countermeasures not to send sensitive information to the root Activity. In this guidebook, the

following three rules have been made to avoid a called Activity to become root Activity.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

90 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 taskAffinity should not be specified.

 launchMode should not be specified.

 The FLAG_ACTIVITY_NEW_TASK flag should not be set in an Intent sent to an Activity.

We consider the situations that an Activity can become the root Activity below. A called Activity

becoming a root Activity depends on the following.

 The launch mode of the called Activity

 The task of a called Activity and its launch mode

First of all, let me explain the "Launch mode of called Activity." Launch mode of Activity can be set by

writing android:launchMode in AndroidManifest.xml. When it's not written, it's considered as

"standard". In addition, launch mode can be also changed by a flag to set to Intent. Flag

"FLAG_ACTIVITY_NEW_TASK" launches Activity by "singleTask" mode.

The launch modes that can be specified are as per below. I'll explain about the relation with the root

activity, mainly.

standard

Activity which is called by this mode won't be root, and it belongs to the caller side task. Every

time it's called, Instance of Activity is to be generated.

singleTop

This launch mode is the same as "standard", except for that the instance is not generated when

launching an Activity which is displayed in most front side of foreground task.

singleTask

This launch mode determines the task to which the activity would be belonging by Affinity value.

When task which is matched with Activity's affinity doesn't exist either in background or in

foreground, a new task is generated along with Activity's instance. When task exists, neither of

them is to be generated. In the former one, the launched Activity's Instance becomes root.

singleInstance

Same as "singleTask", but following point is different. Only root Activity can belongs to the newly

generated task. So instance of Activity which was launched by this mode is always root activity.

Now, we need to pay attention to the case that the class name of called Activity and the class

name of Activity which is included in a task are different although the task which has the same

name of called Activity's affinity already exists.

From as above, we can get to know that Activity which was launched by "singleTask" or

"singleInstance" has the possibility to become root. In order to secure the application's safety, it

should not be launched by these modes.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 91

Next, I'll explain about "Task of the called Activity and its launch mode". Even if Activity is called by

"standard" mode, it becomes root Activity in some cases depends on the task state to which Activity

belongs.

For example, think about the case that called Activity's task has being run already in background.

The problem here is the case that Activity Instance of the task is launched by singleInstance". When

the affinity of Activity which was called by "standard" is same with the task, new task is to be

generated by the restriction of existing "singleInstance" Activity. However, when class name of each

Activity is same, task is not generated and existing activity Instance is to be used. In any cases, that

called Activity becomes root Activity.

As per above, the conditions that root Activity is called are complicated, for example it depends on

the state of execution. So when developing applications, it's better to contrive that Activity is called

by "standard".

As an example of that Intent which is sent to Private Activity is read out form other application, the

sample code shows the case that caller side Activity of private Activity is launched by "singleInstance"

mode. In this sample code, private activity is launched by "standard" mode, but this private Activity

becomes root Activity of new task due the "singleInstance" condition of caller side Activity. At this

moment, sensitive information that is sent to Private Activity is recorded task history, so it can be

read out from other applications. FYI, both caller side Activity and Private Activity have the same

affinity.

AndroidManifest.xml(Not recommended)
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.activity.singleinstanceactivity" >

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- Set the launchMode of the root Activity to "singleInstance". -->

 <!-- Do not use taskAffinity -->

 <activity

 android:name="org.jssec.android.activity.singleinstanceactivity.PrivateUserActivity"

 android:label="@string/app_name"

 android:launchMode="singleInstance"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <!-- Private activity -->

 <!-- Set the launchMode to "standard." -->

 <!-- Do not use taskAffinity -->

 <activity

 android:name="org.jssec.android.activity.singleinstanceactivity.PrivateActivity"

 android:label="@string/app_name"

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

92 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

 android:exported="false" />

 </application>

</manifest>

Private Activity only returns the results to the received Intent.

PrivateActivity.java
package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.private_activity);

 // Handle intent securely, even though the intent sent from the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = getIntent().getStringExtra("PARAM");

 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();

 }

 public void onReturnResultClick(View view) {

 Intent intent = new Intent();

 intent.putExtra("RESULT", "Sensitive Info");

 setResult(RESULT_OK, intent);

 finish();

 }

}

In caller side of Private Activity, Private Activity is launched by "standard" mode without setting flag to

Intent.

PrivateUserActivity.java
package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateUserActivity extends Activity {

 private static final int REQUEST_CODE = 1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 93

 setContentView(R.layout.user_activity);

 }

 public void onUseActivityClick(View view) {

 // Start the Private Activity with "standard" lanchMode.

 Intent intent = new Intent(this, PrivateActivity.class);

 intent.putExtra("PARAM", "Sensitive Info");

 startActivityForResult(intent, REQUEST_CODE);

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {

 case REQUEST_CODE:

 String result = data.getStringExtra("RESULT");

 // Handle received result data carefully and securely,

 // even though the data came from the Activity in the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();

 break;

 }

 }

}

4.1.3.5. Log Output When using Activities

When using an activity, the contents of intent are output to LogCat by ActivityManager. The following

contents are to be output to LogCat, so in this case, sensitive information should not be included

here.

 Destination Package name

 Destination Class name

 URI which is set by Intent#setData()

For example, when an application sent mails, the mail address is unfortunately outputted to LogCat if

the application would specify the mail address to URI. So, better to send by setting Extras.

When sending a mail as below, mail address is shown to the logCat.

MainActivity.java
 // URI is output to the LogCat.

 Uri uri = Uri.parse("mailtoest@gmail.com");

 Intent intent = new Intent(Intent.ACTION_SENDTO, uri);

 startActivity(intent);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

94 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

When using Extras, mail address is no more shown to the logCat.

MainActivity.java
 // Contents which was set to Extra, is not output to the LogCat.

 Uri uri = Uri.parse("mailto:");

 Intent intent = new Intent(Intent.ACTION_SENDTO, uri);

 intent.putExtra(Intent.EXTRA_EMAIL, new String[] {"test@gmail.com"});

 startActivity(intent);

However, there are cases where other applications can read the Extras data of intent using

ActivityManager#getRecentTasks(). Please refer to “4.1.2.2 Do Not Specify taskAffinity (Required)“,

“4.1.2.3 Do Not Specify launchMode (Required)“ and “4.1.2.4 Do Not Set the

FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)“.

4.1.3.6. Protecting against Fragment Injection in PreferenceActivity

When a class derived from PreferenceActivity is a public Activity, a problem known as Fragment

Injection 4 may arise. To prevent this problem from arising, it is necessary to override

PreferenceActivity.IsValidFragment() and check the validity of its arguments to ensure that the

Activity does not handle any Fragments without intention. (For more on the safety of input data, see

Section "3.2 Handling Input Data Carefully and Securely".)

Below we show a sample in which IsValidFragment() has been overridden. Note that, if the source

code has been obfuscated, class names and the results of parameter-value comparisons may change.

In this case it is necessary to pursue alternative countermeasures.

Example of an overridden isValidFragment() method
 protected boolean isValidFragment(String fragmentName) {

 // If the source code is obfuscated, we must pursue alternative strategies

 return PreferenceFragmentA.class.getName().equals(fragmentName)

 || PreferenceFragmentB.class.getName().equals(fragmentName)

 || PreferenceFragmentC.class.getName().equals(fragmentName)

 || PreferenceFragmentD.class.getName().equals(fragmentName);

 }

Note that if the app's targetSdkVersion is 19 or greater, failure to override

PreferenceActivity.isValidFragment() will result in a security exception and the termination of the app

whenever a Fragment is inserted [when isValidFragment() is called], so in this case overriding

PreferenceActivity.isValidFragment() is mandatory.

4 For more information on Fragment Injection, consult this URL:

https://securityintelligence.com/new-vulnerability-android-framework-fragment-injection/

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 95

4.2. Receiving/Sending Broadcasts

4.2.1. Sample Code

Creating Broadcast Receiver is required to receive Broadcast. Risks and countermeasures of using

Broadcast Receiver differ depending on the type of the received Broadcast.

You can find your Broadcast Receiver in the following judgment flow. The receiving applications

cannot check the package names of Broadcast-sending applications that are necessary for linking

with the partners. As a result, Broadcast Receiver for the partners cannot be created.

Table 4.2-1 Definition of broadcast receiver types

Type Definition

Private broadcast

receiver

A broadcast receiver that can receive broadcasts only from the same

application, therefore is the safest broadcast receiver

Public broadcast

receiver

A broadcast receiver that can receive broadcasts from an

unspecified large number of applications

In-house

broadcast receiver

A broadcast receiver that can receive broadcasts only from other

In-house applications

Figure 4.2-1

In addition, Broadcast Receiver can be divided into 2 types based on the definition methods, Static

Broadcast Receiver and Dynamic Broadcast Receiver. The differences between them can be found in

the following figure. In the sample code, an implementation method for each type is shown. The

implementation method for sending applications is also described because the countermeasure for

sending information is determined depending on the receivers.

Start

Receive broadcasts only
from the same application?

In-house Broadcast ReceiverPrivate Broadcast Receiver Public Broadcast Receiver

Receive broadcasts only
from unspecified number

application?

Yes No

Yes No

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

96 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Table 4.2-2

 Definition method Characteristic

Static Broadcast

Receiver

Define by writing

<receiver> elements in

AndroidManifest.xml

 There is a restriction that some Broadcasts

(e.g. ACTION_BATTERY_CHANGED) sent by

system cannot be received.

 Broadcast can be received from

application's initial boot till uninstallation.

Dynamic Broadcast

Receiver

By calling

registerReceiver() and

unregisterReceiver() in a

program,

register/unregister

Broadcast Receiver

dynamically.

 Broadcasts which cannot be received by

static Broadcast Receiver can be received.

 The period of receiving Broadcasts can be

controlled by the program. For example,

Broadcasts can be received only while

Activity is on the front side.

 Private Broadcast Receiver cannot be

created.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 97

4.2.1.1. Private Broadcast Receiver - Receiving/Sending Broadcasts

Private Broadcast Receiver is the safest Broadcast Receiver because only Broadcasts sent from within

the application can be received. Dynamic Broadcast Receiver cannot be registered as Private, so

Private Broadcast Receiver consists of only Static Broadcast Receivers.

Points (Receiving Broadcasts):

1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from within

the same application.

3. Sensitive information can be sent as the returned results since the requests come from within the

same application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.broadcast.privatereceiver" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <!-- Private Broadcast Receiver -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

 <receiver

 android:name=".PrivateReceiver"

 android:exported="false" />

 <activity

 android:name=".PrivateSenderActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

PrivateReceiver.java
package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PrivateReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

98 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 // *** POINT 2 *** Handle the received intent carefully and securely,

 // even though the intent was sent from within the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = intent.getStringExtra("PARAM");

 Toast.makeText(context,

 String.format("Received param: ¥"%s¥"", param),

 Toast.LENGTH_SHORT).show();

 // *** POINT 3 *** Sensitive information can be sent as the returned results since the requests come from with

in the same application.

 setResultCode(Activity.RESULT_OK);

 setResultData("Sensitive Info from Receiver");

 abortBroadcast();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 99

The sample code for sending Broadcasts to private Broadcast Receiver is shown below. Please pay

attention that Sticky cannot be used here though the method of sending Broadcasts to private

Broadcast Receiver is said to be safe from the security point of view.

Points (Sending Broadcasts):

4. Use the explicit Intent with class specified to call a receiver within the same application.

5. Sensitive information can be sent since the destination Receiver is within the same application.

6. Handle the received result data carefully and securely, even though the data came from the

Receiver within the same application.

PrivateSenderActivity.java
package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateSenderActivity extends Activity {

 public void onSendNormalClick(View view) {

 // *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same application

.

 Intent intent = new Intent(this, PrivateReceiver.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applica

tion.

 intent.putExtra("PARAM", "Sensitive Info from Sender");

 sendBroadcast(intent);

 }

 public void onSendOrderedClick(View view) {

 // *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same application

.

 Intent intent = new Intent(this, PrivateReceiver.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applica

tion.

 intent.putExtra("PARAM", "Sensitive Info from Sender");

 sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);

 }

 private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 // *** POINT 6 *** Handle the received result data carefully and securely,

 // even though the data came from the Receiver within the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String data = getResultData();

 PrivateSenderActivity.this.logLine(

 String.format("Received result: ¥"%s¥"", data));

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

100 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 };

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 101

4.2.1.2. Public Broadcast Receiver - Receiving/Sending Broadcasts

Public Broadcast Receiver is the Broadcast Receiver that can receive Broadcasts from unspecified

large number of applications, so it's necessary to pay attention that it may receive Broadcasts from

malware.

Points (Receiving Broadcasts):

1. Explicitly set the exported attribute to true.

2. Handle the received Intent carefully and securely.

3. When returning a result, do not include sensitive information.

Public Receiver which is the sample code for public Broadcast Receiver can be used both in static

Broadcast Receiver and Dynamic Broadcast Receiver.

PublicReceiver.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PublicReceiver extends BroadcastReceiver {

 private static final String MY_BROADCAST_PUBLIC =

 "org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

 public boolean isDynamic = false;

 private String getName() {

 return isDynamic ? "Public Dynamic Broadcast Receiver" : "Public Static Broadcast Receiver";

 }

 @Override

 public void onReceive(Context context, Intent intent) {

 // *** POINT 2 *** Handle the received Intent carefully and securely.

 // Since this is a public broadcast receiver, the requesting application may be malware.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (MY_BROADCAST_PUBLIC.equals(intent.getAction())) {

 String param = intent.getStringExtra("PARAM");

 Toast.makeText(context,

 String.format("%s:¥nReceived param: ¥"%s¥"", getName(), param),

 Toast.LENGTH_SHORT).show();

 }

 // *** POINT 3 *** When returning a result, do not include sensitive information.

 // Since this is a public broadcast receiver, the requesting application may be malware.

 // If no problem when the information is taken by malware, it can be returned as result.

 setResultCode(Activity.RESULT_OK);

 setResultData(String.format("Not Sensitive Info from %s", getName()));

 abortBroadcast();

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

102 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

}

Static Broadcast Receive is defined in AndroidManifest.xml.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.broadcast.publicreceiver" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <!-- Public Static Broadcast Receiver -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

 <receiver

 android:name=".PublicReceiver"

 android:exported="true" >

 <intent-filter>

 <action android:name="org.jssec.android.broadcast.MY_BROADCAST_PUBLIC" />

 </intent-filter>

 </receiver>

 <service

 android:name=".DynamicReceiverService"

 android:exported="false" />

 <activity

 android:name=".PublicReceiverActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

In Dynamic Broadcast Receiver, registration/unregistration is executed by calling registerReceiver()

or unregisterReceiver() in the program. In order to execute registration/unregistration by button

operations, the button is allocated on PublicReceiverActivity. Since the scope of Dynamic Broadcast

Receiver Instance is longer than PublicReceiverActivity, it cannot be kept as the member variable of

PublicReceiverActivity. In this case, keep the Dynamic Broadcast Receiver Instance as the member

variable of DynamicReceiverService, and then start/end DynamicReceiverService from

PublicReceiverActivity to register/unregister Dynamic Broadcast Receiver indirectly.

DynamicReceiverService.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Service;

import android.content.Intent;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 103

import android.content.IntentFilter;

import android.os.IBinder;

import android.widget.Toast;

public class DynamicReceiverService extends Service {

 private static final String MY_BROADCAST_PUBLIC =

 "org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

 private PublicReceiver mReceiver;

 @Override

 public IBinder onBind(Intent intent) {

 return null;

 }

 @Override

 public void onCreate() {

 super.onCreate();

 // Register Public Dynamic Broadcast Receiver.

 mReceiver = new PublicReceiver();

 mReceiver.isDynamic = true;

 IntentFilter filter = new IntentFilter();

 filter.addAction(MY_BROADCAST_PUBLIC);

 filter.setPriority(1); // Prioritize Dynamic Broadcast Receiver, rather than Static Broadcast Receiver.

 registerReceiver(mReceiver, filter);

 Toast.makeText(this,

 "Registered Dynamic Broadcast Receiver.",

 Toast.LENGTH_SHORT).show();

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 // Unregister Public Dynamic Broadcast Receiver.

 unregisterReceiver(mReceiver);

 mReceiver = null;

 Toast.makeText(this,

 "Unregistered Dynamic Broadcast Receiver.",

 Toast.LENGTH_SHORT).show();

 }

}

PublicReceiverActivity.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class PublicReceiverActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

104 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 setContentView(R.layout.main);

 }

 public void onRegisterReceiverClick(View view) {

 Intent intent = new Intent(this, DynamicReceiverService.class);

 startService(intent);

 }

 public void onUnregisterReceiverClick(View view) {

 Intent intent = new Intent(this, DynamicReceiverService.class);

 stopService(intent);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 105

Next, the sample code for sending Broadcasts to public Broadcast Receiver is shown. When sending

Broadcasts to public Broadcast Receiver, it's necessary to pay attention that Broadcasts can be

received by malware.

Points (Sending Broadcasts):

4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

PublicSenderActivity.java
package org.jssec.android.broadcast.publicsender;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicSenderActivity extends Activity {

 private static final String MY_BROADCAST_PUBLIC =

 "org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

 public void onSendNormalClick(View view) {

 // *** POINT 4 *** Do not send sensitive information.

 Intent intent = new Intent(MY_BROADCAST_PUBLIC);

 intent.putExtra("PARAM", "Not Sensitive Info from Sender");

 sendBroadcast(intent);

 }

 public void onSendOrderedClick(View view) {

 // *** POINT 4 *** Do not send sensitive information.

 Intent intent = new Intent(MY_BROADCAST_PUBLIC);

 intent.putExtra("PARAM", "Not Sensitive Info from Sender");

 sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);

 }

 public void onSendStickyClick(View view) {

 // *** POINT 4 *** Do not send sensitive information.

 Intent intent = new Intent(MY_BROADCAST_PUBLIC);

 intent.putExtra("PARAM", "Not Sensitive Info from Sender");

 //sendStickyBroadcast is deprecated at API Level 21

 sendStickyBroadcast(intent);

 }

 public void onSendStickyOrderedClick(View view) {

 // *** POINT 4 *** Do not send sensitive information.

 Intent intent = new Intent(MY_BROADCAST_PUBLIC);

 intent.putExtra("PARAM", "Not Sensitive Info from Sender");

 //sendStickyOrderedBroadcast is deprecated at API Level 21

 sendStickyOrderedBroadcast(intent, mResultReceiver, null, 0, null, null);

 }

 public void onRemoveStickyClick(View view) {

 Intent intent = new Intent(MY_BROADCAST_PUBLIC);

 //removeStickyBroadcast is deprecated at API Level 21

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

106 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 removeStickyBroadcast(intent);

 }

 private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String data = getResultData();

 PublicSenderActivity.this.logLine(

 String.format("Received result: ¥"%s¥"", data));

 }

 };

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 107

4.2.1.3. In-house Broadcast Receiver - Receiving/Sending Broadcasts

In-house Broadcast Receiver is the Broadcast Receiver that will never receive any Broadcasts sent

from other than in-house applications. It consists of several in-house applications, and it's used to

protect the information or functions that in-house application handles.

Points (Receiving Broadcasts):

1. Define an in-house signature permission to receive Broadcasts.

2. Declare to use the in-house signature permission to receive results.

3. Explicitly set the exported attribute to true.

4. Require the in-house signature permission by the Static Broadcast Receiver definition.

5. Require the in-house signature permission to register Dynamic Broadcast Receiver.

6. Verify that the in-house signature permission is defined by an in-house application.

7. Handle the received intent carefully and securely, even though the Broadcast was sent from an

in-house application.

8. Sensitive information can be returned since the requesting application is in-house.

9. When Exporting an APK, sign the APK with the same developer key as the sending application.

In-house Receiver which is a sample code of in-house Broadcast Receiver is to be used both in Static

Broadcast Receiver and Dynamic Broadcast Receiver.

InhouseReceiver.java
package org.jssec.android.broadcast.inhousereceiver;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class InhouseReceiver extends BroadcastReceiver {

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" in the keystore.

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

108 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 private static final String MY_BROADCAST_INHOUSE =

 "org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

 public boolean isDynamic = false;

 private String getName() {

 return isDynamic ? "In-house Dynamic Broadcast Receiver" : "In-house Static Broadcast Receiver";

 }

 @Override

 public void onReceive(Context context, Intent intent) {

 // *** POINT 6 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(context, MY_PERMISSION, myCertHash(context))) {

 Toast.makeText(context, "The in-house signature permission is not declared by in-house application.",

 Toast.LENGTH_LONG).show();

 return;

 }

 // *** POINT 7 *** Handle the received intent carefully and securely,

 // even though the Broadcast was sent from an in-house application..

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (MY_BROADCAST_INHOUSE.equals(intent.getAction())) {

 String param = intent.getStringExtra("PARAM");

 Toast.makeText(context,

 String.format("%s:¥nReceived param: ¥"%s¥"", getName(), param),

 Toast.LENGTH_SHORT).show();

 }

 // *** POINT 8 *** Sensitive information can be returned since the requesting application is in-house.

 setResultCode(Activity.RESULT_OK);

 setResultData(String.format("Sensitive Info from %s", getName()));

 abortBroadcast();

 }

}

Static Broadcast Receiver is to be defined in AndroidManifest.xml.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.broadcast.inhousereceiver" >

 <!-- *** POINT 1 *** Define an in-house signature permission to receive Broadcasts -->

 <permission

 android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION"

 android:protectionLevel="signature" />

 <!-- *** POINT 2 *** Declare to use the in-house signature permission to receive results. -->

 <uses-permission

 android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 109

 <!-- *** POINT 3 *** Explicitly set the exported attribute to true. -->

 <!-- *** POINT 4 *** Require the in-house signature permission by the Static Broadcast Receiver definition. -

->

 <receiver

 android:name=".InhouseReceiver"

 android:permission="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION"

 android:exported="true">

 <intent-filter>

 <action android:name="org.jssec.android.broadcast.MY_BROADCAST_INHOUSE" />

 </intent-filter>

 </receiver>

 <service

 android:name=".DynamicReceiverService"

 android:exported="false" />

 <activity

 android:name=".InhouseReceiverActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Dynamic Broadcast Receiver executes registration/unregistration by calling registerReceiver() or

unregisterReceiver() in the program. In order to execute registration/unregistration by the button

operations, the button is arranged on InhouseReceiverActivity. Since the scope of Dynamic Broadcast

Receiver Instance is longer than InhouseReceiverActivity, it cannot be kept as the member variable of

InhouseReceiverActivity. So, keep Dynamic Broadcast Receiver Instance as the member variable of

DynamicReceiverService, and then start/end DynamicReceiverService from InhouseReceiverActivity

to register/unregister Dynamic Broadcast Receiver indirectly.

InhouseReceiverActivity.java
package org.jssec.android.broadcast.inhousereceiver;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class InhouseReceiverActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onRegisterReceiverClick(View view) {

 Intent intent = new Intent(this, DynamicReceiverService.class);

 startService(intent);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

110 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 }

 public void onUnregisterReceiverClick(View view) {

 Intent intent = new Intent(this, DynamicReceiverService.class);

 stopService(intent);

 }}

DynamicReceiverService.java
package org.jssec.android.broadcast.inhousereceiver;

import android.app.Service;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.IBinder;

import android.widget.Toast;

public class DynamicReceiverService extends Service {

 private static final String MY_BROADCAST_INHOUSE =

 "org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

 private InhouseReceiver mReceiver;

 @Override

 public IBinder onBind(Intent intent) {

 return null;

 }

 @Override

 public void onCreate() {

 super.onCreate();

 mReceiver = new InhouseReceiver();

 mReceiver.isDynamic = true;

 IntentFilter filter = new IntentFilter();

 filter.addAction(MY_BROADCAST_INHOUSE);

 filter.setPriority(1); // Prioritize Dynamic Broadcast Receiver, rather than Static Broadcast Receiver.

 // *** POINT 5 *** When registering a dynamic broadcast receiver, require the in-house signature permission.

 registerReceiver(mReceiver, filter, "org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION", null);

 Toast.makeText(this,

 "Registered Dynamic Broadcast Receiver.",

 Toast.LENGTH_SHORT).show();

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 unregisterReceiver(mReceiver);

 mReceiver = null;

 Toast.makeText(this,

 "Unregistered Dynamic Broadcast Receiver.",

 Toast.LENGTH_SHORT).show();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 111

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

112 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 113

*** Point 9 *** When exporting an APK, sign the APK with the same developer key as the sending

application.

Figure 4.2-2

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

114 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Next, the sample code for sending Broadcasts to in-house Broadcast Receiver is shown. When

sending Broadcasts to in-house Broadcast Receiver, it's necessary to require In-house-defined

Signature Permission of Broadcast Receiver side. So it's necessary to pay attention that there is a

restriction that Sticky cannot be used.

Points (Sending Broadcasts):

10. Define an in-house signature permission to receive results.

11. Declare to use the in-house signature permission to receive Broadcasts.

12. Verify that the in-house signature permission is defined by an in-house application.

13. Sensitive information can be returned since the requesting application is the in-house one.

14. Require the in-house signature permission of Receivers.

15. Handle the received result data carefully and securely.

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.broadcast.inhousesender" >

 <uses-permission android:name="android.permission.BROADCAST_STICKY"/>

 <!-- *** POINT 10 *** Define an in-house signature permission to receive results. -->

 <permission

 android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION"

 android:protectionLevel="signature" />

 <!-- *** POINT 11 *** Declare to use the in-house signature permission to receive Broadcasts. -->

 <uses-permission

 android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name="org.jssec.android.broadcast.inhousesender.InhouseSenderActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

InhouseSenderActivity.java
package org.jssec.android.broadcast.inhousesender;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 115

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class InhouseSenderActivity extends Activity {

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.broadcast.inhousesender.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" in the keystore.

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 private static final String MY_BROADCAST_INHOUSE =

 "org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

 public void onSendNormalClick(View view) {

 // *** POINT 12 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",

 Toast.LENGTH_LONG).show();

 return;

 }

 // *** POINT 13 *** Sensitive information can be returned since the requesting application is in-house.

 Intent intent = new Intent(MY_BROADCAST_INHOUSE);

 intent.putExtra("PARAM", "Sensitive Info from Sender");

 // *** POINT 14 *** Require the in-house signature permission to limit receivers.

 sendBroadcast(intent, "org.jssec.android.broadcast.inhousesender.MY_PERMISSION");

 }

 public void onSendOrderedClick(View view) {

 // *** POINT 12 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",

 Toast.LENGTH_LONG).show();

 return;

 }

 // *** POINT 13 *** Sensitive information can be returned since the requesting application is in-house.

 Intent intent = new Intent(MY_BROADCAST_INHOUSE);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

116 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 intent.putExtra("PARAM", "Sensitive Info from Sender");

 // *** POINT 14 *** Require the in-house signature permission to limit receivers.

 sendOrderedBroadcast(intent, "org.jssec.android.broadcast.inhousesender.MY_PERMISSION",

 mResultReceiver, null, 0, null, null);

 }

 private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 // *** POINT 15 *** Handle the received result data carefully and securely,

 // even though the data came from an in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String data = getResultData();

 InhouseSenderActivity.this.logLine(String.format("Received result: ¥"%s¥"", data));

 }

 };

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 117

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

118 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination

application.

Figure 4.2-3

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 119

4.2.2. Rule Book

Follow the rules below to Send or receive Broadcasts.

1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)

2. Handle the Received Intent Carefully and Securely (Required)

3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house

Application (Required)

4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the

Destination Application (Required)

5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)

6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be

Delivered (Required)

8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)

9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection

Level (Required)

4.2.2.1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)

Broadcast Receiver which is used only in the application should be set as private to avoid from

receiving any Broadcasts from other applications unexpectedly. It will prevent the application

function abuse or the abnormal behaviors.

Receiver used only within the same application should not be designed with setting Intent-filter.

Because of the Intent-filter characteristics, a public Receiver of other application may be called

unexpectedly by calling through Intent-filter even though a private Receiver within the same

application is to be called.

AndroidManifest.xml(Not recommended)
 <!-- Private Broadcast Receiver -->

 <!-- *** POINT 1 *** Set the exported attribute to false explicitly. -->

 <receiver

 android:name=".PrivateReceiver"

 android:exported="false" >

 <intent-filter>

 <action android:name="org.jssec.android.broadcast.MY_ACTION" />

 </intent-filter>

 </receiver>

Please refer to "4.2.3.1 Combinations of the exported Attribute and the Intent-filter setting (For

Receiver)."

4.2.2.2. Handle the Received Intent Carefully and Securely (Required)

Though risks are different depending on the types of the Broadcast Receiver, firstly verify the safety

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

120 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

of Intent when processing received Intent data.

Since Public Broadcast Receiver receives the Intents from unspecified large number of applications, it

may receive malware's attacking Intents. Private Broadcast Receiver will never receive any Intent from

other applications directly, but Intent data which a public Component received from other

applications may be forwarded to Private Broadcast Receiver. So don't think that the received Intent is

totally safe without any qualification. In-house Broadcast Receivers have some degree of the risks, so

it also needs to verify the safety of the received Intents.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.2.2.3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house

Application (Required)

In-house Broadcast Receiver which receives only Broadcasts sent by an In-house application should

be protected by in-house-defined Signature Permission. Permission definition/Permission request

declarations in AndroidManifest.xml are not enough to protecting, so please refer to "5.2.1.2 How to

Communicate Between In-house Applications with In-house-defined Signature Permission." ending

Broadcasts by specifying in-house-defined Signature Permission to receiverPermission parameter

requires verification in the same way.

4.2.2.4. When Returning a Result Information, Pay Attention to the Result Information Leakage from

the Destination Application (Required)

The Reliability of the application which returns result information by setResult() varies depending on

the types of the Broadcast Receiver. In case of Public Broadcast Receiver, the destination application

may be malware, and there may be a risk that the result information is used maliciously. In case of

Private Broadcast Receiver and In-house Broadcast Receiver, the result destination is In-house

developed application, so no need to mind the result information handling.

Need to pay attention to the result information leakage from the destination application when result

information is returned from Broadcast Receivers as above.

4.2.2.5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver

 (Required)

Broadcast is the created system to broadcast information to unspecified large number of applications

or notify them of the timing at once. So, broadcasting sensitive information requires the careful

designing for preventing the illicit obtainment of the information by malware.

For broadcasting sensitive information, only reliable Broadcast Receiver can receive it, and other

Broadcast Receivers cannot. The following are some examples of Broadcast sending methods.

 The method is to fix the address by Broadcast-sending with an explicit Intent for sending

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 121

Broadcasts to the intended reliable Broadcast Receivers only. There are 2 patterns in this method.

 When it's addressed to a Broadcast Receiver within the same application, specify the address

by Intent#setClass(Context, Class). Refer to sample code section "4.2.1.1 Private Broadcast

Receiver - Receiving/Sending Broadcast" for the concrete code.

 When it's addressed to a Broadcast Receiver in other applications, specify the address by

Intent#setClassName(String, String). Confirm the permitted application by comparing the

developer key of the APK signature in the destination package with the white list to send

Broadcasts. Actually the following method of using implicit Intents is more practical.

 The Method is to send Broadcasts by specifying in-house-defined Signature Permission to

receiverPermission parameter and make the reliable Broadcast Receiver declare to use this

Signature Permission. Refer to the sample code section "4.2.1.3 In-house Broadcast Receiver -

Receiving/Sending Broadcast" for the concrete code. In addition, implementing this

Broadcast-sending method needs to apply the rule "4.2.2.3 Use the In-house Defined Signature

Permission after Verifying that it's Defined by an In-house Application (Required)."

4.2.2.6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

Usually, the Broadcasts will be disappeared when they are processed to be received by the available

Broadcast Receivers. On the other hand, Sticky Broadcasts (hereafter, Sticky Broadcasts including

Sticky Ordered Broadcasts), will not be disappeared from the system even when they processed to be

received by the available Broadcast Receivers and will be able to be received by registerReceiver().

When Sticky Broadcast becomes unnecessary, it can be deleted anytime arbitrarily with

removeStickyBroadcast().

As it's presupposed that Sticky Broadcast is used by the implicit Intent. Broadcasts with specified

receiverPermission Parameter cannot be sent. So information sent by Sticky Broadcast may be taken

by unspecified large number of applications including malware. As a result, sensitive information

should not be sent by Sticky Broadcast.

4.2.2.7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not

Be Delivered (Required)

Ordered Broadcast without specified receiverPermission Parameter can be received by unspecified

large number of applications including malware. Ordered Broadcast is used to receive the returned

information from Receiver, and to make several Receivers execute processing one by one. Broadcasts

are sent to the Receivers in order of priority. So if the high- priority malware receives Broadcast first

and executes abortBroadcast(), Broadcasts won't be delivered to the following Receivers.

4.2.2.8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely

 (Required)

Basically the result data should be processed safely considering the possibility that received results

may be the attacking data though the risks vary depending on the types of the Broadcast Receiver

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

122 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

which has returned the result data.

When sender (source) Broadcast Receiver is public Broadcast Receiver, it receives the returned data

from unspecified large number of applications. So it may also receive malware's attacking data. When

sender (source) Broadcast Receiver is private Broadcast Receiver, it seems no risk. However the data

received by other applications may be forwarded as result data indirectly. So the result data should

not be considered as safe without any qualification. When sender (source) Broadcast Receiver is

In-house Broadcast Receiver, it has some degree of the risks. So it should be processed in a safe way

considering the possibility that the result data may be an attacking data.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.2.2.9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection

Level (Required)

When information or function assets protected by Permission are provided to other applications

secondarily, it's necessary to keep the protection standard by claiming the same Permission of the

destination application. In the Android Permission security models, privileges are managed only for

the direct access to the protected assets from applications. Because of the characteristics, acquired

assets may be provided to other applications without claiming Permission which is necessary for

protection. This is actually same as re-delegating Permission, as it is called, Permission

re-delegation problem. Please refer to "5.2.3.4 Permission Re-delegation Problem."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 123

4.2.3. Advanced Topics

4.2.3.1. Combinations of the exported Attribute and the Intent-filter setting (For Receiver)

Table 4.2 2 represents the permitted combination of export settings and Intent-filter elements when

implementing Receivers. The reason why the usage of exported="false" with Intent-filter definition is

principally prohibited, is described below.

Table 4.2-3 Usable or not; Combination of exported attribute and intent-filter elements

 Value of exported attribute

True False Not specified

Intent-filter defined OK (Do not Use) (Do not Use)

Intent Filter Not

Defined

OK OK (Do not Use)

Public Receivers in other applications may be called unexpectedly even though Broadcasts are sent to

the private Receivers within the same applications. This is the reason why specifying

exported="false" with Intent-filter definition is prohibited. The following 2 figures show how the

unexpected calls occur.

Figure 4.2-4 is an example of the normal behaviors which a private Receiver (application A) can be

called by implicit Intent only within the same application. Intent-filter (in the figure, action="X") is

defined only in application A, so this is the expected behavior.

Figure 4.2-4

Figure 4.2-5 is an example that Intent-filter (see action="X" in the figure) is defined in the

application B as well as in the application A. First of all, when another application (application C)

sends Broadcasts by implicit Intent, they are not received by a private Receiver (A-1) side. So there

won't be any security problem. (See the orange arrow marks in the Figure.)

Android device

Application A
Send a broadcast with
the implicit intent

Private Receiver A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Send a broadcast with
the implicit intent

Intent(“X”)

Since the receiver A-1 is private one,
it can receive broadcasts only from the
application A.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

124 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

From security point of view, the problem is application A's call to the private Receiver within the same

application. When the application A broadcasts implicit Intent, not only Private Receiver within the

same application, but also public Receiver (B-1) with the same Intent-filter definition can also receive

the Intent. (Red arrow marks in the Figure). In this case, sensitive information may be sent from the

application A to B. When the application B is malware, it will cause the leakage of sensitive

information. When the Broadcast is Ordered Broadcast, it may receive the unexpected result

information.

Figure 4.2-5

However, exported="false" with Intent-filter definition should be used when Broadcast Receiver to

receive only Broadcast Intent sent by the system is implemented. Other combination should not be

used. This is based on the fact that Broadcast Intent sent by the system can be received by

exported="false". If other applications send Intent which has same ACTION with Broadcast Intent

sent by system, it may cause an unexpected behavior by receiving it. However, this can be prevented

by specifying exported="false".

4.2.3.2. Receiver Won't Be Registered before Launching the Application in Android 3.1 or later

In Android 3.1 or later, it's necessary to pay attention that Broadcast Receiver which is statically

defined in AndroidManifest.xml won't be enable by just installing. By launching an application once,

then it will be able to receive Broadcasts. After installing, processes cannot be launched by receiving

Broadcasts as a trigger. By setting Intent to Intent.FLAG_INCLUDE_STOPPED_PACKAGES in Broadcast

sender side, the application can receive the Broadcasts even though the application has never been

launched.

Android device

Application A
Send a broadcast with
the implicit intent

Private Receiver A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Send a broadcast with
the implicit intent

Intent(“X”)

When several applications that have
the receiver defining the same action
(intent-filter) are installed, intents
are sent to all receivers.

Application B

Public Receiver B-1
exported=“true”

action=“X”

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 125

4.2.3.3. Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID

Application

Same UID can be provided to several applications. Even if it's private Broadcast Receiver, the

Broadcasts sent from the same UID application can be received.

However, it won't be a security problem. Since it's guaranteed that applications with the same UID

have the consistent developer keys for signing APK. It means that what private Broadcast Receiver

receives is only the Broadcast sent from In-house applications.

4.2.3.4. Types and Features of Broadcasts

Regarding Broadcasts, there are 4 types based on the combination of whether it's Ordered or not, and

Sticky or not. Based on Broadcast sending methods, a type of Broadcast to send is determined.

Table 4.2-4

Type of Broadcast Method for sending Ordered? Sticky?

Normal Broadcast sendBroadcast() No No

Ordered Broadcast sendOrderedBroadcast() Yes No

Sticky Broadcast sendStickyBroadcast() No Yes

Sticky Ordered Broadcast sendStickyOrderedBroadcast() Yes Yes

The feature of each Broad cast is described.

Table 4.2-5

Type of Broadcast Features for each type of Broadcast

Normal Broadcast Normal Broadcast disappears when it is sent to receivable Broadcast

Receiver. Broadcasts are received by several Broadcast Receivers

simultaneously. This is a difference from Ordered Broadcast.

Broadcasts are allowed to be received by the particular Broadcast

Receivers.

Ordered Broadcast Ordered Broadcast is characterized by receiving Broadcasts one by

one in order with receivable Broadcast Receivers. The

higher-priority Broadcast Receiver receives earlier. Broadcasts will

disappear when Broadcasts are delivered to all Broadcast Receivers

or a Broadcast Receiver in the process calls abortBroadcast().

Broadcasts are allowed to be received by the Broadcast Receivers

which declare the specified Permission. In addition, the result

information sent from Broadcast Receiver can be received by the

sender with Ordered Broadcasts. The Broadcast of SMS-receiving

notice (SMS_RECEIVED) is a representative example of Ordered

Broadcast.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

126 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Sticky Broadcast Sticky Broadcast does not disappear and remains in the system, and

then the application that calls registerReceiver() can receive Sticky

Broadcast later. Since Sticky Broadcast is different from other

Broadcasts, it will never disappear automatically. So when Sticky

Broadcast is not necessary, calling removeStickyBroadcast()

explicitly is required to delete Sticky Broadcast. Also, Broadcasts

cannot be received by the limited Broadcast Receivers with

particular Permission. The Broadcast of changing battery-state

notice (ACTION_BATTERY_CHANGED) is the representative example

of Sticky Broadcast.

Sticky Ordered Broadcast This is the Broadcast which has both characteristics of Ordered

Broadcast and Sticky Broadcast. Same as Sticky Broadcast, it cannot

allow only Broadcast Receivers with the particular Permission to

receive the Broadcast.

From the Broadcast characteristic behavior point of view, above table is conversely arranged in the

following one.

Table 4.2-6

Characteristic behavior of

Broadcast

Normal

Broadcast

Ordered

Broadcast

Sticky

Broadcast

Sticky Ordered

Broadcast

Limit Broadcast Receivers

which can receive Broadcast,

by Permission

OK OK - -

Get the results of process from

Broadcast Receiver
- OK - OK

Make Broadcast Receivers

process Broadcasts in order
- OK - OK

Receive Broadcasts later, which

have been already sent
- - OK OK

4.2.3.5. Broadcasted Information May be Output to the LogCat

Basically sending/receiving Broadcasts is not output to LogCat. However, the error log will be output

when lacking Permission causes errors in receiver/sender side. Intent information sent by Broadcast

is included in the error log, so after an error occurs it's necessary to pay attention that Intent

information is displayed in LogCat when Broadcast is sent.

Erorr of lacking Permission in sender side
W/ActivityManager(266): Permission Denial: broadcasting Intent { act=org.jssec.android.broadcastreceiver.creating.ac

tion.MY_ACTION } from org.jssec.android.broadcast.sending (pid=4685, uid=10058) requires org.jssec.android.permissio

n.MY_PERMISSION due to receiver org.jssec.android.broadcastreceiver.creating/org.jssec.android.broadcastreceiver.cre

ating.CreatingType3Receiver

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 127

Erorr of lacking Permission in receiver side
W/ActivityManager(275): Permission Denial: receiving Intent { act=org.jssec.android.broadcastreceiver.creating.actio

n.MY_ACTION } to org.jssec.android.broadcastreceiver.creating requires org.jssec.android.permission.MY_PERMISSION du

e to sender org.jssec.android.broadcast.sending (uid 10158)

4.2.3.6. Items to Keep in Mind When Placing an App Shortcut on the Home Screen

In what follows we discuss a number of items to keep in mind when creating a shortcut button for

launching an app from the home screen or for creating URL shortcuts such as bookmarks in web

browsers. As an example, we consider the implementation shown below.

Place an app shortcut on the home screen
 Intent targetIntent = new Intent(this, TargetActivity.class);

 // Intent to request shortcut creation

 Intent intent = new Intent("com.android.launcher.action.INSTALL_SHORTCUT");

 // Specify an Intent to be launched when the shortcut is tapped

 intent.putExtra(Intent.EXTRA_SHORTCUT_INTENT, targetIntent);

 Parcelable icon = Intent.ShortcutIconResource.fromContext(context, iconResource);

 intent.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE, icon);

 intent.putExtra(Intent.EXTRA_SHORTCUT_NAME, title);

 intent.putExtra("duplicate", false);

 // Use Broadcast to send the system our request for shortcut creation

 context.sendBroadcast(intent);

In the Broadcast sent by the above code snippet, the receiver is the home-screen app, and it is

difficult to identify the package name; one must take care to remember that this is a transmission to

a public receiver with an implicit intent. Thus the Broadcast sent by this snippet could be received by

any arbitrary app, including malware; for this reason, the inclusion of sensitive information in the

Intent may create the risk of a damaging leak of information. It is particularly important to note that,

when creating a URL-based shortcut, secret information may be contained in the URL itself.

As countermeasures, it is necessary to follow the points listed in ”4.2.1.2 Public Broadcast Receiver -

Receiving/Sending Broadcasts” and to ensure that the transmitted Intent does not contain sensitive

information.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

128 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

4.3. Creating/Using Content Providers

Since the interface of ContentResolver and SQLiteDatabase are so much alike, it's often

misunderstood that Content Provider is so closely related to SQLiteDatabase. However, actually

Content Provider simply provides the interface of inter-application data sharing, so it's necessary to

pay attention that it does not interfere each data saving format. To save data in Content Provider,

SQLiteDatabase can be used, and other saving formats, such as an XML file format, also can be used.

Any data saving process is not included in the following sample code, so please add it if needed.

4.3.1. Sample Code

The risks and countermeasures of using Content Provider differ depending on how that Content

Provider is being used. In this section, we have classified 5 types of Content Provider based on how

the Content Provider is being used. You can find out which type of Content Provider you are

supposed to create through the following chart shown below.

Table 4.3-1 Definition of content provider types

Type Definition

Private Content

Provider

A content provider that cannot be used by another application, and

therefore is the safest content provider

Public Content

Provider

A content provider that is supposed to be used by an unspecified

large number of applications

Partner Content

Provider

A content provider that can be used by specific applications made

by a trusted partner company.

In-house Content

Provider

A content provider that can only be used by other in-house

applications

Temporary permit

Content Provider

A content provider that is basically private content provider, but

permits specific applications to access the particular URI.

Figure 4.3-1

Start

Use only in
the same application?

In-house Content ProviderPrivate Content Provider Partner Content ProviderPublic Content Provider

Allow unspecified number
applications to use?

Allow specified company’s
applications to use

Yes No

Yes No

Yes No

Provide services always?
NoYes

Temporary
Content Provider

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 129

4.3.1.1. Creating/Using Private Content Providers

Private Content Provider is the Content Provider which is used only in the single application, and the

safest Content Provider. However, it's necessary to pay attention that private setting for Content

Provider does not work in Android 2.2 (API Level 8) or earlier.

Sample code of how to implement a private Content Provider is shown below.

Points (Creating a Content Provider):

1. Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.

2. Explicitly set the exported attribute to false.

3. Handle the received request data carefully and securely, even though the data comes from the

same application.

4. Sensitive information can be sent since it is sending and receiving all within the same application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.provider.privateprovider">

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".PrivateUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <!-- *** POINT 2 *** Explicitly set the exported attribute to false. -->

 <provider

 android:name=".PrivateProvider"

 android:authorities="org.jssec.android.provider.privateprovider"

 android:exported="false" />

 </application>

</manifest>

PrivateProvider.java
package org.jssec.android.provider.privateprovider;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class PrivateProvider extends ContentProvider {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

130 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 public static final String AUTHORITY = "org.jssec.android.provider.privateprovider";

 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";

 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.

 public interface Download {

 public static final String PATH = "downloads";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 public interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 // UriMatcher

 private static final int DOWNLOADS_CODE = 1;

 private static final int DOWNLOADS_ID_CODE = 2;

 private static final int ADDRESSES_CODE = 3;

 private static final int ADDRESSES_ID_CODE = 4;

 private static UriMatcher sUriMatcher;

 static {

 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

 }

 // Since this is a sample program,

 // query method returns the following fixed result always without using database.

 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });

 static {

 sAddressCursor.addRow(new String[] { "1", "New York" });

 sAddressCursor.addRow(new String[] { "2", "Longon" });

 sAddressCursor.addRow(new String[] { "3", "Paris" });

 }

 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });

 static {

 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });

 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

 }

 @Override

 public boolean onCreate() {

 return true;

 }

 @Override

 public String getType(Uri uri) {

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from the same application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.

 // However, the result of getType rarely has the sensitive meaning.

 switch (sUriMatcher.match(uri)) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 131

 case DOWNLOADS_CODE:

 case ADDRESSES_CODE:

 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:

 case ADDRESSES_ID_CODE:

 return CONTENT_ITEM_TYPE;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from the same application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.

 // It depends on application whether the query result has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case DOWNLOADS_ID_CODE:

 return sDownloadCursor;

 case ADDRESSES_CODE:

 case ADDRESSES_ID_CODE:

 return sAddressCursor;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from the same application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.

 // It depends on application whether the issued ID has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:

 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

132 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from the same application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.

 // It depends on application whether the number of updated records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 15;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from the same application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app

lication.

 // It depends on application whether the number of deleted records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 20;

 case ADDRESSES_ID_CODE:

 return 1;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 133

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

134 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Next is an example of Activity which uses Private Content Provider.

Points (Using a Content Provider):

5. Sensitive information can be sent since the destination provider is in the same application.

6. Handle received result data carefully and securely, even though the data comes from the same

application.

PrivateUserActivity.java
package org.jssec.android.provider.privateprovider;

import android.app.Activity;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateUserActivity extends Activity {

 public void onQueryClick(View view) {

 logLine("[Query]");

 Cursor cursor = null;

 try {

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same applica

tion.

 cursor = getContentResolver().query(

 PrivateProvider.Download.CONTENT_URI, null, null, null, null);

 // *** POINT 6 *** Handle received result data carefully and securely,

 // even though the data comes from the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (cursor == null) {

 logLine(" null cursor");

 } else {

 boolean moved = cursor.moveToFirst();

 while (moved) {

 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));

 moved = cursor.moveToNext();

 }

 }

 }

 finally {

 if (cursor != null) cursor.close();

 }

 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application

.

 Uri uri = getContentResolver().insert(PrivateProvider.Download.CONTENT_URI, null);

 // *** POINT 6 *** Handle received result data carefully and securely,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 135

 // even though the data comes from the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(" uri:" + uri);

 }

 public void onUpdateClick(View view) {

 logLine("[Update]");

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application

.

 int count = getContentResolver().update(PrivateProvider.Download.CONTENT_URI, null, null, null);

 // *** POINT 6 *** Handle received result data carefully and securely,

 // even though the data comes from the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records updated", count));

 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application

.

 int count = getContentResolver().delete(

 PrivateProvider.Download.CONTENT_URI, null, null);

 // *** POINT 6 *** Handle received result data carefully and securely,

 // even though the data comes from the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records deleted", count));

 }

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

136 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

4.3.1.2. Creating/Using Public Content Providers

Public Content Provider is the Content Provider which is supposed to be used by unspecified large

number of applications. It's necessary to pay attention that since this doesn't specify clients, it may

be attacked and tampered by Malware. For example, a saved data may be taken by select(), a data

may be changed by update(), or a fake data may be inserted/deleted by insert()/delete().

In addition, when using a custom Public Content Provider which is not provided by Android OS, it's

necessary to pay attention that request parameter may be received by Malware which masquerades

as the custom Public Content Provider, and also the attack result data may be sent. Contacts and

MediaStore provided by Android OS are also Public Content Providers, but Malware cannot

masquerades as them.

Sample code to implement a Public Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Handle the received request data carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.provider.publicprovider">

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

 <provider

 android:name=".PublicProvider"

 android:authorities="org.jssec.android.provider.publicprovider"

 android:exported="true" />

 </application>

</manifest>

PublicProvider.java
package org.jssec.android.provider.publicprovider;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class PublicProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.publicprovider";

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 137

 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";

 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.

 public interface Download {

 public static final String PATH = "downloads";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 public interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 // UriMatcher

 private static final int DOWNLOADS_CODE = 1;

 private static final int DOWNLOADS_ID_CODE = 2;

 private static final int ADDRESSES_CODE = 3;

 private static final int ADDRESSES_ID_CODE = 4;

 private static UriMatcher sUriMatcher;

 static {

 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

 }

 // Since this is a sample program,

 // query method returns the following fixed result always without using database.

 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });

 static {

 sAddressCursor.addRow(new String[] { "1", "New York" });

 sAddressCursor.addRow(new String[] { "2", "London" });

 sAddressCursor.addRow(new String[] { "3", "Paris" });

 }

 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });

 static {

 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });

 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

 }

 @Override

 public boolean onCreate() {

 return true;

 }

 @Override

 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case ADDRESSES_CODE:

 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:

 case ADDRESSES_ID_CODE:

 return CONTENT_ITEM_TYPE;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

138 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 }

 }

 @Override

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 // *** POINT 2 *** Handle the received request data carefully and securely.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.

 // It depends on application whether the query result has sensitive meaning or not.

 // If no problem when the information is taken by malware, it can be returned as result.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case DOWNLOADS_ID_CODE:

 return sDownloadCursor;

 case ADDRESSES_CODE:

 case ADDRESSES_ID_CODE:

 return sAddressCursor;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 2 *** Handle the received request data carefully and securely.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.

 // It depends on application whether the issued ID has sensitive meaning or not.

 // If no problem when the information is taken by malware, it can be returned as result.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:

 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 // *** POINT 2 *** Handle the received request data carefully and securely.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 139

 // *** POINT 3 *** When returning a result, do not include sensitive information.

 // It depends on application whether the number of updated records has sensitive meaning or not.

 // If no problem when the information is taken by malware, it can be returned as result.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 15;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 2 *** Handle the received request data carefully and securely.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.

 // It depends on application whether the number of deleted records has sensitive meaning or not.

 // If no problem when the information is taken by malware, it can be returned as result.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 20;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

140 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Next is an example of Activity which uses Public Content Provider.

Points (Using a Content Provider):

4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

PublicUserActivity.java
package org.jssec.android.provider.publicuser;

import android.app.Activity;

import android.content.ContentValues;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicUserActivity extends Activity {

 // Target Content Provider Information

 private static final String AUTHORITY = "org.jssec.android.provider.publicprovider";

 private interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 public void onQueryClick(View view) {

 logLine("[Query]");

 if (!providerExists(Address.CONTENT_URI)) {

 logLine(" Content Provider doesn't exist.");

 return;

 }

 Cursor cursor = null;

 try {

 // *** POINT 4 *** Do not send sensitive information.

 // since the target Content Provider may be malware.

 // If no problem when the information is taken by malware, it can be included in the request.

 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (cursor == null) {

 logLine(" null cursor");

 } else {

 boolean moved = cursor.moveToFirst();

 while (moved) {

 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));

 moved = cursor.moveToNext();

 }

 }

 }

 finally {

 if (cursor != null) cursor.close();

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 141

 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 if (!providerExists(Address.CONTENT_URI)) {

 logLine(" Content Provider doesn't exist.");

 return;

 }

 // *** POINT 4 *** Do not send sensitive information.

 // since the target Content Provider may be malware.

 // If no problem when the information is taken by malware, it can be included in the request.

 ContentValues values = new ContentValues();

 values.put("city", "Tokyo");

 Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(" uri:" + uri);

 }

 public void onUpdateClick(View view) {

 logLine("[Update]");

 if (!providerExists(Address.CONTENT_URI)) {

 logLine(" Content Provider doesn't exist.");

 return;

 }

 // *** POINT 4 *** Do not send sensitive information.

 // since the target Content Provider may be malware.

 // If no problem when the information is taken by malware, it can be included in the request.

 ContentValues values = new ContentValues();

 values.put("city", "Tokyo");

 String where = "_id = ?";

 String[] args = { "4" };

 int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records updated", count));

 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 if (!providerExists(Address.CONTENT_URI)) {

 logLine(" Content Provider doesn't exist.");

 return;

 }

 // *** POINT 4 *** Do not send sensitive information.

 // since the target Content Provider may be malware.

 // If no problem when the information is taken by malware, it can be included in the request.

 int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

142 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records deleted", count));

 }

 private boolean providerExists(Uri uri) {

 ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

 return (pi != null);

 }

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 143

4.3.1.3. Creating/Using Partner Content Providers

Partner Content Provider is the Content Provider which can be used only by the particular applications.

The system consists of a partner company's application and In-house application, and it is used to

protect the information and features which are handled between a partner application and an

In-house application.

Sample code to implement a partner-only Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Verify if the certificate of a requesting application has been registered in the own white list.

3. Handle the received request data carefully and securely, even though the data comes from a

partner application.

4. Information that is granted to disclose to partner applications can be returned.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.provider.partnerprovider">

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

 <provider

 android:name=".PartnerProvider"

 android:authorities="org.jssec.android.provider.partnerprovider"

 android:exported="true" />

 </application>

</manifest>

PartnerProvider.java
package org.jssec.android.provider.partnerprovider;

import java.util.List;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.ActivityManager;

import android.app.ActivityManager.RunningAppProcessInfo;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

import android.os.Binder;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

144 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

import android.os.Build;

public class PartnerProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.partnerprovider";

 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";

 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.

 public interface Download {

 public static final String PATH = "downloads";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 public interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 // UriMatcher

 private static final int DOWNLOADS_CODE = 1;

 private static final int DOWNLOADS_ID_CODE = 2;

 private static final int ADDRESSES_CODE = 3;

 private static final int ADDRESSES_ID_CODE = 4;

 private static UriMatcher sUriMatcher;

 static {

 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

 }

 // Since this is a sample program,

 // query method returns the following fixed result always without using database.

 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });

 static {

 sAddressCursor.addRow(new String[] { "1", "New York" });

 sAddressCursor.addRow(new String[] { "2", "London" });

 sAddressCursor.addRow(new String[] { "3", "Paris" });

 }

 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });

 static {

 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });

 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

 }

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white lis

t.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.provider.partneruser.

 sWhitelists.add("org.jssec.android.provider.partneruser", isdebug ?

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // Certificate hash value of "partner key" in the keystore.

 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 145

 // Register following other partner applications in the same way.

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

 // Get the package name of the calling application.

 private String getCallingPackage(Context context) {

 String pkgname;

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {

 pkgname = super.getCallingPackage();

 } else {

 pkgname = null;

 ActivityManager am = (ActivityManager) context.getSystemService(Context.ACTIVITY_SERVICE);

 List<RunningAppProcessInfo> procList = am.getRunningAppProcesses();

 int callingPid = Binder.getCallingPid();

 if (procList != null) {

 for (RunningAppProcessInfo proc : procList) {

 if (proc.pid == callingPid) {

 pkgname = proc.pkgList[proc.pkgList.length - 1];

 break;

 }

 }

 }

 }

 return pkgname;

 }

 @Override

 public boolean onCreate() {

 return true;

 }

 @Override

 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case ADDRESSES_CODE:

 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:

 case ADDRESSES_ID_CODE:

 return CONTENT_ITEM_TYPE;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white

list.

 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

 throw new SecurityException("Calling application is not a partner application.");

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

146 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from a partner application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.

 // It depends on application whether the query result can be disclosed or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case DOWNLOADS_ID_CODE:

 return sDownloadCursor;

 case ADDRESSES_CODE:

 case ADDRESSES_ID_CODE:

 return sAddressCursor;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white

list.

 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

 throw new SecurityException("Calling application is not a partner application.");

 }

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from a partner application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.

 // It depends on application whether the issued ID has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:

 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white

list.

 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

 throw new SecurityException("Calling application is not a partner application.");

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 147

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from a partner application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.

 // It depends on application whether the number of updated records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 15;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white

list.

 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

 throw new SecurityException("Calling application is not a partner application.");

 }

 // *** POINT 3 *** Handle the received request data carefully and securely,

 // even though the data comes from a partner application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.

 // It depends on application whether the number of deleted records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 20;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

148 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 149

Next is an example of Activity which use partner only Content Provider.

Points (Using a Content Provider):

5. Verify if the certificate of the target application has been registered in the own white list.

6. Information that is granted to disclose to partner applications can be sent.

7. Handle the received result data carefully and securely, even though the data comes from a

partner application.

PartnerActivity.java
package org.jssec.android.provider.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;

import android.content.Context;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PartnerUserActivity extends Activity {

 // Target Content Provider Information

 private static final String AUTHORITY = "org.jssec.android.provider.partnerprovider";

 private interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white list.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.provider.partnerprovider.

 sWhitelists.add("org.jssec.android.provider.partnerprovider", isdebug ?

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // Certificate hash value of "partner key" in the keystore.

 "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA");

 // Register following other partner applications in the same way.

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

 // Get package name of target content provider.

 private String providerPkgname(Uri uri) {

 String pkgname = null;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

150 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

 if (pi != null) pkgname = pi.packageName;

 return pkgname;

 }

 public void onQueryClick(View view) {

 logLine("[Query]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li

st.

 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

 logLine(" The target content provider is not served by partner applications.");

 return;

 }

 Cursor cursor = null;

 try {

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.

 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 6 *** Handle the received result data carefully and securely,

 // even though the data comes from a partner application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (cursor == null) {

 logLine(" null cursor");

 } else {

 boolean moved = cursor.moveToFirst();

 while (moved) {

 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));

 moved = cursor.moveToNext();

 }

 }

 }

 finally {

 if (cursor != null) cursor.close();

 }

 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li

st.

 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

 logLine(" The target content provider is not served by partner applications.");

 return;

 }

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.

 ContentValues values = new ContentValues();

 values.put("city", "Tokyo");

 Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

 // *** POINT 6 *** Handle the received result data carefully and securely,

 // even though the data comes from a partner application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(" uri:" + uri);

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 151

 public void onUpdateClick(View view) {

 logLine("[Update]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li

st.

 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

 logLine(" The target content provider is not served by partner applications.");

 return;

 }

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.

 ContentValues values = new ContentValues();

 values.put("city", "Tokyo");

 String where = "_id = ?";

 String[] args = { "4" };

 int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

 // *** POINT 6 *** Handle the received result data carefully and securely,

 // even though the data comes from a partner application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records updated", count));

 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li

st.

 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

 logLine(" The target content provider is not served by partner applications.");

 return;

 }

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.

 int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

 // *** POINT 6 *** Handle the received result data carefully and securely,

 // even though the data comes from a partner application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records deleted", count));

 }

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

152 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 153

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

154 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

4.3.1.4. Creating/Using In-house Content Providers

In-house Content Provider is the Content Provider which prohibits to be used by applications other

than In house only applications.

Sample code of how to implement an In house only Content Provider is shown below.

Points (Creating a Content Provider):

1. Define an in-house signature permission.

2. Require the in-house signature permission.

3. Explicitly set the exported attribute to true.

4. Verify if the in-house signature permission is defined by an in-house application.

5. Verify the safety of the parameter even if it's a request from In house only application.

6. Sensitive information can be returned since the requesting application is in-house.

7. When exporting an APK, sign the APK with the same developer key as that of the requesting

application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.provider.inhouseprovider">

 <!-- *** POINT 1 *** Define an in-house signature permission -->

 <permission

 android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION"

 android:protectionLevel="signature" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- *** POINT 2 *** Require the in-house signature permission -->

 <!-- *** POINT 3 *** Explicitly set the exported attribute to true. -->

 <provider

 android:name=".InhouseProvider"

 android:authorities="org.jssec.android.provider.inhouseprovider"

 android:permission="org.jssec.android.provider.inhouseprovider.MY_PERMISSION"

 android:exported="true" />

 </application>

</manifest>

InhouseProvider.java
package org.jssec.android.provider.inhouseprovider;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 155

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class InhouseProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.inhouseprovider";

 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";

 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.

 public interface Download {

 public static final String PATH = "downloads";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 public interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 // UriMatcher

 private static final int DOWNLOADS_CODE = 1;

 private static final int DOWNLOADS_ID_CODE = 2;

 private static final int ADDRESSES_CODE = 3;

 private static final int ADDRESSES_ID_CODE = 4;

 private static UriMatcher sUriMatcher;

 static {

 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

 }

 // Since this is a sample program,

 // query method returns the following fixed result always without using database.

 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });

 static {

 sAddressCursor.addRow(new String[] { "1", "New York" });

 sAddressCursor.addRow(new String[] { "2", "London" });

 sAddressCursor.addRow(new String[] { "3", "Paris" });

 }

 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });

 static {

 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });

 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

 }

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" in the keystore.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

156 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 @Override

 public boolean onCreate() {

 return true;

 }

 @Override

 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case ADDRESSES_CODE:

 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:

 case ADDRESSES_ID_CODE:

 return CONTENT_ITEM_TYPE;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

 throw new SecurityException("The in-house signature permission is not declared by in-house application.")

;

 }

 // *** POINT 5 *** Handle the received request data carefully and securely,

 // even though the data came from an in-house application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.

 // It depends on application whether the query result has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case DOWNLOADS_ID_CODE:

 return sDownloadCursor;

 case ADDRESSES_CODE:

 case ADDRESSES_ID_CODE:

 return sAddressCursor;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 157

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

 throw new SecurityException("The in-house signature permission is not declared by in-house application.")

;

 }

 // *** POINT 5 *** Handle the received request data carefully and securely,

 // even though the data came from an in-house application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.

 // It depends on application whether the issued ID has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:

 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

 throw new SecurityException("The in-house signature permission is not declared by in-house application.")

;

 }

 // *** POINT 5 *** Handle the received request data carefully and securely,

 // even though the data came from an in-house application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.

 // It depends on application whether the number of updated records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 15;

 case ADDRESSES_ID_CODE:

 return 1;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

158 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

 throw new SecurityException("The in-house signature permission is not declared by in-house application.")

;

 }

 // *** POINT 5 *** Handle the received request data carefully and securely,

 // even though the data came from an in-house application.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.

 // It depends on application whether the number of deleted records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 20;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 159

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

160 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting

application.

Figure 4.3-2

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 161

Next is the example of Activity which uses In house only Content Provider.

Point (Using a Content Provider):

8. Declare to use the in-house signature permission.

9. Verify if the in-house signature permission is defined by an in-house application.

10. Verify if the destination application is signed with the in-house certificate.

11. Sensitive information can be sent since the destination application is in-house one.

12. Handle the received result data carefully and securely, even though the data comes from an

in-house application.

13. When exporting an APK, sign the APK with the same developer key as that of the destination

application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.provider.inhouseuser">

 <!-- *** POINT 8 *** Declare to use the in-house signature permission. -->

 <uses-permission

 android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".InhouseUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

InhouseUserActivity.java
package org.jssec.android.provider.inhouseuser;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

162 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

public class InhouseUserActivity extends Activity {

 // Target Content Provider Information

 private static final String AUTHORITY = "org.jssec.android.provider.inhouseprovider";

 private interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" in the debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" in the keystore.

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 // Get package name of target content provider.

 private static String providerPkgname(Context context, Uri uri) {

 String pkgname = null;

 PackageManager pm = context.getPackageManager();

 ProviderInfo pi = pm.resolveContentProvider(uri.getAuthority(), 0);

 if (pi != null) pkgname = pi.packageName;

 return pkgname;

 }

 public void onQueryClick(View view) {

 logLine("[Query]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 logLine(" The in-house signature permission is not declared by in-house application.");

 return;

 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.

 String pkgname = providerPkgname(this, Address.CONTENT_URI);

 if (!PkgCert.test(this, pkgname, myCertHash(this))) {

 logLine(" The target content provider is not served by in-house applications.");

 return;

 }

 Cursor cursor = null;

 try {

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.

 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 12 *** Handle the received result data carefully and securely,

 // even though the data comes from an in-house application.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 163

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (cursor == null) {

 logLine(" null cursor");

 } else {

 boolean moved = cursor.moveToFirst();

 while (moved) {

 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));

 moved = cursor.moveToNext();

 }

 }

 }

 finally {

 if (cursor != null) cursor.close();

 }

 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.

 String correctHash = myCertHash(this);

 if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

 logLine(" The in-house signature permission is not declared by in-house application.");

 return;

 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.

 String pkgname = providerPkgname(this, Address.CONTENT_URI);

 if (!PkgCert.test(this, pkgname, correctHash)) {

 logLine(" The target content provider is not served by in-house applications.");

 return;

 }

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.

 ContentValues values = new ContentValues();

 values.put("city", "Tokyo");

 Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

 // *** POINT 12 *** Handle the received result data carefully and securely,

 // even though the data comes from an in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(" uri:" + uri);

 }

 public void onUpdateClick(View view) {

 logLine("[Update]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.

 String correctHash = myCertHash(this);

 if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

 logLine(" The in-house signature permission is not declared by in-house application.");

 return;

 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.

 String pkgname = providerPkgname(this, Address.CONTENT_URI);

 if (!PkgCert.test(this, pkgname, correctHash)) {

 logLine(" The target content provider is not served by in-house applications.");

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

164 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 return;

 }

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.

 ContentValues values = new ContentValues();

 values.put("city", "Tokyo");

 String where = "_id = ?";

 String[] args = { "4" };

 int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

 // *** POINT 12 *** Handle the received result data carefully and securely,

 // even though the data comes from an in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records updated", count));

 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.

 String correctHash = myCertHash(this);

 if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

 logLine(" The target content provider is not served by in-house applications.");

 return;

 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.

 String pkgname = providerPkgname(this, Address.CONTENT_URI);

 if (!PkgCert.test(this, pkgname, correctHash)) {

 logLine(" The target content provider is not served by in-house applications.");

 return;

 }

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.

 int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

 // *** POINT 12 *** Handle the received result data carefully and securely,

 // even though the data comes from an in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 logLine(String.format(" %s records deleted", count));

 }

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 165

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

166 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

*** Point 13 *** When exporting an APK, sign the APK with the same developer key as that of the

destination application.

Figure 4.3-3

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 167

4.3.1.5. Creating/Using Temporary permit Content Providers

Temporary permit Content Provider is basically a private Content Provider, but this permits the

particular applications to access the particular URI. By sending an Intent which special flag is

specified to the target applications, temporary access permission is provided to those applications.

Contents provider side application can give the access permission actively to other applications, and

it can also give access permission passively to the application which claims the temporary access

permission.

Sample code of how to implement a temporary permit Content Provider is shown below.

Points (Creating a Content Provider):

1. Do not (Cannot) implement temporary permit content provider in Android 2.2 (API Level 8) or

earlier.

2. Explicitly set the exported attribute to false.

3. Specify the path to grant access temporarily with the grant-uri-permission.

4. Handle the received request data carefully and securely, even though the data comes from the

application granted access temporarily.

5. Information that is granted to disclose to the temporary access applications can be returned.

6. Specify URI for the intent to grant temporary access.

7. Specify access rights for the intent to grant temporary access.

8. Send the explicit intent to an application to grant temporary access.

9. Return the intent to the application that requests temporary access.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.provider.temporaryprovider">

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".TemporaryActiveGrantActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <!-- Temporary Content Provider -->

 <!-- *** POINT 2 *** Explicitly set the exported attribute to false. -->

 <provider

 android:name=".TemporaryProvider"

 android:authorities="org.jssec.android.provider.temporaryprovider"

 android:exported="false" >

 <!-- *** POINT 3 *** Specify the path to grant access temporarily with the grant-uri-permission. -->

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

168 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 <grant-uri-permission android:path="/addresses" />

 </provider>

 <activity

 android:name=".TemporaryPassiveGrantActivity"

 android:label="@string/app_name"

 android:exported="true" />

 </application>

</manifest>

TemporaryProvider.java
package org.jssec.android.provider.temporaryprovider;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class TemporaryProvider extends ContentProvider {

 public static final String AUTHORITIY = "org.jssec.android.provider.temporaryprovider";

 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";

 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.

 public interface Download {

 public static final String PATH = "downloads";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITIY + "/" + PATH);

 }

 public interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITIY + "/" + PATH);

 }

 // UriMatcher

 private static final int DOWNLOADS_CODE = 1;

 private static final int DOWNLOADS_ID_CODE = 2;

 private static final int ADDRESSES_CODE = 3;

 private static final int ADDRESSES_ID_CODE = 4;

 private static UriMatcher sUriMatcher;

 static {

 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 sUriMatcher.addURI(AUTHORITIY, Download.PATH, DOWNLOADS_CODE);

 sUriMatcher.addURI(AUTHORITIY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

 sUriMatcher.addURI(AUTHORITIY, Address.PATH, ADDRESSES_CODE);

 sUriMatcher.addURI(AUTHORITIY, Address.PATH + "/#", ADDRESSES_ID_CODE);

 }

 // Since this is a sample program,

 // query method returns the following fixed result always without using database.

 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });

 static {

 sAddressCursor.addRow(new String[] { "1", "New York" });

 sAddressCursor.addRow(new String[] { "2", "London" });

 sAddressCursor.addRow(new String[] { "3", "Paris" });

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 169

 }

 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });

 static {

 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });

 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });

 }

 @Override

 public boolean onCreate() {

 return true;

 }

 @Override

 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case ADDRESSES_CODE:

 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:

 case ADDRESSES_ID_CODE:

 return CONTENT_ITEM_TYPE;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 // *** POINT 4 *** Handle the received request data carefully and securely,

 // even though the data comes from the application granted access temporarily.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne

d.

 // It depends on application whether the query result can be disclosed or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 case DOWNLOADS_ID_CODE:

 return sDownloadCursor;

 case ADDRESSES_CODE:

 case ADDRESSES_ID_CODE:

 return sAddressCursor;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 4 *** Handle the received request data carefully and securely,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

170 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 // even though the data comes from the application granted access temporarily.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne

d.

 // It depends on application whether the issued ID has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:

 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 // *** POINT 4 *** Handle the received request data carefully and securely,

 // even though the data comes from the application granted access temporarily.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne

d.

 // It depends on application whether the number of updated records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 15;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 4 *** Handle the received request data carefully and securely,

 // even though the data comes from the application granted access temporarily.

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.

 // Checking for other parameters are omitted here, due to sample.

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 171

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne

d.

 // It depends on application whether the number of deleted records has sensitive meaning or not.

 switch (sUriMatcher.match(uri)) {

 case DOWNLOADS_CODE:

 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:

 return 1;

 case ADDRESSES_CODE:

 return 20;

 case ADDRESSES_ID_CODE:

 return 1;

 default:

 throw new IllegalArgumentException("Invalid URI:" + uri);

 }

 }

}

TemporaryActiveGrantActivity.java
package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class TemporaryActiveGrantActivity extends Activity {

 // User Activity Information

 private static final String TARGET_PACKAGE = "org.jssec.android.provider.temporaryuser";

 private static final String TARGET_ACTIVITY = "org.jssec.android.provider.temporaryuser.TemporaryUserActivity";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.active_grant);

 }

 // In the case that Content Provider application grants access permission to other application actively.

 public void onSendClick(View view) {

 try {

 Intent intent = new Intent();

 // *** POINT 6 *** Specify URI for the intent to grant temporary access.

 intent.setData(TemporaryProvider.Address.CONTENT_URI);

 // *** POINT 7 *** Specify access rights for the intent to grant temporary access.

 intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 // *** POINT 8 *** Send the explicit intent to an application to grant temporary access.

 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

 startActivity(intent);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

172 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 } catch (ActivityNotFoundException e) {

 Toast.makeText(this, "User Activity not found.", Toast.LENGTH_LONG).show();

 }

 }

}

TemporaryPassiveGrantActivity.java
package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class TemporaryPassiveGrantActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.passive_grant);

 }

 // In the case that Content Provider application passively grants access permission

 // to the application that requested Content Provider access.

 public void onGrantClick(View view) {

 Intent intent = new Intent();

 // *** POINT 6 *** Specify URI for the intent to grant temporary access.

 intent.setData(TemporaryProvider.Address.CONTENT_URI);

 // *** POINT 7 *** Specify access rights for the intent to grant temporary access.

 intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 // *** POINT 9 *** Return the intent to the application that requests temporary access.

 setResult(Activity.RESULT_OK, intent);

 finish();

 }

 public void onCloseClick(View view) {

 finish();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 173

Next is the example of temporary permit Content Provider.

Points (Using a Content Provider):

10. Do not send sensitive information.

11. When receiving a result, handle the result data carefully and securely.

TemporaryUserActivity.java
package org.jssec.android.provider.temporaryuser;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class TemporaryUserActivity extends Activity {

 // Information of the Content Provider's Activity to request temporary content provider access.

 private static final String TARGET_PACKAGE = "org.jssec.android.provider.temporaryprovider";

 private static final String TARGET_ACTIVITY = "org.jssec.android.provider.temporaryprovider.TemporaryPassiveGran

tActivity";

 // Target Content Provider Information

 private static final String AUTHORITY = "org.jssec.android.provider.temporaryprovider";

 private interface Address {

 public static final String PATH = "addresses";

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);

 }

 private static final int REQUEST_CODE = 1;

 public void onQueryClick(View view) {

 logLine("[Query]");

 Cursor cursor = null;

 try {

 if (!providerExists(Address.CONTENT_URI)) {

 logLine(" Content Provider doesn't exist.");

 return;

 }

 // *** POINT 10 *** Do not send sensitive information.

 // If no problem when the information is taken by malware, it can be included in the request.

 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 11 *** When receiving a result, handle the result data carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 if (cursor == null) {

 logLine(" null cursor");

 } else {

 boolean moved = cursor.moveToFirst();

 while (moved) {

 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

174 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

 moved = cursor.moveToNext();

 }

 }

 } catch (SecurityException ex) {

 logLine(" Exception:" + ex.getMessage());

 }

 finally {

 if (cursor != null) cursor.close();

 }

 }

 // In the case that this application requests temporary access to the Content Provider

 // and the Content Provider passively grants temporary access permission to this application.

 public void onGrantRequestClick(View view) {

 Intent intent = new Intent();

 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

 try {

 startActivityForResult(intent, REQUEST_CODE);

 } catch (ActivityNotFoundException e) {

 logLine("Content Provider's Activity not found.");

 }

 }

 private boolean providerExists(Uri uri) {

 ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

 return (pi != null);

 }

 private TextView mLogView;

 // In the case that the Content Provider application grants temporary access

 // to this application actively.

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 175

4.3.2. Rule Book

Be sure to follow the rules below when Implementing or using a content provider.

1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API Level

8) or Earlier (Required)

2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

3. Handle the Received Request Parameter Carefully and Securely (Required)

4. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house

Application (Required)

5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)

6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of

Protection (Required)

And user side should follow the below rules, too.

7. Handle the Returned Result Data from the Content Provider Carefully and Securely

 (Required)

4.3.2.1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API

Level 8) or Earlier (Required)

Private setting for a Content Provider does not work in Android 2.2 (API Level 8) or earlier. To share a

data in the same application, access a data storage location such as a data base instead of using a

Content Provider.

4.3.2.2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

Content Provider which is used only in a single application is not necessary to be accessed by other

applications, and the access which attacks the Content Provider is not often considered by

developers. A Content Provider is basically the system to share data, so it's handled as public by

default. A Content Provider which is used only in a single application should be set as private

explicitly, and it should be a private Content Provider. In Android 2.3.1 (API Level 9) or later, a

Content Provider can be set as private by specifying android:exported="false" in provider element.

AndroidManifest.xml
 <!-- *** POINT 1 *** Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.

-->

 <uses-sdk android:minSdkVersion="9" />

-abbreviation-

 <!-- *** POINT 2 *** Set false for the exported attribute explicitly. -->

 <provider

 android:name=".PrivateProvider"

 android:authorities="org.jssec.android.provider.privateprovider"

 android:exported="false" />

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

176 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

4.3.2.3. Handle the Received Request Parameter Carefully and Securely (Required)

Risks differ depending on the types of Content Providers, but when processing request parameters,

the first thing you should do is input validation.

Although each method of a Content Provider has the interface which is supposed to receive the

component parameter of SQL statement, actually it simply hands over the arbitrary character string in

the system, so it's necessary to pay attention that Contents Provider side needs to suppose the case

that unexpected parameter may be provided.

Since Public Content Providers can receive requests from untrusted sources, they can be attacked by

malware. On the other hand, Private Content Providers will never receive any requests from other

applications directly, but it is possible that a Public Activity in the targeted application may forward a

malicious Intent to a Private Content Provider so you should not assume that Private Content

Providers cannot receive any malicious input.

Since other Content Providers also have the risk of a malicious intent being forwarded to them as well,

it is necessary to perform input validation on these requests as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.3.2.4. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house

Application (Required)

Make sure to protect your in-house Content Providers by defining an in-house signature permission

when creating the Content Provider. Since defining a permission in the AndroidManifest.xml file or

declaring a permission request does not provide adequate security, please be sure to refer to "5.2.1.2

How to Communicate Between In-house Applications with In-house-defined Signature Permission."

4.3.2.5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)

In case of query() or insert(), Cursor or Uri is returned to the request sending application as a result

information. When sensitive information is included in the result information, the information may be

leaked from the destination application. In case of update() or delete(), number of updated/deleted

records is returned to the request sending application as a result information. In rare cases,

depending on some application specs, the number of updated/deleted records has the sensitive

meaning, so please pay attention to this.

4.3.2.6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of

Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another

application secondhand, you need to make sure that it has the same required permissions needed to

access the asset. In the Android OS permission security model, only an application that has been

granted proper permissions can directly access a protected asset. However, there is a loophole

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 177

because an application with permissions to an asset can act as a proxy and allow access to an

unprivileged application. Substantially this is the same as re-delegating a permission, so it is referred

to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4 Permission Re-delegation

Problem."

4.3.2.7. Handle the Returned Result Data from the Content Provider Carefully and Securely

 (Required)

Risks differ depending on the types of Content Provider, but when processing a result data, the first

thing you should do is input validation.

In case that the destination Content Provider is a public Content Provider, Malware which

masquerades as the public Content Provider may return the attack result data. On the other hand, in

case that the destination Content Provider is a private Content Provider, it is less risk because it

receives the result data from the same application, but you should not assume that private Content

Providers cannot receive any malicious input.Since other Content Providers also have the risk of a

malicious data being returned to them as well, it is necessary to perform input validation on that

result data as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

178 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

4.4. Creating/Using Services

4.4.1. Sample Code

The risks and countermeasures of using Services differ depending on how that Service is being used.

You can find out which type of Service you are supposed to create through the following chart shown

below. Since the secure coding best practice varies according to how the service is created, we will

also explain about the implementation of the Service as well.

Table 4.4-1 Definition of service types

Type Definition

Private Service A service that cannot be used another application, and therefore is

the safest service.

Public Service A service that is supposed to be used by an unspecified large

number of applications

Partner Service A service that can only be used by the specific applications made by

a trusted partner company.

In-house Service A service that can only be used by other in-house applications.

Figure 4.4-1

There are several implementation methods for Service, and you will select the method which matches

with the type of Service that you suppose to create. The items of vertical columns in the table show

the implementation methods, and these are divided into 5 types. "OK" stands for the possible

combination and others show impossible/difficult combinations in the table.

Please refer to "4.4.3.2 How to Implement Service" and Sample code of each Service type (with * mark

in a table) for detailed implementation methods of Service.

Start

Use only in
the same application?

In-house ServicePrivate Service Partner ServicePublic Service

Allow unspecified number
applications to use?

Allow specified company’s
applications to use

Yes No

Yes No

Yes No

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 179

Table 4.4-2

Category
Private
Service

Public
Service

Partner
Service

In-house
Service

startService type OK* OK - OK

IntentService type OK OK* - OK

local bind type OK - - -

Messenger bind

type
OK OK - OK*

AIDL bind type OK OK OK* OK

Sample code for each security type of Service are shown as below, by using combination of * mark in

Table 4.4-2.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

180 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

4.4.1.1. Creating/Using Private Services

Private Services are Services which cannot be launched by the other applications and therefore it is

the safest Service.

When using Private Services that are only used within the application, as long as you use explicit

Intents to the class then you do not have to worry about accidently sending it to any other

application.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):

1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from the same

application.

3. Sensitive information can be sent since the requesting application is in the same application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.service.privateservice" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name=".PrivateUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <!-- Private Service derived from Service class -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

 <service android:name=".PrivateStartService" android:exported="false"/>

 <!-- Private Service derived from IntentService class -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

 <service android:name=".PrivateIntentService" android:exported="false"/>

 </application>

</manifest>

PrivateStartService.java
package org.jssec.android.service.privateservice;

import android.app.Service;

import android.content.Intent;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 181

import android.os.IBinder;

import android.widget.Toast;

public class PrivateStartService extends Service {

 // The onCreate gets called only one time when the service starts.

 @Override

 public void onCreate() {

 Toast.makeText(this, "PrivateStartService - onCreate()", Toast.LENGTH_SHORT).show();

 }

 // The onStartCommand gets called each time after the startService gets called.

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 // *** POINT 2 *** Handle the received intent carefully and securely,

 // even though the intent was sent from the same application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = intent.getStringExtra("PARAM");

 Toast.makeText(this,

 String.format("PrivateStartService¥nReceived param: ¥"%s¥"", param),

 Toast.LENGTH_LONG).show();

 return Service.START_NOT_STICKY;

 }

 // The onDestroy gets called only one time when the service stops.

 @Override

 public void onDestroy() {

 Toast.makeText(this, "PrivateStartService - onDestroy()", Toast.LENGTH_SHORT).show();

 }

 @Override

 public IBinder onBind(Intent intent) {

 // This service does not provide binding, so return null

 return null;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

182 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Next is sample code for Activity which uses Private Service.

Points (Using a Service):

4. Use the explicit intent with class specified to call a service in the same application.

5. Sensitive information can be sent since the destination service is in the same application.

6. Handle the received result data carefully and securely, even though the data came from a service

in the same application.

PrivateUserActivity.java
package org.jssec.android.service.privateservice;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class PrivateUserActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.privateservice_activity);

 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {

 // *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.

 Intent intent = new Intent(this, PrivateStartService.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination service is in the same application.

 intent.putExtra("PARAM", "Sensitive information");

 startService(intent);

 }

 public void onStopServiceClick(View v) {

 doStopService();

 }

 @Override

 public void onStop() {

 super.onStop();

 // Stop service if the service is running.

 doStopService();

 }

 private void doStopService() {

 // *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.

 Intent intent = new Intent(this, PrivateStartService.class);

 stopService(intent);

 }

 // --- IntentService control ---

 public void onIntentServiceClick(View v) {

 // *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 183

 Intent intent = new Intent(this, PrivateIntentService.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination service is in the same application.

 intent.putExtra("PARAM", "Sensitive information");

 startService(intent);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

184 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

4.4.1.2. Creating/Using Public Services

Public Service is the Service which is supposed to be used by the unspecified large number of

applications. It's necessary to pay attention that it may receive the information (Intent etc.) which was

sent by Malware. In case using public Service, It's necessary to pay attention that information(Intent

etc.) to send may be received by Malware.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):

1. Explicitly set the exported attribute to true.

2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.service.publicservice" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <!-- Most standard Service -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

 <service android:name=".PublicStartService" android:exported="true">

 <intent-filter>

 <action android:name="org.jssec.android.service.publicservice.action.startservice" />

 </intent-filter>

 </service>

 <!-- Public Service derived from IntentService class -->

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

 <service android:name=".PublicIntentService" android:exported="true">

 <intent-filter>

 <action android:name="org.jssec.android.service.publicservice.action.intentservice" />

 </intent-filter>

 </service>

 </application>

</manifest>

PublicIntentService.java
package org.jssec.android.service.publicservice;

import android.app.IntentService;

import android.content.Intent;

import android.widget.Toast;

public class PublicIntentService extends IntentService{

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 185

 /**

 * Default constructor must be provided when a service extends IntentService class.

 * If it does not exist, an error occurs.

 */

 public PublicIntentService() {

 super("CreatingTypeBService");

 }

 // The onCreate gets called only one time when the Service starts.

 @Override

 public void onCreate() {

 super.onCreate();

 Toast.makeText(this, this.getClass().getSimpleName() + " - onCreate()", Toast.LENGTH_SHORT).show();

 }

 // The onHandleIntent gets called each time after the startService gets called.

 @Override

 protected void onHandleIntent(Intent intent) {

 // *** POINT 2 *** Handle intent carefully and securely.

 // Since it's public service, the intent may come from malicious application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = intent.getStringExtra("PARAM");

 Toast.makeText(this, String.format("Recieved parameter ¥"%s¥"", param), Toast.LENGTH_LONG).show();

 }

 // The onDestroy gets called only one time when the service stops.

 @Override

 public void onDestroy() {

 Toast.makeText(this, this.getClass().getSimpleName() + " - onDestroy()", Toast.LENGTH_SHORT).show();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

186 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Next is sample code for Activity which uses Public Service.

Points (Using a Service):

4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.service.publicserviceuser" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name=".PublicUserActivity"

 android:label="@string/app_name"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

PublicUserActivity.java
package org.jssec.android.service.publicserviceuser;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class PublicUserActivity extends Activity {

 // Using Service Info

 private static final String TARGET_PACKAGE = "org.jssec.android.service.publicservice";

 private static final String TARGET_START_CLASS = "org.jssec.android.service.publicservice.PublicStartService";

 private static final String TARGET_INTENT_CLASS = "org.jssec.android.service.publicservice.PublicIntentService";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.publicservice_activity);

 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {

 Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice");

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 187

 // *** POINT 4 *** Call service by Explicit Intent

 intent.setClassName(TARGET_PACKAGE, TARGET_START_CLASS);

 // *** POINT 5 *** Do not send sensitive information.

 intent.putExtra("PARAM", "Not sensitive information");

 startService(intent);

 // *** POINT 6 *** When receiving a result, handle the result data carefully and securely.

 // This sample code uses startService(), so receiving no result.

 }

 public void onStopServiceClick(View v) {

 doStopService();

 }

 // --- IntentService control ---

 public void onIntentServiceClick(View v) {

 Intent intent = new Intent("org.jssec.android.service.publicservice.action.intentservice");

 // *** POINT 4 *** Call service by Explicit Intent

 intent.setClassName(TARGET_PACKAGE, TARGET_INTENT_CLASS);

 // *** POINT 5 *** Do not send sensitive information.

 intent.putExtra("PARAM", "Not sensitive information");

 startService(intent);

 }

 @Override

 public void onStop(){

 super.onStop();

 // Stop service if the service is running.

 doStopService();

 }

 // Stop service

 private void doStopService() {

 Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice");

 // *** POINT 4 *** Call service by Explicit Intent

 intent.setClassName(TARGET_PACKAGE, TARGET_START_CLASS);

 stopService(intent);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

188 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

4.4.1.3. Creating/Using Partner Services

Partner Service is Service which can be used only by the particular applications. System consists of

partner company's application and In house application, this is used to protect the information and

features which are handled between a partner application and In house application.

Following is an example of AIDL bind type Service.

Points (Creating a Service):

1. Do not define the intent filter and explicitly set the exported attribute to true.

2. Verify that the certificate of the requesting application has been registered in the own white list.

3. Do not (Cannot) recognize whether the requesting application is partner or not by onBind

(onStartCommand, onHandleIntent).

4. Handle the received intent carefully and securely, even though the intent was sent from a partner

application.

5. Return only information that is granted to be disclosed to a partner application.

In addition, refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate" for how to

verify the certification hash value of destination application which is specified to white list.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.service.partnerservice.aidl" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <!-- Service using AIDL -->

 <!-- *** POINT 1 *** Do not define the intent filter and explicitly set the exported attribute to true. -->

 <service

 android:name="org.jssec.android.service.partnerservice.aidl.PartnerAIDLService"

 android:exported="true" />

 </application>

</manifest>

In this example, 2 AIDL files are to be created. One is for callback interface to give data from Service

to Activity. The other one is Interface to give data from Activity to Service and to get information. In

addition, package name that is described in AIDL file should be consistent with directory hierarchy in

which AIDL file is created, same like package name described in java file.

IExclusiveAIDLServiceCallback.aidl
package org.jssec.android.service.exclusiveservice.aidl;

interface IExclusiveAIDLServiceCallback {

 /**

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 189

 * It's called when the value is changed.

 */

 void valueChanged(String info);

}

IExclusiveAIDLService.aidl
package org.jssec.android.service.exclusiveservice.aidl;

import org.jssec.android.service.exclusiveservice.aidl.IExclusiveAIDLServiceCallback;

interface IExclusiveAIDLService {

 /**

 * Register Callback.

 */

 void registerCallback(IExclusiveAIDLServiceCallback cb);

 /**

 * Get Information

 */

 String getInfo(String param);

 /**

 * Unregister Callback

 */

 void unregisterCallback(IExclusiveAIDLServiceCallback cb);

}

PartnerAIDLService.java
package org.jssec.android.service.partnerservice.aidl;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteCallbackList;

import android.os.RemoteException;

import android.widget.Toast;

public class PartnerAIDLService extends Service {

 private static final int REPORT_MSG = 1;

 private static final int GETINFO_MSG = 2;

 // The value which this service informs to client

 private int mValue = 0;

 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the own white

 list.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application "org.jssec.android.service.partnerservice.aidluser"

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

190 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 sWhitelists.add("org.jssec.android.service.partnerservice.aidluser", isdebug ?

 // Certificate hash value of debug.keystore "androiddebugkey"

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // Certificate hash value of keystore "partner key"

 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register other partner applications in the same way

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

 // Object to register callback

 // Methods which RemoteCallbackList provides are thread-safe.

 private final RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks =

 new RemoteCallbackList<IPartnerAIDLServiceCallback>();

 // Handler to send data when callback is called.

 private static class ServiceHandler extends Handler{

 private Context mContext;

 private RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks;

 private int mValue = 0;

 public ServiceHandler(Context context, RemoteCallbackList<IPartnerAIDLServiceCallback> callback, int value){

 this.mContext = context;

 this.mCallbacks = callback;

 this.mValue = value;

 }

 @Override

 public void handleMessage(Message msg) {

 switch (msg.what) {

 case REPORT_MSG: {

 if(mCallbacks == null){

 return;

 }

 // Start broadcast

 // To call back on to the registered clients, use beginBroadcast().

 // beginBroadcast() makes a copy of the currently registered callback list.

 final int N = mCallbacks.beginBroadcast();

 for (int i = 0; i < N; i++) {

 IPartnerAIDLServiceCallback target = mCallbacks.getBroadcastItem(i);

 try {

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be retur

ned.

 target.valueChanged("Information disclosed to partner application (callback from Service) No."

 + (++mValue));

 } catch (RemoteException e) {

 // Callbacks are managed by RemoteCallbackList, do not unregister callbacks here.

 // RemoteCallbackList.kill() unregister all callbacks

 }

 }

 // finishBroadcast() cleans up the state of a broadcast previously initiated by calling beginBroadcast

().

 mCallbacks.finishBroadcast();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 191

 // Repeat after 10 seconds

 sendEmptyMessageDelayed(REPORT_MSG, 10000);

 break;

 }

 case GETINFO_MSG: {

 if(mContext != null) {

 Toast.makeText(mContext,

 (String) msg.obj, Toast.LENGTH_LONG).show();

 }

 break;

 }

 default:

 super.handleMessage(msg);

 break;

 } // switch

 }

 }

 protected final ServiceHandler mHandler = new ServiceHandler(this, mCallbacks, mValue);

 // Interfaces defined in AIDL

 private final IPartnerAIDLService.Stub mBinder = new IPartnerAIDLService.Stub() {

 private boolean checkPartner() {

 Context ctx = PartnerAIDLService.this;

 if (!PartnerAIDLService.checkPartner(ctx, Utils.getPackageNameFromUid(ctx, getCallingUid()))) {

 mHandler.post(new Runnable(){

 @Override

 public void run(){

 Toast.makeText(PartnerAIDLService.this, "Requesting application is not partner application.", T

oast.LENGTH_LONG).show();

 }

 });

 return false;

 }

 return true;

 }

 public void registerCallback(IPartnerAIDLServiceCallback cb) {

 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow

n white list.

 if (!checkPartner()) {

 return;

 }

 if (cb != null) mCallbacks.register(cb);

 }

 public String getInfo(String param) {

 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow

n white list.

 if (!checkPartner()) {

 return null;

 }

 // *** POINT 4 *** Handle the received intent carefully and securely,

 // even though the intent was sent from a partner application

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 Message msg = new Message();

 msg.what = GETINFO_MSG;

 msg.obj = String.format("Method calling from partner application. Recieved ¥"%s¥"", param);

 PartnerAIDLService.this.mHandler.sendMessage(msg);

 // *** POINT 5 *** Return only information that is granted to be disclosed to a partner application.

 return "Information disclosed to partner application (method from Service)";

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

192 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 }

 public void unregisterCallback(IPartnerAIDLServiceCallback cb) {

 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow

n white list.

 if (!checkPartner()) {

 return;

 }

 if (cb != null) mCallbacks.unregister(cb);

 }

 };

 @Override

 public IBinder onBind(Intent intent) {

 // *** POINT 3 *** Verify that the certificate of the requesting application has been registered in the own wh

ite list.

 // So requesting application must be validated in methods defined in AIDL every time.

 return mBinder;

 }

 @Override

 public void onCreate() {

 Toast.makeText(this, this.getClass().getSimpleName() + " - onCreate()", Toast.LENGTH_SHORT).show();

 // During service is running, inform the incremented number periodically.

 mHandler.sendEmptyMessage(REPORT_MSG);

 }

 @Override

 public void onDestroy() {

 Toast.makeText(this, this.getClass().getSimpleName() + " - onDestroy()", Toast.LENGTH_SHORT).show();

 // Unregister all callbacks

 mCallbacks.kill();

 mHandler.removeMessages(REPORT_MSG);

 }

}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 193

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

194 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 195

Next is sample code of Activity which uses partner only Service.

Points (Using a Service):

6. Verify if the certificate of the target application has been registered in the own white list.

7. Return only information that is granted to be disclosed to a partner application.

8. Use the explicit intent to call a partner service.

9. Handle the received result data carefully and securely, even though the data came from a partner

application.

ExclusiveAIDLUserActivity.java
package org.jssec.android.service.partnerservice.aidluser;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLService;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLServiceCallback;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteException;

import android.view.View;

import android.widget.Toast;

public class PartnerAIDLUserActivity extends Activity {

 private boolean mIsBound;

 private Context mContext;

 private final static int MGS_VALUE_CHANGED = 1;

 // *** POINT 6 *** Verify if the certificate of the target application has been registered in the own white list.

 private static PkgCertWhitelists sWhitelists = null;

 private static void buildWhitelists(Context context) {

 boolean isdebug = Utils.isDebuggable(context);

 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner service application "org.jssec.android.service.partnerservice.a

idl"

 sWhitelists.add("org.jssec.android.service.partnerservice.aidl", isdebug ?

 // Certificate hash value of debug.keystore "androiddebugkey"

 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

 // Certificate hash value of keystore "my company key"

 "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA");

 // Register other partner service applications in the same way

 }

 private static boolean checkPartner(Context context, String pkgname) {

 if (sWhitelists == null) buildWhitelists(context);

 return sWhitelists.test(context, pkgname);

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

196 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 // Information about destination (requested) partner activity.

 private static final String TARGET_PACKAGE = "org.jssec.android.service.partnerservice.aidl";

 private static final String TARGET_CLASS = "org.jssec.android.service.partnerservice.aidl.PartnerAIDLService";

 private static class ReceiveHandler extends Handler{

 private Context mContext;

 public ReceiveHandler(Context context){

 this.mContext = context;

 }

 @Override

 public void handleMessage(Message msg) {

 switch (msg.what) {

 case MGS_VALUE_CHANGED: {

 String info = (String)msg.obj;

 Toast.makeText(mContext, String.format("Received ¥"%s¥" with callback.", info), Toast.LENGTH_SHORT

).show();

 break;

 }

 default:

 super.handleMessage(msg);

 break;

 } // switch

 }

 }

 private final ReceiveHandler mHandler = new ReceiveHandler(this);

 // Interfaces defined in AIDL. Receive notice from service

 private final IPartnerAIDLServiceCallback.Stub mCallback =

 new IPartnerAIDLServiceCallback.Stub() {

 @Override

 public void valueChanged(String info) throws RemoteException {

 Message msg = mHandler.obtainMessage(MGS_VALUE_CHANGED, info);

 mHandler.sendMessage(msg);

 }

 };

 // Interfaces defined in AIDL. Inform service.

 private IPartnerAIDLService mService = null;

 // Connection used to connect with service. This is necessary when service is implemented with bindService().

 private ServiceConnection mConnection = new ServiceConnection() {

 // This is called when the connection with the service has been established.

 @Override

 public void onServiceConnected(ComponentName className, IBinder service) {

 mService = IPartnerAIDLService.Stub.asInterface(service);

 try{

 // connect to service

 mService.registerCallback(mCallback);

 }catch(RemoteException e){

 // service stopped abnormally

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 197

 Toast.makeText(mContext, "Connected to service", Toast.LENGTH_SHORT).show();

 }

 // This is called when the service stopped abnormally and connection is disconnected.

 @Override

 public void onServiceDisconnected(ComponentName className) {

 Toast.makeText(mContext, "Disconnected from service", Toast.LENGTH_SHORT).show();

 }

 };

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.partnerservice_activity);

 mContext = this;

 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {

 // Start bindService

 doBindService();

 }

 public void onGetInfoClick(View v) {

 getServiceinfo();

 }

 public void onStopServiceClick(View v) {

 doUnbindService();

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 doUnbindService();

 }

 /**

 * Connect to service

 */

 private void doBindService() {

 if (!mIsBound){

 // *** POINT 6 *** Verify if the certificate of the target application has been registered in the own whit

e list.

 if (!checkPartner(this, TARGET_PACKAGE)) {

 Toast.makeText(this, "Destination(Requested) sevice application is not registered in white list.", Toa

st.LENGTH_LONG).show();

 return;

 }

 Intent intent = new Intent();

 // *** POINT 7 *** Return only information that is granted to be disclosed to a partner application.

 intent.putExtra("PARAM", "Information disclosed to partner application");

 // *** POINT 8 *** Use the explicit intent to call a partner service.

 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

198 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 bindService(intent, mConnection, Context.BIND_AUTO_CREATE);

 mIsBound = true;

 }

 }

 /**

 * Disconnect service

 */

 private void doUnbindService() {

 if (mIsBound) {

 // Unregister callbacks which have been registered.

 if(mService != null){

 try{

 mService.unregisterCallback(mCallback);

 }catch(RemoteException e){

 // Service stopped abnormally

 // Omitted, since it' s sample.

 }

 }

 unbindService(mConnection);

 Intent intent = new Intent();

 // *** POINT 8 *** Use the explicit intent to call a partner service.

 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 stopService(intent);

 mIsBound = false;

 }

 }

 /**

 * Get information from service

 */

 void getServiceinfo() {

 if (mIsBound && mService != null) {

 String info = null;

 try {

 // *** POINT 7 *** Return only information that is granted to be disclosed to a partner application.

 info = mService.getInfo("Information disclosed to partner application (method from activity)");

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 // *** POINT 9 *** Handle the received result data carefully and securely,

 // even though the data came from a partner application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 Toast.makeText(mContext, String.format("Received ¥"%s¥" from service.", info), Toast.LENGTH_SHORT).show()

;

 }

 }

}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 199

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

200 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 201

4.4.1.4. Creating/Using In-house Services

In-house Services are the Services which are prohibited to be used by applications other than

in-house applications. They are used in applications developed internally that want to securely share

information and functionality.

Following is an example which uses Messenger bind type Service.

Points (Creating a Service):

1. Define an in-house signature permission.

2. Require the in-house signature permission.

3. Do not define the intent filter and explicitly set the exported attribute to true.

4. Verify that the in-house signature permission is defined by an in-house application.

5. Handle the received intent carefully and securely, even though the intent was sent from an

in-house application.

6. Sensitive information can be returned since the requesting application is in-house.

7. When exporting an APK, sign the APK with the same developer key as the requesting application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.service.inhouseservice.messenger" >

 <!-- *** POINT 1 *** Define an in-house signature permission -->

 <permission

 android:name="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION"

 android:protectionLevel="signature" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <!-- Service using Messenger -->

 <!-- *** POINT 2 *** Require the in-house signature permission -->

 <!-- *** POINT 3 *** Do not define the intent filter and explicitly set the exported attribute to true. -->

 <service

 android:name="org.jssec.android.service.inhouseservice.messenger.InhouseMessengerService"

 android:exported="true"

 android:permission="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION" />

 </application>

</manifest>

InhouseMessengerService.java
package org.jssec.android.service.inhouseservice.messenger;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import java.lang.reflect.Array;

import java.util.ArrayList;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

202 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

import java.util.Iterator;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;

import android.os.RemoteException;

import android.widget.Toast;

public class InhouseMessengerService extends Service{

 // In-house signature permission

 private static final String MY_PERMISSION = "org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of debug.keystore "androiddebugkey"

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of keystore "my company key"

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 // Manage clients(destinations of sending data) in a list

 private ArrayList<Messenger> mClients = new ArrayList<Messenger>();

 // Messenger used when service receive data from client

 private final Messenger mMessenger = new Messenger(new ServiceSideHandler(mClients));

 // Handler which handles message received from client

 private static class ServiceSideHandler extends Handler{

 private ArrayList<Messenger> mClients;

 public ServiceSideHandler(ArrayList<Messenger> clients){

 mClients = clients;

 }

 @Override

 public void handleMessage(Message msg){

 switch(msg.what){

 case CommonValue.MSG_REGISTER_CLIENT:

 // Add messenger received from client

 mClients.add(msg.replyTo);

 break;

 case CommonValue.MSG_UNREGISTER_CLIENT:

 mClients.remove(msg.replyTo);

 break;

 case CommonValue.MSG_SET_VALUE:

 // Send data to client

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 203

 sendMessageToClients(mClients);

 break;

 default:

 super.handleMessage(msg);

 break;

 }

 }

 }

 /**

 * Send data to client

 */

 private static void sendMessageToClients(ArrayList<Messenger> mClients){

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.

 String sendValue = "Sensitive information (from Service)";

 // Send data to the registered client one by one.

 // Use iterator to send all clients even though clients are removed in the loop process.

 Iterator<Messenger> ite = mClients.iterator();

 while(ite.hasNext()){

 try {

 Message sendMsg = Message.obtain(null, CommonValue.MSG_SET_VALUE, null);

 Bundle data = new Bundle();

 data.putString("key", sendValue);

 sendMsg.setData(data);

 Messenger next = ite.next();

 next.send(sendMsg);

 } catch (RemoteException e) {

 // If client does not exits, remove it from a list.

 ite.remove();

 }

 }

 }

 @Override

 public IBinder onBind(Intent intent) {

 // *** POINT 4 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "In-house defined signature permission is not defined by in-house application.", Toa

st.LENGTH_LONG).show();

 return null;

 }

 // *** POINT 5 *** Handle the received intent carefully and securely,

 // even though the intent was sent from an in-house application.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String param = intent.getStringExtra("PARAM");

 Toast.makeText(this, String.format("Received parameter ¥"%s¥".", param), Toast.LENGTH_LONG).show();

 return mMessenger.getBinder();

 }

 @Override

 public void onCreate() {

 Toast.makeText(this, "Service - onCreate()", Toast.LENGTH_SHORT).show();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

204 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 }

 @Override

 public void onDestroy() {

 Toast.makeText(this, "Service - onDestroy()", Toast.LENGTH_SHORT).show();

 }

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 205

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

206 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting

application.

Figure 4.4-2

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 207

Next is the sample code of Activity which uses in house only Service.

Points (Using a Service):

8. Declare to use the in-house signature permission.

9. Verify that the in-house signature permission is defined by an in-house application.

10. Verify that the destination application is signed with the in-house certificate.

11. Sensitive information can be sent since the destination application is in-house.

12. Use the explicit intent to call an in-house service.

13. Handle the received result data carefully and securely, even though the data came from an

in-house application.

14. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.service.inhouseservice.messengeruser" >

 <!-- *** POINT 8 *** Declare to use the in-house signature permission. -->

 <uses-permission

 android:name="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name="org.jssec.android.service.inhouseservice.messengeruser.InhouseMessengerUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

InhouseMessengerUserActivity.java
package org.jssec.android.service.inhouseservice.messengeruser;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

208 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

import android.os.Messenger;

import android.os.RemoteException;

import android.view.View;

import android.widget.Toast;

public class InhouseMessengerUserActivity extends Activity {

 private boolean mIsBound;

 private Context mContext;

 // Destination (Requested) service application information

 private static final String TARGET_PACKAGE = "org.jssec.android.service.inhouseservice.messenger";

 private static final String TARGET_CLASS = "org.jssec.android.service.inhouseservice.messenger.InhouseMessengerS

ervice";

 // In-house signature permission

 private static final String MY_PERMISSION = "org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of debug.keystore "androiddebugkey"

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of keystore "my company key"

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 // Messenger used when this application receives data from service.

 private Messenger mServiceMessenger = null;

 // Messenger used when this application sends data to service.

 private final Messenger mActivityMessenger = new Messenger(new ActivitySideHandler());

 // Handler which handles message received from service

 private class ActivitySideHandler extends Handler {

 @Override

 public void handleMessage(Message msg) {

 switch (msg.what) {

 case CommonValue.MSG_SET_VALUE:

 Bundle data = msg.getData();

 String info = data.getString("key");

 // *** POINT 13 *** Handle the received result data carefully and securely,

 // even though the data came from an in-house application

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely

."

 Toast.makeText(mContext, String.format("Received ¥"%s¥" from service.", info),

 Toast.LENGTH_SHORT).show();

 break;

 default:

 super.handleMessage(msg);

 }

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 209

 // Connection used to connect with service. This is necessary when service is implemented with bindService().

 private ServiceConnection mConnection = new ServiceConnection() {

 // This is called when the connection with the service has been established.

 @Override

 public void onServiceConnected(ComponentName className, IBinder service) {

 mServiceMessenger = new Messenger(service);

 Toast.makeText(mContext, "Connect to service", Toast.LENGTH_SHORT).show();

 try {

 // Send own messenger to service

 Message msg = Message.obtain(null, CommonValue.MSG_REGISTER_CLIENT);

 msg.replyTo = mActivityMessenger;

 mServiceMessenger.send(msg);

 } catch (RemoteException e) {

 // Service stopped abnormally

 }

 }

 // This is called when the service stopped abnormally and connection is disconnected.

 @Override

 public void onServiceDisconnected(ComponentName className) {

 mServiceMessenger = null;

 Toast.makeText(mContext, "Disconnected from service", Toast.LENGTH_SHORT).show();

 }

 };

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.inhouseservice_activity);

 mContext = this;

 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {

 // Start bindService

 doBindService();

 }

 public void onGetInfoClick(View v) {

 getServiceinfo();

 }

 public void onStopServiceClick(View v) {

 doUnbindService();

 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 doUnbindService();

 }

 /**

 * Connect to service

 */

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

210 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 void doBindService() {

 if (!mIsBound){

 // *** POINT 9 *** Verify that the in-house signature permission is defined by an in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "In-house defined signature permission is not defined by in-house application.",

Toast.LENGTH_LONG).show();

 return;

 }

 // *** POINT 10 *** Verify that the destination application is signed with the in-house certificate.

 if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {

 Toast.makeText(this, "Destination(Requested) service application is not in-house application.", Toast

.LENGTH_LONG).show();

 return;

 }

 Intent intent = new Intent();

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.

 intent.putExtra("PARAM", "Sensitive information");

 // *** POINT 12 *** Use the explicit intent to call an in-house service.

 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 bindService(intent, mConnection, Context.BIND_AUTO_CREATE);

 mIsBound = true;

 }

 }

 /**

 * Disconnect service

 */

 void doUnbindService() {

 if (mIsBound) {

 unbindService(mConnection);

 mIsBound = false;

 }

 }

 /**

 * Get information from service

 */

 void getServiceinfo() {

 if (mServiceMessenger != null) {

 try {

 // Request sending information

 Message msg = Message.obtain(null, CommonValue.MSG_SET_VALUE);

 mServiceMessenger.send(msg);

 } catch (RemoteException e) {

 // Service stopped abnormally

 }

 }

 }

}

SigPerm.java
package org.jssec.android.shared;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 211

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

212 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 213

*** Point14 *** When exporting an APK, sign the APK with the same developer key as the destination

application.

Figure 4.4-3

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

214 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

4.4.2. Rule Book

Implementing or using service, follow the rules below.

1. Service that Is Used Only in an application, Must Be Set as Private (Required)

2. Handle the Received Data Carefully and Securely (Required)

3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house

Application (Required)

4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

5. When Returning a Result Information, Pay Attention the Result Information Leakage from the

Destination Application (Required)

6. Use the Explicit Intent if the Destination Service Is fixed (Required)

7. Verify the Destination Service If Linking with the Other Company's Application (Required)

8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level

Protection (Required)

9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

4.4.2.1. Service that Is Used Only in an application, Must Be Set as Private (Required)

Service that is used only in an application (or in same UID) must be set as Private. It avoids the

application from receiving Intents from other applications unexpectedly and eventually prevents

from damages such as application functions are used or application behavior becomes abnormal.

All you have to do in implementation is set exported attribute false when defining Service in

AndroidManifest.xml.

AndroidManifest.xml
 <!-- Private Service derived from Service class -->

 <!-- *** POINT 1 *** Set false for the exported attribute explicitly. -->

 <service android:name=".PrivateStartService" android:exported="false"/>

In addition, this is a rare case, but do not set Intent Filter when service is used only within the

application. The reason is that, due to the characteristics of Intent Filter, public service in other

application may be called unexpectedly though you intend to call Private Service within the

application.

AndroidManifest.xml(Not recommended)
 <!-- Private Service derived from Service class -->

 <!-- *** POINT 1 *** Set false for the exported attribute explicitly. -->

 <service android:name=".PrivateStartService" android:exported="false">

 <intent-filter>

 <action android:name="org.jssec.android.service.OPEN />

 </intent-filter>

 </service>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 215

See "4.4.3.1 Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)."

4.4.2.2. Handle the Received Data Carefully and Securely (Required)

Same like Activity, In case of Service, when processing a received Intent data, the first thing you

should do is input validation. Also in Service user side, it's necessary to verify the safety of result

information from Service. Please refer to "4.1.2.5 Handling the Received Intent Carefully and Securely

 (Required)" and "4.1.2.9 Handle the Returned Data from a Requested Activity Carefully and

Securely (Required)."

In Service, you should also implement calling method and exchanging data by Message carefully.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.4.2.3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house

Application (Required)

Make sure to protect your in-house Services by defining in-house signature permission when

creating the Service. Since defining a permission in the AndroidManifest.xml file or declaring a

permission request does not provide adequate security, please be sure to refer to "5.2.1.2 How to

Communicate Between In-house Applications with In-house-defined Signature Permission."

4.4.2.4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

Security checks such as Intent parameter verification or in-house-defined Signature Permission

verification should not be included in onCreate, because when receiving new request during Service

is running, process of onCreate is not executed. So, when implementing Service which is started by

startService, judgment should be executed by onStartCommand (In case of using IntentService,

judgment should be executed by onHandleIntent.) It's also same in the case when implementing

Service which is started by bindService, judgment should be executed by onBind.

4.4.2.5. When Returning a Result Information, Pay Attention the Result Information Leakage from the

Destination Application (Required)

Depends on types of Service, the reliability of result information destination application (callback

receiver side/ Message destination) are different. Need to consider seriously about the information

leakage considering the possibility that the destination may be Malware.

See, Activity "4.1.2.7 When Returning a Result, Pay Attention to the Possibility of Information

Leakage of that Result from the Destination Application (Required)", for details.

4.4.2.6. Use the Explicit Intent if the Destination Service Is fixed (Required)

When using a Service by implicit Intents, in case the definition of Intent Filter is same, Intent is sent to

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

216 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

the Service which was installed earlier. If Malware with the same Intent Filter defined intentionally was

installed earlier, Intent is sent to Malware and information leakage occurs. On the other hand, when

using a Service by explicit Intents, only the intended Service will receive the Intent so this is much

safer.

There are some other points which should be considered, please refer to "4.1.2.8 Use the explicit

Intents if the destination Activity is predetermined. (Required)."

4.4.2.7. Verify the Destination Service If Linking with the Other Company's Application (Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by

saving a copy of the company's certificate hash inside your application and checking it with the

certificate hash of the destination application. This will prevent a malicious application from being

able to spoof Intents. Please refer to sample code section "4.4.1.3 Creating/Using Partner Service" for

the concrete implementation method.

4.4.2.8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level

Protection (Required)

When an information or function asset, which is protected by permission, is provided to another

application secondhand, you need to make sure that it has the same required permissions needed to

access the asset. In the Android OS permission security model, only an application that has been

granted proper permissions can directly access a protected asset. However, there is a loophole

because an application with permissions to an asset can act as a proxy and allow access to an

unprivileged application. Substantially this is the same as re-delegating permission so it is referred

to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4 Permission Re-delegation

Problem."

4.4.2.9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

You should not send sensitive information to untrusted parties.

You need to consider the risk of information leakage when exchanging sensitive information with a

Service. You must assume that all data in Intents sent to a Public Service can be obtained by a

malicious third party. In addition, there is a variety of risks of information leakage when sending

Intents to Partner or In-house Services as well depending on the implementation.

Not sending sensitive data in the first place is the only perfect solution to prevent information

leakage therefore you should limit the amount of sensitive information being sent as much as

possible. When it is necessary to send sensitive information, the best practice is to only send to a

trusted Service and to make sure the information cannot be leaked through LogCat

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 217

4.4.3. Advanced Topics

4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)

We have explained how to implement the four types of Services in this guidebook: Private Services,

Public Services, Partner Services, and In-house Services. The various combinations of permitted

settings for each type of exported attribute defined in the AndroidManifest.xml file and the

intent-filter elements are defined in the table below. Please verify the compatibility of the exported

attribute and intent-filter element with the Service you are trying to create.

Table 4.4-3

 Value of exported attribute

True False Not specified

Intent Filter defined Public (Do not Use) (Do not Use)

Intent Filter Not

Defined

Public, Partner,

In-house

Private (Do not Use)

The reason why an undefined intent filter and an exported attribute of false should not be used is

that there is a loophole in Android's behavior, and because of how Intent filters work, other

application's Services can be called unexpectedly.

Concretely, Android behaves as per below, so it's necessary to consider carefully when application

designing.

 When multiple Services define the same content of intent-filter, the definition of Service within

application installed earlier is prioritized.

 In case explicit Intent is used, prioritized Service is automatically selected and called by OS.

The system that unexpected call is occurred due to Android's behavior is described in the three

figures below. Figure 4.4-4 is an example of normal behavior that Private Service (application A) can

be called by implicit Intent only from the same application. Because only application A defines

Intent-filter (action="X" in the Figure), it behaves normally. This is the normal behavior.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

218 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Figure 4.4-4

Figure 4.4-5 and Figure 4.4-6 below show a scenario in which the same Intent filter (action="X") is

defined in Application B as well as Application A.

Figure 4.4-5 shows the scenario that applications are installed in the order, application A ->

application B. In this case, when application C sends implicit Intent, calling Private Service (A-1) fails.

On the other hand, since application A can successfully call Private Service within the application by

implicit Intent as expected, there won't be any problems in terms of security (counter-measure for

Malware).

Android device

Application A
Call a service with
the implicit intent

Private Service A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Call the service with
the implicit intent

Intent(“X”)

Since the service A-1 is private one,
it can be called only by the application A.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 219

Figure 4.4-5

Figure 4.4-6 shows the scenario that applications are installed in the order,

applicationB->applicationA. There is a problem here, in terms of security. It shows an example that

application A tries to call Private Service within the application by sending implicit Intent, but actually

Public Activity (B-1) in application B which was installed earlier, is called. Due to this loophole, it is

possible that sensitive information can be sent from applicationA to applicationB. If applicationB is

Malware, it will lead the leakage of sensitive information.

Android device

Application A
Call a service with
the implicit intent

Private Service A-1
exported=“false”

action=“X”

When application A that has private
service is installed earlier than
applications else, and it does not accept
any intents from other applications.

Application B

Public Service B-1
exported=“true”

action=“X”

Intent(“X”)

Application C
Call the service with
the implicit intent

Intent(“X”)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

220 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Figure 4.4-6

As shown above, using Intent filters to send implicit Intents to Private Service may result in

unexpected behavior so it is best to avoid this setting.

4.4.3.2. How to Implement Service

Because methods for Service implementation are various and should be selected with consideration

of security type which is categorized by sample code, each characteristics are briefly explained. It's

divided roughly into the case using startService and the case using bindService. And it's also possible

to create Service which can be used in both startService and bindService. Following items should be

investigated to determine the implementation method of Service.

 Whether to disclose Service to other applications or not (Disclosure of Service)

 Whether to exchange data during running or not (Mutual sending /receiving data)

 Whether to control Service or not (Launch or complete)

 Whether to execute as another process (communication between processes)

 Whether to execute multiple processes in parallel (Parallel process)

Table 4.4-3 shows category of implementation methods and feasibility of each item.

"NG" stands for impossible case or case that another frame work which is different from the provided

function is required.

Android device

When application BA that has public
service is installed earlier than
applications else, and it is only enabled
and service B-1 is called unintentionally
from application A.

Application B

Public Service B-1
exported=“true”

action=“X”

Application C
Call the service with
the implicit intent

Intent(“X”)

Application A
Call a service with
the implicit intent

Private Service A-1
exported=“false”

action=“X”

Intent(“X”)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 221

Table 4.4-4 Category of implementation methods for Service

Category Disclosure of
Service

Mutual
sending/receiving

data

Control Service
(Boot /Exit)

Communication
between

processes

Parallel
process

startService type OK NG OK OK NG

IntentService

type

OK NG NG OK NG

local bind type NG OK OK NG NG

Messenger bind

type

OK OK OK OK NG

AIDL bind type OK OK OK OK OK

startService type

This is the most basic Service. This inherits Service class, and executes processes by

onStartCommand.

In user side, specify Service by Intent, and call by startService. Because data such as results

cannot be returned to source of Intent directly, it should be achieved in combination with another

method such as Broadcast. Please refer to "4.4.1.1 Creating/Using Private Service" for the

concrete example.

Checking in terms of security should be done by onStartCommand, but it cannot be used for

partner only Service since the package name of the source cannot be obtained.

IntentService type

IntentService is the class which was created by inheriting Service. Calling method is same as

startService type. Following are characteristics compared with standard service (startService

type.)

 Processing Intent is done by onHandleIntent (onStartCommand is not used.)

 It's executed by another thread.

 Process is to be queued.

Call is immediately returned because process is executed by another thread, and process

towards Intents is sequentially executed by Queuing system. Each Intent is not processed in

parallel, but it is also selectable depending on the product's requirement, as an option to simplify

implementation. Since data such as results cannot be returned to source of Intent, it should be

achieved in combination with another method such as Broadcast. Please refer to “4.4.1.2

Creating/Using Public Service" for the concrete example of implementation.

Checking in terms of security should be done by onHandleIntent, but it cannot be used for

partner only Service since the package name of the source cannot be obtained.

local bind type

This is a method to implement local Service which works only within the process same as an

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

222 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

application. Define the class which was derived from Binder class, and prepare to provide the

feature (method) which was implemented in Service to caller side.

From user side, specify Service by Intent and call Service by using bindService. This is the most

simple implementation method among all methods of binding Service, but it has limited usages

since it cannot be launched by another process and also Service cannot be disclosed. See project

"Service PrivateServiceLocalBind" which is included in Sample code, for the concrete

implementation example.

From the security point of view, only private Service can be implemented.

Messenger bind type

This is the method to achieve the linking with Service by using Messenger system.

Since Messenger can be given as a Message destination from Service user side, the mutual data

exchanging can be achieved comparatively easily. In addition, since processes are to be queued,

it has a characteristic that behaves "thread-safe"ly. Parallel process for each process is not

possible, but it is also selectable as an option to simplify the implementation depending on the

product's requirement. Regarding user side, specify Service by Intent, and call Service by using

bindService. See "4.4.1.4 Creating/Using In-house Service" for the concrete implementation

example.

Security check in onBind or by Message Handler is necessary, however, it cannot be used for

partner only Service since package name of source cannot be obtained.

AIDL bind type

This is a method to achieve linking with Service by using AIDL system. Define interface by AIDL,

and provide features that Service has as a method. In addition, call back can be also achieved by

implementing interface defined by AIDL in user side, Multi-thread calling is possible, but it's

necessary to implement explicitly in Service side for exclusive process.

User side can call Service, by specifying Intent and using bindService. Please refer to "4.4.1.3

Creating/Using Partner Service" for the concrete implementation example.

Security must be checked in onBind for In-house only Service and by each method of interface

defined by AIDL for partner only Service.

This can be used for all security types of Service which are described in this Guidebook.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 223

4.5. Using SQLite

Herein after, some cautions in terms of security when creating/operating database by using SQLite.

Main points are appropriate setting of access right to database file, and counter-measures for SQL

injection. Database which permits reading/writing database file from outside directly (sharing among

multiple applications) is not supposed here, but suppose the usage in backend of Content Provider

and in an application itself. In addition, it is recommended to adopt counter-measures mentioned

below in case of handling not so much sensitive information, though handling a certain level of

sensitive information is supposed here.

4.5.1. Sample Code

4.5.1.1. Creating/Operating Database

When handling database in Android application, appropriate arrangements of database files and

access right setting (Setting for denying other application's access) can be achieved by using

SQLiteOpenHelper5. Here is an example of easy application that creates database when it's launched,

and executes searching /adding/changing/deleting data through UI. Sample code is what

counter-measure for SQL injection is done, to avoid from incorrect SQL being executed against the

input from outside.

5 As regarding file storing, the absolute file path can be specified as the 2nd parameter (name) of

SQLiteOpenHelper constructor. Therefore, need attention that the stored files can be read and written

by the other applications if the SDCard path is specified.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

224 All rights reserved © Japan Smartphone Security Association. Using SQLite

Figure 4.5-1

Points:

1. SQLiteOpenHelper should be used for database creation.

2. Use place holder.

3. Validate the input value according the application requirements.

SampleDbOpenHelper.java
package org.jssec.android.sqlite;

import android.content.Context;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.util.Log;

import android.widget.Toast;

public class SampleDbOpenHelper extends SQLiteOpenHelper {

 private SQLiteDatabase mSampleDb; //Database to store the data to be handled

 public static SampleDbOpenHelper newHelper(Context context)

 {

 //*** POINT 1 *** SQLiteOpenHelper should be used for database creation.

 return new SampleDbOpenHelper(context);

 }

 public SQLiteDatabase getDb() {

 return mSampleDb;

 }

 //Open DB by Writable mode

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 225

 public void openDatabaseWithHelper() {

 try {

 if (mSampleDb != null && mSampleDb.isOpen()) {

 if (!mSampleDb.isReadOnly())// Already opened by writable mode

 return;

 mSampleDb.close();

 }

 mSampleDb = getWritableDatabase(); //It's opened here.

 } catch (SQLException e) {

 //In case fail to construct database, output to log

 Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));

 Toast.makeText(mContext, R.string.DATABASE_OPEN_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

 }

 }

 //Open DB by ReadOnly mode.

 public void openDatabaseReadOnly() {

 try {

 if (mSampleDb != null && mSampleDb.isOpen()) {

 if (mSampleDb.isReadOnly())// Already opened by ReadOnly.

 return;

 mSampleDb.close();

 }

 SQLiteDatabase.openDatabase(mContext.getDatabasePath(CommonData.DBFILE_NAME).getPath(), null, SQLiteDatab

ase.OPEN_READONLY);

 } catch (SQLException e) {

 //In case failed to construct database, output to log

 Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));

 Toast.makeText(mContext, R.string.DATABASE_OPEN_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

 }

 }

 //Database Close

 public void closeDatabase() {

 try {

 if (mSampleDb != null && mSampleDb.isOpen()) {

 mSampleDb.close();

 }

 } catch (SQLException e) {

 //In case failed to construct database, output to log

 Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_CLOSE_ERROR_MESSAGE));

 Toast.makeText(mContext, R.string.DATABASE_CLOSE_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

 }

 }

 //Remember Context

 private Context mContext;

 //Table creation command

 private static final String CREATE_TABLE_COMMANDS

 = "CREATE TABLE " + CommonData.TABLE_NAME + " ("

 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

 + "idno INTEGER UNIQUE, "

 + "name VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ") NOT NULL, "

 + "info VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ")"

 + ");";

 public SampleDbOpenHelper(Context context) {

 super(context, CommonData.DBFILE_NAME, null, CommonData.DB_VERSION);

 mContext = context;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

226 All rights reserved © Japan Smartphone Security Association. Using SQLite

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 try {

 db.execSQL(CREATE_TABLE_COMMANDS); //Execute DB construction command

 } catch (SQLException e) {

 //In case failed to construct database, output to log

 Log.e(this.getClass().toString(), mContext.getString(R.string.DATABASE_CREATE_ERROR_MESSAGE));

 }

 }

 @Override

 public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {

 // It's to be executed when database version up. Write processes like data transition.

 }

}

DataSearchTask.java (SQLite Database project)
package org.jssec.android.sqlite.task;

import org.jssec.android.sqlite.CommonData;

import org.jssec.android.sqlite.DataValidator;

import org.jssec.android.sqlite.MainActivity;

import org.jssec.android.sqlite.R;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.os.AsyncTask;

import android.util.Log;

//Data search task

public class DataSearchTask extends AsyncTask<String, Void, Cursor> {

 private MainActivity mActivity;

 private SQLiteDatabase mSampleDB;

 public DataSearchTask(SQLiteDatabase db, MainActivity activity) {

 mSampleDB = db;

 mActivity = activity;

 }

 @Override

 protected Cursor doInBackground(String... params) {

 String idno = params[0];

 String name = params[1];

 String info = params[2];

 String cols[] = {"_id", "idno","name","info"};

 Cursor cur;

 //*** POINT 3 *** Validate the input value according the application requirements.

 if (!DataValidator.validateData(idno, name, info))

 {

 return null;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 227

 //When all parameters are null, execute all search

 if ((idno == null || idno.length() == 0) &&

 (name == null || name.length() == 0) &&

 (info == null || info.length() == 0)) {

 try {

 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, null, null, null, null, null);

 } catch (SQLException e) {

 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

 return null;

 }

 return cur;

 }

 //When No is specified, execute searching by No

 if (idno != null && idno.length() > 0) {

 String selectionArgs[] = {idno};

 try {

 //*** POINT 2 *** Use place holder.

 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "idno = ?", selectionArgs, null, null, null);

 } catch (SQLException e) {

 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

 return null;

 }

 return cur;

 }

 //When Name is specified, execute perfect match search by Name

 if (name != null && name.length() > 0) {

 String selectionArgs[] = {name};

 try {

 //*** POINT 2 *** Use place holder.

 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "name = ?", selectionArgs, null, null, null);

 } catch (SQLException e) {

 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

 return null;

 }

 return cur;

 }

 //Other than above, execute partly match searching with the condition of info.

 String argString = info.replaceAll("@", "@@"); //Escape $ in info which was received as input.

 argString = argString.replaceAll("%", "@%"); //Escape % in info which was received as input.

 argString = argString.replaceAll("_", "@_"); //Escape _ in info which was received as input.

 String selectionArgs[] = {argString};

 try {

 //*** POINT 2 *** Use place holder.

 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "info LIKE '%' || ? || '%' ESCAPE '@'", selectionArgs,

null, null, null);

 } catch (SQLException e) {

 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

 return null;

 }

 return cur;

 }

 @Override

 protected void onPostExecute(Cursor resultCur) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

228 All rights reserved © Japan Smartphone Security Association. Using SQLite

 mActivity.updateCursor(resultCur);

 }

}

DataValidator.java
package org.jssec.android.sqlite;

public class DataValidator {

 //Validate the Input value

 //validate numeric characters

 public static boolean validateNo(String idno) {

 //null and blank are OK

 if (idno == null || idno.length() == 0) {

 return true;

 }

 //Validate that it's numeric character.

 try {

 if (!idno.matches("[1-9][0-9]*")) {

 //Error if it's not numeric value

 return false;

 }

 } catch (NullPointerException e) {

 //Detected an error

 return false;

 }

 return true;

 }

 // Validate the length of a character string

 public static boolean validateLength(String str, int max_length) {

 //null and blank are OK

 if (str == null || str.length() == 0) {

 return true;

 }

 //Validate the length of a character string is less than MAX

 try {

 if (str.length() > max_length) {

 //When it's longer than MAX, error

 return false;

 }

 } catch (NullPointerException e) {

 //Bug

 return false;

 }

 return true;

 }

 // Validate the Input value

 public static boolean validateData(String idno, String name, String info) {

 if (!validateNo(idno)) {

 return false;

 }

 if (!validateLength(name, CommonData.TEXT_DATA_LENGTH_MAX)) {

 return false;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 229

 }else if(!validateLength(info, CommonData.TEXT_DATA_LENGTH_MAX)) {

 return false;

 }

 return true;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

230 All rights reserved © Japan Smartphone Security Association. Using SQLite

4.5.2. Rule Book

Using SQLite, follow the rules below accordingly.

1. Set DB File Location and Access Right Correctly (Required)

2. Use Content Provider for Access Control When Sharing DB Data with Other Application

 (Required)

3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.

 (Required)

4.5.2.1. Set DB File Location and Access Right Correctly (Required)

Considering the protection of DB file data, DB file location and access right setting is the very

important elements that need to be considered together.

For example, even if file access right is set correctly, a DB file can be accessed from anybody in case

that it is arranged in a location which access right cannot be set, e.g. SD card. And in case that it's

arranged in application directory, if the access right is not correctly set, it will eventually allow the

unexpected access. Following are some points to be met regarding the correct allocation and access

right setting, and the methods to realize them.

About location and access right setting, considering in terms of protecting DB file (data), it's

necessary to execute 2 points as per below.

1. Location

Locate in file path that can be obtained by Context#getDatabasePath(String name), or in some

cases, directory that can be obtained by Context#getFilesDir6.

2. Access right

Set to MODE_PRIVATE (=it can be accessed only by the application which creates file) mode.

By executing following 2 points, DB file which cannot be accessed by other applications can be

created. Here are some methods to execute them.

1. Use SQLiteOpenHelper

2. Use Context#openOrCreateDatabase

When creating DB file, SQLiteDatabase#openOrCreateDatabase can be used. However, when using

this method, DB files which can be read out from other applications are created, in some Android

smartphone devices. So it is recommended to avoid this method, and using other methods. Each

characteristics for the above 2 methods are as per below.

6 Both methods provide the path under (package) directory which is able to be read and written only by

the specified application.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 231

Using SQLiteOpenHelper

When using SQLiteOpenHelper, developers don't need to be worried about many things. Create a

class derived from SQLiteOpenHelper, and specify DB name (which is used for file name)7 to

constructer's parameter, then DB file which meets above security requirements, are to be created

automatically.

Refer to specific usage method for "4.5.1.1 Creating/Operating Database" for how to use.

Using Context#openOrCreateDatabase

When creating DB by using Context#openOrCreateDatabase method, file access right should be

specified by option, in this case specify MODE_PRIVATE explicitly.

Regarding file arrangement, specifying DB name (which is to be used to file name) can be done as

same as SQLiteOpenHelper, a file is to be created automatically, in the file path which meets the

above mentioned security requirements. However, full path can be also specified, so it's

necessary to pay attention that when specifying SD card, even though specifying MODE_PRIVATE,

other applications can also access.

Example to execute accsee permission setting to DB explicitly:MainActivity.java
public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 //Construct database

 try {

 //Create DB by setting MODE_PRIVATE

 db = Context.openOrCreateDatabase("Sample.db",

 MODE_PRIVATE, null);

 } catch (SQLException e) {

 //In case failed to construct DB, log output

 Log.e(this.getClass().toString(), getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));

 return;

 }

 //Ommit other initial process

 }

FYI, there are following 3 types of access right setting including MODE_PRIVATE.

MODE_WORLD_READABLE and MODE_WORLD_WRITABLE can be specified together by OR

operator. Since modes other than MODE_PRIVATE are deplicated in API Level 17 or later, you

need to carefully consider the use of them along with the application requirements.

 MODE_PRIVATE Only creator application can read and write

 MODE_WORLD_READABLE Creator application can read and write, Others can only read in

7 (Undocumented in Android reference) Since the full file path can be specified as the database name in

SQLiteOpenHelper implementation, need attention that specifying the place (path) which does not have

access control feature (e.g. sdcards) unintentionally.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

232 All rights reserved © Japan Smartphone Security Association. Using SQLite

 MODE_WORLD_WRITABLE Creator application can read and write, Others can only write in

4.5.2.2. Use Content Provider for Access Control When Sharing DB Data with Other Application

 (Required)

The method to share DB data with other application is that create DB file as WORLD_READABLE,

WORLD_WRITABLE, to other applications to access directly. However, this method cannot limit

applications which access to DB or operations to DB, so data can be read-in or written by unexpected

party (application). As a result, it can be considered that some problems may occur in confidentiality

or consistency of data, or it may be an attack target of Malware.

As mentioned above, when sharing DB data with other applications in Android, it's strongly

recommended to use Content Provider. By using Content Provider, there are some merits, not only

the merits from the security point of view which is the access control on DB can be achieved, but also

merits from the designing point of view which is DB scheme structure can be hidden into Content

Provider.

4.5.2.3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.

 (Required)

In the sense that preventing from SQL injection, when incorporating the arbitrary input value to SQL

statement, placeholder should be used. There are 2 methods as per below to execute SQL using

placeholder.

1. Get SQLiteStatement by using SQLiteDatabase#compileStatement(), and after that place

parameter to placeholder by using SQLiteStatement#bindString() or bindLong() etc.

2. When calling execSQL(), insert(), update(), delete(), query(), rawQuery() and replace() in

SQLiteDatabese class, use SQL statement which has placeholder.

In addition, when executing SELECT command, by using SQLiteDatabase#compileStatement(), there

is a limitation that "only the top 1 element can be obtained as a result of SELECT command," so

usages are limited.

In either method, the data content which is given to placeholder is better to be checked in advance

according the application requirements. Following is the further explanation for each method.

When Using SQLiteDatabase#compileStatement():

Data is given to placeholder in the following steps.

1. Get the SQL statement which includes placeholder by using

SQLiteDatabase#compileStatement(), as SQLiteStatement.

2. Set the created as SQLiteStatement objects to placeholder by using the method like

bindLong() and bindString().

3. Execute SQL by method like execute() of ExecSQLiteStatement object.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 233

Use case of placeholder:DataInsertTask.java (an extra)
//Adding data task

public class DataInsertTask extends AsyncTask<String, Void, Void> {

 private MainActivity mActivity;

 private SQLiteDatabase mSampleDB;

 public DataInsertTask(SQLiteDatabase db, MainActivity activity) {

 mSampleDB = db;

 mActivity = activity;

 }

 @Override

 protected Void doInBackground(String... params) {

 String idno = params[0];

 String name = params[1];

 String info = params[2];

 //*** POINT 3 *** Validate the input value according the application requirements.

 if (!DataValidator.validateData(idno, name, info))

 {

 return null;

 }

 // Adding data task

 //*** POINT 2 *** Use place holder

 String commandString = "INSERT INTO " + CommonData.TABLE_NAME + " (idno, name, info) VALUES (?, ?, ?)";

 SQLiteStatement sqlStmt = mSampleDB.compileStatement(commandString);

 sqlStmt.bindString(1, idno);

 sqlStmt.bindString(2, name);

 sqlStmt.bindString(3, info);

 try {

 sqlStmt.executeInsert();

 } catch (SQLException e) {

 Log.e(DataInsertTask.class.toString(), mActivity.getString(R.string.UPDATING_ERROR_MESSAGE));

 } finally {

 sqlStmt.close();

 }

 return null;

 }

 ... Abbreviation ...

}

This is a type that SQL statement to be executed as object is created in advance, and parameters

are allocated to it. The process to execute is fixed, so there's no room for SQL injection to occur.

In addition, there is a merit that process efficiency is enhanced by reutilizing SQLiteStatement

object.

In the Case Using Method for Each Process which SQLiteDatabase provides:

There are 2 types of DB operation methods that SQLiteDatabase provides. One is what SQL

statement is used, and another is what SQL statement is not used. Methods that SQL statement is

used are SQLiteDatabase# execSQL()/rawQuery() and it's executed in the following steps.

1. Prepare SQL statement which includes placeholder.

2. Create data to allocate to placeholder.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

234 All rights reserved © Japan Smartphone Security Association. Using SQLite

3. Send SQL statement and data as parameter, and execute a method for process.

On the other hand, SQLiteDatabase#insert()/update()/delete()/query()/replace() is the method

that SQL statement is not used. When using them, data should be sent as per the following steps.

1. In case there's data to insert /update to DB, register to ContentValues.

2. Send ContentValues as parameter, and execute a method for each process (In the following

example, SQLiteDatabase#insert())

Use case of metod for each process (SQLiteDatabase#insert())
 private SQLiteDatabase mSampleDB;

 private void addUserData(String idno, String name, String info) {

 //Validity check of the value(Type, range), escape process

 if (!validateInsertData(idno, name, info)) {

 //If failed to pass the validation, log output

 Log.e(this.getClass().toString(), getString(R.string.VALIDATION_ERROR_MESSAGE));

 return

 }

 //Prepare data to insert

 ContentValues insertValues = new ContentValues();

 insertValues.put("idno", idno);

 insertValues.put("name", name);

 insertValues.put("info", info);

 //Execute Inser

 try {

 mSampleDb.insert("SampleTable", null, insertValues);

 } catch (SQLException e) {

 Log.e(this.getClass().toString(), getString(R.string.DB_INSERT_ERROR_MESSAGE));

 return;

 }

 }

In this example, SQL command is not directly written, for instead, a method for inserting which

SQLiteDatabase provides, is used. SQL command is not directly used, so there's no room for SQL

injection in this method, too.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 235

4.5.3. Advanced Topics

4.5.3.1. When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be

Implemented

When using character string which includes wild card (%, _) of LIKE predicate, as input value of place

holder, it will work as a wild card unless it is processed properly, so it's necessary to implement

escape process in advance according the necessity. It is the case which escape process is necessary

that wild card should be used as a single character ("%" or "_").

The actual escape process is executed by using ESCAPE clause as per below sample code.

Example of ESCAPE process in case of using LIKE
//Data search task

public class DataSearchTask extends AsyncTask<String, Void, Cursor> {

 private MainActivity mActivity;

 private SQLiteDatabase mSampleDB;

 private ProgressDialog mProgressDialog;

 public DataSearchTask(SQLiteDatabase db, MainActivity activity) {

 mSampleDB = db;

 mActivity = activity;

 }

 @Override

 protected Cursor doInBackground(String... params) {

 String idno = params[0];

 String name = params[1];

 String info = params[2];

 String cols[] = {"_id", "idno","name","info"};

 Cursor cur;

 ... Abbreviation ...

 //Execute like search(partly match) with the condition of info

 //Point:Escape process should be performed on characters which is applied to wild card

 String argString = info.replaceAll("@", "@@"); // Escape $ in info which was received as input

 argString = argString.replaceAll("%", "@%"); // Escape % in info which was received as input

 argString = argString.replaceAll("_", "@_"); // Escape _ in info which was received as input

 String selectionArgs[] = {argString};

 try {

 //Point:Use place holder

 cur = mSampleDB.query("SampleTable", cols, "info LIKE '%' || ? || '%' ESCAPE '@'",

 selectionArgs, null, null, null);

 } catch (SQLException e) {

 Toast.makeText(mActivity, R.string.SERCHING_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

 return null;

 }

 return cur;

 }

 @Override

 protected void onPostExecute(Cursor resultCur) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

236 All rights reserved © Japan Smartphone Security Association. Using SQLite

 mProgressDialog.dismiss();

 mActivity.updateCursor(resultCur);

 }

}

4.5.3.2. Use External Input to SQL Command in which Place Holder Cannot Be Used

When executing SQL statement which process targets are DB objects like table creation/deletion etc.,

placeholder cannot be used for the value of table name. Basically, DB should not be designed using

arbitrary character string which was input from outside in case that placeholder cannot be used for

the value.

When placeholder cannot be used due to the restriction of specifications or features, whether the

Input value is dangerous or not, should be verified before execution, and it's necessary to implement

necessary processes.

Basically,

1. When using as character string parameter, escape or quote process for character should be

made.

2. When using as numeric value parameter, verify that characters other than numeric value are not

included.

3. When using as identifier or command, verify whether characters which cannot be used are not

included, along with 1.

should be executed.

Reference: http://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf (Japanese)

4.5.3.3. Take a Countermeasure that Database Is Not Overwritten Unexpectedly

In case getting instance of DB by SQLiteOpenHelper#getReadableDatabase, getWritableDatabase,

DB is to be opened in readable/writable state by using either method8. In addition, it's same to

Context#openOrCreateDatabase, SQLiteDatabase#openOrCreateDatabase, etc. It means that

contents of DB may be overwritten unexpectedly by application operation or by defects in

implementation. Basically, it can be supported by the application's spec and range of implementation,

but when implementing the function which requires only read in function like application's searching

function etc., opening database by read-only, it may lead to simplify designing or inspection and

furthermore, lead to enhance application quality, so it's recommended depends on the situation.

8 getReableDatabase() returns the same object which can be got by getWritableDatabase. This spec is,

in case writable object cannot be generated due to disc full etc., it will return Read- only object.

(getWritableDatabase() will be execution error under the situation like disc full etc.)

http://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 237

Specifically, open database by specifying OPEN_READONLY to SQLiteDatabase#openDatabase.

Open database by read-only
 ... Ommit ...

 // Open DB(DB should be created in advance)

 SQLiteDatabase db

 = SQLiteDatabase.openDatabase(SQLiteDatabase.getDatabasePath("Sample.db"), null, OPEN_READONLY);

Reference: http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.ht

ml#getReadableDatabase()

4.5.3.4. Verify the Validity of Input/Output Data of DB, According to Application's Requirement

SQLite is the database which is tolerant types, and it can store character type data into columns which

is declared as Integer in DB. Regarding data in database, all data including numeric value type is

stored in DB as character data of plain text. So searching of character string type, can be executed to

Integer type column. (LIKE '%123%' etc.) In addition, the limitation for the value in SQLite (validity

verification) is untrustful since data which is longer than limitation can be input in some case, e.g.

VARCHAR(100).

So, applications which use SQLite, need to be very careful about this characteristics of DB, and it is

necessary take actions according to application requirements, not to store unexpected data to DB

or not to get unexpected data. Countermeasures are as per below 2 points.

1. When storing data in database, verify that type and length are matched.

2. When getting the value from database, verify whether data is beyond the supposed type and

length, or not.

Following is an example of the code which verifies that the Input value is more than 1.

Verify that the Input value is more than 1 (Extract from MainActivity.java)
public class MainActivity extends Activity {

 ... Abbreviation ...

 //Process for adding

 private void addUserData(String idno, String name, String info) {

 //Check for No

 if (!validateNo(idno, CommonData.REQUEST_NEW)) {

 return;

 }

 //Inserting data process

 DataInsertTask task = new DataInsertTask(mSampleDbyhis);

 task.execute(idno, name, info);

 }

 ... Abbreviation ...

 private boolean validateNo(String idno, int request) {

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#getReadableDatabase()
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#getReadableDatabase()

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

238 All rights reserved © Japan Smartphone Security Association. Using SQLite

 if (idno == null || idno.length() == 0) {

 if (request == CommonData.REQUEST_SEARCH) {

 //When search process, unspecified is considered as OK.

 return true;

 } else {

 //Other than search process, null and blank are error.

 Toast.makeText(this, R.string.IDNO_EMPTY_MESSAGE, Toast.LENGTH_LONG).show();

 return false;

 }

 }

 //Verify that it's numeric character

 try {

 // Value which is more than 1

 if (!idno.matches("[1-9][0-9]*")) {

 //In case of not numeric character, error

 Toast.makeText(this, R.string.IDNO_NOT_NUMERIC_MESSAGE, Toast.LENGTH_LONG).show();

 return false;

 }

 } catch (NullPointerException e) {

 //It never happen in this case

 return false;

 }

 return true;

 }

 ... Abbreviation...

}

4.5.3.5. Consideration - the Data Stored into Database

In SQLite implementation, when storing data to file is as per below.

 All data including numeric value type are stored into DB file as character data of plain text.

 When executing data deletion to DB, data itself is not deleted form DB file. (Only deletion mark is

added.)

 When updating data, data before updating has not been deleted, and still remains there in DB

file.

So, the information which "must have" been deleted may still remain in DB file. Even in this case, take

counter-measures according this Guidebook, and when Android security function is enabled,

data/file may not be directly accessed by the third party including other applications. However,

considering the case that files are picked out by passing through Android's protection system like

root privilege is taken, in case the data which gives huge influence on business is stored, data

protection which doesn't depend on Android protection system, should be considered.

As above reasons, the important data which is necessary to be protected even when device's root

privilege is taken, should not be stored in DB of SQLite, as it is. In case need to store the important

data, it's necessary to implement counter-measures, or encrypt overall DB.

When encryption is necessary, there are so many issues that are beyond the range of this Guidebook,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using SQLite 239

like handling the key which is used for encryption or code obfuscation, so as of now it's

recommended to consult the specialist when developing an application which handles data that has

huge business impact.

Please refer to "4.5.3.6 [Reference] Encrypt SQLite Database (SQLCipher for Android," library which

encrypts database is introduced here.

4.5.3.6. [Reference] Encrypt SQLite Database (SQLCipher for Android)

SQLCipher is the SQLite extension that provides encryption of transparent 256 bit AES for database. It

is open sourced (BSD license), and maintained/managed by Zetetic LLC. In a world of mobile,

SQLCipher is widely used in Nokia/QT, Apple's iOS.

SQLCipher for Android project is aiming to support the standard integrated encryption for SQLite

database in Android environment. By creating the standard SQLite's API for SQLCipher, developers

can use the encrypted database with the same coding as per usual.

Reference: https://guardianproject.info/code/sqlcipher/

How to Use

Application developers can use SQLCipher by following 3 steps below.

1. Locate sqlcipher.jar, libdatabase_sqlcipher.so, libsqlcipher_android.so and

libstlport_shared.so in application's lib directory.

2. Regarding all source files, change all android.database.sqlite.* which is specified by import,

to info.guardianproject.database.sqlite.*. In addition, android.database.Cursor can be used

as it is.

3. Initialize database in onCreate(), and set password when opening database.

 Easy code example
SQLiteDatabase.loadLibs(this); // First, Initialize library by using context.

SQLiteOpenHelper.getWritableDatabase(passwoed): // Parameter is password(Suppose that it's string type and It's got

 in a secure way.)

SQLCipher for Android was version 1.1.0 at the time of writing, and now version 2.0.0 is under

developing, and RC4 is disclosed now. In terms of the past usage in Android and stability of API,

it's necessary to be verified later, but currently still there's a room to consider as encryption

solution of SQLite, which can be used in Android.

Library Structure

The following files which are included as SDK, are necessary, to use SQLCipher.

 assets/icudt46l.zip 2,252KB

It's necessary when icudt46l.dat doesn't exist below /system/usr/icu/ and its earlier version.

https://guardianproject.info/code/sqlcipher/

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

240 All rights reserved © Japan Smartphone Security Association. Using SQLite

When icudt46l.dat cannot be found, this zip is unzipped and to be used.

 libs/armeabi/libdatabase_sqlcipher.so 44KB

 libs/armeabi/libsqlcipher_android.so 1,117KB

 libs/armeabi/libstlport_shared.so 555KB

Native Library. It's read out when SQLCipher's initial load (When calling

SQLiteDatabase#loadLibs()).

 libs/commons-codec.jar 46KB

 libs/guava-r09.jar 1,116KB

 libs/sqlcipher.jar 102KB

Java library which calls Native library. sqlcipher.jar is main. Others are referred from

sqlcipher.jar.

Total: about 5.12MB

However, when icudt46l.zip is unzipped, it amounts to around 7MB.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 241

4.6. Handling Files

According to Android security designing idea, files are used only for making information persistence

and temporary save (cache), and it should be private in principle. Exchanging information between

applications should not be direct access to files, but it should be exchanged by inter-application

linkage system, like Content Provider or Service. By using this, inter-application access control can

be achieved.

Since enough access control cannot be performed on external memory device like SD card etc., so it

should be limited to use only when it's necessary by all means in terms of function, like when

handling huge size files or transferring information to another location (PC etc.). Basically, files that

include sensitive information should not be saved in external memory device. In case sensitive

information needs to be saved in a file of external device at any rate, counter-measures like

encryption are necessary, but it's not referred here.

4.6.1. Sample Code

As mentioned above, files should be private in principle. However, sometimes files should be read

out/written by other applications directly for some reasons. File types which are categorized from the

security point of view and comparison are shown in Table 4.6-1. These are categorized into 4 types

of files based on the file storage location or access permission to other application. Sample code for

each file category is shown below and explanation for each of them are also added there.

Table 4.6-1 File category and comparison from security point of view

File category Access permission

to other application

Storage

location

Overview

Private file NA In

application

directory

 Can read and write only in an application

 Sensitive information can be handled.

 File should be this type in principle.

Read out

public file

Read out In

application

directory

 Other applications and users can read.

 Information that can be disclosed to

outside of application is handled.

Read write

public file

Read out

Write in

In

application

directory

 Other applications and users can read

and write.

 It should not be used from both security

and application designing points of

view.

External

memory

device

(Read write

public)

Read out

Write in

External

memory

device like

SD card

 No access control

 Other applications and users can always

read/write/delete files.

 Usage should be minimum requirement.

 Comparatively huge size of files can be

handled.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

242 All rights reserved © Japan Smartphone Security Association. Handling Files

4.6.1.1. Using Private Files

This is the case to use files that can be read /written only in the same application, and it is a very safe

way to use files. In principle, whether the information stored in the file is public or not, keep files

private as much as possible, and when exchanging the necessary information with other applications,

it should be done using another Android system (Content Provider, Service.)

Points:

1. Files must be created in application directory.

2. The access privilege of file must be set private mode in order not to be used by other

applications.

3. Sensitive information can be stored.

4. Regarding the information to be stored in files, handle file data carefully and securely.

PrivateFileActivity.java
package org.jssec.android.file.privatefile;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateFileActivity extends Activity {

 private TextView mFileView;

 private static final String FILE_NAME = "private_file.dat";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.file);

 mFileView = (TextView) findViewById(R.id.file_view);

 }

 /**

 * Create file process

 *

 * @param view

 */

 public void onCreateFileClick(View view) {

 FileOutputStream fos = null;

 try {

 // *** POINT 1 *** Files must be created in application directory.

 // *** POINT 2 *** The access privilege of file must be set private mode in order not to be used by other

applications.

 fos = openFileOutput(FILE_NAME, MODE_PRIVATE);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 243

 // *** POINT 3 *** Sensitive information can be stored.

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 fos.write(new String("Not sensotive information (File Activity)¥n").getBytes());

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("PrivateFileActivity", "failed to read file");

 } finally {

 if (fos != null) {

 try {

 fos.close();

 } catch (IOException e) {

 android.util.Log.e("PrivateFileActivity", "failed to close file");

 }

 }

 }

 finish();

 }

 /**

 * Read file process

 *

 * @param view

 */

 public void onReadFileClick(View view) {

 FileInputStream fis = null;

 try {

 fis = openFileInput(FILE_NAME);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 String str = new String(data);

 mFileView.setText(str);

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("PrivateFileActivity", "failed to read file");

 } finally {

 if (fis != null) {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("PrivateFileActivity", "failed to close file");

 }

 }

 }

 }

 /**

 * Delete file process

 *

 * @param view

 */

 public void onDeleteFileClick(View view) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

244 All rights reserved © Japan Smartphone Security Association. Handling Files

 File file = new File(this.getFilesDir() + "/" + FILE_NAME);

 file.delete();

 mFileView.setText(R.string.file_view);

 }

}

PrivateUserActivity.java
package org.jssec.android.file.privatefile;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateUserActivity extends Activity {

 private TextView mFileView;

 private static final String FILE_NAME = "private_file.dat";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.user);

 mFileView = (TextView) findViewById(R.id.file_view);

 }

 private void callFileActivity() {

 Intent intent = new Intent();

 intent.setClass(this, PrivateFileActivity.class);

 startActivity(intent);

 }

 /**

 * Call file Activity process

 *

 * @param view

 */

 public void onCallFileActivityClick(View view) {

 callFileActivity();

 }

 /**

 * Read file process

 *

 * @param view

 */

 public void onReadFileClick(View view) {

 FileInputStream fis = null;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 245

 try {

 fis = openFileInput(FILE_NAME);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String str = new String(data);

 mFileView.setText(str);

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("PrivateUserActivity", "failed to read file");

 } finally {

 if (fis != null) {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("PrivateUserActivity", "failed to close file");

 }

 }

 }

 }

 /**

 * Rewrite file process

 *

 * @param view

 */

 public void onWriteFileClick(View view) {

 FileOutputStream fos = null;

 try {

 // *** POINT 1 *** Files must be created in application directory.

 // *** POINT 2 *** The access privilege of file must be set private mode in order not to be used by other

applications.

 fos = openFileOutput(FILE_NAME, MODE_APPEND);

 // *** POINT 3 *** Sensitive information can be stored.

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 fos.write(new String("Sensitive information (User Activity)¥n").getBytes());

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("PrivateUserActivity", "failed to read file");

 } finally {

 if (fos != null) {

 try {

 fos.close();

 } catch (IOException e) {

 android.util.Log.e("PrivateUserActivity", "failed to close file");

 }

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

246 All rights reserved © Japan Smartphone Security Association. Handling Files

 callFileActivity();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 247

4.6.1.2. Using Public Read Only Files

This is the case to use files to disclose the contents to unspecified large number of applications. If

you implement by following the below points, it's also comparatively safe file usage method. But as

MODE_WORLD_READABLE, the mode for disclosing files or their contents, is deplicated in API Level

17 or later, it is advisable to use other ways for sharing files (e.g. via Content Provider).

Points:

1. Files must be created in application directory.

2. The access privilege of file must be set to read only to other applications.

3. Sensitive information must not be stored.

4. Regarding the information to be stored in files, handle file data carefully and securely.

PublicFileActivity.java
package org.jssec.android.file.publicfile.readonly;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicFileActivity extends Activity {

 private TextView mFileView;

 private static final String FILE_NAME = "public_file.dat";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.file);

 mFileView = (TextView) findViewById(R.id.file_view);

 }

 /**

 * Create file process

 *

 * @param view

 */

 public void onCreateFileClick(View view) {

 FileOutputStream fos = null;

 try {

 // *** POINT 1 *** Files must be created in application directory.

 // *** POINT 2 *** The access privilege of file must be set to read only to other applications.

 // (MODE_WORLD_READABLE is deprecated API Level 17,

 // don't use this mode as much as possible and exchange data by using ContentProvider().)

 fos = openFileOutput(FILE_NAME, MODE_WORLD_READABLE);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

248 All rights reserved © Japan Smartphone Security Association. Handling Files

 // *** POINT 3 *** Sensitive information must not be stored.

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 fos.write(new String("Not sensitive information (Public File Activity)¥n")

 .getBytes());

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("PublicFileActivity", "failed to read file");

 } finally {

 if (fos != null) {

 try {

 fos.close();

 } catch (IOException e) {

 android.util.Log.e("PublicFileActivity", "failed to close file");

 }

 }

 }

 finish();

 }

 /**

 * Read file process

 *

 * @param view

 */

 public void onReadFileClick(View view) {

 FileInputStream fis = null;

 try {

 fis = openFileInput(FILE_NAME);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 String str = new String(data);

 mFileView.setText(str);

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("PublicFileActivity", "failed to read file");

 } finally {

 if (fis != null) {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("PublicFileActivity", "failed to close file");

 }

 }

 }

 }

 /**

 * Delete file process

 *

 * @param view

 */

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 249

 public void onDeleteFileClick(View view) {

 File file = new File(this.getFilesDir() + "/" + FILE_NAME);

 file.delete();

 mFileView.setText(R.string.file_view);

 }

}

PublicUserActivity.java
package org.jssec.android.file.publicuser.readonly;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.Intent;

import android.content.pm.PackageManager.NameNotFoundException;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicUserActivity extends Activity {

 private TextView mFileView;

 private static final String TARGET_PACKAGE = "org.jssec.android.file.publicfile.readonly";

 private static final String TARGET_CLASS = "org.jssec.android.file.publicfile.readonly.PublicFileActivity";

 private static final String FILE_NAME = "public_file.dat";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.user);

 mFileView = (TextView) findViewById(R.id.file_view);

 }

 private void callFileActivity() {

 Intent intent = new Intent();

 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 try {

 startActivity(intent);

 } catch (ActivityNotFoundException e) {

 mFileView.setText("(File Activity does not exist)");

 }

 }

 /**

 * Call file Activity process

 *

 * @param view

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

250 All rights reserved © Japan Smartphone Security Association. Handling Files

 */

 public void onCallFileActivityClick(View view) {

 callFileActivity();

 }

 /**

 * Read file process

 *

 * @param view

 */

 public void onReadFileClick(View view) {

 FileInputStream fis = null;

 try {

 File file = new File(getFilesPath(FILE_NAME));

 fis = new FileInputStream(file);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String str = new String(data);

 mFileView.setText(str);

 } catch (FileNotFoundException e) {

 android.util.Log.e("PublicUserActivity", "no file");

 } catch (IOException e) {

 android.util.Log.e("PublicUserActivity", "failed to read file");

 } finally {

 if (fis != null) {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("PublicUserActivity", "failed to close file");

 }

 }

 }

 }

 /**

 * Rewrite file process

 *

 * @param view

 */

 public void onWriteFileClick(View view) {

 FileOutputStream fos = null;

 boolean exception = false;

 try {

 File file = new File(getFilesPath(FILE_NAME));

 // Fail to write in. FileNotFoundException occurs.

 fos = new FileOutputStream(file, true);

 fos.write(new String("Not sensitive information (Public User Activity)¥n")

 .getBytes());

 } catch (IOException e) {

 mFileView.setText(e.getMessage());

 exception = true;

 } finally {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 251

 if (fos != null) {

 try {

 fos.close();

 } catch (IOException e) {

 exception = true;

 }

 }

 }

 if (!exception)

 callFileActivity();

 }

 private String getFilesPath(String filename) {

 String path = "";

 try {

 Context ctx = createPackageContext(TARGET_PACKAGE,

 Context.CONTEXT_RESTRICTED);

 File file = new File(ctx.getFilesDir(), filename);

 path = file.getPath();

 } catch (NameNotFoundException e) {

 android.util.Log.e("PublicUserActivity", "no file");

 }

 return path;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

252 All rights reserved © Japan Smartphone Security Association. Handling Files

4.6.1.3. Using Public Read/Write Files

This is the usage of the file which permits read-write access to unspecified large number of

application.

Unspecified large number of application can read and write, means that needless to say. Malware can

also read and write, so the credibility and safety of data will be never guaranteed. In addition, even in

case of not malicious intention, data format in file or timing to write in cannot be controlled. So this

type of file is almost not practical in terms of functionality.

As above, it's impossible to use read-write files safely from both security and application designing

points of view, so using read-write files should be avoided.

Point:

1. Must not create files that be allowed to read/write access from other applications.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 253

4.6.1.4. Using Eternal Memory (Read Write Public) Files

This is the case when storing files in an external memory like SD card. It's supposed to be used when

storing comparatively huge information (placing file which was downloaded from Web), or when

bring out the information to outside (backup etc.)

"External memory file (Read Write public)" has the equal characteristics with "Read Write public file" to

unspecified large number of applications. In addition, it has the equal characteristics with "Read Write

public file" to applications which declares to use android.permission.WRITE_EXTERNAL_STORAGE

Permission. So, the usage of "External memory file (Read Write public) file" should be minimized as

less as possible.

A Backup file is most probably created in an external memory device as Android application's

customary practice. However, as mentioned as above, files in an external memory have the risk that

is tampered/ deleted by other applications including malware. Hence, in applications which output

backup, some contrivances to minimize risks in terms of application spec or designing like

displaying a caution "Copy Backup files to the safety location like PC etc., a.s.a.p.", are necessary.

Points:

1. Sensitive information must not be stored.

2. Files must be stored in the unique directory per application.

3. Regarding the information to be stored in files, handle file data carefully and securely.

4. Writing file by the requesting application should be prohibited as the specification.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.file.externalfile" >

 <!-- declare android.permission.WRITE_EXTERNAL_STORAGE permission to write to the external strage -->

 <!-- In Android 4.4 (API Level 19) and later, the application, which read/write only files in its specific

 directories on external storage devices, need not to require the permission and it should declare

 the maxSdkVersion -->

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

 android:maxSdkVersion="18"/>

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name=".ExternalFileActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

254 All rights reserved © Japan Smartphone Security Association. Handling Files

</manifest>

ExternalFileActivity.java
package org.jssec.android.file.externalfile;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class ExternalFileActivity extends Activity {

 private TextView mFileView;

 private static final String TARGET_TYPE = "external";

 private static final String FILE_NAME = "external_file.dat";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.file);

 mFileView = (TextView) findViewById(R.id.file_view);

 }

 /**

 * Create file process

 *

 * @param view

 */

 public void onCreateFileClick(View view) {

 FileOutputStream fos = null;

 try {

 // *** POINT 1 *** Sensitive information must not be stored.

 // *** POINT 2 *** Files must be stored in the unique directory per application.

 File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);

 fos = new FileOutputStream(file, false);

 // *** POINT 3 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 fos.write(new String("Non-Sensitive Information(ExternalFileActivity)¥n")

 .getBytes());

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("ExternalFileActivity", "failed to read file");

 } finally {

 if (fos != null) {

 try {

 fos.close();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 255

 } catch (IOException e) {

 android.util.Log.e("ExternalFileActivity", "failed to close file");

 }

 }

 }

 finish();

 }

 /**

 * Read file process

 *

 * @param view

 */

 public void onReadFileClick(View view) {

 FileInputStream fis = null;

 try {

 File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);

 fis = new FileInputStream(file);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 3 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String str = new String(data);

 mFileView.setText(str);

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("ExternalFileActivity", "failed to read file");

 } finally {

 if (fis != null) {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("ExternalFileActivity", "failed to close file");

 }

 }

 }

 }

 /**

 * Delete file process

 *

 * @param view

 */

 public void onDeleteFileClick(View view) {

 File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);

 file.delete();

 mFileView.setText(R.string.file_view);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

256 All rights reserved © Japan Smartphone Security Association. Handling Files

Sample code for use

ExternalFileUser.java
package org.jssec.android.file.externaluser;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.content.pm.PackageManager.NameNotFoundException;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class ExternalUserActivity extends Activity {

 private TextView mFileView;

 private static final String TARGET_PACKAGE = "org.jssec.android.file.externalfile";

 private static final String TARGET_CLASS = "org.jssec.android.file.externalfile.ExternalFileActivity";

 private static final String TARGET_TYPE = "external";

 private static final String FILE_NAME = "external_file.dat";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.user);

 mFileView = (TextView) findViewById(R.id.file_view);

 }

 private void callFileActivity() {

 Intent intent = new Intent();

 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 try {

 startActivity(intent);

 } catch (ActivityNotFoundException e) {

 mFileView.setText("(File Activity does not exist)");

 }

 }

 /**

 * Call file Activity process

 *

 * @param view

 */

 public void onCallFileActivityClick(View view) {

 callFileActivity();

 }

 /**

 * Read file process

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 257

 *

 * @param view

 */

 public void onReadFileClick(View view) {

 FileInputStream fis = null;

 try {

 File file = new File(getFilesPath(FILE_NAME));

 fis = new FileInputStream(file);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 3 *** Regarding the information to be stored in files, handle file data carefully and securel

y.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String str = new String(data);

 mFileView.setText(str);

 } catch (FileNotFoundException e) {

 mFileView.setText(R.string.file_view);

 } catch (IOException e) {

 android.util.Log.e("ExternalUserActivity", "failed to read file");

 } finally {

 if (fis != null) {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("ExternalUserActivity", "failed to close file");

 }

 }

 }

 }

 /**

 * Rewrite file process

 *

 * @param view

 */

 public void onWriteFileClick(View view) {

 // *** POINT 4 *** Writing file by the requesting application should be prohibited as the specification.

 // Application should be designed supposing malicious application may overwrite or delete file.

 final AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(

 this);

 alertDialogBuilder.setTitle("POINT 4");

 alertDialogBuilder.setMessage("Do not write in calling appllication.");

 alertDialogBuilder.setPositiveButton("OK",

 new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 callFileActivity();

 }

 });

 alertDialogBuilder.create().show();

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

258 All rights reserved © Japan Smartphone Security Association. Handling Files

 private String getFilesPath(String filename) {

 String path = "";

 try {

 Context ctx = createPackageContext(TARGET_PACKAGE,

 Context.CONTEXT_IGNORE_SECURITY);

 File file = new File(ctx.getExternalFilesDir(TARGET_TYPE), filename);

 path = file.getPath();

 } catch (NameNotFoundException e) {

 android.util.Log.e("ExternalUserActivity", "no file");

 }

 return path;

 }

}

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.file.externaluser" >

 <!-- In Android 4.0.3 (API Level 14) and later, the permission for reading external storages

 has been defined and the application should decalre that it requires the permission.

 In fact in Android 4.4 (API Level 19) and later, that must be declared to read other directories

 than the package specific directories. -->

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name=".ExternalUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 259

4.6.2. Rule Book

Handling files follow the rules below.

1. File Must Be Created as a Private File in Principle (Required)

2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications (Required)

3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Required)

4. Application Should Be Designed Considering the Scope of File (Required)

4.6.2.1. File Must Be Created as a Private File in Principle (Required)

As mentioned in "4.6 Handling Files" and "4.6.1.3 Using Public Read/Write File," regardless of the

contents of the information to be stored, files should be set private, in principle. From Android

security designing point of view, exchanging information and its access control should be done in

Android system like Content Provider and Service, etc., and in case there's a reason that is impossible,

it should be considered to be substituted by file access permission as alternative method.

Please refer to sample code of each file type and following rule items.

4.6.2.2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications

 (Required)

As mentioned in "4.6.1.3 Using Public Read/Write File," when permitting other applications to

read/write files, information stored in files cannot be controlled. So, sharing information by using

read/write public files should not be considered from both security and function/designing points of

view.

4.6.2.3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum(Required)

As mentioned in "4.6.1.4 Using Eternal Memory (Read Write Public) File," storing files in external

memory device like SD card, leads to holding the potential problems from security and functional

points of view. On the other hand, SD card can handle files which have longer scope, compared with

application directory, and this is the only one storage that can be always used to bring out the data to

outside of application. So, there may be many cases that cannot help using it, depends on

application's spec.

When storing files in external memory device, considering unspecified large number of applications

and users can read/write/delete files, so it's necessary that application is designed considering the

points as per below as well as the points mentioned in sample code. In addition, regarding encryption

technology like encryption and electrical signature, it's planned that articles are published in future

edition of this Guidebook.

 Sensitive information should not be saved in a file of external memory device, in principle.

 In case sensitive information is saved in a file of external memory device, it should be encrypted.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

260 All rights reserved © Japan Smartphone Security Association. Handling Files

 In case saving in a file of external memory device information that will be trouble if it's tampered

by other application or users, it should be saved with electrical signature.

 When reading in files in external memory device, use data after verifying the safety of data to

read in.

 Application should be designed supposing that files in external memory device can be always

deleted.

Please refer to "4.6.2.4 Application Should Be Designed Considering the Scope of File (Required)."

4.6.2.4. Application Should Be Designed Considering the Scope of File (Required)

Data saved in application directory is deleted by the following user operations. It's consistent with the

application's scope, and it's distinctive that it's shorter than the scope of application.

 Uninstalling application.

 Delete data and cache of each application (Setting > Apps > select target application.)

Files that were saved in external memory device like SD card, it's distinctive that the scope of the file

is longer than the scope of the application. In addition, the following situations are also necessary to

be considered.

 File deletion by user

 Pick off/replace/unmount SD card

 File deletion by Malware

As mentioned above, since scope of files are different depends on the file saving location, not only

from the viewpoint to protect sensitive information, but also form view point to achieve the right

behavior as application, it's necessary to select the file save location.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 261

4.6.3. Advanced Topics

4.6.3.1. File Sharing Through File Descriptor

There is a method to share files through file descriptor, not letting other applications access to public

files. This method can be used in Content Provider and in Service. Opponent application can

read/write files through file descriptors which are got by opening private files in Content Provider or

in Service.

Comparison between the file sharing method of direct access by other applications and the file

sharing method via file descriptor, is as per below Table 4.6-2. Variation of access permission and

range of applications that are permitted to access, can be considered as merits. Especially, from

security point of view, this is a great merit that, applicaions that are permitted to accesss can be

controlled in detail.

Table 4.6-2 Comparison of inter-application file sharing method

File sharing method Variation or access permission

setting

Range of applications that are

permitted to access

File sharing that permits other

applications to access files

directly

Read in

Write in

Read in + Write in

Give all applications access

permissions equally

File sharing through file

descriptor

Read in

Write in

Only add

Read in + Write in

Read in + Only add

Can control whether to give

access permission or not, to

application which try to access

individually and temporarily, to

Content Provider or Service

This is common in both of above file sharing methods, when giving write permission for files to other

applications, integrity of file contents are difficult to be guaranteed. When several applications write

in in parallel, there's a risk that data structure of file contents are destroyed, and application doesn't

work normally. So, in sharing files with other applications, giving only read only permission is

preferable.

Herein below an implementation example of file sharing by Content Provider and its sample code, are

published.

Point

1. The source application is In house application, so sensitive information can be saved.

2. Even if it's a result from In house only Content Provider application, verify the safety of the result

data.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

262 All rights reserved © Japan Smartphone Security Association. Handling Files

InhouseProvider.java
package org.jssec.android.file.inhouseprovider;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.content.ContentProvider;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.net.Uri;

import android.os.ParcelFileDescriptor;

public class InhouseProvider extends ContentProvider {

 private static final String FILENAME = "sensitive.txt";

 // In-house signature permission

 private static final String MY_PERMISSION = "org.jssec.android.file.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of debug.keystore "androiddebugkey"

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of keystore "my company key"

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 @Override

 public boolean onCreate() {

 File dir = getContext().getFilesDir();

 FileOutputStream fos = null;

 try {

 fos = new FileOutputStream(new File(dir, FILENAME));

 // *** POINT 1 *** The source application is In house application, so sensitive information can be saved.

 fos.write(new String("Sensitive information").getBytes());

 } catch (IOException e) {

 android.util.Log.e("InhouseProvider", "failed to read file");

 } finally {

 try {

 fos.close();

 } catch (IOException e) {

 android.util.Log.e("InhouseProvider", "failed to close file");

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 263

 return true;

 }

 @Override

 public ParcelFileDescriptor openFile(Uri uri, String mode)

 throws FileNotFoundException {

 // Verify that in-house-defined signature permission is defined by in-house application.

 if (!SigPerm

 .test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

 throw new SecurityException(

 "In-house-defined signature permission is not defined by in-house application.");

 }

 File dir = getContext().getFilesDir();

 File file = new File(dir, FILENAME);

 // Always return read-only, since this is sample

 int modeBits = ParcelFileDescriptor.MODE_READ_ONLY;

 return ParcelFileDescriptor.open(file, modeBits);

 }

 @Override

 public String getType(Uri uri) {

 return "";

 }

 @Override

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 return null;

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 return null;

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 return 0;

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 return 0;

 }

}

InhouseUserActivity.java
package org.jssec.android.file.inhouseprovideruser;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import org.jssec.android.shared.PkgCert;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

264 All rights reserved © Japan Smartphone Security Association. Handling Files

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.ProviderInfo;

import android.net.Uri;

import android.os.Bundle;

import android.os.ParcelFileDescriptor;

import android.view.View;

import android.widget.TextView;

public class InhouseUserActivity extends Activity {

 // Content Provider information of destination (requested provider)

 private static final String AUTHORITY = "org.jssec.android.file.inhouseprovider";

 // In-house signature permission

 private static final String MY_PERMISSION = "org.jssec.android.file.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of debug.keystore "androiddebugkey"

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of keystore "my company key"

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 // Get package name of destination (requested) content provider.

 private static String providerPkgname(Context context, String authority) {

 String pkgname = null;

 PackageManager pm = context.getPackageManager();

 ProviderInfo pi = pm.resolveContentProvider(authority, 0);

 if (pi != null)

 pkgname = pi.packageName;

 return pkgname;

 }

 public void onReadFileClick(View view) {

 logLine("[ReadFile]");

 // Verify that in-house-defined signature permission is defined by in-house application.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 logLine(" In-house-defined signature permission is not defined by in-house application.");

 return;

 }

 // Verify that the certificate of destination (requested) content provider application is in-house certificat

e.

 String pkgname = providerPkgname(this, AUTHORITY);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 265

 if (!PkgCert.test(this, pkgname, myCertHash(this))) {

 logLine(" Destination (Requested) Content Provider is not in-house application.");

 return;

 }

 // Only the information which can be disclosed to in-house only content provider application, can be included

in a request.

 ParcelFileDescriptor pfd = null;

 try {

 pfd = getContentResolver().openFileDescriptor(

 Uri.parse("content://" + AUTHORITY), "r");

 } catch (FileNotFoundException e) {

 android.util.Log.e("InhouseUserActivity", "no file");

 }

 if (pfd != null) {

 FileInputStream fis = new FileInputStream(pfd.getFileDescriptor());

 if (fis != null) {

 try {

 byte[] buf = new byte[(int) fis.getChannel().size()];

 fis.read(buf);

 // *** POINT 2 *** Handle received result data carefully and securely,

 // even though the data came from in-house applications.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely

."

 logLine(new String(buf));

 } catch (IOException e) {

 android.util.Log.e("InhouseUserActivity", "failed to read file");

 } finally {

 try {

 fis.close();

 } catch (IOException e) {

 android.util.Log.e("ExternalFileActivity", "failed to close file");

 }

 }

 }

 try {

 pfd.close();

 } catch (IOException e) {

 android.util.Log.e("ExternalFileActivity", "failed to close file descriptor");

 }

 } else {

 logLine(" null file descriptor");

 }

 }

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mLogView = (TextView) findViewById(R.id.logview);

 }

 private void logLine(String line) {

 mLogView.append(line);

 mLogView.append("¥n");

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

266 All rights reserved © Japan Smartphone Security Association. Handling Files

 }

}

4.6.3.2. Access Permission Setting for the Directory

Herein above, security considerations are explained, focusing on files. It's also necessary to consider

the security for directory which is a file container. Herein below, security considerations of access

permission setting for directory are explained.

In Android, there are some methods to get/create subdirectory in application directory. The major

ones are as per below Table 4.6-3.

Table 4.6-3 Methods to get/create subdirectory in application directory

 Specify access permission to

other application

Deletion by user

Context#getFilesDir() Impossible (Only execution

permission)

"Setting" > "Apps" > select target

application > "Clear data"

Context#getCacheDir() Impossible (Only execution

permission)

"Setting" > "Apps" > select target

application > "Clear cache"

It can be deleted by "Clear data," too

Context#getDir(String name,

int MODE)

Following can be set to

mode

MODE_PRIVATE

MODE_WORLD_READABLE

MODE_WORLD_WRITABLE

"Setting" > "Apps" > select target

application > "Clear data"

Here especially what needs to pay attention is access permission setting by Context#getDir(). As

explained in file creation, basically directory also should be set private from the security designing

point of view. When sharing information depends on access permission setting, there may be an

unexpected side effect, so other methods should be taken as information sharing.

MODE_WORLD_READABLE

This is a flag to give all applications read-only permission to directory. So all applications can get

file list and individual file attribute information in the directory. Since secret files cannot be

placed under this directory, it's necessary to pay enough attention when using this flag. Besides,

this flag is deplicated in API Level 17 or later and you should not use it except under the

unavoidable case.

MODE_WORLD_WRITABLE

This flag gives other applications write permission to directory. All applications can

create/move9/rename/delete files in the directory. These operations has no relation with access

9 Files cannot be moved over mount point (e.g. from internal storage to external storage). Therefore,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling Files 267

permission setting (Read/Write/Execute) of file itself, so it's necessary to pay attention that

operations can be done only with write permission to directory. Normally this flag should not be

used since file may be deleted/replaced freely by other applications and the flag is deplicated in

API Level 17 or later.

.

Regarding Table 4.6-3 "Deletion by User," refer to "4.6.2.4 Application Should Be Designed

Considering the Scope of File (Required)."

4.6.3.3. Access Permission Setting for Shared Preference and Database File

Shared Preference and database also consist of files. Regarding access permission setting, what are

explained for files are applied here. i.e., both Shared Preference and database, should be created as

private files same like files, and sharing contents should be achieved by the Android's

inter-application linkage system.

Herein below, the usage example of Shared Preference is shown. Shared Preference is crated as

private file by MODE_PRIVATE.

Example of setting access restriction to Shared Preference file.
import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

 Ommision of a passage

 // Get Shared Preference . (If there's no Shared Preference, it's to be created.)

 // Point:Basically, specify MODE_PRIVATE mode.

 SharedPreferences preference = getSharedPreferences(

 PREFERENCE_FILE_NAME, MODE_PRIVATE);

 // Example of writing preference which value is charcter string

 Editor editor = preference.edit();

 editor.putString("prep_key", "prep_value");// key:"prep_key", value:"prep_value"

 editor.commit();

Please refer to "4.5 Using SQLite" for database.

4.6.3.4. Specification Change regarding External Storage Access in Android 4.4 (API Level 19) and later

The specification regarding External Storage Access has been changed to the followings since

Android 4.4 (API Level 19).

(1) In the case that the application needs read/write to its specific directories on external storage

devices, the WRITE_EXTERNAL_STORAGE/READ_EXTERNAL_STORAGE permissions need not to be

declared with <uses-permission>. (Changed)

moving the protected files from internal storage to external storage cannot be happened.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

268 All rights reserved © Japan Smartphone Security Association. Handling Files

(2) In the case that the application needs read files on other directories than its specific directories

on external storage devices, the READ_EXTERNAL_STORAGE permission needs to be declared with

<uses-permission>. (Changed)

(3) In the case that the application needs to write files on other directories than its specific

directories on the primary external storage device, the WRITE_EXTERNAL_STORAGE permission

needs to be declared with <uses-permission>.

(4) The application cannot write files on other directories than its specific directories on the

secondary external storage devices.

In that specification, whether the permission requisitions are needed is determined according to the

version of Android OS. So in the case that the application supports the versions including Android 4.3

and 4.4, it could lead to a pleasant situation that the application requires the unnecessary permission

of users. Therefore, applications just corresponding to the paragraph (1) is recommended to use the

maxSdkVersion attribute of <uses-permission> like the below.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.file.externaluser" >

 <!-- In Android 4.0.3 (API Level 14) and later, the permission for reading external storages

 has been defined and the application should decalre that it requires the permission.

 In fact in Android 4.4 (API Level 19) and later, that must be declared to read other directories

 than the package specific directories. -->

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name=".ExternalUserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Browsable Intent 269

4.7. Using Browsable Intent

Android application can be designed to launch from browser corresponding with a webpage link.

This functionality is called 'Browsable Intent.' By specifying URI scheme in Manifest file, an application

responds the transition to the link (user tap etc.) which has its URI scheme, and the application is

launched with the link as a parameter.

In addition, the method to launch the corresponding application from browser by using URI scheme

is supported not only in Android but also in iOS and other platforms, and this is generally used for

the linkage between Web application and external application, etc. For example, following URI

scheme is defined in Twitter application or Facebook application, and the corresponding applications

are launched from the browser both in Android and in iOS.

Table 4.7-1

URI scheme Corresponding application

fb:// Facebook

twitter:// Twitter

It seems very convenient function considering the linkage and convenience, but there are some risks

that this function is abused by a malicious third party. What can be supposed are as follows, they

abuse application functions by preparing a malicious Web site with a link in which URL has incorrect

parameter, or they get information which is included in URL by cheating a smartphone owner into

installing the Malware which responds the same URI scheme.

There are some points to be aware when using 'Browsable Intent' against these risks.

4.7.1. Sample Code

Sample codes of an application which uses 'Browsable Intent' are shown below.

Points:

1. (Webpage side) Sensitive information must not be included.

2. Handle the URL parameter carefully and securely.

Starter.html
<html>

 <body>

 <!-- *** POINT 1 *** Sensitive information must not be included -->

 <!-- Character strings to be passed as URL parameter, should be UTF-8 and URI encoded. -->

 Login

 </body>

</html>

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

270 All rights reserved © Japan Smartphone Security Association. Using Browsable Intent

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.browsableintent" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:allowBackup="false" >

 <activity

 android:name=".BrowsableIntentActivity"

 android:label="@string/title_activity_browsable_intent"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 // Accept implicit Intent

 <category android:name="android.intent.category.DEFAULT" />

 // Accept Browsable intent

 <category android:name="android.intent.category.BROWSABLE" />

 // Accept URI 'secure://jssec'

 <data android:scheme="secure" android:host="jssec"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

BrowsableIntentActivity.java
package org.jssec.android.browsableintent;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.widget.TextView;

public class BrowsableIntentActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_browsable_intent);

 Intent intent = getIntent();

 Uri uri = intent.getData();

 if (uri != null) {

 // Get UserID which is passed by URI parameter

 // *** POINT 2 *** Handle the URL parameter carefully and securely.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String userID = "User ID = " + uri.getQueryParameter("user");

 TextView tv = (TextView)findViewById(R.id.text_userid);

 tv.setText(userID);

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Browsable Intent 271

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

272 All rights reserved © Japan Smartphone Security Association. Using Browsable Intent

4.7.2. Rule Book

Follow rules listed below when using "Browsable Intent".

1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link

 (Required)

2. Handle the URL Parameter Carefully and Securely (Required)

4.7.2.1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link

 (Required)

When tapping the link in browser, an intent which has a URL value in its data (It can be retrieve by

Intent#getData) is issued, and an application which has a corresponding Intent Filter is launched

from Android system.

At this moment, when there are several applications which Intent Filter is set to receive the same URI

scheme, application selection dialogue is shown in the same way as normal launch by implicit Intent,

and an application which user selected is launched. In case that a Malware is listed in the selection of

application selection dialogue, there is a risk that user may launch the Malware by mistake and

parameters in URL are sent to Malware.

As per above, it is necessary to avoid from include sensitive information directly in URL parameter as

it is for creating general Webpage link since all parameters which are included in Webpage link URL

can be given to Malware.

Example that User ID and Password are included in URL
insecure://sample/login?userID=12345&password=abcdef

In addition, there is a risk that user may launch a Malware and input password to it when it is defined

in specs that password input is executed in an application after being launched by 'Browsable Intent',

even if the URL parameter includes only non-sensitive information like User ID. So it should be

considered that specs like a whole Login process is completed within application side. It must be kept

in mind when designing an application and a service that launching application by 'Browsable Intent'

is equivalent to launching by implicit Intent and there is no guarantee that a valid application is

launched.

4.7.2.2. Handle the URL Parameter Carefully and Securely (Required)

URL parameters which are sent to an application are not always from a legitimate Web page, since a

link which is matched with URI scheme can be made by not only developers but anyone. In addition,

there is no method to verify whether the URL parameter is sent from a valid Web page or not.

So it is necessary to verify safety of a URL parameter before using it, e.g. check if an unexpected value

is included or not.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 273

4.8. Outputting Log to LogCat

There's a logging mechanism called LogCat in Android, and not only system log information but also

application log information are also output to LogCat. Log information in LogCat can be read out

from other application in the same device10, so the application which outputs sensitive information to

Logcat, is considered that it has the vulnerability of the information leakage. The sensitive

information should not be output to LogCat.

From a security point of view, in release version application, it's preferable that any log should not be

output. However, even in case of release version application, log is output for some reasons in some

cases. In this chapter, we introduce some ways to output messages to LogCat in a safe manner even

in a release version application. Along with this explanation, please refer to "4.8.3.1 Two Ways of

Thinking for the Log Outputting in Release version application."

4.8.1. Sample Code

Herein after, the method to control the Log output to LogCat by ProGuard in release version

application. ProGuard is one of the optimization tools which automatically delete the unnecessary

code like unused methods, etc.

There are five types of log output methods, Log.e(), Log.w(), Log.i(), Log.d(), Log.v(), in

android.util.Log class. Regarding log information, intentionally output log information (hereinafter

referred to as the Operation log information) should be distinguished from logging which is

inappropriate for a release version application such as debug log (hereinafter referred to as the

Development log information). It's recommended to use Log.e()/w()/i() for outputting operation log

information, and to use Log.d()/v() for outputting development log. Refer to "4.8.3.2 Selection

Standards of Log Level and Log Output Method" for the details of proper usage of five types of log

output methods, in addition, also refer to "4.8.3.3 DEBUG Log and VERBOSE Log Are Not Always

Deleted Automatically."

Here's an example of how to use LogCat in a safe manner. This example includes Log.d() and Log.v()

for outputting debug log. If the application is for release, these two methods would be deleted

automatically. In this sample code, ProGuard is used to automatically delete code blocks where

Log.d()/v() is called.

10 The log information output to LogCat can be read by applications that declare using READ_LOGS

permission. However, in Android 4.1 and later, log information that is output by other application

cannot be read. But smartphone user can read every log information output to logcat through ADB.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

274 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

Points:

1. Sensitive information must not be output by Log.e()/w()/i(), System.out/err.

2. Sensitive information should be output by Log.d()/v() in case of need.

3. The return value of Log.d()/v() should not be used (with the purpose of substitution or

comparison).

4. When you build an application for release, you should bring the mechanism that automatically

deletes inappropriate logging method like Log.d() or Log.v() in your code.

5. An APK file for the (public) release must be created in release build configurations.

ProGuardActivity.java
package org.jssec.android.log.proguard;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

public class ProGuardActivity extends Activity {

 final static String LOG_TAG = "ProGuardActivity";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_proguard);

 // *** POINT 1 *** Sensitive information must not be output by Log.e()/w()/i(), System.out/err.

 Log.e(LOG_TAG, "Not sensitive information (ERROR)");

 Log.w(LOG_TAG, "Not sensitive information (WARN)");

 Log.i(LOG_TAG, "Not sensitive information (INFO)");

 // *** POINT 2 *** Sensitive information should be output by Log.d()/v() in case of need.

 // *** POINT 3 *** The return value of Log.d()/v()should not be used (with the purpose of substitution or comp

arison).

 Log.d(LOG_TAG, "sensitive information (DEBUG)");

 Log.v(LOG_TAG, "sensitive information (VERBOSE)");

 }

}

proguard-project.txt
prevent from changing class name and method name etc.

-dontobfuscate

*** POINT 4 *** In release build, the build configurations in which Log.d()/v() are deleted automatically should be

 constructed.

-assumenosideeffects class android.util.Log {

 public static int d(...);

 public static int v(...);

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 275

*** Point 5 *** An APK file for the (public) release must be created in release build configurations.

Figure 4.8-1 How to create release version application

The difference of LogCat output between development version application (debug build) and release

version application (release build) are shown in below Figure 4.8-2.

Figure 4.8-2 Difference of LogCat output

between development version application and release version application

Development version application (Debug build) Release version application (Release build)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

276 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

4.8.2. Rule Book

When you output log messages, follow the rules below.

1. Sensitive Information Must Not Be Included in Operation Log Information (Required)

2. Construct the Build System to Auto-delete Codes which Output Development Log Information

When Build for the Release (Recommended)

3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)

4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

4.8.2.1. Sensitive Information Must Not Be Included in Operation Log Information (Required)

Log which was output to LogCat can be read out from other applications, so sensitive information like

user's login information should not be output by release version application. It's necessary not to

write code which outputs sensitive information to log during development, or it's necessary to delete

all of such codes before release.

To follow this rule, first, not to include sensitive information in operation log information. In addition,

it's recommended to construct the system to delete code which outputs sensitive information when

build for release. Please refer to "4.8.2.2 Construct the Build System to Auto-delete Codes which

Output Development Log Information When Build for the Release (Recommended)."

4.8.2.2. Construct the Build System to Auto-delete Codes which Output Development Log Information

When Build for the Release (Recommended)

When application development, sometimes it's preferable if sensitive information is output to log for

checking the process contents and for debugging, for example the interim operation result in the

process of complicated logic, information of program's internal state, communication data structure

of communication protocol. It doesn't matter to output the sensitive information as debug log during

developing, in this case, the corresponding log output code should be deleted before release, as

mentioned in "4.8.2.1 Sensitive Information Must Not Be Included in Operation Log Information

 (Required)."

To delete surely the code which outputs development log information when release builds, the

system which executes code deletion automatically by using some tools, should be constructed.

ProGuard, which was described in "4.8.1 Sample Code," can work for this method. As described

below, there are some noteworthy points on deleting code by ProGuard. Here it's supposed to apply

the system to applications which output development log information by either of Log.d()/v(), based

on "4.8.3.2 Selection Standards of Log Level and Log Output Method."

ProGuard deletes unnecessary code like unused methods, automatically. By specifying Log.d()/v() as

parameter of -assumenosideeffects option, call for Log.d(), Log.v() are granted as unnecessary code,

and those are to be deleted.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 277

By specifying -assumenosideeffects to Log.d()/v(), make it auto-deletion target
-assumenosideeffects class android.util.Log {

 public static int d(...);

 public static int v(...);

}

In case using this auto deletion system, pay attention that Log.v()/d() code is not deleted when using

returned value of Log.v(), Log.d(), so returned value of Log.v(), Log.d(), should not be used. For

example, Log.v() is not deleted in the next examination code.

Examination code which Log.v() that is specifeied to be deleted is not deketed
int i = android.util.Log.v("tag", "message");

System.out.println(String.format("Log.v() returned %d. ", i)); //Use the returned value of Log.v() for examination

If you'd like to reuse source code, you should keep the consistency of the project environment

including ProGuard settings. For example, source code that presupposes Log.d() and Log.v() are

deleted automatically by above ProGuard setting. If using this source code in another project which

ProGuard is not set, Log.d() and Log.v() are not to be deleted, so there's a risk that the sensitive

information may be leaked. When reusing source code, the consistency of project environment

including ProGuard setting should be secured.

4.8.2.3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)

As mentioned in "4.8.1 Sample Code" and "4.8.3.2 Selection Standards of Log Level and Log Output

Method," sensitive information should not be output to log through Log.e()/w()/i(). On the other hand,

in order that a developer wants to output the details of program abnormality to log, when exception

occurs, stack trace is output to LogCat by Log.e(..., Throwable tr)/w(..., Throwable tr)/i(..., Throwable

tr), in some cases. However, sensitive information may sometimes be included in the stack trace

because it shows detail internal structure of the program. For example, when SQLiteException is

output as it is, what type of SQL statement is issued is clarified, so it may give the clue for SQL

injection attack. Therefore, it's recommended that use only Log.d()/Log.v() methods, when

outputting throwable object.

4.8.2.4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

You may output log by System.out/err to verify the application's behavior whether it works as

expected or not, during development. Of course, log can be output to LogCat by print()/println()

method of System.out/err, but it's strongly recommended to use only methods of android.util.Log

class, by the following reasons.

When outputting log, generally, use the most appropriate output method properly based on the

urgency of the information, and control the output. For example, categories like serious error,

caution, simple application's information notice, etc. are to be used. However, in this case,

information which needs to be output at the time of release (operation log information) and

information which may include the sensitive information (development log information) are output

by the same method. So, it may happen that when delete code which outputs sensitive information,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

278 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

it's in danger that some deletion are dropped by oversight.

Along with this, when using android.util.Log and System.out/err for log output, compared with using

only android.util.Log, what needs to be considered will increase, so it's in danger that some mistakes

may occur, like some deletion are dropped by oversight.

To decrease risk of above mentioned mistakes occurrence, it's recommended to use only methods of

android.util.Log class.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 279

4.8.3. Advanced Topics

4.8.3.1. Two Ways of Thinking for the Log Outputting in Release version application

There are two ways of thinking for log output in release version application. One is any log should

never be output, and another is necessary information for later analysis should be output as log. It's

favorable that any log should never be output in release version application from the security point of

view, but sometimes, log is output even in release version application for various reasons. Each way

of thinking is described as per below.

The former is "Any log should never be output," this is because outputting log in release version

application is not so much valuable, and there is a risk to leak sensitive information. This comes from

there's no method for developers to collect log information of the release version application in

Android application operation environment, which is different from many Web application operation

environments. Based on this thinking, the logging codes are used only in development phase, and all

the logging codes are deleted on building release version application.

The latter is "necessary information should be output as log for the later analysis," as a final option to

analyze application bugs in customer support, in case of any questions or doubt to your customer

support. Based on this idea, as introduced above, it is necessary to prepare the system that prevent

human errors and bring it in your project because if you don't have the system you have to keep in

mind to avoid logging the sensitive information in release version application.

For more details about logging method, refer to the following document.

Code Style Guidebook for Contributors / Log Sparingly

http://source.android.com/source/code-style.html#log-sparingly

4.8.3.2. Selection Standards of Log Level and Log Output Method

There are five levels of log level (ERROR, WARN, INFO, DEBUG, VERBOSE) are defined in

android.util.Log class in Android. You should select the most appropriate method when using the

android.util.Log class to output log messages according to Table 4.8-1 which shows the selection

standards of logging levels and methods.

Table 4.8-1 Selection standards of log levels and log output method

Log level Method Log information to be output Cautions for application release

ERROR Log.e() Log information which is output

when application is in a fatal state.

Log information as per left may be

referred by users, so it could be

output both in development

version application and in release

version application. Therefore,

sensitive information should not

be output in these levels.

WARN Log.w() Log information which is output

when application faces the

unexpected serious situation.

INFO Log.i() Other than above, log information

which is output to notify any

http://source.android.com/source/code-style.html#log-sparingly

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

280 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

remarkable changes or results in

application state.

DEBUG Log.d() Program's internal state information

which needs to be output

temporarily for analyzing the cause

of specific bug when developing

application.

Log information as per left is only

for application developers.

Therefore, this type of

information should not be output

in case of release version

application. VERBOSE Log.v() Log information which is not

applied to any of above. Log

information which application

developer outputs for many

purposes, is applied this. For

example, in case of outputting

server communication data to

dump.

For more details about logging method, refer to the following document.

Code Style Guidebook for Contributors / Log Sparingly

http://source.android.com/source/code-style.html#log-sparingly

4.8.3.3. DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically

The following is quoted from the developer reference of android.util.Log class11.

The order in terms of verbosity, from least to most is ERROR, WARN, INFOFEBUG, VERBOSE. Verbose

should never be compiled into an application except during development. Debug logs are compiled

in but stripped at runtime. Error, warning and info logs are always kept.

After reading the above texts, some developers might have misunderstood the Log class behavior as

per below.

 Log.v() call is not compiled when release build, VERBOSE log is never output.

 Log.v() call is compiled, but DEBUG log is never output when execution.

However, logging methods never behave in above ways, and all messages are output regardless of

whether it is compiled with debug mode or release mode. If you read the document carefully, you will

be able to realize that the gist of the document is not about the behavior of logging methods but

basic policies for logging.

In this chapter, we introduced the sample code to get the expected result as described above by

11 http://developer.android.com/reference/android/util/Log.html

http://source.android.com/source/code-style.html#log-sparingly

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 281

using ProGuard.

4.8.3.4. BuildConfig.DEBUG Should Be Used in ADT 21 or Later

ADT plugin for Eclipse, the following BuildConfig.java file is automatically generated. The following

DEBUG consistent (BuildConfig.DEBUG) is automatically set as "false" in release build, and as "true" in

debug build, by ADT plugin.

BuildConfig.java
/** Automatically generated file. DO NOT MODIFY */

package com.example.buildconfig;

public final class BuildConfig {

 public final static boolean DEBUG = true;

}

By using BuildConfig.DEBUG as per below, log output is restrained when release build.

if (BuildConfig.DEBUG) android.util.Log.d(TAG, "Log output information");

Unfortunately, there are some bugs in ADT20 and earlier, and DEBUG consistent became true even in

release build in some cases. However, these bugs are fixed in ADT 21, and it's necessary to use

BuildConfig.DEBUG with ADT 21 or later.

4.8.3.5. Remove Sensitive Information from Assembly

If you build the following code with ProGuard for the purpose of deleting Log.d() method, it is

necessary to remember that ProGuard keeps the statement that construct the string for logging

message (the first line of the code) even though it remove the statement of calling Log.d() method

(the second line of the code).

 String debug_info = String.format("%s:%s", "Sensitive information1", "Sensitive information2");

 if (BuildConfig.DEBUG) android.util.Log.d(TAG, debug_info);

The following disassembly shows the result of release build of the code above with ProGuard.

Actually, there's no Log.d() call process, but you can see that character string consistence definition

like "Sensitive information1" and calling process of String#format() method, are not deleted and still

remaining there.

 const-string v1, "%s:%s"

 const/4 v2, 0x2

 new-array v2, v2, [Ljava/lang/Object;

 const/4 v3, 0x0

 const-string v4, "Sensitive information 1"

 aput-object v4, v2, v3

 const/4 v3, 0x1

 const-string v4, "Sensitive information 2"

 aput-object v4, v2, v3

 invoke-static {v1, v2}, Ljava/lang/String;->format(Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/String;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

282 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

 move-result-object v0

Actually, it's not easy to find the particular part that disassembled APK file and assembled log output

information as above. However, in some application which handles the very confidential information,

this type of process should not be remained in APK file in some cases.

You should implement your application like below to avoid such a consequence of remaining the

sensitive information in bytecode. In release build, the following codes are deleted completely by the

compiler optimization. However, you have to use BuildConfig.DEBUG with ADT 21 or later (Please

refer to "4.8.3.4 BuildConfig.DEBUG Should Be Used in ADT 21").

 if (BuildConfig.DEBUG) {

 String debug_info = String.format("%s:%s", " Snsitive information 1", "Sensitive information 2");

 if (BuildConfig.DEBUG) android.util.Log.d(TAG, debug_info);

 }

Besides, ProGuard cannot remove the log message of the following code ("result:" + value).

 Log.d(TAG, "result:" + value);

In this case, you can solve the problem in the following manner.

 if (BuildConfig.DEBUG) Log.d(TAG, "result:" + value);

4.8.3.6. The Contents of Intent Is Output to LogCat

When using Activity, it's necessary to pay attention, since ActivityManager outputs the content of

Intent to LogCat. Refer to "4.1.3.5 Log Output When using Activities."

4.8.3.7. Restrain Log which Is Output to System.out/err

System.out/err method outputs all messages to LogCat. Android could send some messages to

System.out/err even if developers did not use these methods in their code, for example, in the

following cases, Android sends stack trace to System.err method.

 When using Exception#printStackTrace()

 When it's output to System.err implicitly

(When the exception is not caught by application, it's given to Exception#printStackTrace() by the

system.)

You should handle errors and exceptions appropriately since the stack trace includes the unique

information of the application.

We introduce a way of changing default output destination of System.out/err. The following code

redirects the output of System.out/err method to nowhere when you build a release version

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 283

application. However, you should consider whether this redirection does not cause a malfunction of

application or system because the code temporarily overwrites the default behavior of

System.out/err method. Furthermore, this redirection is effective only to your application and is

worthless to system processes.

OutputRedirectApplication.java
package org.jssec.android.log.outputredirection;

import java.io.IOException;

import java.io.OutputStream;

import java.io.PrintStream;

import android.app.Application;

public class OutputRedirectApplication extends Application {

 // PrintStream which is not output anywhere

 private final PrintStream emptyStream = new PrintStream(new OutputStream() {

 public void write(int oneByte) throws IOException {

 // do nothing

 }

 });

 @Override

 public void onCreate() {

 // Redirect System.out/err to PrintStream which doesn't output anywhere, when release build.

 // Save original stream of System.out/err

 PrintStream savedOut = System.out;

 PrintStream savedErr = System.err;

 // Once, redirect System.out/err to PrintStream which doesn't output anywhere

 System.setOut(emptyStream);

 System.setErr(emptyStream);

 // Restore the original stream only when debugging. (In release build, the following 1 line is deleted byProGu

ard.)

 resetStreams(savedOut, savedErr);

 }

 // All of the following methods are deleted byProGuard when release.

 private void resetStreams(PrintStream savedOut, PrintStream savedErr) {

 System.setOut(savedOut);

 System.setErr(savedErr);

 }

}

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.log.outputredirection" >

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:name=".OutputRedirectApplication"

 android:allowBackup="false" >

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

284 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

 <activity

 android:name=".LogActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

proguard-project.txt
Prevent from changing class name and method name, etc

-dontobfuscate

In release build, delete call from Log.d()/v() automatically.

-assumenosideeffects class android.util.Log {

 public static int d(...);

 public static int v(...);

}

In release build, delete resetStreams() automatically.

-assumenosideeffects class org.jssec.android.log.outputredirection.OutputRedirectApplication {

 private void resetStreams(...);

}

The difference of LogCat output between development version application (debug build) and release

version application (release build) are shown as per below Figure 4.8-3.

Figure 4.8-3 Difference of System.out/err in LogCat output,

between development application and release application

Development version application (Debug build) Release version application (Release build)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using WebView 285

4.9. Using WebView

WebView enables your application to integrate HTML/JavaScript content.

4.9.1. Sample Code

We need to take proper action, depending on what we'd like to show through WebView although we

can easily show web site and html file by it. And also we need to consider risk from WebView's

remarkable function; such as JavaScript-Java object bind.

Especially what we need to pay attention is JavaScript. (Please note that JavaScript is disabled as

default. And we can enable it by WebSettings#setJavaScriptEnabled()). With enabling JavaScript,

there is potential risk that malicious third party can get device information and operate your device.

The following is principle for application with WebView12:

(1) You can enable JavaScript if the application uses contents which are managed in house.

(2) You should NOT enable JavaScript other than the above case.

Figure 4.9-1 shows flow chart to choose sample code according to content characteristic.

Figure 4.9-1 Flow Figure to select Sample code of WebView

12Strictly speaking, you can enable JavaScript if we can say the content is safe. If the contents are

managed in house, the contents should be guaranteed of security. And the company can secure them.

In other words, we need to have business representation’s decision to enable JavaScript for other

company’s contents. The contents which are developed by trusted partner might have security

guarantee. But there is still potential risk. Therefore the decision is needed by responsible person.

Start

Application only accesses to
contents stored
in the apk only?

Show contents which are managed
in-house only

Show contents stored
under assets/ and res/ in the apk

No

NoApplication only accesses to
contents which are managed

in-house onlyY?

Yes

Yes

Show untrusted contents
(Required to take proper action)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

286 All rights reserved © Japan Smartphone Security Association. Using WebView

4.9.1.1. Show Only Contents Stored under assets/res Directory in the APK

You can enable JavaScript if your application shows only contents stored under assets/ and res/

directory in apk.

The following sample code shows how to use WebView to show contents stored under assets/ and

res/.

Points:

1. Disable to access files (except files under assets/ and res/ in apk).

2. You may enable JavaScript.

WebViewAssetsActivity.java
package org.jssec.webview.assets;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

 /**

 * Show contents in assets

 */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 WebView webView = (WebView) findViewById(R.id.webView);

 WebSettings webSettings = webView.getSettings();

 // *** POINT 1 *** Disable to access files (except files under assets/ and res/ in this apk)

 webSettings.setAllowFileAccess(false);

 // *** POINT 2 *** Enable JavaScript (Optional)

 webSettings.setJavaScriptEnabled(true);

 // Show contents which were stored under assets/ in this apk

 webView.loadUrl("file:///android_asset/sample/index.html");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using WebView 287

4.9.1.2. Show Only Contents which Are Managed In-house

You can enable JavaScript to show only contents which are managed in-house only if your web

service and your Android application can take proper actions to secure both of them.

 Web service side actions:

As Figure 4.9-2 shows, your web service can only refer to contents which are managed in-house.

In addition, the web service is needed to take appropriate security action. Because there is

potential risk if contents which your web service refers to may have risk; such as malicious attack

code injection, data manipulation, etc.

Please refer to "4.9.2.1 Enable JavaScript Only If Contents Are Managed In-house (Required)."

 Android application side actions:

Using HTTPS, the application should establish network connection to your managed web service

only if the certification is trusted.

The following sample code is an activity to show contents which are managed in-house.

Figure 4.9-2 Accessible contents and Non-accessible contents from application

≡

≡
≡

≡
≡

≡

In-house services

≡

≡

Contents

Reference relationship of contents

Services which are NOT
managed IN HOUSE

Application

Access by application

Not allowed

≡

Services/Contents
in Internet

Android Device

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

288 All rights reserved © Japan Smartphone Security Association. Using WebView

Points:

1. Handle SSL error from WebView appropriately.

2. (Optional) Enable JavaScript of WebView.

3. Restrict URLs to HTTPS protocol only.

4. Restrict URLs to in-house.

WebViewTrustedContentsActivity.java
package org.jssec.webview.trustedcontents;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.net.http.SslCertificate;

import android.net.http.SslError;

import android.os.Bundle;

import android.webkit.SslErrorHandler;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import java.text.SimpleDateFormat;

public class WebViewTrustedContentsActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 WebView webView = (WebView) findViewById(R.id.webView);

 webView.setWebViewClient(new WebViewClient() {

 @Override

 public void onReceivedSslError(WebView view,

 SslErrorHandler handler, SslError error) {

 // *** POINT 1 *** Handle SSL error from WebView appropriately

 // Show SSL error dialog.

 AlertDialog dialog = createSslErrorDialog(error);

 dialog.show();

 // *** POINT 1 *** Handle SSL error from WebView appropriately

 // Abort connection in case of SSL error

 // Since, there may be some defects in a certificate like expiration of validity,

 // or it may be man-in-the-middle attack.

 handler.cancel();

 }

 });

 // *** POINT 2 *** Enable JavaScript (optional)

 // in case to show contents which are managed in house.

 webView.getSettings().setJavaScriptEnabled(true);

 // *** POINT 3 *** Restrict URLs to HTTPS protocol only

 // *** POINT 4 *** Restrict URLs to in-house

 webView.loadUrl("https://url.to.your.contents/");

 }

 private AlertDialog createSslErrorDialog(SslError error) {

 // Error message to show in this dialog

 String errorMsg = createErrorMessage(error);

 // Handler for OK button

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using WebView 289

 DialogInterface.OnClickListener onClickOk = new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 setResult(RESULT_OK);

 }

 };

 // Create a dialog

 AlertDialog dialog = new AlertDialog.Builder(

 WebViewTrustedContentsActivity.this).setTitle("SSL connection error")

 .setMessage(errorMsg).setPositiveButton("OK", onClickOk)

 .create();

 return dialog;

 }

 private String createErrorMessage(SslError error) {

 SslCertificate cert = error.getCertificate();

 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

 StringBuilder result = new StringBuilder()

 .append("The site's certification is NOT valid. Connection was disconnected.¥n¥nError:¥n");

 switch (error.getPrimaryError()) {

 case SslError.SSL_EXPIRED:

 result.append("The certificate is no longer valid.¥n¥nThe expiration date is ")

 .append(dateFormat.format(cert.getValidNotAfterDate()));

 return result.toString();

 case SslError.SSL_IDMISMATCH:

 result.append("Host name doesn't match. ¥n¥nCN=")

 .append(cert.getIssuedTo().getCName());

 return result.toString();

 case SslError.SSL_NOTYETVALID:

 result.append("The certificate isn't valid yet.¥n¥nIt will be valid from ")

 .append(dateFormat.format(cert.getValidNotBeforeDate()));

 return result.toString();

 case SslError.SSL_UNTRUSTED:

 result.append("Certificate Authority which issued the certificate is not reliable.¥n¥nCertificate Authori

ty¥n")

 .append(cert.getIssuedBy().getDName());

 return result.toString();

 default:

 result.append("Unknown error occured. ");

 return result.toString();

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

290 All rights reserved © Japan Smartphone Security Association. Using WebView

4.9.1.3. Show Contents which Are Not Managed In-house

Don't enable JavaScript if your application shows contents which are not managed in house because

there is potential risk to access to malicious content.

The following sample code is an activity to show contents which are not managed in-house.

This sample code shows contents specified by URL which user inputs through address bar. Please

note that JavaScript is disabled and connection is aborted when SSL error occurs. The error handling

is the same as "4.9.1.2 Show Only Contents which Are Managed In-house" for the details of HTTPS

communication. Please refer to "5.4 Communicating via HTTPS" for the details also.

Points:

1. Handle SSL error from WebView appropriately.

2. Disable JavaScript of WebView.

WebViewUntrustActivity.java
package org.jssec.webview.untrust;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.graphics.Bitmap;

import android.net.http.SslCertificate;

import android.net.http.SslError;

import android.os.Bundle;

import android.view.View;

import android.webkit.SslErrorHandler;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import android.widget.Button;

import android.widget.EditText;

import java.text.SimpleDateFormat;

public class WebViewUntrustActivity extends Activity {

 /*

 * Show contents which are NOT managed in-house (Sample program works as a simple browser)

 */

 private EditText textUrl;

 private Button buttonGo;

 private WebView webView;

 // Activity definition to handle any URL request

 private class WebViewUnlimitedClient extends WebViewClient {

 @Override

 public boolean shouldOverrideUrlLoading(WebView webView, String url) {

 webView.loadUrl(url);

 textUrl.setText(url);

 return true;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using WebView 291

 // Start reading Web page

 @Override

 public void onPageStarted(WebView webview, String url, Bitmap favicon) {

 buttonGo.setEnabled(false);

 textUrl.setText(url);

 }

 // Show SSL error dialog

 // And abort connection.

 @Override

 public void onReceivedSslError(WebView webview,

 SslErrorHandler handler, SslError error) {

 // *** POINT 1 *** Handle SSL error from WebView appropriately

 AlertDialog errorDialog = createSslErrorDialog(error);

 errorDialog.show();

 handler.cancel();

 textUrl.setText(webview.getUrl());

 buttonGo.setEnabled(true);

 }

 // After loading Web page, show the URL in EditText.

 @Override

 public void onPageFinished(WebView webview, String url) {

 textUrl.setText(url);

 buttonGo.setEnabled(true);

 }

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 webView = (WebView) findViewById(R.id.webview);

 webView.setWebViewClient(new WebViewUnlimitedClient());

 // *** POINT 2 *** Disable JavaScript of WebView

 // Explicitly disable JavaScript even though it is disabled by default.

 webView.getSettings().setJavaScriptEnabled(false);

 webView.loadUrl(getString(R.string.texturl));

 textUrl = (EditText) findViewById(R.id.texturl);

 buttonGo = (Button) findViewById(R.id.go);

 }

 public void onClickButtonGo(View v) {

 webView.loadUrl(textUrl.getText().toString());

 }

 private AlertDialog createSslErrorDialog(SslError error) {

 // Error message to show in this dialog

 String errorMsg = createErrorMessage(error);

 // Handler for OK button

 DialogInterface.OnClickListener onClickOk = new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 setResult(RESULT_OK);

 }

 };

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

292 All rights reserved © Japan Smartphone Security Association. Using WebView

 // Create a dialog

 AlertDialog dialog = new AlertDialog.Builder(

 WebViewUntrustActivity.this).setTitle("SSL connection error")

 .setMessage(errorMsg).setPositiveButton("OK", onClickOk)

 .create();

 return dialog;

 }

 private String createErrorMessage(SslError error) {

 SslCertificate cert = error.getCertificate();

 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

 StringBuilder result = new StringBuilder()

 .append("The site's certification is NOT valid. Connection was disconnected.¥n¥nError:¥n");

 switch (error.getPrimaryError()) {

 case SslError.SSL_EXPIRED:

 result.append("The certificate is no longer valid.¥n¥nThe expiration date is ")

 .append(dateFormat.format(cert.getValidNotAfterDate()));

 return result.toString();

 case SslError.SSL_IDMISMATCH:

 result.append("Host name doesn't match. ¥n¥nCN=")

 .append(cert.getIssuedTo().getCName());

 return result.toString();

 case SslError.SSL_NOTYETVALID:

 result.append("The certificate isn't valid yet.¥n¥nIt will be valid from ")

 .append(dateFormat.format(cert.getValidNotBeforeDate()));

 return result.toString();

 case SslError.SSL_UNTRUSTED:

 result.append("Certificate Authority which issued the certificate is not reliable.¥n¥nCertificate Authori

ty¥n")

 .append(cert.getIssuedBy().getDName());

 return result.toString();

 default:

 result.append("Unknown error occured. ");

 return result.toString();

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using WebView 293

4.9.2. Rule Book

Comply with following rule when you need to use WebView.

1. Enable JavaScript Only If Contents Are Managed In-house (Required)

2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)

3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)

4. Handle SSL Error Properly (Required)

4.9.2.1. Enable JavaScript Only If Contents Are Managed In-house (Required)

What we have to pay attention on WebView is whether we enable the JavaScript or not. As principle,

we can only enable the JavaScript only IF the application will access to services which are managed

in-house. And you must not enable the JavaScript if there is possibility to access services which are

not managed in-house.

Services managed In-house

In case that application accesses contents which are developed IN HOUSE and are distributed

through servers which are managed IN HOUSE, we can say that the contents are ONLY modified

by your company. In addition, it is also needed that each content refers to only contents stored in

the servers which have proper security.

In this scenario, we can enable JavaScript on the WebView. Please refer to "4.9.1.2 Show Only

Contents which Are Managed In-house" also.

And you can also enable JavaScript if your application shows only contents stored under assets/

and res/ directory in the apk. Please refer to "4.9.1.1 Show Only Contents Stored under

assets/res Directory" also.

Services unmanaged in-house

You must NOT think you can secure safety on contents which are NOT managed IN HOUSE.

Therefore you have to disable JavaScript. Please refer to "4.9.1.3 Show Contents which Are Not

Managed In-house."

In addition, you have to disable JavaScript if the contents are stored in external storage devices;

such as microSD because other application can modify the contents.

4.9.2.2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)

You have to use HTTPS to communicate to servers which are managed in-house because there is

potential risk of spoofing the services by malicious third party.

Please refer to both "4.9.2.4 Handle SSL Error Properly (Required)," and "5.4 Communicating via

HTTPS“.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

294 All rights reserved © Japan Smartphone Security Association. Using WebView

4.9.2.3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)

Don't enable JavaScript if your application needs to show URLs which are passed from other

application as Intent, etc. Because there is potential risk to show malicious web page with malicious

JavaScript.

Sample code in the section "4.9.1.2 Show Only Contents which Are Managed In-house," uses fixed

value URL to show contents which are managed in-house, to secure safety.

If you need to show URL which is received from Intent, etc., you have to confirm that URL is in

managed URL in-house. In short, the application has to check URL with white list which is regular

expression, etc. In addition, it should be HTTPS.

4.9.2.4. Handle SSL Error Properly (Required)

You have to terminate the network communication and inform error notice to user when SSL error

happens on HTTPS communication.

SSL error shows invalid server certification risk or MTIM (man-in-the-middle attack) risk. Please note

that WebView has NO error notice mechanism regarding SSL error. Therefore your application has to

show the error notice to inform the risk to the user. Please refer to sample code in the section of

"4.9.1.2 Show Only Contents which Are Managed In-house," and "4.9.1.3 Show Contents which Are

Not Managed In-house".

In addition, your application MUST terminate the communication with the error notice.

In other words, you MUST NOT do following.

 Ignore the error to keep the transaction with the service.

 Retry HTTP communication instead of HTTPS.

Please refer to the detail described in "5.4 Communicating via HTTPS".

WebView's default behavior is to terminate the communication in case of SSL error. Therefore what

we need to add is to show SSL error notice. And then we can handle SSL error properly.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using WebView 295

4.9.3. Advanced Topics

4.9.3.1. Vulnerability caused by addJavascriptInterface() at Android versions 4.1 or earlier

Android versions under 4.2（API Level 17） have a vulnerability caused by addJavascriptInterface(),

which could allow attackers to call native Android methods (Java) via JavaScript on WebView.

As explained in "4.9.2.1 Enable JavaScript Only If Contents Are Managed In-house (Required)",

JavaScript must not be enabled if the services could access services out of in-house control.

In Android 4.2（API Level 17） or later, the measure of the vulnerability has been taken to limit access

from JavaScript to only methods with @ JavascriptInterface annotation on Java source codes instead

of all methods of Java objects injected. However it is necessary to disable JavaScript if the services

could access services out of in-house control as mentioned in "4.9.2.1".

4.9.3.2. Issue caused by file scheme

In case of using WebView with default settings, all files that the app has access rights can be accessed

to by using the file scheme in web pages regardless of the page origins. For example, a malicious

web page could access the files stored in the app's private directory by sending a request to the uri of

a private file of the app with the file scheme.

A countermeasure is to disable JavaScript as explained in "4.9.2.1 Enable JavaScript Only If Contents

Are Managed In-house (Required)" if the services could access services out of in-house

control. Doing that is to protect against sending the malicious file scheme request.

Also in case of Android 4.1 (API Level 16) or later, setAllowFileAccessFromFileURLs() and

setAllowUniversalAccessFromFileURLs() can be used to limit access via the file scheme.

Disabling the file scheme
 webView = (WebView) findViewById(R.id.webview);

 webView.setWebViewClient(new WebViewUnlimitedClient());

 WebSettings settings = webView.getSettings();

 settings.setAllowUniversalAccessFromFileURLs(false);

 settings.setAllowFileAccessFromFileURLs(false);

4.9.3.3. Specifying a Sender Origin When Using Web Messaging

Android 6.0 (API Level 23) adds an API for realizing HTML5 Web Messaging. Web Messaging is a

framework defined in HTML5 for sending and receiving data between different browsing contexts.13

The postWebMessage() method added to the WebView class is a method for processing data

13 http://www.w3.org/TR/webmessaging/

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

296 All rights reserved © Japan Smartphone Security Association. Using WebView

transmissions via the Cross-domain messaging protocol defined by Web Messaging.

This method sends a message object—specified by its first parameter—from the browsing context

that has been read into WebView; however, in this case it is necessary to specify the origin of the

sender as the second parameter. If the specified origin14 does not agree with the origin in the sender

context, the message will not be sent. By placing restrictions on the sender origin in this way, this

mechanism aims to prevent the passing of messages to unintended senders.

However, it is important to note that wildcards may be specified as the origin in the

postWebMessage() method.15 If wildcards are specified, the sender origin of the message is not

checked, and the message may be sent from any arbitrary origin. In a situation in which malicious

content has been read into WebView, various types of harm or damage may result if important

messages are sent without origin restrictions. Thus, when using WebView for Web messaging, it is

best to specify explicitly a specific origin in the postWebMessage() method.

14 An “origin” is a URL scheme together with a host name and port number. For the detailed definition

see http://tools.ietf.org/html/rfc6454.

15 Note that Uri.EMPTY and Uri.parse(“”) function as wildcards (at the time of writing the February 1,

2016 version).

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Notifications 297

4.10. Using Notifications

Android offers the Notification feature for sending messages to end users. Using a Notification

causes a region known as a status bar to appear on the screen, inside which you may display icons

and messages.

Figure 4.10-1 An example of a Notification

The communication functionality of Notifications is enhanced in Android 5.0 (API Level 21) to allow

messages to be displayed via Notifications even when the screen is locked, depending on user and

application settings. However, incorrect use of Notifications runs the risk that private

information—which should only be shown to the terminal user herself—may be seen by third parties.

For this reason, this functionality must be implemented with careful attention paid to privacy and

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

298 All rights reserved © Japan Smartphone Security Association. Using Notifications

security.

The possible values for the Visibility option and the corresponding behavior of Notifications is

summarized in the following table.

Visibility value Behavior of Notifications

Public Notifications are displayed on all locked screens.

Private Notifications are displayed on all locked screens; however, on locked

screens that have been password-protected (secure locks), fields such

as the title and text of the Notification are hidden (replaced by

publicly-releasable messages in which private information is hidden).

Secret Notifications are not displayed on locked screens that are protected by

passwords or other security measures (secure locks). (Notifications are

displayed on locked screens that do not involve secure locks.)

4.10.1. Sample Code

When a Notification contains private information regarding the terminal user, a message from which

the private information has been excluded must be prepared and added to be displayed in the event

of a locked screen.

Figure 4.10-2 A notification on a locked screen

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Notifications 299

Sample code illustrating the proper use of Notifications for messages containing private data is

shown below.

Points:

1. When using Notifications for messages containing private data, prepare a version of the

Notification that is suitable for public display (to be displayed when the screen is locked).

2. Do not include private information in Notifications prepared for public display (displayed when

the screen is locked).

3. Explicitly set Visibility to Private when creating Notifications.

4. When Visibility is set to Private, Notifications may contain private information.

VisibilityPrivateNotificationActivity.java
package org.jssec.notification.visibilityPrivate;

import android.app.Activity;

import android.app.Notification;

import android.app.NotificationManager;

import android.content.Context;

import android.os.Build;

import android.os.Bundle;

import android.view.View;

public class VisibilityPrivateNotificationActivity extends Activity {

 /**

 * Display a private Notification

 */

 private final int mNotificationId = 0;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onSendNotificationClick(View view) {

 // *** POINT 1 *** When preparing a Notification that includes private information, prepare an additional Nof

iciation for public display (displayed when the screen is locked).

 Notification.Builder publicNotificationBuilder = new Notification.Builder(this).setContentTitle("Notificatio

n : Public");

 if (Build.VERSION.SDK_INT >= 21)

 publicNotificationBuilder.setVisibility(Notification.VISIBILITY_PUBLIC);

 // *** POINT 2 *** Do not include private information in Notifications prepared for public display (displayed

when the screen is locked).

 publicNotificationBuilder.setContentText("Visibility Public : Omitting sensitive data.");

 publicNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

 Notification publicNotification = publicNotificationBuilder.build();

 // Construct a Notification that includes private information.

 Notification.Builder privateNotificationBuilder = new Notification.Builder(this).setContentTitle("Notificati

on : Private");

 // *** POINT 3 *** Explicitly set Visibility to Private when creating Notifications.

 if (Build.VERSION.SDK_INT >= 21)

 privateNotificationBuilder.setVisibility(Notification.VISIBILITY_PRIVATE);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

300 All rights reserved © Japan Smartphone Security Association. Using Notifications

 // *** POINT 4 *** When Visibility is set to Private, Notifications may contain private information.

 privateNotificationBuilder.setContentText("Visibility Private : Including user info.");

 privateNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

 // When creating a Notification with Visibility=Private, we also create and register a separate Notification

with Visibility=Public for public display.

 if (Build.VERSION.SDK_INT >= 21)

 privateNotificationBuilder.setPublicVersion(publicNotification);

 Notification privateNotification = privateNotificationBuilder.build();

 //Although not implemented in this sample code, in many cases

 //Notifications will use setContentIntent(PendingIntent intent)

 //to ensure that an Intent is transmission when Notification

 //is clicked. In this case, it is necessary to take steps--depending

 //on the type of component being called--to ensure that the Intent

 //in question is called by safe methods (for example, by explicitly

 //using Intent). For information on safe methods for calling various

 //types of component, see the following sections.

 //4.1. Creating and using Activities

 //4.2. Sending and receiving Broadcasts

 //4.4. Creating and using Services

 NotificationManager notificationManager = (NotificationManager) this.getSystemService(Context.NOTIFICATION_S

ERVICE);

 notificationManager.notify(mNotificationId, privateNotification);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Notifications 301

4.10.2. Rule Book

When creating Notification, the following rules must be observed.

1. Regardless of the Visibility setting, Notifications must not contain sensitive information

(although private information is an exception)

2. Notifications with Visibility=Public must not contain private information (Required)

3. For Notifications that contain private information, Visibility must be explicitly set to Private or

Secret (Required)

4. When using Notifications with Visibility=Private, create an additional Notification with

Visibility=Public for public display (Recommended)

4.10.2.1. Regardless of the Visibility setting, Notifications must not contain sensitive information

(although private information is an exception) (Required)

On terminals using Android4.3 (API Level 18) or later, users can use the Settings window to grant

apps permission to read Notifications. Apps granted this permission will be able to read all

information in Notifications; for this reason, sensitive information must not be included in

Notifications. (However, private information may be included in Notifications depending on the

Visibility setting).

Information contained in Notifications may generally not be read by apps other than the app that sent

the Notification. However, users may explicitly grant permission to certain user-selected apps to

read all information in Notifications. Because only apps that have been granted user permission may

read information in Notifications, there is nothing problematic about including private information

on the user within the Notification. On the other hand, if sensitive information other than the user's

private information (for example, secret information known only to the app developers) is include in

a Notification, the user herself may attempt to read the information contained in the Notification and

may grant applications permission to view this information as well; thus the inclusion of sensitive

information other than private user information is problematic.

For specific methods and conditions, see Section “4.10.3.1 On User-granted Permission to View

Notifications”.

4.10.2.2. Notifications with Visibility=Public must not contain private information (Required)

When sending Notifications with Visibility=Public, private user information must not be included in

the Notification. When a Notifications has the setting Visibility=Public, the information in the

Notification is displayed even when the screen is locked. This is because such Notifications carry the

risk that private information might be seen and stolen by a third party in physical proximity to the

terminal.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

302 All rights reserved © Japan Smartphone Security Association. Using Notifications

VisibilityPrivateNotificationActivity.java
 // Prepare a Notification for public display (to be displayed on locked screens) that does not contain sensiti

ve information

Notification.Builder publicNotificationBuilder = new Notification.Builder(this).setContentTitle("Notification : Publ

ic");

 publicNotificationBuilder.setVisibility(Notification.VISIBILITY_PUBLIC);

 // Do not include private information in Notifications for public display (to be displayed on locked screens)

 publicNotificationBuilder.setContentText("Visibility Public: sending notification without sensitive informati

on ");

 publicNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

4.10.2.3. For Notifications that contain private information, Visibility must be explicitly set to Private or

Secret (Required)

Terminals using Android 5.0 (API Level 21) or later will display Notifications even when the screen is

locked. Thus, when the Notification contains private information, its Visibility flag should be set

explicitly to Private or Secret. This is to protect against the risk of private information contained in a

Notification being displayed on a locked screen.

At present, the default value of Visibility is set to Private for Notifications, so the aforementioned risk

will only arise if this flag is explicitly changed to Public. However, the default value of Visibility may

change in the future; for this reason, and also for the purpose of clearly communicating one's

intentions at all times when handling information, it is mandatory to set Visibility=Private explicitly

for Notifications that contain private information.

VisibilityPrivateNotificationActivity.java
 // Create a Notification that includes private information

 Notification.Builder priavteNotificationBuilder = new Notification.Builder(this).setContentTitle("Notificati

on : Private");

 // *** POINT *** Explicitly set Visibility=Private when creating the Notification

 priavteNotificationBuilder.setVisibility(Notification.VISIBILITY_PRIVATE);

Typical examples of private information include emails sent to the user, the user's location data, and

other items listed in Section “5.5 Handling privacy data".

On terminals using Android4.3 (API Level 18) or later, users can use the Settings window to grant

apps permission to read Notifications. Apps granted this permission will be able to read all

information in Notifications; for this reason, sensitive information other than private user

information must not be included in Notifications.

4.10.2.4. When using Notifications with Visibility=Private, create an additional Notification with

Visibility=Public for public display (Recommended)

When communicating information via a Notification with Visibility=Private, it is desirable to create

simultaneously an additional Notification, for public display, with Visibility=Public; this is to restrict

the information displayed on locked screens.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Notifications 303

If a public-display Notification is not registered together with a Visibility=Private notification, a

default message prepared by the operating system will be displayed when the screen is locked. Thus

there is no security problem in this case. However, for the purpose of clearly communicating one's

intentions at all times when handling information, it is recommended that a public-display

Notification be explicitly created and registered.

VisibilityPrivateNotificationActivity.java
 // Create a Notification that contains private information

 Notification.Builder privateNotificationBuilder = new Notification.Builder(this).setContentTitle("Notificati

on : Private");

 // *** POINT *** Explicitly set Visibility=Private when creating the Notification

 if (Build.VERSION.SDK_INT >= 21)

 privateNotificationBuilder.setVisibility(Notification.VISIBILITY_PUBLIC);

 // *** POINT *** Notifications with Visibility=Private may include private information

 privateNotificationBuilder.setContentText("Visibility Private : Including user info.");

 privateNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

 // When creating a Notification with Visibility=Private, simultaneously create and register a public-display

Notification with Visibility=Public

 if (Build.VERSION.SDK_INT >= 21)

 privateNotificationBuilder.setPublicVersion(publicNotification);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

304 All rights reserved © Japan Smartphone Security Association. Using Notifications

4.10.3. Advanced Topics

4.10.3.1. On User-granted Permission to View Notifications

As noted above in Section “4.10.2.1 Regardless of the Visibility setting, Notifications must not

contain sensitive information (although private information is an exception) ”, on terminals

using Android 4.3 (API Level 18) or later, certain user-selected apps that have been granted user

permission may read information in all Notifications.

However, in order for an app to be eligible to receive this user permission, the app must implement a

Service derived from NotificationListenerService.

Figure 4.10-3 The Access to Notifications window, from which Notification read controls may be

configured

The following sample code illustrates the use of NotificationListenerService.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Notifications 305

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.notification.notificationListenerService">

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <service android:name=".MyNotificationListenerService"

 android:label="@string/app_name"

 android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE">

 <intent-filter>

 <action android:name=

 "android.service.notification.NotificationListenerService" />

 </intent-filter>

 </service>

 </application>

</manifest>

MyNotificationListenerService.java
package org.jssec.notification.notificationListenerService;

import android.app.Notification;

import android.service.notification.NotificationListenerService;

import android.service.notification.StatusBarNotification;

import android.util.Log;

public class MyNotificationListenerService extends NotificationListenerService {

 @Override

 public void onNotificationPosted(StatusBarNotification sbn) {

 // Notification is posted.

 outputNotificationData(sbn, "Notification Posted : ");

 }

 @Override

 public void onNotificationRemoved(StatusBarNotification sbn) {

 // Notification is deleted.

 outputNotificationData(sbn, "Notification Deleted : ");

 }

 private void outputNotificationData(StatusBarNotification sbn, String prefix) {

 Notification notification = sbn.getNotification();

 int notificationID = sbn.getId();

 String packageName = sbn.getPackageName();

 long PostTime = sbn.getPostTime();

 String message = prefix + "Visibility :" + notification.visibility + " ID : " + notificationID;

 message += " Package : " + packageName + " PostTime : " + PostTime;

 Log.d("NotificationListen", message);

 }

}

As discussed above, by using NotificationListenerService to obtain user permission it is possible to

read Notifications. However, because the information contained in Notifications frequently includes

private information on the terminal, care is required in handling such information.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

306 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

5. How to use Security Functions

There are various security functions prepared in Android, like encryption, digital signature and

permission etc. If these security functions are not used correctly, security functions don't work

efficiently and loophole will be prepared. This chapter will explain how to use the security functions

properly.

5.1. Creating Password Input Screens

5.1.1. Sample Code

When creating password input screen, some points to be considered in terms of security, are

described here. Only what is related to password input is mentioned, here. Regarding how to save

password, another articles is planned to be published is future edition.

Figure 5.1-1

Points:

1. The input password should be mask displayed (Display with *)

2. Provide the option to display the password in a plain text.

3. Alert a user that displaying password in a plain text has a risk.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 307

Points: When handling the last Input password, pay attention the following points along with the

above points.

4. In the case there is the last input password in an initial display, display the fixed digit numbers of

black dot as dummy in order not that the digits number of last password is guessed.

5. When the dummy password is displayed and the "Show password" button is pressed, clear the

last input password and provide the state for new password input.

6. When last input password is displayed with dummy, in case user tries to input password, clear

the last input password and treat new user input as a new password.

password_activity.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical"

 android:padding="10dp" >

 <!-- Label for password item -->

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/password" />

 <!-- Label for password item -->

 <!-- *** POINT 1 *** The input password must be masked (Display with black dot) -->

 <EditText

 android:id="@+id/password_edit"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:hint="@string/hint_password"

 android:inputType="textPassword" />

 <!-- *** POINT 2 *** Provide the option to display the password in a plain text -->

 <CheckBox

 android:id="@+id/password_display_check"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/display_password" />

 <!-- *** POINT 3 *** Alert a user that displaying password in a plain text has a risk. -->

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/alert_password" />

 <!-- Cancel/OK button -->

 <LinearLayout

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="50dp"

 android:gravity="center"

 android:orientation="horizontal" >

 <Button

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:layout_weight="1"

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

308 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

 android:onClick="onClickCancelButton"

 android:text="@android:string/cancel" />

 <Button

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:layout_weight="1"

 android:onClick="onClickOkButton"

 android:text="@android:string/ok" />

 </LinearLayout>

</LinearLayout>

Implementation for 3 methods which are located at the bottom of PasswordActivity.java, should be

adjusted depends on the purposes.

 private String getPreviousPassword()

 private void onClickCancelButton(View view)

 private void onClickOkButton(View view)

PasswordActivity.java
package org.jssec.android.password.passwordinputui;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.InputType;

import android.text.TextWatcher;

import android.view.View;

import android.view.WindowManager;

import android.widget.CheckBox;

import android.widget.CompoundButton;

import android.widget.CompoundButton.OnCheckedChangeListener;

import android.widget.EditText;

import android.widget.Toast;

public class PasswordActivity extends Activity {

 // Key to save the state

 private static final String KEY_DUMMY_PASSWORD = "KEY_DUMMY_PASSWORD";

 // View inside Activity

 private EditText mPasswordEdit;

 private CheckBox mPasswordDisplayCheck;

 // Flag to show whether password is dummy display or not

 private boolean mIsDummyPassword;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.password_activity);

 // Set Disabling Screen Capture

 getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE);

 // Get View

 mPasswordEdit = (EditText) findViewById(R.id.password_edit);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 309

 mPasswordDisplayCheck = (CheckBox) findViewById(R.id.password_display_check);

 // Whether last Input password exist or not.

 if (getPreviousPassword() != null) {

 // *** POINT 4 *** In the case there is the last input password in an initial display,

 // display the fixed digit numbers of black dot as dummy in order not that the digits number of last passw

ord is guessed.

 // Display should be dummy password.

 mPasswordEdit.setText("**********");

 // To clear the dummy password when inputting password, set text change listener.

 mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());

 // Set dummy password flag

 mIsDummyPassword = true;

 }

 // Set a listner to change check state of password display option.

 mPasswordDisplayCheck

 .setOnCheckedChangeListener(new OnPasswordDisplayCheckedChangeListener());

 }

 @Override

 public void onSaveInstanceState(Bundle outState) {

 super.onSaveInstanceState(outState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.

 // Save Activity state

 outState.putBoolean(KEY_DUMMY_PASSWORD, mIsDummyPassword);

 }

 @Override

 public void onRestoreInstanceState(Bundle savedInstanceState) {

 super.onRestoreInstanceState(savedInstanceState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.

 // Restore Activity state

 mIsDummyPassword = savedInstanceState.getBoolean(KEY_DUMMY_PASSWORD);

 }

 /**

 * Process in case password is input

 */

 private class PasswordEditTextWatcher implements TextWatcher {

 public void beforeTextChanged(CharSequence s, int start, int count,

 int after) {

 // Not used

 }

 public void onTextChanged(CharSequence s, int start, int before,

 int count) {

 // *** POINT 6 *** When last Input password is displayed as dummy, in the case an user tries to input pass

word,

 // Clear the last Input password, and treat new user input as new password.

 if (mIsDummyPassword) {

 // Set dummy password flag

 mIsDummyPassword = false;

 // Trim space

 CharSequence work = s.subSequence(start, start + count);

 mPasswordEdit.setText(work);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

310 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

 // Cursor position goes back the beginning, so bring it at the end.

 mPasswordEdit.setSelection(work.length());

 }

 }

 public void afterTextChanged(Editable s) {

 // Not used

 }

 }

 /**

 * Process when check of password display option is changed.

 */

 private class OnPasswordDisplayCheckedChangeListener implements

 OnCheckedChangeListener {

 public void onCheckedChanged(CompoundButton buttonView,

 boolean isChecked) {

 // *** POINT 5 *** When the dummy password is displayed and the "Show password" button is pressed,

 // clear the last input password and provide the state for new password input.

 if (mIsDummyPassword && isChecked) {

 // Set dummy password flag

 mIsDummyPassword = false;

 // Set password empty

 mPasswordEdit.setText(null);

 }

 // Cursor position goes back the beginning, so memorize the current cursor position.

 int pos = mPasswordEdit.getSelectionStart();

 // *** POINT 2 *** Provide the option to display the password in a plain text

 // Create InputType

 int type = InputType.TYPE_CLASS_TEXT;

 if (isChecked) {

 // Plain display when check is ON.

 type |= InputType.TYPE_TEXT_VARIATION_VISIBLE_PASSWORD;

 } else {

 // Masked display when check is OFF.

 type |= InputType.TYPE_TEXT_VARIATION_PASSWORD;

 }

 // Set InputType to password EditText

 mPasswordEdit.setInputType(type);

 // Set cursor position

 mPasswordEdit.setSelection(pos);

 }

 }

 // Implement the following method depends on application

 /**

 * Get the last Input password

 *

 * @return Last Input password

 */

 private String getPreviousPassword() {

 // When need to restore the saved password, return password character string

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 311

 // For the case password is not saved, return null

 return "hirake5ma";

 }

 /**

 * Process when cancel button is clicked

 *

 * @param view

 */

 public void onClickCancelButton(View view) {

 // Close Activity

 finish();

 }

 /**

 * Process when OK button is clicked

 *

 * @param view

 */

 public void onClickOkButton(View view) {

 // Execute necessary processes like saving password or using for authentication

 String password = null;

 if (mIsDummyPassword) {

 // When dummy password is displayed till the final moment, grant last iInput password as fixed password.

 password = getPreviousPassword();

 } else {

 // In case of not dummy password display, grant the user input password as fixed password.

 password = mPasswordEdit.getText().toString();

 }

 // Display password by Toast

 Toast.makeText(this, "password is ¥"" + password + "¥"",

 Toast.LENGTH_SHORT).show();

 // Close Activity

 finish();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

312 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

5.1.2. Rule Book

Follow the below rules when creating password input screen.

1. Provide the Mask Display Feature, If the Password Is Entered (Required)

2. Provide the Option to Display Password in a Plain Text (Required)

3. Mask the Password when Activity Is Launched (Required)

4. When Displaying the Last Input Password, Dummy Password Must Be Displayed (Required)

5.1.2.1. Provide the Mask Display Feature, If the Password Is Entered (Required)

Smartphone is often used in crowded places like in a train or in a bus, and the risk that password is

peeked by someone. So the function to mask display password is necessary as an application spec.

There are 2 methods to mask display EditText which password is input, one is to specify by layout

XML statically and another is to switch in a program dynamically. The former one can be achieved by

setting "textPassword" to android:inputType attribute by EditText tab in layout XML. And this also can

be archived by using android:password attribute but the attribute is deplicated in API Level 3 or later.

The latter one can be achieved by adding InputType.TYPE_TEXT_VARIATION_PASSWORD in input type

of EditText, by setInputType() method of EditText class.

Sample code of each of them is shown below.

Method to specify in layout XML.

password_activity.xml
 <!—Password input item -->

 <!—Set true for the android:password attribute -->

 <EditText

 android:id="@+id/password_edit"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:hint="@string/hint_password"

 android:password="true" />

Method to specify in Activity.

PasswordActivity.java
 // Set password display type

 // Set TYPE_TEXT_VARIATION_PASSWORD for InputType.

 EditText passwordEdit = (EditText) findViewById(R.id.password_edit);

 int type = InputType.TYPE_CLASS_TEXT

 | InputType.TYPE_TEXT_VARIATION_PASSWORD;

 passwordEdit.setInputType(type);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 313

5.1.2.2. Provide the Option to Display Password in a Plain Text (Required)

Password input in Smartphone is done by touch panel input, so compared with keyboard input in PC,

miss input may be easily happened. Because of the inconvenience of inputting, user may use the

simple password, and it makes more dangerous. In addition, when there's a policy like account is

locked due the several times of password input failure, it's necessary to avoid from miss input as

much as possible. As a solution of these problems, by preparing an option to display password in a

plain text, user can use the safe password.

However, when displaying password in a plain text, it may be sniffed, so when using this option. It's

necessary to call user cautions for sniffing from behind. In addition, in case option to display in a

plain text is implemented, it's also necessary to prepare the system to auto cancel the plain text

display like setting the time of plain display. The restrictions for password plain text display are

published in another article in future edition. So, the restrictions for password plain text display are

not included in sample code.

Figure 5.1-2

By specifying InputType of EditText, mask display and plain text display can be switched.

PasswordActivity.java
 /**

 * Process when check of password display option is changed.

 */

 private class OnPasswordDisplayCheckedChangeListener implements

 OnCheckedChangeListener {

Show check ON

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

314 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

 public void onCheckedChanged(CompoundButton buttonView,

 boolean isChecked) {

 // *** POINT 5 *** When the dummy password is displayed and the "Show password" button is pressed,

 // Clear the last input password and provide the state for new password input.

 if (mIsDummyPassword && isChecked) {

 // Set dummy password flag

 mIsDummyPassword = false;

 // Set password empty

 mPasswordEdit.setText(null);

 }

 // Cursor position goes back the beginning, so memorize the current cursor position.

 int pos = mPasswordEdit.getSelectionStart();

 // *** POINT 2 *** Provide the option to display the password in a plain text

 // Create InputType

 int type = InputType.TYPE_CLASS_TEXT;

 if (isChecked) {

 // Plain display when check is ON.

 type |= InputType.TYPE_TEXT_VARIATION_VISIBLE_PASSWORD;

 } else {

 // Masked display when check is OFF.

 type |= InputType.TYPE_TEXT_VARIATION_PASSWORD;

 }

 // Set InputType to password EditText

 mPasswordEdit.setInputType(type);

 // Set cursor position

 mPasswordEdit.setSelection(pos);

 }

 }

5.1.2.3. Mask the Password when Activity Is Launched (Required)

To prevent it from a password peeping out, the default value of password display option, should be

set OFF, when Activity is launched. The default value should be always defined as safer side,

basically.

5.1.2.4. When Displaying the Last Input Password, Dummy Password Must Be Displayed(Required)

When specifying the last input password, not to give the third party any hints for password, it should

be displayed as dummy with the fixed digits number of mask characters (* etc.). In addition, in the

case pressing "Show password" when dummy display, clear password and switch to plain text display

mode. It can help to suppress the risk that the last input password is sniffed low, even if the device is

passed to a third person like when it's stolen. FYI, In case of dummy display and when a user tries to

input password, dummy display should be cancelled, it necessary to turn the normal input state.

When displaying the last Input password, display dummy password.

PasswordActivity.java
 @Override

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 315

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.password_activity);

 // Get View

 mPasswordEdit = (EditText) findViewById(R.id.password_edit);

 mPasswordDisplayCheck = (CheckBox) findViewById(R.id.password_display_check);

 // Whether last Input password exist or not.

 if (getPreviousPassword() != null) {

 // *** POINT 4 *** In the case there is the last input password in an initial display,

 // display the fixed digit numbers of black dot as dummy in order not that the digits number of last

password is guessed.

 // Display should be dummy password.

 mPasswordEdit.setText("**********");

 // To clear the dummy password when inputting password, set text change listener.

 mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());

 // Set dummy password flag

 mIsDummyPassword = true;

 }

 - Abbreviation -

 }

 /**

 * Get the last input password.

 *

 * @return the last input password

 */

 private String getPreviousPassword() {

 // To restore the saved password, return the password character string.

 // For the case password is not saved, return null.

 return "hirake5ma";

 }

In the case of dummy display, when password display option is turned ON, clear the displayed

contents.

PasswordActivity.java
 /**

 * Process when check of password display option is changed.

 */

 private class OnPasswordDisplayCheckedChangeListener implements

 OnCheckedChangeListener {

 public void onCheckedChanged(CompoundButton buttonView,

 boolean isChecked) {

 // *** POINT 5 *** When the dummy password is displayed and the "Show password" button is pressed,

 // Clear the last input password and provide the state for new password input.

 if (mIsDummyPassword && isChecked) {

 // Set dummy password flag

 mIsDummyPassword = false;

 // Set password empty

 mPasswordEdit.setText(null);

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

316 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

 - Abbreviation -

 }

 }

In case of dummy display, when user tries to input password, clear dummy display.

PasswordActivity.java
 // Key to save the state

 private static final String KEY_DUMMY_PASSWORD = "KEY_DUMMY_PASSWORD";

 - Abbreviation -

 // Flag to show whether password is dummy display or not.

 private boolean mIsDummyPassword;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 - Abbreviation -

 // Whether last Input password exist or not.

 if (getPreviousPassword() != null) {

 // *** POINT 4 *** In the case there is the last input password in an initial display,

 // display the fixed digit numbers of black dot as dummy in order not that the digits number of last passw

ord is guessed.

 // Display should be dummy password.

 mPasswordEdit.setText("**********");

 // To clear the dummy password when inputting password, set text change listener.

 mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());

 // Set dummy password flag

 mIsDummyPassword = true;

 }

 - Abbreviation -

 }

 @Override

 public void onSaveInstanceState(Bundle outState) {

 super.onSaveInstanceState(outState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.

 // Save Activity state

 outState.putBoolean(KEY_DUMMY_PASSWORD, mIsDummyPassword);

 }

 @Override

 public void onRestoreInstanceState(Bundle savedInstanceState) {

 super.onRestoreInstanceState(savedInstanceState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.

 // Restore Activity state

 mIsDummyPassword = savedInstanceState.getBoolean(KEY_DUMMY_PASSWORD);

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 317

 /**

 * Process when inputting password.

 */

 private class PasswordEditTextWatcher implements TextWatcher {

 public void beforeTextChanged(CharSequence s, int start, int count,

 int after) {

 // Not used

 }

 public void onTextChanged(CharSequence s, int start, int before,

 int count) {

 // *** POINT 6 *** When last Input password is displayed as dummy, in the case an user tries to input pass

word,

 // Clear the last Input password, and treat new user input as new password.

 if (mIsDummyPassword) {

 // Set dummy password flag

 mIsDummyPassword = false;

 // Trim space

 CharSequence work = s.subSequence(start, start + count);

 mPasswordEdit.setText(work);

 // Cursor position goes back the beginning, so bring it at the end.

 mPasswordEdit.setSelection(work.length());

 }

 }

 public void afterTextChanged(Editable s) {

 // Not used

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

318 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

5.1.3. Advanced Topics

5.1.3.1. Login Process

The representative example of where password input is required is login process. Here are some

Points that need cautions in Login process.

Error message when login fail

In login process, need to input 2 information which is ID(account) and password. When login

failure, there are 2 cases. One is ID doesn't exist. Another is ID exists but password is incorrect.

If either of these 2 cases is distinguished and displayed in a login failure message, attackers can

guess whether the specified ID exists or not. To stop this kind of guess, these 2 cases should not

be specified in login failure message, and this message should be displayed as per below.

Message example: Login ID or password is incorrect.

Auto Login function

There is a function to perform auto login by omitting login ID/password input in the next time

and later, after successful login process has been completed once. Auto login function can omit

the complicated input. So the convenience will increase, but on the other hand, when a

Smartphone is stolen, the risk which is maliciously being used by the third party, will follow.

Only the use when damages caused by the malicious third party is somehow acceptable, or only

in the case enough security measures can be taken, auto login function can be used. For example,

in the case of online banking application, when the device is operated by the third party, financial

damage may be caused. So in this case, security measures are necessary along with auto login

function. There are some possible counter-measures, like [Require re-inputting password just

before financial process like payment process occurs], [When setting auto login, call a user for

enough attentions and prompt user to secure device lock], etc. When using auto login, it's

necessary to investigate carefully considering the convenience and risks along with the assumed

counter measures.

5.1.3.2. Changing Password

When changing the password which was once set, following input items should be prepared on the

screen.

 Current password

 New password

 New password(for input validation)

When auto login function is introduced, there are possibilities that third party can use an application.

In that case, to avoid from changing password unexpectedly, it's necessary to require the current

password input. In addition, to decrease the risk of getting into unserviceable state due to miss

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 319

inputting new password, it's necessary to require new password input 2 times.

5.1.3.3. Regarding "Make passwords visible" Setting

There is a setting in Android's setting menu, called "Make passwords visible." In case of Android 4.4,

it's shown as below.

Setting > Security > Make passwords visible

Figure 5.1-3

When turning ON "Make passwords visible" setting, the last input character is displayed in a plain text.

After the certain time (about 2 seconds) passed, or after inputting the next character, the characters

which was displayed in a plain text is masked. When turning OFF, it's masked right after inputting.

This setting affects overall system, and it's applied to all applications which use password display

function of EditText.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

320 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Figure 5.1-4

5.1.3.4. Disabling Screen Shot

In password input screens, passwords could be displayed in the clear on the screens. In such screens

as handle personal information, they could be leaked from screenshot files stored on external

storage if the screenshot function is stayed enable as default. Thus it is recommended to disable the

screenshot function for such screens as password input screens. The screenshot can be disabled by

appending the following code.

PasswordActivity.java
@Override

public void onCreate(Bundle saveInstanceState) {

...

 Window window = getWindow();

 window.addFlags(WindowManager.LayoutParams.FLAG_SECURE);

 setContentView(R.layout.passwordInputScreen);

...

After certain time
or

next character
input

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 321

5.2. Permission and Protection Level

There are four types of Protection Level within permission and they consist of normal, dangerous,

signature, and signatureOrSystem. Depending on the Protection Level, permission is referred to as

normal permission, dangerous permission, signature permission, or signatureOrSystem permission.

In the following sections, such names are used.

5.2.1. Sample Code

5.2.1.1. How to Use System Permissions of Android OS

Android OS has a security mechanism called "permission" that protects its user's assets such as

contacts and a GPS feature from a malware. When an application seeks access to such information

and/or features, which are protected under Android OS, the application needs to explicitly declare a

permission in order to access them. When an application, which has declared a permission that needs

user's consent to be used, is installed, the following confirmation screen appears16.

Figure 5.2-1

16 In Android 6.0 (API Level 23) and later, the granting or refusal of user permissions does not occur

when an app is installed, but instead at runtime when then app requests permissions. For more details,

see Section ”5.2.1.4 Methods for using Dangerous Permissions in Android 6.0 and later” and Section ”

エラー ! 参照元が見つかりません。 Modifications to the Permission model specifications in Android

versions 6.0 and later”.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

322 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

From this confirmation screen, a user is able to know which types of features and/or information an

application is trying to access. If the behavior of an application is trying to access features and/or

information that are clearly unnecessary, then there is a high possibility that the application is a

malware. Hence, as your application is not suspected to be a malware, declarations of permission to

use needs to be minimized.

Points:

1. Declare a permission used in an application with uses-permission.

2. Do not declare any unnecessary permissions with uses-permission.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.permission.usespermission" >

 <!-- *** POINT 1 *** Declare a permission used in an application with uses-permission -->

 <!-- Permission to access Internet -->

 <uses-permission android:name="android.permission.INTERNET"/>

 <!-- *** POINT 2 *** Do not declare any unnecessary permissions with uses-permission -->

 <!-- If declaring to use Permission that is unnecessary for application behaviors, it gives users a sense of dist

rust. -->

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 323

5.2.1.2. How to Communicate Between In-house Applications with In-house-defined Signature

Permission

Besides system permissions defined by Android OS, an application can define its own permissions as

well. If using an in-house-defined permission (it is an in-house-defined signature permission to be

more precise), you can build a mechanism where only communications between in-house

applications is permitted. By providing the composite function based on inter-application

communication between multiple in-house applications, the applications get more attractive and

your business could get more profitable by selling them as series. It is a case of using

in-house-defined signature permission.

The sample application "In-house-defined Signature Permission (UserApp)" launches the sample

application "In-house-defined Signature Permission (ProtectedApp)" with Context.startActivity()

method. Both applications need to be signed with the same developer key. If keys for signing them

are different, the UserApp sends no Intent to the ProtectedApp, and the ProtectedApp processes no

Intent received from the UserApp. Furthermore, it prevents malwares from circumventing your own

signature permission using the matter related to the installation order as explained in the Advanced

Topic section.

Figure 5.2-2

Points: Application Providing Component

1. Define a permission with protectionLevel="signature".

2. For a component, enforce the permission with its permission attribute.

3. If the component is an activity, you must define no intent-filter.

4. At run time, verify if the signature permission is defined by itself on the program code.

5. When exporting an APK, sign the APK with the same developer key that applications using the

component use.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.permission.protectedapp" >

 <!-- *** POINT 1 *** Define a permission with protectionLevel="signature" -->

 <permission

Application that uses component Application provided component

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

324 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

 android:name="org.jssec.android.permission.protectedapp.MY_PERMISSION"

 android:protectionLevel="signature" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- *** POINT 2 *** For a component, enforce the permission with its permission attribute -->

 <activity

 android:name=".ProtectedActivity"

 android:exported="true"

 android:label="@string/app_name"

 android:permission="org.jssec.android.permission.protectedapp.MY_PERMISSION" >

 <!-- *** POINT 3 *** If the component is an activity, you must define no intent-filter -->

 </activity>

 </application>

</manifest>

ProtectedActivity.java
package org.jssec.android.permission.protectedapp;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.widget.TextView;

public class ProtectedActivity extends Activity {

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.permission.protectedapp.MY_PERMISSION";

 // Hash value of in-house certificate

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" of debug.keystore

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" of keystore

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 private TextView mMessageView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mMessageView = (TextView) findViewById(R.id.messageView);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 325

 // *** POINT 4 *** At run time, verify if the signature permission is defined by itself on the program code

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 mMessageView.setText("In-house defined signature permission is not defined by in-house application.");

 return;

 }

 // *** POINT 4 *** Continue processing only when the certificate matches

 mMessageView.setText("In-house-defined signature permission is defined by in-house application, was confirmed

.");

 }

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, sigPermName));

 }

 public static String hash(Context ctx, String sigPermName) {

 if (sigPermName == null) return null;

 try {

 // Get the package name of the application which declares a permission named sigPermName.

 PackageManager pm = ctx.getPackageManager();

 PermissionInfo pi;

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission

 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.

 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

326 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 327

*** Point 5 *** When exporting an APK, sign the APK with the same developer key that applications

using the component have used.

Figure 5.2-3

Points: Application Using Component

6. The same signature permission that the application uses must not be defined.

7. Declare the in-house permission with uses-permission tag.

8. Verify if the in-house signature permission is defined by the application that provides the

component on the program code.

9. Verify if the destination application is an in-house application.

10. Use an explicit intent when the destination component is an activity.

11. When exporting an APK, sign the APK with the same developer key that the destination

application uses.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.permission.userapp" >

 <!-- *** POINT 6 *** The same signature permission that the application uses must not be defined -->

 <!-- *** POINT 7 *** Declare the in-house permission with uses-permission tag -->

 <uses-permission

 android:name="org.jssec.android.permission.protectedapp.MY_PERMISSION" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".UserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

328 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

UserActivity.java
package org.jssec.android.permission.userapp;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class UserActivity extends Activity {

 // Requested (Destination) application's Activity information

 private static final String TARGET_PACKAGE = "org.jssec.android.permission.protectedapp";

 private static final String TARGET_ACTIVITY = "org.jssec.android.permission.protectedapp.ProtectedActivity";

 // In-house Signature Permission

 private static final String MY_PERMISSION = "org.jssec.android.permission.protectedapp.MY_PERMISSION";

 // Hash value of in-house certificate

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" of debug.keystore.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" of keystore.

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onSendButtonClicked(View view) {

 // *** POINT 8 *** Verify if the in-house signature permission is defined by the application that provides the

 component on the program code.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

 Toast.makeText(this, "In-house-defined signature permission is not defined by In house application.", Toa

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 329

st.LENGTH_LONG).show();

 return;

 }

 // *** POINT 9 *** Verify if the destination application is an in-house application.

 if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {

 Toast.makeText(this, "Requested (Destination) application is not in-house application.", Toast.LENGTH_LON

G).show();

 return;

 }

 // *** POINT 10 *** Use an explicit intent when the destination component is an activity.

 try {

 Intent intent = new Intent();

 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

 startActivity(intent);

 } catch(Exception e) {

 Toast.makeText(this,

 String.format("Exception occurs:%s", e.getMessage()),

 Toast.LENGTH_LONG).show();

 }

 }

}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {

 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

 if (pkgname == null) return false;

 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");

 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars

 sha256 = sha256.toUpperCase();

 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);

 return true;

 }

 public boolean test(Context ctx, String pkgname) {

 // Get the correct hash value which corresponds to pkgname.

 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.

 return PkgCert.test(ctx, pkgname, correctHash);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

330 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 331

*** Point 11 *** When generating an APK by [Build]->[Generate Signed APK], sign the APK with the

same developer key that the destination application uses.

Figure 5.2-4

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

332 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

5.2.1.3. How to Verify the Hash Value of an Application's Certificate

We will provide an explanation on how to verify the hash value of an application's certificate that

appears at different points in this Guidebook. Strictly speaking, the hash value means "the SHA256

hash value of the public key certificate for the developer key used to sign the APK."

How to verify it with Keytool

Using a program called keytool that is bundled with JDK, you can get the hash value (also known

as certificate fingerprint) of a public key certificate for the developer key. There are various hash

methods such as MD5, SHA1, and SHA256 due to the differences in hash algorithm. However,

considering the security strength of the encryption bit length, this Guidebook recommends the

use of SHA256. Unfortunately, the keytool bundled to JDK6 that is used in Android SDK does not

support SHA256 for calculating hash values. Therefore, it is necessary to use the keytool that is

bundled to JDK7.

Example of outputting the content of a debugging certicate of an Android through a keytool
> keytool -list -v -keystore < keystore file > -storepass < password >

Type of keystore: JKS

Keystore provider: SUN

One entry is included in a keystore

Other name: androiddebugkey

Date of creation: 2012/01/11

Entry type: PrivateKeyEntry

Length of certificate chain: 1

Certificate[1]:

Owner: CN=Android Debug, O=Android, C=US

Issuer: CN=Android Debug, O=Android, C=US

Serial number: 4f0cef98

Start date of validity period: Wed Jan 11 11:10:32 JST 2012 End date: Fri Jan 03 11:10:32 JST 2042

Certificate fingerprint:

 MD5: 9E:89:53:18:06:B2:E3:AC:B4:24:CD:6A:56:BF:1E:A1

 SHA1: A8:1E:5D:E5:68:24:FD:F6:F1:ED:2F:C3:6E:0F:09:A3:07:F8:5C:0C

 SHA256: FB:75:E9:B9:2E:9E:6B:4D:AB:3F:94:B2:EC:A1:F0:33:09:74:D8:7A:CF:42:58:22:A2:56:85:1B:0F:85:C6:35

 Signatrue algorithm name: SHA1withRSA

 Version: 3

How to Verify it with JSSEC Certificate Hash Value Checker

Without installing JDK7, you can easily verify the certificate hash value by using JSSEC Certificate

Hash Value Checker.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 333

Figure 5.2-5

This is an Android application that displays a list of certificate hash values of applications which

are installed in the device. In the Figure above, the 64-character hexadecimal notation string that

is shown on the right of "sha-256" is the certificate hash value. The sample code folder, "JSSEC

CertHash Checker" that comes with this Guidebook is the set of source codes. If you would like,

you can compile the codes and use it.

5.2.1.4. Methods for using Dangerous Permissions in Android 6.0 and later

Android 6.0 (API Level 23) incorporates modified specifications that are relevant to the

implementation of apps---specifically, to the times at which apps are granted permission.

Under the Permission model of Android 5.1 (API Level 22) and earlier versions (See section

”5.2.3.6 Modifications to the Permission model specifications in Android versions 6.0 and later”), all

Permissions declared by an app are granted to that app at the time of installation. However, in

Android 6.0 and later versions, app developers must explicitly implement apps in such a way that, for

Dangerous Permissions, the app requests Permission at appropriate times. When an app requests a

Permission, a confirmation window like that shown below is displayed to the Android OS user,

requesting a decision from the user as to whether or not to grant the Permission in question. If the

user allows the use of the Permission, the app may execute whatever operations require that

Permission.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

334 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Figure 5.2-6

The specifications are also modified regarding the units in which Permissions are granted. Previously,

all Permissions were granted simultaneously; in Android 6.0 (API Level 23) and later versions,

Permissions are granted individually (by Permission Group). In conjunction with this modification,

users are now shown individual confirmation windows for each Permission, allowing users to make

more flexible decisions regarding the granting or refusal of Permissions. App developers must revisit

the specifications and design of their apps with full consideration paid to the possibility that

Permissions may be refused.

For details on the Permission model in Android 6.0 and later, see Section ”5.2.3.6 Modifications to

the Permission model specifications in Android versions 6.0 and later”.

Points:

1. Apps declare the Permissions they will use

2. Do not declare the use of unnecessary Permissions

3. Check whether or not Permissions have been granted to the app

4. Request Permissions (open a dialog to request permission from users)

5. Implement appropriate behavior for cases in which the use of a Permission is refused

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.permission.permissionrequestingpermissionatruntime" >

 <!-- *** POINT 1 *** Apps declare the Permissions they will use -->

 <!-- Permission to read information on contacts (Protection Level: dangerous) -->

 <uses-permission android:name="android.permission.READ_CONTACTS" />

 <!-- *** POINT 2 *** Do not declare the use of unnecessary Permissions -->

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 335

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name=".ContactListActivity"

 android:exported="false">

 </activity>

 </application>

</manifest>

MainActivity.java
package org.jssec.android.permission.permissionrequestingpermissionatruntime;

import android.Manifest;

import android.content.Intent;

import android.content.pm.PackageManager;

import android.os.Bundle;

import android.support.v4.app.ActivityCompat;

import android.support.v4.content.ContextCompat;

import android.support.v7.app.AppCompatActivity;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

 private static final int REQUEST_CODE_READ_CONTACTS = 0;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button button = (Button)findViewById(R.id.button);

 button.setOnClickListener(this);

 }

 @Override

 public void onClick(View v) {

 readContacts();

 }

 private void readContacts() {

 // *** POINT 3 *** Check whether or not Permissions have been granted to the app

 if (ContextCompat.checkSelfPermission(getApplicationContext(), Manifest.permission.READ_CONTACTS) != Package

Manager.PERMISSION_GRANTED) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

336 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

 // Permission was not granted

 // *** POINT 4 *** Request Permissions (open a dialog to request permission from users)

 ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.READ_CONTACTS}, REQUEST_CODE_REA

D_CONTACTS);

 } else {

 // Permission was previously granted

 showContactList();

 }

 }

 // A callback method that receives the result of the user's selection

 @Override

 public void onRequestPermissionsResult(int requestCode, String[] permissions, int[] grantResults) {

 switch (requestCode) {

 case REQUEST_CODE_READ_CONTACTS:

 if (grantResults.length > 0 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 // Permissions were granted; we may execute operations that use contact information

 showContactList();

 } else {

 // Because the Permission was denied, we may not execute operations that use contact information

 // *** POINT 5 *** Implement appropriate behavior for cases in which the use of a Permission is ref

used

 Toast.makeText(this, String.format("Use of contact is not allowed."), Toast.LENGTH_LONG).show();

 }

 return;

 }

 }

 // Show contact list

 private void showContactList() {

 // Launch ContactListActivity

 Intent intent = new Intent();

 intent.setClass(getApplicationContext(), ContactListActivity.class);

 startActivity(intent);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 337

5.2.2. Rule Book

Be sure to follow the rules below when using in-house permission.

1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets

 (Required)

2. Your Own Dangerous Permission Must Not Be Used (Required)

3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application

 (Required)

4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application

 (Required)

5. Your Own Normal Permission Should Not Be Used (Recommended)

6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of

Application (Recommended)

5.2.2.1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets

 (Required)

Since the use of your own dangerous permission is not recommended (please refer to "5.2.2.2 Your

Own Dangerous Permission Must Not Be Used (Required)", we will proceed on the premise of using

system dangerous permission of Android OS.

Unlike the other three types of permissions, dangerous permission has a feature that requires the

user's consent to the grant of the permission to the application. When installing an application on a

device that has declared a dangerous permission to use, the following screen will be displayed.

Subsequently, the user is able to know what level of permission (dangerous permission and normal

permission) the application is trying to use. When the user taps "install," the application will be

granted the permission and then it will be installed.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

338 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Figure 5.2-7

An application can handle user assets and assets that the developer wants to protect. We must be

aware that dangerous permission can protect only user assets because the user is just who the

granting of permission is entrusted to. On the other hand, assets that the developer wants to protect

cannot be protected by the method above.

For example, suppose that an application has a Component that communicates only with an

In-house application, it doesn't permit the access to the Component from any applications of the

other companies, and it is implemented that it's protected by dangerous permission. When a user

grants permission to an application of another company based on the user's judgment, in-house

assets that need to be protected may be exploited by the application granted. In order to provide

protection for in-house assets in such cases, we recommend the usage of in-house-defined

signature permission.

5.2.2.2. Your Own Dangerous Permission Must Not Be Used (Required)

Even when in-house-defined Dangerous Permission is used, the screen prompt "Asking for the

Allowance of Permission from User" is not displayed in some cases. This means that at times the

feature that asks for permission based on the judgment of a user, which is the characteristic of

Dangerous Permission, does not function. Accordingly, the Guidebook will make the rule "In-house

-defined dangerous permission must not be used."

In order to explain it, we assume two types of applications. The first type of application defines an

in-house dangerous permission, and it is an application that makes a Component, which is protected

by this permission, public. We call this ProtectedApp. The other is another application which we call

AttackerApp and it tries to exploit the Component of ProtectedApp. Also we assume that the

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 339

AttackerApp not only declares the permission to use it, but also defines the same permission.

AttackerApp can use the Component of a ProtectedApp without the consent of a user in the following

cases:

1. When the user installs the AttackerApp, the installation will be completed without the screen

prompt that asks for the user to grant the application the dangerous permission.

2. Similarly, when the user installs the ProtectedApp, the installation will be completed without any

special warnings.

3. When the user launches the AttackerApp afterwards, the AttackerApp can access the Component

of the ProtectedApp without being detected by the user, which can potentially lead to damage.

The cause of this case is explained in the following. When the user tries to install the AttackerApp

first, the permission that has been declared for usage with uses-permission is not defined on the

particular device yet. Finding no error, Android OS will continue the installation. Since the user

consent for dangerous permission is required only at the time of installation, an application that has

already been installed will be handled as if it has been granted permission. Accordingly, if the

Component of an application which is installed later is protected with the dangerous permission of

the same name, the application which was installed beforehand without the user permission will be

able to exploit the Component.

Furthermore, since the existence of system dangerous permissions defined by Android OS is

guaranteed when an application is installed, the user verification prompt will be displayed every time

an application with uses-permission is installed. This problem arises only in the case of self-defined

dangerous permission.

At the time of this writing, no viable method to protect the access to the Component in such cases

has been developed yet. Therefore, your own dangerous permission must not be used.

5.2.2.3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application

 (Required)

As demonstrated in, "5.2.1.2 How to Communicate Between In-house Applications with

In-house-defined Signature Permission," the security can be assured by checking the signature

permission at the time of executing inter-communications between In-house applications. When

using this mechanism, the definition of the permission whose Protection Level is signature must be

written in AndroidManifest.xml of the provider-side application that has the Component, but the

user-side application must not define the signature permission.

This rule is applied to signatureOrSystem Permission as well.

The reason for this is as follows.

We assume that there are multiple user-side applications that have been installed prior to the

provider-side application and every user-side application not only has required the signature

permission that the provider-side application has defined, but also has defined the same permission.

Under these circumstances, all user-side applications will be able to access the provider-side

application just after the provider-side application is installed. Subsequently, when the user-side

application that was installed first is uninstalled, the definition of the permission also will be deleted

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

340 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

and then the permission will turn out to be undefined. As a result, the remaining user-side

applications will be unable to access to the provider-side application.

In this manner, when the user-side application defines a self-defined permission, it can

unexpectedly turn out the permission to be undefined. Therefore, only the provider-side application

providing the Component that needs to be protected should define the permission, and defining the

permission on the user-side must be avoided.

By doing as mentioned just above, the self-defined permission will be applied by Android OS at the

time of the installation of the provider-side application, and the permission will turn out to be

undefined at the time of the uninstallation of the application. Therefore, since the existence of the

permission's definition always corresponds to that of the provider-side application, it is possible to

provide an appropriate Component and protect it. Please be aware that this argument stands because

regarding in-house-defined signature permission the user-side application is granted the

permission regardless of the installation order of applications in inter-communication17.

5.2.2.4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application

 (Required)

Actuality, you cannot say to be secure enough only by declaring a signature permission through

AnroidManifest.xml and protecting the Component with the permission. For the details of this issue,

please refer to, "5.2.3.1 Characteristics of Android OS that Avoids Self-defined Signature Permission

and Its Counter-measures" in the Advanced Topics section.

The following are the steps for using in-house-defined signature permission securely and correctly.

First, write as the followings in AndroidManifest.xml:

1. Define an in-house signature permission in the AndroidManifest.xml of the provider-side
application. (definition of permission)
Example: <permission android:name="xxx" android:protectionLevel="signature" />

2. Enforce the permission with the permission attribute of the Component to be protected in the
AndroidManifest.xml of the provider-side application. (enforcement of permission)
Example: <activity android:permission="xxx" ... >...</activity>

3. Declare the in-house-defined signature permission with the uses-permission tag in the
AndroidManifest.xml of every user-side application to access the Component to be protected.
(declaration of using permission)

Example: <uses-permission android:name="xxx" />

Next, implement the followings in the source code.

4. Before processing a request to the Component, first verify that the in-house-defined signature

permission has been defined by an in-house application. If not, ignore the request. (protection
in the provider-side component)

17 If using normal/dangerous permission, the permission will not be granted the user-side application
if the user-side application is installed before the provider-side application, the permission remains
undefined. Therefore, the Component cannot be accessed even after the provider-side application has

been installed.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 341

5. Before accessing the Component, first verify that the in-house-defined signature permission has
been defined by an in-house application. If not, do not access the Component (protection in the

user-side component).

Lastly, execute the following with the Signing function of Android Studio.

6. Sign APKs of all inter-communicating applications with the same developer key.

Here, for specific points on how to implement "Verify that the in-house-defined signature

permission has been defined by an In house application", please refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission".

This rule is applied to signatureOrSystem Permission as well.

5.2.2.5. Your Own Normal Permission Should Not Be Used (Recommended)

An application can use a normal permission just by declaring it with uses-permission in

AndroidManifest.xml. Therefore, you cannot use a normal permission for the purpose of protecting a
Component from a malware installed.

Furthermore, in the case of inter-application communication with self-defined normal permission,

whether an application can be granted the permission depends on the order of installation. For

example, when you install an application (user-side) that has declared to use a normal permission

prior to another application (provider-side) that possesses a Component which has defined the

permission, the user-side application will not be able to access the Component protected with the

permission even if the provider-side application is installed later.

As a way to prevent the loss of inter-application communication due to the order of installation, you

may think of defining the permission in every application in the communication. By this way, even if

a user-side application has been installed prior to the provider-side application, all user-side

applications will be able to access the provider-side application. However, it will create a situation

that the permission is undefined when the user-side application installed first is uninstalled. As a

result, even if there are other user-side applications, they will not be able to gain access to the

provider-side application.

As stated above, there is a concern of damaging the availability of an application, thus your own

normal permission should not be used.

5.2.2.6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of

Application (Recommended)

When multiple applications define permissions under the same name, the Protection Level that has

been defined by an application installed first will be applied. Protection by signature permission will

not be available in the case that the application installed first defines a normal permission and the

application installed later defines a signature permission under the same name. Even in the absence

of malicious intent, a conflict of permission names among multiple applications could cause behavior

s of any applications as an unintended Protection Level. To prevent such accidents, it is

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

342 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

recommended that a permission name extends (starts with) the package name of the application

definding the permission as below.

(package name).permission.(identifying string)

For example, the following name would be preferred when defining a permission of READ access for

the package of org.jssec.android.sample.

org.jssec.android.sample.permission.READ

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 343

5.2.3. Advanced Topics

5.2.3.1. Characteristics of Android OS that Avoids Self-defined Signature Permission and Its

Counter-measures

Self-defined signature permission is a permission that actualizes inter-application communication

between the applications signed with the same developer key. Since a developer key is a private key

and must not be public, there is a tendency to use signature permission for protection only in cases

where in-house applications communicate with each other.

First, we will describe the basic usage of self-defined signature permission that is explained in the

Developer Guide (http://developer.android.com/guide/topics/security/security.html) of Android.

However, as it will be explained later, there are problems with regard to the avoidance of permission.

Consequently, counter-measures that are described in this Guidebook are necessary.

The followings are the basic usage of self-defined Signature Permission.

1. Define a self-defined signature permission in the AndroidManifest.xml of the provider-side

application. (definition of permission)
Example: <permission android:name="xxx" android:protectionLevel="signature" />

2. Enforce the permission with the permission attribute of the Component to be protected in the
AndroidManifest.xml of the provider-side application. (enforcement of permission)
Example: <activity android:permission="xxx" ... >...</activity>

3. Declare the self-defined signature permission with the uses-permission tag in the
AndroidManifest.xml of every user-side application to access the Component to be protected.
(declaration of using permission)

Example: <uses-permission android:name="xxx" />
4. Sign APKs of all inter-communicating applications with the same developer key.

Actually, if the following conditions are fulfilled, this approach will create a loophole to avoid

signature permission from being performed.

For the sake of explanation, we call an application that is protected by self-defined signature

permission as ProtectedApp, and AttackerApp for an application that has been signed by a different

developer key from the ProtectedApp. What a loophole to avoid signature permission from being

performed means is, despite the mismatch of the signature for AttackerApp, it is possible to gain

access to the Component of ProtectedApp.

Condition 1. An AttackerApp also defines a normal permission (strictly speaking, signature

permission is also acceptable) under the same name as the signature permission which has been

defined by the ProtectedApp.

Example: <permission android:name=" xxx" android:protectionLevel="normal" />

Condition 2. The AttackerApp declares the self-defined normal permission with uses-permission.

Example: <uses-permission android:name="xxx" />

Condition 3. The AttackerApp has installed on the device prior to the ProtectedApp.

http://developer.android.com/guide/topics/security/security.html

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

344 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Figure 5.2-8

The permission name that is necessary to meet Condition 1 and Condition 2 can easily be known by

an attacker taking AndroidManifest.xml out from an APK file. The attacker also could satisfy

Condition 3 with a certain amount of effort (e.g. deceiving a user).

There is a risk of self-defined signature permission to evade protection if only the basic usage is

adopted, and a counter-measure to prevent such loopholes is needed. Specifically, you could find

how to solve the above-mentioned issues by using the method described in "5.2.2.4 Verify If the

In-house-defined Signature Permission Is Defined by an In-house Application".

5.2.3.2. Falsification of AndroidManifest.xml by a User

We have already touched on the case that a Protection Level of self-defined permission could be

changed as not intended. To prevent malfunctioning due to such cases, it has been needed to

implement some sort of counter-measures on the source-code side of Java. From the viewpoint of

AndroidManifest.xml falsification, we will talk about the counter-measures to be taken on the

source-code side. We will demonstrate a simple case of installation that can detect falsifications.

However, please note that these counter-measures are little effective against professional hackers

who falsify with criminal intent.

This section is about the falsification of an application and users with malicious intent. Although this

is originally outside of the scope of a Guidebook, from the fact that this is related to Permission and

the tools for such falsification are provided in public as Android applications, we decided to mention

it as "Simple counter-measures against amateur hackers".

It must be remembered that applications that can be installed from market are applications that can

ProtectedApp

<permission
android:name=“xxx”
android:protectionLevel=“signature”
… />

<activity …
android:permission=“xxx” >

</activity>

AndroidManifest.xml

AttackerApp

<permission
android:name=“xxx”
android:protectionLevel=“normal”
… />

<uses-permission android:name=“xxx” />

AndroidManifest.xml

Sign with the different developer
key than ProtectedApp

Install before
ProtectedApp

Accessible

Condition 1

Condition 2

Condition 3

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 345

be falsified without root privilege. The reason is that applications that can rebuild and sign APK files

with altered AndroidManifest.xml are distributed. By using these applications, anyone can delete any

permission from applications they have installed.

As an example, there seems to be cases of rebuilding APKs with different signatures altering

AndroidManifest.xml with INTERNET permission removed to render advertising modules attached in

applications as useless. There are some users who praise these types of tools due to the fact that no

personal information is leaked anywhere. As these ads which are attached in applications stop

functioning, such actions cause monetary damage for developers who are counting on ad revenue.

And it is believed that most of the users don't have any compunction.

In the following code, we show an instance of implementation that an application that has declared

INTERNET permission with uses-permission verifies if INTERNET permission is described in the

AndroidManifest.xml of itself at run time.

public class CheckPermissionActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // Acquire Permission defined in AndroidManifest.xml

 List<String> list = getDefinedPermissionList();

 // Detect falsification

 if(checkPermissions(list)){

 // OK

 Log.d("dbg", "OK.");

 }else{

 Log.d("dbg", "manifest file is stale.");

 finish();

 }

 }

 /**

 * Acquire Permission through list that was defined in AndroidManifest.xml

 * @return

 */

 private List<String> getDefinedPermissionList(){

 List<String> list = new ArrayList<String>();

 list.add("android.permission.INTERNET");

 return list;

 }

 /**

 * Verify that Permission has not been changed Permission

 * @param permissionList

 * @return

 */

 private boolean checkPermissions(List<String> permissionList){

 try {

 PackageInfo packageInfo = getPackageManager().getPackageInfo(

 getPackageName(), PackageManager.GET_PERMISSIONS);

 String[] permissionArray = packageInfo.requestedPermissions;

 if (permissionArray != null) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

346 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

 for (String permission : permissionArray) {

 if(! permissionList.remove(permission)){

 // Unintended Permission has been added

 return false;

 }

 }

 }

 if(permissionList.size() == 0){

 // OK

 return true;

 }

 } catch (NameNotFoundException e) {

 }

 return false;

 }

}

5.2.3.3. Detection of APK Falsification

We explained about detecting the falsification of permissions by a user in "5.2.3.2 Falsification of

AndroidManifest.xml by a User". However, the falsification of applications is not limited to

permission only, and there are many other cases where applications are appropriated without any

changes in the source code. For example, it is a case where they distribute other developers'

applications (falsified) in the market as if they were their own applications just by replacing resources

to their own. Here, we will show a more generic method to detect the falsification of an APK file.

In order to falsify an APK, it is needed to decode the APK file into folders and files, modify their

contents, and then rebuild them into a new APK file. Since the falsifier does not have the key of the

original developer, he would have to sign the new APK file with his own key. As the falsification of an

APK inevitably brings with a change in signature (certificate), it is possible to detect whether an APK

has been falsified at run time by comparing the certificate in the APK and the developer's certificate

embedded in the source code as below.

The following is a sample code. Also, a professional hacker will be able to easily circumvent the

detection of falsification if this implementation example is used as it is. Please apply this sample

code to your application by being aware that this is a simple implementation example.

Points:

1. Verify that an application's certificate belongs to the developer before major processing is

started.

SignatureCheckActivity.java
package org.jssec.android.permission.signcheckactivity;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.Utils;

import android.app.Activity;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 347

import android.content.Context;

import android.os.Bundle;

import android.widget.Toast;

public class SignatureCheckActivity extends Activity {

 // Self signed certificate hash value

 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {

 if (sMyCertHash == null) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of "androiddebugkey" of debug.

 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of "my company key" of keystore

 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 return sMyCertHash;

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // *** POINT 1 *** Verify that an application's certificate belongs to the developer before major processing i

s started

 if (!PkgCert.test(this, this.getPackageName(), myCertHash(this))) {

 Toast.makeText(this, "Self-sign match NG", Toast.LENGTH_LONG).show();

 finish();

 return;

 }

 Toast.makeText(this, "Self-sign match OK", Toast.LENGTH_LONG).show();

 }

}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

348 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

5.2.3.4. Permission Re-delegation Problem

An application must declare to use permission when accessing contacts or GPS with its information

and features that are protected by Android OS. When the permission required is granted, the

permission is delegated to the application and the application would be able to access the

information and features protected with the permission.

Depending on how the program is designed, the application to which has been delegated (granted)

the permission is able to acquire data that is protected with the permission. Furthermore, the

application can offer another application the protected data without enforcing the same permission.

This is nothing less than permission-less application to access data that is protected by permission.

This is virtually the same thing as re-delegating the permission, and this is referred to the Permission

Re-delegation Problem. Accordingly, the specification of the permission mechanism of Android only

is able to manage permission of direct access from an application to protected data.

A specific example is shown in Figure 5.2-9. The application in the center shows that an application

which has declared android.permission.READ_CONTACTS to use it reads contacts and then stores

them into its own database. The Permission Re-delegation Problem occurs when information that has

been stored is offered to another application without any restriction via Content Provider.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 349

Figure 5.2-9 An Application without Permission Acquires Contacts

As a similar example, an application that has declared android.permission.CALL_PHONE to use it

receives a phone number (maybe input by a user) from another application that has not declared the

same permission. If that number is being called without the verification of a user, then also there is

the Permission Re-delegation Problem.

There are cases where the secondary provision of another application with nearly-intact information

asset or functional asset acquired with the permission is needed. In those cases, the provider-side
application must demand the same permission for the provision in order to maintain the original
level of protection. Also, in the case of only providing a portion of information asset as well as

functional asset in a secondary fashion, an appropriate amount of protection is necessary in
accordance with the degree of damage that is incurred when a portion of that information or
functional asset is exploited. We can use protective measures such as demanding permission as

similar to the former, verifying user consent, and setting up restrictions for target applications by
using "4.1.1.1 Creating/Using Private Activities," or "4.1.1.4 Creating/Using In-house Activities" etc.

Such Permission Re-delegation Problem is not only limited to the issue of the Android permission.

For an Android application, it is generic that the application acquires necessary

information/functions from different applications, networks, and storage media. And in many cases,

some permissions as well as restrictions are needed to access them. For example, if the provider

source is an Android application, it is the permission, if it is a network, then it is the log-in, and if it

is a storage media, there will be access restrictions. Therefore, such measures need to be

implemented for an application after carefully considering as information/functions are not used in

the contrary manner of the user's intention. This is especially important at the time of providing

acquired information/functions to another application in a secondary manner or transferring to

networks or storage media. Depending on the necessity, you have to enforce permission or restrict

usage like the Android permission. Asking for the user's consent is part of the solution.

Contacts

Application that
has declared

uses-permission

Application without
declaration of

uses-permission
AAA

BBB

CCC

Android Device

If appropriate permission setup does not exist in a
content provider, an application that has not declared
uses-permission can acquire contact data without permission.

Content Provider

AAA

BBB

CCC

AAA

BBB

CCC

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

350 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

In the following code, we demonstrate a case where an application that acquires a list from the
contact database by using READ_CONTACTS permission enforces the same READ_CONTACTS

permission on the information destination source.

Point

1. Enforce the same permission that the provider does.

AndroidManifest.xml
<?xml version="1.0" encofing="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.permission.transferpermission"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8" />

 <uses-permission android:name="android.permission.READ_CONTACTS"/>

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".TransferPermissionActivity"

 android:label="@string/title_activity_transfer_permission" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <provider

 android:name=".TransferPermissionContentProvider"

 <!-- *** Point1 *** Enforce the same permission that the provider does. -->

 android:authorities="org.jssec.android.permission.transferpermission"

 android:enabled="true"

 android:exported="true"

 android:readPermission="android.permission.READ_CONTACTS" >

 </provider>

 </application>

</manifest>

When an application enforces multiple permissions, the above method will not solve it. By using

Context#checkCallingPermission() or PackageManager#checkPermission() from the source code,

verify whether the invoker application has declared all permissions with uses-permission in the

Manifest.

In the case of an Activity
public void onCreate(Bundle savedInstanceState) {

...(Snip)

 if (checkCallingPermission("android.permission.READ_CONTACTS") == PackageManager.PERMISSION_GRANTED

 && checkCallingPermission("android.permission.WRITE_CONTACTS") == PackageManager.PERMISSION_GRANTED) {

 // Processing during the time when an invoker is correctly declaring to use

 return;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 351

 finish();

}

5.2.3.5. Signature check mechanism for custom permissions (Android 5.0 and later)

In versions of Android 5.0 (API Level 21) and later, the application which defines its own custom

permissions cannot be installed if the following conditions are met.

Cond 1. Another application which defines its own permission with the same name has already

installed on the device.

Cond 2. The applications are signed with different keys

When both an application with the protected function (Component) and an application using the

function define their own permission with the same name and are signed with the same key, the

above mechanism will protect against installation of other company's applications which define their

own custom permission with the same name. However, as mentioned in "5.2.2.3 Your Own Signature

Permission Must Only Be Defined on the Provider-side Application (Required)", that mechanism

won't work well for checking if a custom permission is defined by your own company because the

permission could be undefined without your intent by uninstalling applications when plural

applications define the same permission.

To sum it up, also in versions of Android 5.0 (API Level 21) and later, you are required to comply with

the two rules, "5.2.2.3 Your Own Signature Permission Must Only Be Defined on the Provider-side

Application (Required)" and "5.2.2.4 Verify If the In-house-defined Signature Permission Is Defined

by an In-house Application (Required)" when your application defines your own Signature

Permission.

.

5.2.3.6. Modifications to the Permission model specifications in Android versions 6.0 and later

Android 6.0 (API Level 23) introduces modified specifications for the Permission model that affect

both the design and specifications of apps. In this section we offer an overview of the Permission

model in Android 6.0 and later.

The timing of permission grants and refusals

In cases where an app declares use of permissions requiring user confirmation (Dangerous

Permissions) [see Section ”5.2.2.1 System Dangerous Permissions of Android OS Must Only Be Used

for Protecting User Assets (Required)”], the specifications for Android 5.1 (API level 22) and

earlier versions called for a list of such permissions to be displayed when the app is installed, and the

user must grant all permissions for the installation to proceed. At this point, all permissions declared

by the app (including permissions other than Dangerous Permissions) were granted to the app; once

these permissions were granted to the app, they remained in effect until the app was uninstalled

from the terminal.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

352 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

However, in the specifications for Android 6.0 and later versions, the granting of permissions takes

place when an app is executed. The granting of permissions, and user confirmation of permissions,

does not take place when the app is installed. When an app executes a procedure that requires

Dangerous Permissions, it is necessary to check whether or not those permissions have been granted

to the app in advance; if not, a confirmation window must be displayed in Android OS to request

permission from the user.18 If the user grants permission from the confirmation window, the

permissions are granted to the app. However, permissions granted to an app by a user (Dangerous

Permissions) may be revoked at any time via the Settings menu (Figure 5.2-10). For this reason,

appropriate procedures must be implemented to ensure that apps cause no irregular behavior even

in situations in which they cannot access needed information or functionality because permission has

not been granted.

Figure 5.2-10

Units of permission grants and refusals

Multiple Permissions may be grouped together into what is known as a Permission Group based on

their functions and type of information relevant to them. For example, the Permission

android.permission.READ_CALENDAR, which is required to read calendar information, and the

Permission android.permission.WRITE_CALENDAR, which is required to write calendar information,

are both affiliated with the Permission Group named android.permission-group.CALENDAR.

18 Because Normal Permissions and Signature Permissions are automatically granted by Android OS,

there is no need to obtain user confirmation for these permissions.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 353

Within the new Permission model of Android 6.0 and later versions, the granting and revocation of

permissions may be carried out collectively using Permission Groups. Thus, when an app makes a

runtime request for android.permission.READ_CALENDAR and this request is granted by the user,

Android OS behaves as if both android.permission.READ_CALENDAR and

android.permission.WRITE_CALENDAR had been authorized. If

android.permission.WRITE_CALENDAR Permission is subsequently requested, the OS does not

display a dialog box to the user, but instead simply grants the permission immediately.

For more information on the classification of Permission Groups, see the Developer Reference

(http://developer.android.com/intl/ja/guide/topics/security/permissions.html#perm-groups).

The affected range of the revised specifications

Cases in which apps require Permission requests at runtime are restricted to situations in which the

terminal is running Android 6.0 or later and the app's targetSDKVersion is 23 or higher. If the

terminal is running Android 5.1 or earlier, or if the app's targetSDKVersion was 23 or lower,

permissions are requested and granted altogether at the time of installation, as was traditionally the

case. However, if the terminal is running Android 6.0 or later, then—even if the app's

targetSDKVersion is below 23—permissions that were granted by the user at installation may be

revoked by the user at any time. This creates the possibility of unintended irregular app termination.

Developers must either comply immediately with the modified specifications or set the

maxSDKVersion of their app to 22 or earlier to ensure that the app cannot be installed on terminals

running Android 6.0 (API Level 23) or later(Table 5.2-1).

Table 5.2-1

Terminal Android OS

Version

App targetSDKVersion Times at which app is

granted permissions

User has control over

permissions?

≧6.0

≧23 App execution Yes

＜23 App installation Yes (rapid response

required)

≦5.1
≧23 App installation No

＜23 App installation No

However, it should be noted that the effect of maxSdkVersion is limited. When the value of

maxSdkVersion is set 22 or earlier, Android 6.0 (API Level 23) and later of the devices are no longer

listed as an installable device of the target application in Google Play. On the other hand, because the

value of maxSdkVersion is not checked in the marketplace other than Google Play, it may be possible

to install the target application in the Android 6.0 (API Level 23) or later.

Because the effect of maxSdkVersion is limited, and further Google does not recommend the use of

maxSdkVersion, it is recommended that developers comply immediately with the modified

specifications.

In Android 6.0 and later versions, permissions for the following network communications have their

Protection Level changed from Dangerous to Normal. Thus, even if apps declare the use of these

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

354 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Permissions, there is no need to acquire explicit permission from the user, and hence the modified

specification has no impact in this case.

 android.permission.BLUETOOTH

 android.permission.BLUETOOTH_ADMIN

 android.permission.CHANGE_WIFI_MULTICAST_STATE

 android.permission.CHANGE_WIFI_STATE

 android.permission.CHANGE_WIMAX_STATE

 android.permission.DISABLE_KEYGUARD

 android.permission.INTERNET

 android.permission.NFC

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 355

5.3. Add In-house Accounts to Account Manager

Account Manager is the Android OS's system which centrally manages account information (account

name, password) which is necessary for applications to access to online service and authentication

token. A user needs to register the account information to Account Manager in advance, and when an

application tries to access to online service, Account Manager will automatically provide application

authentication token after getting user's permission. The advantage of Account Manager is that an

application doesn't need to handle the extremely sensitive information, password.

The structure of account management function which uses Account Manager is as per below Figure

5.3-1. "Requesting application" is the application which accesses the online service, by getting

authentication token, and this is above mentioned application. On the other hand, "Authenticator

application" is function extension of Account Manager, and by providing Account Manager of an

object called Authenticator, as a result Account Manager can manage centrally the account

information and authentication token of the online service.Requesting application and Authenticator

application don't need to be the separate ones, so these can be implemented as a single application.

Figure 5.3-1Configuration of account management function which uses Account Manager

Originally, the developer's signature key of user application (requesting application) and

Authenticator application can be the different ones. However, only in Android 4.0.x devices, there's

an Android Framework bug, and when the signature key of user application and Authenticator

application are different, exception occurs in user application, and in-house account cannot be used.

The following sample code does not implement any workarounds against this defect. Please refer to

"5.3.3.2 Exception Occurs When Signature Keys of User Application and Authenticator Application

Are Different, in Android 4.0.x" for details.

5.3.1. Sample Code

"5.3.1.1 Creating In-house account" is prepared as a sample of Authenticator application, and

"5.3.1.2 Using In-house Account" is prepared as a sample of requesting application. In sample code

set which is distributed in JSSEC's Web site, each of them is corresponded to AccountManager

Authenticator and AccountManager User.

Web serverAndroid device

Online service AAuthenticator application

User
Application

Android Framework

Account
Manager

Authenticator of
online service A

Account
management

function

Get authentication
token, Add accounts

etc.

Eace function
Of serviceUse each function of service by using authentication token.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

356 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

5.3.1.1. Creating In-house accounts

Here is the sample code of Authenticator application which enables Account Manager to use the

in-house account. There is no Activity which can be launched from home screen in this application.

Please pay attention that it's called indirectly via Account Manager from another sample code "5.3.1.2

Using In-house Account."

Points:

1. The service that provides an authenticator must be private.

2. The login screen activity must be implemented in an authenticator application.

3. The login screen activity must be made as a public activity.

4. The explicit intent which the class name of the login screen activity is specified must be set to

KEY_INTENT.

5. Sensitive information (like account information or authentication token) must not be output to

the log.

6. Password should not be saved in Account Manager.

7. HTTPS should be used for communication between an authenticator and the online services.

Service which gives Account Manager IBinder of Authenticator is defined in AndroidManifest.xml.

Specify resource XML file which Authenticator is written, by meta-data.

AccountManager Authenticator/AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.accountmanager.authenticator"

 xmlns:tools="http://schemas.android.com/tools">

 <!-- Necessary Permission to implement Authenticator -->

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />

 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <!-- Service which gives IBinder of Authenticator to AccountManager -->

 <!-- *** POINT 1 *** The service that provides an authenticator must be private. -->

 <service

 android:name=".AuthenticationService"

 android:exported="false" >

 <!-- intent-filter and meta-data are usual pattern. -->

 <intent-filter>

 <action android:name="android.accounts.AccountAuthenticator" />

 </intent-filter>

 <meta-data

 android:name="android.accounts.AccountAuthenticator"

 android:resource="@xml/authenticator" />

 </service>

 <!-- Activity for for login screen which is displayed when adding an account -->

 <!-- *** POINT 2 *** The login screen activity must be implemented in an authenticator application. -->

 <!-- *** POINT 3 *** The login screen activity must be made as a public activity. -->

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 357

 <activity

 android:name=".LoginActivity"

 android:exported="true"

 android:label="@string/login_activity_title"

 android:theme="@android:style/Theme.Dialog"

 tools:ignore="ExportedActivity" />

 </application>

</manifest>

Define Authenticator by XML file. Specify account type etc. of in-house account.

res/xml/authenticator.xml
<account-authenticator xmlns:android="http://schemas.android.com/apk/res/android"

 android:accountType="org.jssec.android.accountmanager"

 android:icon="@drawable/ic_launcher"

 android:label="@string/label"

 android:smallIcon="@drawable/ic_launcher"

 android:customTokens="true" />

Service which gives Authenticator's Instance to AccountManager. Easy implementation which returns

Instance of JssecAuthenticator class that is Authenticator implemented in this sample by onBind(), is

enough.

AuthenticationService.java
package org.jssec.android.accountmanager.authenticator;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

public class AuthenticationService extends Service {

 private JssecAuthenticator mAuthenticator;

 @Override

 public void onCreate() {

 mAuthenticator = new JssecAuthenticator(this);

 }

 @Override

 public IBinder onBind(Intent intent) {

 return mAuthenticator.getIBinder();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

358 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

JssecAuthenticator is the Authenticator which is implemented in this sample. It inherits

AbstractAccountAuthenticator, and all abstract methods are implemented. These methods are called

by Account Manager. At addAccount() and at getAuthToken(), the intent for launching LoginActivity

to get authentication token from online service are returned to Account Manager.

JssecAuthenticator.java
package org.jssec.android.accountmanager.authenticator;

import android.accounts.AbstractAccountAuthenticator;

import android.accounts.Account;

import android.accounts.AccountAuthenticatorResponse;

import android.accounts.AccountManager;

import android.accounts.NetworkErrorException;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

public class JssecAuthenticator extends AbstractAccountAuthenticator {

 public static final String JSSEC_ACCOUNT_TYPE = "org.jssec.android.accountmanager";

 public static final String JSSEC_AUTHTOKEN_TYPE = "webservice";

 public static final String JSSEC_AUTHTOKEN_LABEL = "JSSEC Web Service";

 public static final String RE_AUTH_NAME = "reauth_name";

 protected final Context mContext;

 public JssecAuthenticator(Context context) {

 super(context);

 mContext = context;

 }

 @Override

 public Bundle addAccount(AccountAuthenticatorResponse response, String accountType,

 String authTokenType, String[] requiredFeatures, Bundle options)

 throws NetworkErrorException {

 AccountManager am = AccountManager.get(mContext);

 Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);

 Bundle bundle = new Bundle();

 if (accounts.length > 0) {

 // In this sample code, when an account already exists, consider it as an error.

 bundle.putString(AccountManager.KEY_ERROR_CODE, String.valueOf(-1));

 bundle.putString(AccountManager.KEY_ERROR_MESSAGE,

 mContext.getString(R.string.error_account_exists));

 } else {

 // *** POINT 2 *** The login screen activity must be implemented in an authenticator application.

 // *** POINT 4 *** The explicit intent which the class name of the login screen activity is specified must

 be set to KEY_INTENT.

 Intent intent = new Intent(mContext, LoginActivity.class);

 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE, response);

 bundle.putParcelable(AccountManager.KEY_INTENT, intent);

 }

 return bundle;

 }

 @Override

 public Bundle getAuthToken(AccountAuthenticatorResponse response, Account account,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 359

 String authTokenType, Bundle options) throws NetworkErrorException {

 Bundle bundle = new Bundle();

 if (accountExist(account)) {

 // *** POINT 4 *** KEY_INTENT must be given an explicit intent that is specified the class name of the log

in screen activity.

 Intent intent = new Intent(mContext, LoginActivity.class);

 intent.putExtra(RE_AUTH_NAME, account.name);

 bundle.putParcelable(AccountManager.KEY_INTENT, intent);

 } else {

 // When the specified account doesn't exist, consider it as an error.

 bundle.putString(AccountManager.KEY_ERROR_CODE, String.valueOf(-2));

 bundle.putString(AccountManager.KEY_ERROR_MESSAGE,

 mContext.getString(R.string.error_account_not_exists));

 }

 return bundle;

 }

 @Override

 public String getAuthTokenLabel(String authTokenType) {

 return JSSEC_AUTHTOKEN_LABEL;

 }

 @Override

 public Bundle confirmCredentials(AccountAuthenticatorResponse response, Account account,

 Bundle options) throws NetworkErrorException {

 return null;

 }

 @Override

 public Bundle editProperties(AccountAuthenticatorResponse response, String accountType) {

 return null;

 }

 @Override

 public Bundle updateCredentials(AccountAuthenticatorResponse response, Account account,

 String authTokenType, Bundle options) throws NetworkErrorException {

 return null;

 }

 @Override

 public Bundle hasFeatures(AccountAuthenticatorResponse response, Account account,

 String[] features) throws NetworkErrorException {

 Bundle result = new Bundle();

 result.putBoolean(AccountManager.KEY_BOOLEAN_RESULT, false);

 return result;

 }

 private boolean accountExist(Account account) {

 AccountManager am = AccountManager.get(mContext);

 Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);

 for (Account ac : accounts) {

 if (ac.equals(account)) {

 return true;

 }

 }

 return false;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

360 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

This is Login activity which sends an account name and password to online service, and perform login

authentication, and as a result, get an authentication token. It's displayed when adding a new

account or when getting authentication token again. It's supposed that the actual access to online

service is implemented in WebService class.

LoginActivity.java
package org.jssec.android.accountmanager.authenticator;

import org.jssec.android.accountmanager.webservice.WebService;

import android.accounts.Account;

import android.accounts.AccountAuthenticatorActivity;

import android.accounts.AccountManager;

import android.content.Intent;

import android.os.Bundle;

import android.text.InputType;

import android.text.TextUtils;

import android.util.Log;

import android.view.View;

import android.view.Window;

import android.widget.EditText;

public class LoginActivity extends AccountAuthenticatorActivity {

 private static final String TAG = AccountAuthenticatorActivity.class.getSimpleName();

 private String mReAuthName = null;

 private EditText mNameEdit = null;

 private EditText mPassEdit = null;

 @Override

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 // Display alert icon

 requestWindowFeature(Window.FEATURE_LEFT_ICON);

 setContentView(R.layout.login_activity);

 getWindow().setFeatureDrawableResource(Window.FEATURE_LEFT_ICON,

 android.R.drawable.ic_dialog_alert);

 // Find a widget in advance

 mNameEdit = (EditText) findViewById(R.id.username_edit);

 mPassEdit = (EditText) findViewById(R.id.password_edit);

 // *** POINT 3 *** The login screen activity must be made as a public activity, and suppose the attack access

from other application.

 // Regarding external input, only RE_AUTH_NAME which is String type of Intent#extras, are handled.

 // This external input String is passed toextEdit#setText(), WebService#login(),new Account(),

 // as a parameter,it's verified that there's no problem if any character string is passed.

 mReAuthName = getIntent().getStringExtra(JssecAuthenticator.RE_AUTH_NAME);

 if (mReAuthName != null) {

 // Since LoginActivity is called with the specified user name, user name should not be editable.

 mNameEdit.setText(mReAuthName);

 mNameEdit.setInputType(InputType.TYPE_NULL);

 mNameEdit.setFocusable(false);

 mNameEdit.setEnabled(false);

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 361

 // It's executed when login button is pressed.

 public void handleLogin(View view) {

 String name = mNameEdit.getText().toString();

 String pass = mPassEdit.getText().toString();

 if (TextUtils.isEmpty(name) || TextUtils.isEmpty(pass)) {

 // Process when the inputed value is incorrect

 setResult(RESULT_CANCELED);

 finish();

 }

 // Login to online service based on the inpputted account information.

 WebService web = new WebService();

 String authToken = web.login(name, pass);

 if (TextUtils.isEmpty(authToken)) {

 // Process when authentication failed

 setResult(RESULT_CANCELED);

 finish();

 }

 // Process when login was successful, is as per below.

 // *** POINT 5 *** Sensitive information (like account information or authentication token) must not be outpu

t to the log.

 Log.i(TAG, "WebService login succeeded");

 if (mReAuthName == null) {

 // Register accounts which logged in successfully, to aAccountManager

 // *** POINT 6 *** Password should not be saved in Account Manager.

 AccountManager am = AccountManager.get(this);

 Account account = new Account(name, JssecAuthenticator.JSSEC_ACCOUNT_TYPE);

 am.addAccountExplicitly(account, null, null);

 am.setAuthToken(account, JssecAuthenticator.JSSEC_AUTHTOKEN_TYPE, authToken);

 Intent intent = new Intent();

 intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, name);

 intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE,

 JssecAuthenticator.JSSEC_ACCOUNT_TYPE);

 setAccountAuthenticatorResult(intent.getExtras());

 setResult(RESULT_OK, intent);

 } else {

 // Return authentication token

 Bundle bundle = new Bundle();

 bundle.putString(AccountManager.KEY_ACCOUNT_NAME, name);

 bundle.putString(AccountManager.KEY_ACCOUNT_TYPE,

 JssecAuthenticator.JSSEC_ACCOUNT_TYPE);

 bundle.putString(AccountManager.KEY_AUTHTOKEN, authToken);

 setAccountAuthenticatorResult(bundle);

 setResult(RESULT_OK);

 }

 finish();

 }

}

Actually, WebService class is dummy implementation here, and this is the sample implementation

which supposes authentication is always successful, and fixed character string is returned as an

authentication token.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

362 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

WebService.java
package org.jssec.android.accountmanager.webservice;

public class WebService {

 /**

 * Suppose to access to account managemnet function of online service.

 *

 * @param username Account name character string

 * @param password password character string

 * @return Return authentication token

 */

 public String login(String username, String password) {

 // *** POINT 7 *** HTTPS should be used for communication between an authenticator and the online services.

 // Actually, communication process with servers is implemented here, but Omit here, since this is a sample.

 return getAuthToken(username, password);

 }

 private String getAuthToken(String username, String password) {

 // In fact, get the value which uniqueness and impossibility of speculation are guaranteed by the server,

 // but the fixed value is returned without communication here, since this is sample.

 return "c2f981bda5f34f90c0419e171f60f45c";

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 363

5.3.1.2. Using In-house Accounts

Here is the sample code of an application which adds an in-house account and gets an authentication

token. When another sample application "5.3.1.1 Creating In-house account" is installed in a device,

in-house account can be added or authentication token can be got. "Access request" screen is

displayed only when the signature keys of both applications are different.

Figure 5.3-2 Behavior screen of sample application AccountManager User

Point:

1. Execute the account process after verifying if the authenticator is regular one.

AndroidManifest.xml of AccountManager user application. Declare to use necessary Permission.

Refer to "5.3.3.1 Usage of Account Manager and Permission" for the necessary Permission.

AccountManager User/AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.accountmanager.user" >

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />

 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />

 <uses-permission android:name="android.permission.USE_CREDENTIALS" />

 <application

 android:allowBackup="false"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".UserActivity"

 android:label="@string/app_name"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

364 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

</manifest>

Activity of user application. When tapping the button on the screen, either addcount() or

getAuthToken() is to be executed. Authenticator which corresponds to the specific account type may

be fake in some cases, so pay attention that the account process is started after verifying that the

Authenticator is regular one.

UserActivity.java
package org.jssec.android.accountmanager.user;

import java.io.IOException;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.Utils;

import android.accounts.Account;

import android.accounts.AccountManager;

import android.accounts.AccountManagerCallback;

import android.accounts.AccountManagerFuture;

import android.accounts.AuthenticatorDescription;

import android.accounts.AuthenticatorException;

import android.accounts.OperationCanceledException;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class UserActivity extends Activity {

 // Information of the Authenticator to be used

 private static final String JSSEC_ACCOUNT_TYPE = "org.jssec.android.accountmanager";

 private static final String JSSEC_TOKEN_TYPE = "webservice";

 private TextView mLogView;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.user_activity);

 mLogView = (TextView)findViewById(R.id.logview);

 }

 public void addAccount(View view) {

 logLine();

 logLine("Add a new account");

 // *** POINT 1 *** Execute the account process after verifying if the authenticator is regular one.

 if (!checkAuthenticator()) return;

 AccountManager am = AccountManager.get(this);

 am.addAccount(JSSEC_ACCOUNT_TYPE, JSSEC_TOKEN_TYPE, null, null, this,

 new AccountManagerCallback<Bundle>() {

 @Override

 public void run(AccountManagerFuture<Bundle> future) {

 try {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 365

 Bundle result = future.getResult();

 String type = result.getString(AccountManager.KEY_ACCOUNT_TYPE);

 String name = result.getString(AccountManager.KEY_ACCOUNT_NAME);

 if (type != null && name != null) {

 logLine("Add the following accounts:");

 logLine(" Account type: %s", type);

 logLine(" Account name: %s", name);

 } else {

 String code = result.getString(AccountManager.KEY_ERROR_CODE);

 String msg = result.getString(AccountManager.KEY_ERROR_MESSAGE);

 logLine("The account cannot be added");

 logLine(" Error code %s: %s", code, msg);

 }

 } catch (OperationCanceledException e) {

 } catch (AuthenticatorException e) {

 } catch (IOException e) {

 }

 }

 },

 null);

 }

 public void getAuthToken(View view) {

 logLine();

 logLine("Get token");

 // *** POINT 1 *** After checking that the Authenticator is the regular one, execute account process.

 if (!checkAuthenticator()) return;

 AccountManager am = AccountManager.get(this);

 Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);

 if (accounts.length > 0) {

 Account account = accounts[0];

 am.getAuthToken(account, JSSEC_TOKEN_TYPE, null, this,

 new AccountManagerCallback<Bundle>() {

 @Override

 public void run(AccountManagerFuture<Bundle> future) {

 try {

 Bundle result = future.getResult();

 String name = result.getString(AccountManager.KEY_ACCOUNT_NAME);

 String authtoken = result.getString(AccountManager.KEY_AUTHTOKEN);

 logLine("%s-san's token:", name);

 if (authtoken != null) {

 logLine(" %s", authtoken);

 } else {

 logLine(" Couldn't get");

 }

 } catch (OperationCanceledException e) {

 logLine(" Exception: %s",e.getClass().getName());

 } catch (AuthenticatorException e) {

 logLine(" Exception: %s",e.getClass().getName());

 } catch (IOException e) {

 logLine(" Exception: %s",e.getClass().getName());

 }

 }

 }, null);

 } else {

 logLine("Account is not registered.");

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

366 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

 // *** POINT 1 *** Verify that Authenticator is regular one.

 private boolean checkAuthenticator() {

 AccountManager am = AccountManager.get(this);

 String pkgname = null;

 for (AuthenticatorDescription ad : am.getAuthenticatorTypes()) {

 if (JSSEC_ACCOUNT_TYPE.equals(ad.type)) {

 pkgname = ad.packageName;

 break;

 }

 }

 if (pkgname == null) {

 logLine("Authenticator cannot be found.");

 return false;

 }

 logLine(" Account type: %s", JSSEC_ACCOUNT_TYPE);

 logLine(" Package name of Authenticator: ");

 logLine(" %s", pkgname);

 if (!PkgCert.test(this, pkgname, getTrustedCertificateHash(this))) {

 logLine(" It's not regular Authenticator(certificate is not matched.)");

 return false;

 }

 logLine(" This is regular Authenticator.");

 return true;

 }

 // Certificate hash value of regular Authenticator application

 // Certificate hash value can be checked in sample applciation JSSEC CertHash Checker

 private String getTrustedCertificateHash(Context context) {

 if (Utils.isDebuggable(context)) {

 // Certificate hash value of debug.keystore "androiddebugkey"

 return "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";

 } else {

 // Certificate hash value of keystore "my company key"

 return "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";

 }

 }

 private void log(String str) {

 mLogView.append(str);

 }

 private void logLine(String line) {

 log(line + "¥n");

 }

 private void logLine(String fmt, Object... args) {

 logLine(String.format(fmt, args));

 }

 private void logLine() {

 log("¥n");

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 367

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

 if (correctHash == null) return false;

 correctHash = correctHash.replaceAll(" ", "");

 return correctHash.equals(hash(ctx, pkgname));

 }

 public static String hash(Context ctx, String pkgname) {

 if (pkgname == null) return null;

 try {

 PackageManager pm = ctx.getPackageManager();

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.

 Signature sig = pkginfo.signatures[0];

 byte[] cert = sig.toByteArray();

 byte[] sha256 = computeSha256(cert);

 return byte2hex(sha256);

 } catch (NameNotFoundException e) {

 return null;

 }

 }

 private static byte[] computeSha256(byte[] data) {

 try {

 return MessageDigest.getInstance("SHA-256").digest(data);

 } catch (NoSuchAlgorithmException e) {

 return null;

 }

 }

 private static String byte2hex(byte[] data) {

 if (data == null) return null;

 final StringBuilder hexadecimal = new StringBuilder();

 for (final byte b : data) {

 hexadecimal.append(String.format("%02X", b));

 }

 return hexadecimal.toString();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

368 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

5.3.2. Rule Book

Follow the rules below when implementing Authenticator application.

1. Service that Provides Authenticator Must Be Private (Required)

2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)

3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by

Other Applications (Required)

4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity

 (Required)

5. Sensitive Information (like Account Information and Authentication Token) Must Not Be Output to

the Log (Required)

6. Password Should Not Be Saved in Account Manager (Recommended)

7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service

 (Required)

Follow the rules below when implementing user application.

8. Account Process Should Be Executed after verifying if the Authenticator is the regular one

 (Required)

5.3.2.1. Service that Provides Authenticator Must Be Private (Required)

It's presupposed that the Service which provides with Authenticator is used by Account Manager, and

it should not be accessed by other applications. So, by making it Private Service, it can exclude

accesses by other applications. In addition, Account Manager runs with system privilege, so Account

Manager can access even if it's private Service.

5.3.2.2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)

Login screen for adding a new account and getting the authentication token should be implemented

by Authenticator application. Own Login screen should not be prepared in user application side. As

mentioned at the beginning of this article, [The advantage of AccountManager is that the extremely

sensitive information/password is not necessarily to be handled by application.], If login screen is

prepared in user application side, password is handled by user application, and its design becomes

what is beyond the policy of Account Manager.

By preparing login screen by Authenticator application, who can operate login screen is limited only

the device's user. It means that there's no way to attack the account for malicious applications by

attempting to login directly, or by creating an account.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 369

5.3.2.3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by

Other Applications (Required)

Login screen Activity is the system launched by the user application's p. In order that the login screen

Activity is displayed even when the signature keys of user application and Authenticator application

are different, login screen Activity should be implemented as Public Activity.

What login screen Activity is public Activity means, that there's a chance that it may be launched by

malicious applications. Never trust on any input data. Hence, it's necessary to take the

counter-measures mentioned in "3.2 Handling Input Data Carefully and Securely"

5.3.2.4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity

 (Required)

When Authenticator needs to open login screen Activity, Intent which launches login screen Activity is

to be given in the Bundle that is returned to Account Manager, by KEY_INTENT. The Intent to be given,

should be the explicit Intent which specifies class name of login screen Activity. In the case of

specifying implicit Intent which specifies Action name, there's a possibility that not login screen

Activity which Authenticator application prepared by itself, but an Activity which other application

prepared, is launched. When a malicious application prepares a login screen which looks like the

regular login screen, there's a risk that a user may input password in the fake login screen.

5.3.2.5. Sensitive Information (like Account Information and Authentication Token) Must Not Be

Output to the Log (Required)

Applications which access to online service sometimes face a trouble like it cannot access to online

service successfully. The causes of unsuccessful access are various, like lack in network environment

arrangement, mistakes in implementing communication protocol, lack of Permission, authentication

error, etc. A common implementation is that a program outputs the detailed information to log, so

that developer can analyze the cause of a problem later.

Sensitive information like password or authentication token should not be output to log. Log

information can be read from other applications, so it may become the cause of information leakage.

Also, account names should not be output to log, if it could be lead the damage of leakage.

5.3.2.6. Password Should Not Be Saved in Account Manager (Recommended)

Two of authentication information, password and authentication token, can be saved in an account to

be register to AccountManager. This information is to be stored in accounts.db under the following

directories, in a plain text (i.e. without encryption).

 Android 4.1 or earlier

/data/system/accounts.db

 Android 4.2 or later

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

370 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

/data/system/0/accounts.db or /data/system/<UserId>/accounts.db

To read in the contents of accounts.db, either root privilege or system privilege is required, and it

cannot be read from the marketed Android devices. In the case there is any vulnerability in Android

OS, which root privilege or system privilege may be taken over by attackers, authentication

information which is saved in accounts.db will be on the edge of the risk.

The Authentication application, which is introduced in this article, is designed to save authentication

token in AccountManager without saving user password. When accessing to online service

continuously in a certain period, generally the expiration period of authentication token is extended,

so the design that password is not saved is enough in most cases.

In general, valid date of authentication token is shorter than password, and it's characteristic that it

can be disabled anytime. In case, authentication token is leaked, it can be disabled, so authentication

token is comparatively safer, compared with password. In the case authentication token is disabled,

user can input the password again to get a new authentication token.

If disabling password when it's leaked, user cannot use online service any more. In this case, it

requires call center support etc., and it will take huge cost. Hence, it's better to avoid from the design

to save password in AccountManager. In case, the design to save password cannot be avoided, high

level of reverse engineering counter-measures like encrypting password and obfuscating the key of

that encryption, should be taken.

5.3.2.7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service

 (Required)

Password or authentication token is so called authentication information, and if it's taken over by the

third party, the third party can masquerade as the valid user. Since Authenticator sends/receives

these types of authentication information with online service, reliable encrypted communication

method like an HTTPS should be used.

5.3.2.8. Account Process Should Be Executed after verifying if the Authenticator is the regular one

 (Required)

In the case there are several Authenticators which the same account type is defined in a device,

Authenticator which was installed earlier becomes valid. So, when the own Authenticator was

installed later, it's not to be used.

If the Authenticator which was installed earlier, is the malware's masquerade, account information

inputted by user may be taken over by malware. User application should verify the account type

which performs account operation, whether the regular Authenticator is allocated to it or not, before

executing account operation.

Whether the Authenticator which is allocated to one account type is regular one or not, can be

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 371

verified by checking whether the certificate hash value of the package of Authenticator matches with

pre-confirmed valid certificate hash value. If the certificate hash values are found to be not matched,

a measure to prompt user to uninstall the package which includes the unexpected Authenticator

allocated to that account type, is preferable.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

372 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

5.3.3. Advanced Topics

5.3.3.1. Usage of Account Manager and Permission

To use each method of AccountManager class, it's necessary to declare to use the appropriate

Permission respectively, in application's AndroidManifest.xml. Table 5.3-1 shows correspondence of

Permission and methods.

Table 5.3-1 Function of Account Manager and Permission

 Functions that Account Manager provides

Permission Method Explanation

AUTHENTICATE_ACCOUNTS

(Only Packages which are

signed by the same key of

Authenticator, can use.)

getPassword() To get password

getUserData() To get user information

addAccountExplicitly() To add accounts to DB

peekAuthToken() To get cached token

setAuthToken() To register authentication token

setPassword() To change password

setUserData() To set user information

renameAccount() To rename account

GET_ACCOUNTS getAccounts() To get a list of all accounts

getAccountsByType() To get a list of accounts which

account types are same

getAccountsByTypeAndFeatures() To get a list of accounts which

have the specified function

addOnAccountsUpdatedListener() To register event listener

hasFeatures() Whether it has the specified

function or not

MANAGE_ACCOUNTS getAuthTokenByFeatures() To get authentication token of the

accounts which have the

specified function

addAccount() To request a user to add accounts

removeAccount() To remove an account

clearPassword() Initialize password

updateCredentials() Request a user to change

password

editProperties() Change Authenticator setting

VerifyCredentials() Request a user to input password

again

USE_CREDENTIALS getAuthToken() To get authentication token

blockingGetAuthToken() To get authentication token

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 373

MANAGE_ACCOUNTS

 or

USE_CREDENTIALS

invalidateAuthToken() To delete cached token

In case using methods group which AUTHENTICATE_ACCOUNTS Permission is necessary, there is a

restriction related to package signature key along with Permission. Specifically, the key for signature

of package that provides Authenticator and the key for signature of package in the application that

uses methods, should be the same. So, when distributing an application which uses method group

which AUTHENTICATE_ACCOUNTS Permission is necessary other than Authenticator, signature

should be signed by the key which is the same as Authenticator.

In a development phase by Android Studio, since a fixed debug keystore might be shared by some

Android Studio projects, developers might implement and test Account Manager by considering only

permissions and no signature. It's necessary for especially developers who use the different

signature keys per applications, to be very careful when selecting which key to use for applications,

considering this restriction. In addition, since the data which is obtained by AccountManager

includes the sensitive information, so need to handle with care in order to decrease the risk like

leakage or unauthorized use.

5.3.3.2. Exception Occurs When Signature Keys of User Application and Authenticator Application Are

Different, in Android 4.0.x

When authentication token acquisition function, is required by the user application which is signed

by the developer key which is different from the signature key of Authenticator application that

includes Authenticator, AccountManager verifies users whether to grant the usage of authentication

token or not, by displaying the authentication token license screen

(GrantCredentialsPermissionActivity.) However, there's a bug in Android Framework of Android 4.0.x,

as soon as this screen in opened by AccountManager, exception occurs, and application is force

closed. (Figure 5.3-3). See https://code.google.com/p/android/issues/detail?id=23421 for the

details of the bug. This bug cannot be found in Android 4.1.x. and later.

https://code.google.com/p/android/issues/detail?id=23421

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

374 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Figure 5.3-3 When displaying Android standard authentication token license screen.

Android 4.1.xAndroid 4.0.x

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 375

5.4. Communicating via HTTPS

Most of smartphone applications communicate with Web servers on the Internet. As methods of

communications, here we focus on the 2 methods of HTTP and HTTPS. From the security point of

view, HTTPS communication is preferable. Lately, major Web services like Google or Facebook have

been coming to use HTTPS as default.

In 2012, many defects in implementation of HTTPS communication were pointed out in Android

applications. These defects might have been implemented for accessing testing Web servers

operated by server certificates that are not issued by trusted third party certificate authorities, but

issued privately (hereinafter, called private certificates).

In this section, communication methods of HTTP and HTTPS are explained and the method to access

safely with HTTPS to a Web server operated by a private certificate is also described.

5.4.1. Sample Code

You can find out which type of HTTP/HTTPS communication you are supposed to implement through

the following chart (Figure 5.4-1) shown below.

Figure 5.4-1 Flow Figure to select sample code of HTTP/HTTPS

When sensitive information is sent or received, HTTPS communication is to be used because its

communication channel is encrypted with SSL/TLS. HTTPS communication is required for the

Start

Send/Receive
the sensitive information?

Communicate by HTTPSCommunicate by HTTP

Yes

No

Authenticate the server
to connect to?

No

Yes

No

Yes

Use server certificate
that is issued by
the public CA?

Communicate by HTTPS
with private certificate

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

376 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

following sensitive information.

 Login ID/Password for Web services.

 Information for keeping authentication state (session ID, token, Cookie etc.)

 Important/confidential information depending on Web services (personal information, credit

card information etc.)

A smartphone application with network communication is a part of "system" as well as a Web server.

And you have to select HTTP or HTTPS for each communication based on secure design and coding

considering the whole "system". Table 5.4-1 is for a comparison between HTTP and HTTPS. And

Table 5.4-2 is for the differences in sample codes.

Table 5.4-1 Comparison between HTTP communication method and HTTPS communication method

 HTTP HTTPS

Characteristics URL

Encrypting contents

Tampering detection of contents

Authenticating a server

Starting with http://

Not available

Impossible

Impossible

Starting with https://

Available

Possible

Possible

Damage

Risk

Reading contents by attackers

Modifying contents by attackers

Application's access to a fake server

High

High

High

Low

Low

Low

Table 5.4-2 Explanation of HTTP/HTTPS communication Sample code

Sample code Communi-

cation

Sending/Receiving

sensitive information

Server certificate

Communicating

via HTTP

HTTP Not applicable -

Communicating

via HTTPS

HTTPS OK Server certificates issued by trusted third

party's certificate authorities like

Cybertrust and VeriSign etc.

Communicating

via HTTPS with

private certificate

HTTPS OK Private certificate

* Operation mode which can be often

seen in intra server or in test server.

Android supports java.net.HttpURLConnection/javax.net.ssl.HttpsURLConnection as HTTP/HTTPS

communication APIs. Support for the Apache HttpClient, which is another HTTP client library, is

removed at the release of the Android 6.0(API Level 23).

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 377

5.4.1.1. Communicating via HTTP

It is based on two premises that all contents sent/received through HTTP communications may be

sniffed and tampered by attackers and your destination server may be replaced with fake servers

prepared by attackers. HTTP communication can be used only if no damage is caused or the damage

is within the permissible extent even under the premises. If an application cannot accept the

premises, please refer to "5.4.1.2 Communicating via HTTPS" and "5.4.1.3 Communicating via HTTPS

with private certificate."

The following sample code shows an application which performs an image search on a Web server,

gets the result image and shows it. HTTP communication with the server is performed twice a search.

The first communication is for searching image data and the second is for getting it. The worker

thread for communication process using AsyncTask is created to avoid the communications

performing on the UI thread. Contents sent/received in the communications with the server are not

considered as sensitive (e.g. the character string for searching, the URL of the image, or the image

data) here. So, the received data such as the URL of the image and the image data may be provided by

attackers. To show the sample code simply, any countermeasures are not taken in the sample code

by considering the received attacking data as tolerable. Also, the handlings for possible exceptions

during JSON purse or showing image data are omitted. It is necessary to handle the exceptions

properly depending on the application specs.

Points:

1. Sensitive information must not be contained in send data.

2. Suppose that received data may be sent from attackers.

HttpImageSearch.java
package org.jssec.android.https.imagesearch;

import android.os.AsyncTask;

import org.json.JSONException;

import org.json.JSONObject;

import java.io.BufferedInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.net.HttpURLConnection;

import java.net.URL;

public abstract class HttpImageSearch extends AsyncTask<String, Void, Object> {

 @Override

 protected Object doInBackground(String... params) {

 byte[] responseArray;

 // --

 // Communication 1st time: Execute image search

 // --

 // *** POINT 1 *** Sensitive information must not be contained in send data.

 // Send image search character string

 StringBuilder s = new StringBuilder();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

378 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

 for (String param : params){

 s.append(param);

 s.append('+');

 }

 s.deleteCharAt(s.length() - 1);

 String search_url = "http://ajax.googleapis.com/ajax/services/search/images?v=1.0&q=" +

 s.toString();

 responseArray = getByteArray(search_url);

 if (responseArray == null) {

 return null;

 }

 // *** POINT 2 *** Suppose that received data may be sent from attackers.

 // This is sample, so omit the process in case of the searching result is the data from an attacker.

 // This is sample, so omit the exception process in case of JSON purse.

 String image_url;

 try {

 String json = new String(responseArray);

 image_url = new JSONObject(json).getJSONObject("responseData")

 .getJSONArray("results").getJSONObject(0).getString("url");

 } catch(JSONException e) {

 return e;

 }

 // --

 // Communication 2nd time: Get images

 // --

 // *** POINT 1 *** Sensitive information must not be contained in send data.

 if (image_url != null) {

 responseArray = getByteArray(image_url);

 if (responseArray == null) {

 return null;

 }

 }

 // *** POINT 2 *** Suppose that received data may be sent from attackers.

 return responseArray;

 }

 private byte[] getByteArray(String strUrl) {

 byte[] buff = new byte[1024];

 byte[] result = null;

 HttpURLConnection response;

 BufferedInputStream inputStream = null;

 ByteArrayOutputStream responseArray = null;

 int length;

 try {

 URL url = new URL(strUrl);

 response = (HttpURLConnection) url.openConnection();

 response.setRequestMethod("GET");

 response.connect();

 checkResponse(response);

 inputStream = new BufferedInputStream(response.getInputStream());

 responseArray = new ByteArrayOutputStream();

 while ((length = inputStream.read(buff)) != -1) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 379

 if (length > 0) {

 responseArray.write(buff, 0, length);

 }

 }

 result = responseArray.toByteArray();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 if (inputStream != null) {

 try {

 inputStream.close();

 } catch (IOException e) {

 // This is sample, so omit the exception process

 }

 }

 if (responseArray != null) {

 try {

 responseArray.close();

 } catch (IOException e) {

 // This is sample, so omit the exception process

 }

 }

 }

 return result;

 }

 private void checkResponse(HttpURLConnection response) throws IOException {

 int statusCode = response.getResponseCode();

 if (HttpURLConnection.HTTP_OK != statusCode) {

 throw new IOException("HttpStatus: " + statusCode);

 }

 }

}

ImageSearchActivity.java
package org.jssec.android.https.imagesearch;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

public class ImageSearchActivity extends Activity {

 private EditText mQueryBox;

 private TextView mMsgBox;

 private ImageView mImgBox;

 private AsyncTask<String, Void, Object> mAsyncTask ;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

380 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

 mQueryBox = (EditText)findViewById(R.id.querybox);

 mMsgBox = (TextView)findViewById(R.id.msgbox);

 mImgBox = (ImageView)findViewById(R.id.imageview);

 }

 @Override

 protected void onPause() {

 // After this, Activity may be deleted, so cancel the asynchronization process in advance.

 if (mAsyncTask != null) mAsyncTask.cancel(true);

 super.onPause();

 }

 public void onHttpSearchClick(View view) {

 String query = mQueryBox.getText().toString();

 mMsgBox.setText("HTTP:" + query);

 mImgBox.setImageBitmap(null);

 // Cancel, since the last asynchronous process might not have been finished yet.

 if (mAsyncTask != null) mAsyncTask.cancel(true);

 // Since cannot communicate by UI thread, communicate by worker thread by AsynchTask.

 mAsyncTask = new HttpImageSearch() {

 @Override

 protected void onPostExecute(Object result) {

 // Process the communication result by UI thread.

 if (result == null) {

 mMsgBox.append("¥nException occurs¥n");

 } else if (result instanceof Exception) {

 Exception e = (Exception)result;

 mMsgBox.append("¥nException occurs¥n" + e.toString());

 } else {

 // Exception process when image display is omitted here, since it's sample.

 byte[] data = (byte[])result;

 Bitmap bmp = BitmapFactory.decodeByteArray(data, 0, data.length);

 mImgBox.setImageBitmap(bmp);

 }

 }

 }.execute(query); // pass search character string and start asynchronous process

 }

 public void onHttpsSearchClick(View view) {

 String query = mQueryBox.getText().toString();

 mMsgBox.setText("HTTPS:" + query);

 mImgBox.setImageBitmap(null);

 // Cancel, since the last asynchronous process might not have been finished yet.

 if (mAsyncTask != null) mAsyncTask.cancel(true);

 // Since cannot communicate by UI thread, communicate by worker thread by AsynchTask.

 mAsyncTask = new HttpsImageSearch() {

 @Override

 protected void onPostExecute(Object result) {

 // Process the communication result by UI thread.

 if (result instanceof Exception) {

 Exception e = (Exception)result;

 mMsgBox.append("¥nException occurs¥n" + e.toString());

 } else {

 byte[] data = (byte[])result;

 Bitmap bmp = BitmapFactory.decodeByteArray(data, 0, data.length);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 381

 mImgBox.setImageBitmap(bmp);

 }

 }

 }.execute(query); // pass search character string and start asynchronous process

 }

}

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.jssec.android.https.imagesearch"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:icon="@drawable/ic_launcher"

 android:allowBackup="false"

 android:label="@string/app_name" >

 <activity

 android:name=".ImageSearchActivity"

 android:label="@string/app_name"

 android:theme="@android:style/Theme.Light"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

382 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

5.4.1.2. Communicating via HTTPS

Transmitted and received data with HTTPS are encrypted. In addition HTTPS checks whether a

connected server is trusted or not. To authenticate the server, Android HTTPS library verifies "server

certificate" which is transmitted from the server in the handshake phase of HTTPS transaction with

following points:

 The server certificate is signed by a trusted third party certificate authority

 The period and other properties of the server certificate are valid

 CN in Subject of the server certificate equals to the host name of the serve.

When an error is encountered during the verification above, a server certificate verification exception

(SSLException) is thrown. The error occurs due to any defects in the server certificate or

man-in-the-middle attacks by attackers. You have to handle the exception with an appropriate

sequence based on the application specifications.

The next a sample code is for HTTPS communication which connects to a Web server with a server

certificate issued by a trusted third party certificate authority. For HTTPS communication with a

server certificate issued privately, please refer to "5.4.1.3 Communicating via HTTPS with private

certificate."

The following sample code shows an application which performs an image search on a Web server,

gets the result image and shows it. HTTPS communication with the server is performed twice a search.

The first communication is for searching image data and the second is for getting it. The worker

thread for communication process using AsyncTask is created to avoid the communications

performing on the UI thread. All contents sent/received in the communications with the server are

considered as sensitive (e.g. the character string for searching, the URL of the image, or the image

data) here. To show the sample code simply, no special handling for SSLException is performed. It is

necessary to handle the exceptions properly depending on the application specifications.

Points:

1. URI starts with https://.

2. Sensitive information may be contained in send data.

3. Handle the received data carefully and securely, even though the data was sent from the server

connected by HTTPS.

4. SSLException should be handled with an appropriate sequence in an application.

HttpsImageSearch.java
package org.jssec.android.https.imagesearch;

import org.json.JSONException;

import org.json.JSONObject;

import android.os.AsyncTask;

import java.io.BufferedInputStream;

import java.io.ByteArrayOutputStream;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 383

import java.io.IOException;

import java.net.HttpURLConnection;

import java.net.URL;

public abstract class HttpsImageSearch extends AsyncTask<String, Void, Object> {

 @Override

 protected Object doInBackground(String... params) {

 byte[] responseArray;

 // --

 // Communication 1st time : Execute image search

 // --

 // *** POINT 1 *** URI starts with https://.

 // *** POINT 2 *** Sensitive information may be contained in send data.

 StringBuilder s = new StringBuilder();

 for (String param : params){

 s.append(param);

 s.append('+');

 }

 s.deleteCharAt(s.length() - 1);

 String search_url = "https://ajax.googleapis.com/ajax/services/search/images?v=1.0&q=" +

 s.toString();

 responseArray = getByteArray(search_url);

 if (responseArray == null) {

 return null;

 }

 // *** POINT 3 *** Handle the received data carefully and securely,

 // even though the data was sent from the server connected by HTTPS.

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."

 String image_url;

 try {

 String json = new String(responseArray);

 image_url = new JSONObject(json).getJSONObject("responseData")

 .getJSONArray("results").getJSONObject(0).getString("url");

 } catch(JSONException e) {

 return e;

 }

 // --

 // Communication 2nd time : Get image

 // --

 // *** POINT 1 *** URI starts with https://.

 // *** POINT 2 *** Sensitive information may be contained in send data.

 if (image_url != null) {

 responseArray = getByteArray(image_url);

 if (responseArray == null) {

 return null;

 }

 }

 return responseArray;

 }

 private byte[] getByteArray(String strUrl) {

 byte[] buff = new byte[1024];

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

384 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

 byte[] result = null;

 HttpURLConnection response;

 BufferedInputStream inputStream = null;

 ByteArrayOutputStream responseArray = null;

 int length;

 try {

 URL url = new URL(strUrl);

 response = (HttpURLConnection) url.openConnection();

 response.setRequestMethod("GET");

 response.connect();

 checkResponse(response);

 inputStream = new BufferedInputStream(response.getInputStream());

 responseArray = new ByteArrayOutputStream();

 while ((length = inputStream.read(buff)) != -1) {

 if (length > 0) {

 responseArray.write(buff, 0, length);

 }

 }

 result = responseArray.toByteArray();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 if (inputStream != null) {

 try {

 inputStream.close();

 } catch (IOException e) {

 // This is sample, so omit the exception process

 }

 }

 if (responseArray != null) {

 try {

 responseArray.close();

 } catch (IOException e) {

 // This is sample, so omit the exception process

 }

 }

 }

 return result;

 }

 private void checkResponse(HttpURLConnection response) throws IOException {

 int statusCode = response.getResponseCode();

 if (HttpURLConnection.HTTP_OK != statusCode) {

 throw new IOException("HttpStatus: " + statusCode);

 }

 }

}

Other sample code files are the same as "5.4.1.1 Communicating via HTTP," so please refer to

"5.4.1.1 Communicating via HTTP."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 385

5.4.1.3. Communicating via HTTPS with private certificate

This section shows a sample code of HTTPS communication with a server certificate issued privately

(private certificate), but not with that issued by a trusted third party authority. Please refer to "5.4.3.1

How to Create Private Certificate and Configure Server Settings" for creating a root certificate of a

private certificate authority and private certificates and setting HTTPS settings in a Web server. The

sample program has a cacert.crt file in assets. It is a root certificate file of private certificate

authority.

The following sample code shows an application which gets an image on a Web server and shows it.

HTTPS is used for the communication with the server. The worker thread for communication process

using AsyncTask is created to avoid the communications performing on the UI thread. All contents

(the URL of the image and the image data) sent/received in the communications with the server are

considered as sensitive here. To show the sample code simply, no special handling for SSLException

is performed. It is necessary to handle the exceptions properly depending on the application

specifications.

Points:

1. Verify a server certificate with the root certificate of a private certificate authority.

2. URI starts with https://.

3. Sensitive information may be contained in send data.

4. Received data can be trusted as same as the server.

5. SSLException should be handled with an appropriate sequence in an application.

PrivateCertificathettpsGet.java
package org.jssec.android.https.privatecertificate;

import java.io.BufferedInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.net.HttpURLConnection;

import java.net.URL;

import java.security.KeyStore;

import java.security.SecureRandom;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLException;

import javax.net.ssl.SSLSession;

import javax.net.ssl.TrustManagerFactory;

import android.content.Context;

import android.os.AsyncTask;

public abstract class PrivateCertificateHttpsGet extends AsyncTask<String, Void, Object> {

 private Context mContext;

 public PrivateCertificateHttpsGet(Context context) {

 mContext = context;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

386 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

 }

 @Override

 protected Object doInBackground(String... params) {

 TrustManagerFactory trustManager;

 BufferedInputStream inputStream = null;

 ByteArrayOutputStream responseArray = null;

 byte[] buff = new byte[1024];

 int length;

 try {

 URL url = new URL(params[0]);

 // *** POINT 1 *** Verify a server certificate with the root certificate of a private certificate authorit

y.

 // Set keystore which includes only private certificate that is stored in assets, to client.

 KeyStore ks = KeyStoreUtil.getEmptyKeyStore();

 KeyStoreUtil.loadX509Certificate(ks,

 mContext.getResources().getAssets().open("cacert.crt"));

 // *** POINT 2 *** URI starts with https://.

 // *** POINT 3 *** Sensitive information may be contained in send data.

 trustManager = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());

 trustManager.init(ks);

 SSLContext sslCon = SSLContext.getInstance("TLS");

 sslCon.init(null, trustManager.getTrustManagers(), new SecureRandom());

 HttpURLConnection con = (HttpURLConnection)url.openConnection();

 HttpsURLConnection response = (HttpsURLConnection)con;

 response.setDefaultSSLSocketFactory(sslCon.getSocketFactory());

 response.setSSLSocketFactory(sslCon.getSocketFactory());

 checkResponse(response);

 // *** POINT 4 *** Received data can be trusted as same as the server.

 inputStream = new BufferedInputStream(response.getInputStream());

 responseArray = new ByteArrayOutputStream();

 while ((length = inputStream.read(buff)) != -1) {

 if (length > 0) {

 responseArray.write(buff, 0, length);

 }

 }

 return responseArray.toByteArray();

 } catch(SSLException e) {

 // *** POINT 5 *** SSLException should be handled with an appropriate sequence in an application.

 // Exception process is omitted here since it's sample.

 return e;

 } catch(Exception e) {

 return e;

 } finally {

 if (inputStream != null) {

 try {

 inputStream.close();

 } catch (Exception e) {

 // This is sample, so omit the exception process

 }

 }

 if (responseArray != null) {

 try {

 responseArray.close();

 } catch (Exception e) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 387

 // This is sample, so omit the exception process

 }

 }

 }

 }

 private void checkResponse(HttpURLConnection response) throws IOException {

 int statusCode = response.getResponseCode();

 if (HttpURLConnection.HTTP_OK != statusCode) {

 throw new IOException("HttpStatus: " + statusCode);

 }

 }

}

KeyStoreUtil.java
package org.jssec.android.https.privatecertificate;

import java.io.IOException;

import java.io.InputStream;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;

import java.security.cert.Certificate;

import java.security.cert.CertificateException;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import java.util.Enumeration;

public class KeyStoreUtil {

 public static KeyStore getEmptyKeyStore() throws KeyStoreException,

 NoSuchAlgorithmException, CertificateException, IOException {

 KeyStore ks = KeyStore.getInstance("BKS");

 ks.load(null);

 return ks;

 }

 public static void loadAndroidCAStore(KeyStore ks)

 throws KeyStoreException, NoSuchAlgorithmException,

 CertificateException, IOException {

 KeyStore aks = KeyStore.getInstance("AndroidCAStore");

 aks.load(null);

 Enumeration<String> aliases = aks.aliases();

 while (aliases.hasMoreElements()) {

 String alias = aliases.nextElement();

 Certificate cert = aks.getCertificate(alias);

 ks.setCertificateEntry(alias, cert);

 }

 }

 public static void loadX509Certificate(KeyStore ks, InputStream is)

 throws CertificateException, KeyStoreException {

 try {

 CertificateFactory factory = CertificateFactory.getInstance("X509");

 X509Certificate x509 = (X509Certificate)factory.generateCertificate(is);

 String alias = x509.getSubjectDN().getName();

 ks.setCertificateEntry(alias, x509);

 } finally {

 try { is.close(); } catch (IOException e) { /* This is sample, so omit the exception process */ }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

388 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

 }

 }

}

PrivateCertificathettpsActivity.java
package org.jssec.android.https.privatecertificate;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

public class PrivateCertificateHttpsActivity extends Activity {

 private EditText mUrlBox;

 private TextView mMsgBox;

 private ImageView mImgBox;

 private AsyncTask<String, Void, Object> mAsyncTask ;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 mUrlBox = (EditText)findViewById(R.id.urlbox);

 mMsgBox = (TextView)findViewById(R.id.msgbox);

 mImgBox = (ImageView)findViewById(R.id.imageview);

 }

 @Override

 protected void onPause() {

 // After this, Activity may be discarded, so cancel asynchronous process in advance.

 if (mAsyncTask != null) mAsyncTask.cancel(true);

 super.onPause();

 }

 public void onClick(View view) {

 String url = mUrlBox.getText().toString();

 mMsgBox.setText(url);

 mImgBox.setImageBitmap(null);

 // Cancel, since the last asynchronous process might have not been finished yet.

 if (mAsyncTask != null) mAsyncTask.cancel(true);

 // Since cannot communicate through UI thread, communicate by worker thread by AsynchTask.

 mAsyncTask = new PrivateCertificateHttpsGet(this) {

 @Override

 protected void onPostExecute(Object result) {

 // Process the communication result through UI thread.

 if (result instanceof Exception) {

 Exception e = (Exception)result;

 mMsgBox.append("¥nException occurs¥n" + e.toString());

 } else {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 389

 byte[] data = (byte[])result;

 Bitmap bmp = BitmapFactory.decodeByteArray(data, 0, data.length);

 mImgBox.setImageBitmap(bmp);

 }

 }

 }.execute(url); // Pass URL and start asynchronization process

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

390 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

5.4.2. Rule Book

Follow the rules below to communicate with HTTP/HTTPS.

1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)

2. Received Data over HTTP Must be Handled Carefully and Securely (Required)

3. SSLException Must Be Handled Appropriately like Notification to User (Required)

4. Custom TrustManager Must Not Be Created (Required)

5. Custom HostnameVerifier Must Not Be Created (Required)

5.4.2.1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)

In HTTP transaction, sent and received information might be sniffed or tampered and the connected

server might be masqueraded. Sensitive information must be sent/ received by HTTPS

communication.

5.4.2.2. Received Data over HTTP Must be Handled Carefully and Securely (Required)

Received data in HTTP communications might be generated by attackers for exploiting vulnerability

of an application. So you have to suppose that the application receives any values and formats of data

and then carefully implement data handlings for processing received data so as not to put any

vulnerabilities in. Furthermore you should not blindly trust the data from HTTPS server too. Because

the HTTPS server may be made by the attacker or the received data may be made in other place from

the HTTPS server. Please refer to "3.2 Handling Input Data Carefully and Securely"

5.4.2.3. SSLException Must Be Handled Appropriately like Notification to User (Required)

In HTTPS communication, SSLException occurs as a verification error when a server certificate is not

valid or the communication is under the man-in-the-middle attack. So you have to implement an

appropriate exception handling for SSLException. Notifying the user of the communication failure,

logging the failure and so on can be considered as typical implementations of exception handling.

On the other hand, no special notice to the user might be required in some case. Like this, because

how to handle SSLException depends on the application specs and characteristics you need to

determine it after first considering thoroughly.

As mentioned above, the application may be attacked by man-in-the-middle attack when

SSLException occurs, so it must not be implemented like trying to send/receive sensitive information

again via non secure protocol such as HTTP.

5.4.2.4. Custom TrustManager Must Not Be Created (Required)

Just Changing KeyStore which is used for verifying server certificates is enough to communicate via

HTTPS with a private certificate like self-signed certificate. However, as explained in "5.4.3.3 Risky

Code that Disables Certificate Verification," there are so many dangerous TrustManager

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 391

implementations as sample codes for such purpose on the Internet. An Application implemented by

referring to these sample codes may have the vulnerability.

When you need to communicate via HTTPS with a private certificate, refer to the secure sample code

in "5.4.1.3 Communicating via HTTPS with private certificate."

Of course, custom TrustManager can be implemented securely, but enough knowledge for

encryption processing and encryption communication is required so as not to implement vulnerable

codes. So this rule dare be (Required).

5.4.2.5. Custom HostnameVerifier Must Not Be Created (Required)

Just Changing KeyStore which is used for verifying server certificates is enough to communicate via

HTTPS with a private certificate like self-signed certificate. However, as explained in "5.4.3.3 Risky

Code that Disables Certificate Verification," there are so many dangerous HostnameVerifier

implementations as sample codes for such purpose on the Internet. An Application implemented by

referring to these sample codes may have the vulnerability.

When you need to communicate via HTTPS with a private certificate, refer to the secure sample code

in "5.4.1.3 Communicating via HTTPS with private certificate."

Of course, custom HostnameVerifier can be implemented securely, but enough knowledge for

encryption processing and encryption communication is required so as not to implement vulnerable

codes. So this rule dare be (Required).

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

392 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

5.4.3. Advanced Topics

5.4.3.1. How to Create Private Certificate and Configure Server Settings

In this section, how to create a private certificate and configure server settings in Linux such as

Ubuntu and CentOS is described. Private certificate means a server certificate which is issued

privately and is told from server certificates issued by trusted third party certificate authorities like

Cybertrust and VeriSign.

Create private certificate authority

First of all, you need to create a private certificate authority to issue a private certificate. Private

certificate authority means a certificate authority which is created privately as well as private

certificate. You can issue plural private certificates by using the single private certificate

authority. PC in which the private certificate authority is stored should be limited strictly to be

accessed just by trusted persons.

To create a private certificate authority, you have to create two files such as the following shell

script newca.sh and the setting file openssl.cnf and then execute them. In the shell script,

CASTART and CAEND stand for the valid period of certificate authority and CASUBJ stands for the

name of certificate authority. So these values need to be changed according to a certificate

authority you create. While executing the shell script, the password for accessing the certificate

authority is asked for 3 times in total, so you need to input it every time.

newca.sh – Shell Script to create certificate authority
#!/bin/bash

umask 0077

CONFIG=openssl.cnf

CATOP=./CA

CAKEY=cakey.pem

CAREQ=careq.pem

CACERT=cacert.pem

CAX509=cacert.crt

CASTART=130101000000Z # 2013/01/01 00:00:00 GMT

CAEND=230101000000Z # 2023/01/01 00:00:00 GMT

CASUBJ="/CN=JSSEC Private CA/O=JSSEC/ST=Tokyo/C=JP"

mkdir -p ${CATOP}

mkdir -p ${CATOP}/certs

mkdir -p ${CATOP}/crl

mkdir -p ${CATOP}/newcerts

mkdir -p ${CATOP}/private

touch ${CATOP}/index.txt

openssl req -new -newkey rsa:2048 -sha256 -subj "${CASUBJ}" ¥

 -keyout ${CATOP}/private/${CAKEY} -out ${CATOP}/${CAREQ}

openssl ca -selfsign -md sha256 -create_serial -batch ¥

 -keyfile ${CATOP}/private/${CAKEY} ¥

 -startdate ${CASTART} -enddate ${CAEND} -extensions v3_ca ¥

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 393

 -in ${CATOP}/${CAREQ} -out ${CATOP}/${CACERT} ¥

 -config ${CONFIG}

openssl x509 -in ${CATOP}/${CACERT} -outform DER -out ${CATOP}/${CAX509}

openssl.cnf - Setting file of openssl command which 2 shell scripts refers in common.
[ca]

default_ca = CA_default # The default ca section

[CA_default]

dir = ./CA # Where everything is kept

certs = $dir/certs # Where the issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index.txt # database index file.

#Proprietary-defined _subject = no # Set to 'no' to allow creation of

 # several ctificates with same subject.

new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number

crlnumber = $dir/crlnumber # the current crl number

 # must be commented out to leave a V1 CRL

crl = $dir/crl.pem # The current CRL

private_key = $dir/private/cakey.pem# The private key

RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add the cert

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

policy = policy_match

[policy_match]

countryName = match

stateOrProvinceName = match

organizationName = supplied

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[usr_cert]

basicConstraints=CA:FALSE

nsComment = "OpenSSL Generated Certificate"

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid,issuer

[v3_ca]

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

basicConstraints = CA:true

After executing the above shall script, a directory named CA is created just under the work

directory. This CA directory is just a private certificate authority. CA/cacert.crt file is the root

certificate of the private certificate authority. And it's stored in assets directory of an application

as described in "5.4.1.3 Communicating via HTTPS with private certificate," or it's installed in

Android device as described in "5.4.3.2 Install Root Certificate of Private Certificate Authority to

Android OS's Certification Store."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

394 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Create private certificate

To create a private certificate, you have to create a shell script like the following newca.sh and

execute it. In the shell script, SVSTART and SVEND stand for the valid period of private certificate,

and SVSUBJ stands for the name of Web server, so these values need to be changed according to

the target Web server. Especially, you need to make sure not to set a wrong host name to /CN of

SVSUBJ with which the host name of Web server is to be specified. While executing the shell script,

the password for accessing the certificate authority is asked, so you need to input the password

which you have set when creating the private certificate authority. After that, y/n is asked 2 times

in total and you need to input y every time.

newsv.sh - Shell script which issues private certificate
#!/bin/bash

umask 0077

CONFIG=openssl.cnf

CATOP=./CA

CAKEY=cakey.pem

CACERT=cacert.pem

SVKEY=svkey.pem

SVREQ=svreq.pem

SVCERT=svcert.pem

SVX509=svcert.crt

SVSTART=130101000000Z # 2013/01/01 00:00:00 GMT

SVEND=230101000000Z # 2023/01/01 00:00:00 GMT

SVSUBJ="/CN=selfsigned.jssec.org/O=JSSEC Secure Cofing Group/ST=Tokyo/C=JP"

openssl genrsa -out ${SVKEY} 2048

openssl req -new -key ${SVKEY} -subj "${SVSUBJ}" -out ${SVREQ}

openssl ca -md sha256 ¥

 -keyfile ${CATOP}/private/${CAKEY} -cert ${CATOP}/${CACERT} ¥

 -startdate ${SVSTART} -enddate ${SVEND} ¥

 -in ${SVREQ} -out ${SVCERT} -config ${CONFIG}

openssl x509 -in ${SVCERT} -outform DER -out ${SVX509}

After executing the above shell script, both svkey.pem (private key file) and svcert.pem (private

certificate file) for Web server are generated just under work directory.

When Web server is Apache, you will specify prikey.pem and cert.pem in the configuration file as

follows.

SSLCertificateFile "/path/to/svcert.pem"

SSLCertificateKeyFile "/path/to/svkey.pem"

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 395

5.4.3.2. Install Root Certificate of Private Certificate Authority to Android OS's Certification Store

In the sample code of "5.4.1.3 Communicating via HTTPS with private certificate," the method to

establish HTTPS sessions to a Web server from one application using a private certificate by installing

the root certificate into the application is introduced. In this section, the method to establish HTTPS

sessions to Web servers from all applications using private certificates by installing the root

certificate into Android OS is to be introduced. Note that all you install should be certificates issued

by trusted certificate authorities including your own certificate authorities.

First of all, you need to copy the root certificate file "cacert.crt" to the internal storage of an Android

device. You can also get the root certificate file used in the sample code from

https://selfsigned.jssec.org/cacert.crt.

And then, you will open Security page from Android Settings and you can install the root certificate in

an Android device by doing as follows.

Figure 5.4-2 Steps to install root certificate of private certificate authority

https://selfsigned.jssec.org/cacert.crt

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

396 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Figure 5.4-3 Checking if root certificate is installed or not

Once the root certificate is installed in Android OS, all applications can correctly verify every private

certificate issued by the certificate authority. The following figure shows an example when displaying

https://selfsigned.jssec.org/droid_knight.png in Chrome browser.

https://selfsigned.jssec.org/droid_knight.png

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 397

Figure 5.4-4 Once root certificate installed, private certificates can be verified correctly.

By installing the root certificate this way, even applications using the sample code "5.4.1.2

Communicating via HTTPS" can correctly connect via HTTPS to a Web server which is operated with a

private certificate.

Install root certificate

Server certificate
validation error occurs

Possible to communicate
securely and correctry

https://selfsigned.jssec.org/droid_knight.png

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

398 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

5.4.3.3. Risky Code that Disables Certificate Verification

A lot of incorrect samples (code snippets), which allow applications to continue to communicate via

HTTPS with Web servers even after certificate verification errors occur, are found on the Internet.

Since they are introduced as the way to communicate via HTTPS with a Web server using a private

certificate, there have been so many applications created by developers who have used those sample

codes by copy and paste. Unfortunately, most of them are vulnerable to man-in-the-middle attack.

As mentioned in the top of this article, "In 2012, many defects in implementation of HTTPS

communication were pointed out in Android applications", many Android applications which would

have implemented such vulnerable codes have been reported.

Several code snippets to cause vulnerable HTTPS communication are shown below. When you find

this type of code snippets, it's highly recommended to replace the sample code of "5.4.1.3

Communicating via HTTPS with private certificate."

Risk:Case which creates empty TrustManager
 TrustManager tm = new X509TrustManager() {

 @Override

 public void checkClientTrusted(X509Certificate[] chain,

 String authType) throws CertificateException {

 // Do nothing -> accept any certificates

 }

 @Override

 public void checkServerTrusted(X509Certificate[] chain,

 String authType) throws CertificateException {

 // Do nothing -> accept any certificates

 }

 @Override

 public X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 };

Risk:Case which creates empty HostnameVerifier
 HostnameVerifier hv = new HostnameVerifier() {

 @Override

 public boolean verify(String hostname, SSLSession session) {

 // Always return true -> Accespt any host names

 return true;

 }

 };

Risk:Case that ALLOW_ALL_HOSTNAME_VERIFIER is used.
 SSLSocketFactory sf;

 ...

 sf.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 399

5.5. Handling privacy data

In recent years, "Privacy-by-Design" concept has been proposed as a global trend to protect the

privacy data. And based on the concept, governments are promoting legislation for privacy

protection.

Applications that make use of user data in smartphones must take steps to ensure that users may use

the application safely and securely without fears regarding privacy and personal data. These steps

include handling user data appropriately and asking users to choose whether or not an application

may use certain data. To this end, each application must prepare and display an application privacy

policy indicating which information the application will use and how it will use that information;

moreover, when fetching and using certain information, the application must first ask the user’s

permission. Note that application privacy policies differ from other documents that may have been

present in the past—such as “Personal Data Protection Policies” or “Terms of Use”—and must be

created separately from any such documents.

For details on the creation and execution of privacy policies, see the document “Smartphone Privacy

Initiative” and “Smartphone Privacy Initiative II” (JMIC’s SPI) released by Japan’s Ministry of Internal

Affairs and Communications (MIC).

The terminology used in this section is defined in the text and in Section “5.5.3.2Glossary of Terms“.

5.5.1. Sample Code

When preparing application privacy policy, you may use the “Tools to Assist in Creating Application

Privacy Policies 19“. These tools output two files—a summary version and a detailed version of the

application privacy policy —both in HTML format and XML format. The HTML and XML content of

these files comports with the recommendations of MIC’s SPI including features such as search tags.

In the sample code below, we will demonstrate the use of this tool to present application privacy

policy using the HTML files prepared by this tool.

19 http://www.kddilabs.jp/tech/public-tech/appgen.html

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

400 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Figure 5.5-1 Sample of Abstract Application Privacy Policy

More specifically, you may use the following flowchart to determine which sample code to use.

Figure 5.5-2 Flow Figure to select sample code of handling privacy data

Here the phrase “broad consent” refers to a broad permission, granted by the user to the application

Start

The user data obtained will be transmitted
to an external server

Broad consent is not needed:
Applications that incorporate

application privacy policy

Both broad consent and
specific consent are granted:
Applications that incorporate

application privacy policy

Data that is difficult for the
user to change will be

transmitted to the server

Yes No

Yes No

Applications that do not
incorporate

an application privacy policy

Broad consent is granted:
Applications that incorporate

application privacy policy

Data that requires delicate handling
will be transmitted to the server

Yes No

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 401

upon the first launch of the application through display and review of the application privacy policy,

for the application to transmit user data to servers.

In contrast, the phrase “specific consent” refers to pre consent obtained immediately prior to the

transmission of specific user data.

5.5.1.1. Both broad consent and specific consent are granted: Applications that incorporate

application privacy policy

Points: (Both broad consent and specific consent are granted: Applications that incorporate

application privacy policy)

1. On first launch (or application update), obtain broad consent to transmit user data that will be

handled by the application.

2. If the user does not grant broad consent, do not transmit user data.

3. Obtain specific consent before transmitting user data that requires particularly delicate handling.

4. If the user does not grant specific consent, do not transmit the corresponding data.

5. Provide methods by which the user can review the application privacy policy.

6. Provide methods by which transmitted data can be deleted by user operations.

7. Provide methods by which transmitting data can be stopped by user operations.

8. Use UUIDs or cookies to keep track of user data.

9. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java
package org.jssec.android.privacypolicy;

import java.io.IOException;

import org.json.JSONException;

import org.json.JSONObject;

import org.jssec.android.privacypolicy.ConfirmFragment.DialogListener;

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.GooglePlayServicesClient;

import com.google.android.gms.common.GooglePlayServicesUtil;

import com.google.android.gms.location.LocationClient;

import android.location.Location;

import android.os.AsyncTask;

import android.os.Bundle;

import android.content.Intent;

import android.content.IntentSender;

import android.content.SharedPreferences;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.support.v4.app.FragmentActivity;

import android.support.v4.app.FragmentManager;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

402 All rights reserved © Japan Smartphone Security Association. Handling privacy data

public class MainActivity extends FragmentActivity implements GooglePlayServicesClient.ConnectionCallbacks, GooglePl

ayServicesClient.OnConnectionFailedListener, DialogListener {

 private static final String BASE_URL = "https://www.example.com/pp";

 private static final String GET_ID_URI = BASE_URL + "/get_id.php";

 private static final String SEND_DATA_URI = BASE_URL + "/send_data.php";

 private static final String DEL_ID_URI = BASE_URL + "/del_id.php";

 private static final String ID_KEY = "id";

 private static final String LOCATION_KEY = "location";

 private static final String NICK_NAME_KEY = "nickname";

 private static final String PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY = "privacyPolicyComprehensiveAgreed";

 private static final String PRIVACY_POLICY_DISCRETE_TYPE1_AGREED_KEY = "privacyPolicyDiscreteType1Agreed";

 private static final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";

 private static final int CONNECTION_FAILURE_RESOLUTION_REQUEST = 257;

 private String UserId = "";

 private LocationClient mLocationClient = null;

 private final int DIALOG_TYPE_COMPREHENSIVE_AGREEMENT = 1;

 private final int DIALOG_TYPE_PRE_CONFIRMATION = 2;

 private static final int VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW = 1;

 private TextWatcher watchHandler = new TextWatcher() {

 @Override

 public void beforeTextChanged(CharSequence s, int start, int count, int after) {

 }

 @Override

 public void onTextChanged(CharSequence s, int start, int before, int count) {

 boolean buttonEnable = (s.length() > 0);

 MainActivity.this.findViewById(R.id.buttonStart).setEnabled(buttonEnable);

 }

 @Override

 public void afterTextChanged(Editable s) {

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // Fetch user ID from serverFetch user ID from server

 new GetDataAsyncTask().execute();

 findViewById(R.id.buttonStart).setEnabled(false);

 ((TextView) findViewById(R.id.editTextNickname)).addTextChangedListener(watchHandler);

 int resultCode = GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);

 if (resultCode == ConnectionResult.SUCCESS) {

 mLocationClient = new LocationClient(this, this, this);

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 403

 @Override

 protected void onStart() {

 super.onStart();

 SharedPreferences pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 int privacyPolicyAgreed = pref.getInt(PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY, -1);

 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha

t will be handled by the application.

 // When the application is updated, it is only necessary to renew the user's grant of broad consent if the

 updated application will handle new types of user data.

 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.privacyPolicy, R.string.agreePrivacyPolicy,

 DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);

 dialog.setDialogListener(this);

 FragmentManager fragmentManager = getSupportFragmentManager();

 dialog.show(fragmentManager, "dialog");

 }

 // Used to obtain location data

 if (mLocationClient != null) {

 mLocationClient.connect();

 }

 }

 @Override

 protected void onStop() {

 if (mLocationClient != null) {

 mLocationClient.disconnect();

 }

 super.onStop();

 }

 public void onSendToServer(View view) {

 // Check the status of user consent.

 // Actually, it is necessary to obtain consent for each user data type.

 SharedPreferences pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 int privacyPolicyAgreed = pref.getInt(PRIVACY_POLICY_DISCRETE_TYPE1_AGREED_KEY, -1);

 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

 // *** POINT 3 *** Obtain specific consent before transmitting user data that requires particularly delica

te handling.

 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.sendLocation, R.string.cofirmSendLocation,

DIALOG_TYPE_PRE_CONFIRMATION);

 dialog.setDialogListener(this);

 FragmentManager fragmentManager = getSupportFragmentManager();

 dialog.show(fragmentManager, "dialog");

 } else {

 // Start transmission, since it has the user consent.

 onPositiveButtonClick(DIALOG_TYPE_PRE_CONFIRMATION);

 }

 }

 public void onPositiveButtonClick(int type) {

 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha

t will be handled by the application.

 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();

 pref.putInt(PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY, getVersionCode());

 pref.apply();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

404 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 } else if (type == DIALOG_TYPE_PRE_CONFIRMATION) {

 // *** POINT 3 *** Obtain specific consent before transmitting user data that requires particularly delica

te handling.

 if (mLocationClient != null && mLocationClient.isConnected()) {

 Location currentLocation = mLocationClient.getLastLocation();

 if (currentLocation != null) {

 String locationData = "Latitude:" + currentLocation.getLatitude() + ", Longitude:" + currentLocati

on.getLongitude();

 String nickname = ((TextView) findViewById(R.id.editTextNickname)).getText().toString();

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + "¥n - nickname : " + nickname

+ "¥n - location : " + locationData, Toast.LENGTH_SHORT).show();

 new SendDataAsyncTack().execute(SEND_DATA_URI, UserId, locationData, nickname);

 }

 }

 // Store the status of user consent.

 // Actually, it is necessary to obtain consent for each user data type.

 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();

 pref.putInt(PRIVACY_POLICY_DISCRETE_TYPE1_AGREED_KEY, getVersionCode());

 pref.apply();

 }

 }

 public void onNegativeButtonClick(int type) {

 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

 // *** POINT 2 *** If the user does not grant general consent, do not transmit user data.

 // In this sample application we terminate the application in this case.

 finish();

 } else if (type == DIALOG_TYPE_PRE_CONFIRMATION) {

 // *** POINT 4 *** If the user does not grant specific consent, do not transmit the corresponding data.

 // The user did not grant consent, so we do nothing.

 }

 }

 private int getVersionCode() {

 int versionCode = -1;

 PackageManager packageManager = this.getPackageManager();

 try {

 PackageInfo packageInfo = packageManager.getPackageInfo(this.getPackageName(), PackageManager.GET_ACTIVIT

IES);

 versionCode = packageInfo.versionCode;

 } catch (NameNotFoundException e) {

 // This is sample, so omit the exception process

 }

 return versionCode;

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_show_pp:

 // *** POINT 5 *** Provide methods by which the user can review the application privacy policy.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 405

 Intent intent = new Intent();

 intent.setClass(this, WebViewAssetsActivity.class);

 startActivity(intent);

 return true;

 case R.id.action_del_id:

 // *** POINT 6 *** Provide methods by which transmitted data can be deleted by user operations.

 new SendDataAsyncTack().execute(DEL_ID_URI, UserId);

 return true;

 case R.id.action_donot_send_id:

 // *** POINT 7 *** Provide methods by which transmitting data can be stopped by user operations.

 // If the user stop sending data, user consent is deemed to have been revoked.

 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();

 pref.putInt(PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY, 0);

 pref.apply();

 // In this sample application if the user data cannot be sent by user operations,

 // finish the application because we do nothing.

 String message = getString(R.string.stopSendUserData);

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + message, Toast.LENGTH_SHO

RT).show();

 finish();

 return true;

 }

 return false;

 }

 @Override

 public void onConnected(Bundle connectionHint) {

 if (mLocationClient != null && mLocationClient.isConnected()) {

 Location currentLocation = mLocationClient.getLastLocation();

 if (currentLocation != null) {

 String locationData = "Latitude ¥t: " + currentLocation.getLatitude() + "¥n¥tLongitude ¥t: " + current

Location.getLongitude();

 String text = "¥n" + getString(R.string.your_location_title) + "¥n¥t" + locationData;

 TextView appText = (TextView) findViewById(R.id.appText);

 appText.setText(text);

 }

 }

 }

 @Override

 public void onConnectionFailed(ConnectionResult result) {

 if (result.hasResolution()) {

 try {

 result.startResolutionForResult(this, CONNECTION_FAILURE_RESOLUTION_REQUEST);

 } catch (IntentSender.SendIntentException e) {

 e.printStackTrace();

 }

 }

 }

 @Override

 public void onDisconnected() {

 mLocationClient = null;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

406 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 private class GetDataAsyncTask extends AsyncTask<String, Void, String> {

 private String extMessage = "";

 @Override

 protected String doInBackground(String... params) {

 // *** POINT 8 *** Use UUIDs or cookies to keep track of user data

 // In this sample we use an ID generated on the server side

 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 UserId = sp.getString(ID_KEY, null);

 if (UserId == null) {

 // No token in SharedPreferences; fetch ID from server

 try {

 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 }

 // Store the fetched ID in SharedPreferences

 sp.edit().putString(ID_KEY, UserId).commit();

 }

 return UserId;

 }

 @Override

 protected void onPostExecute(final String data) {

 String status = (data != null) ? "success" : "error";

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T

oast.LENGTH_SHORT).show();

 }

 }

 private class SendDataAsyncTack extends AsyncTask<String, Void, Boolean> {

 private String extMessage = "";

 @Override

 protected Boolean doInBackground(String... params) {

 String url = params[0];

 String id = params[1];

 String location = params.length > 2 ? params[2] : null;

 String nickname = params.length > 3 ? params[3] : null;

 Boolean result = false;

 try {

 JSONObject jsonData = new JSONObject();

 jsonData.put(ID_KEY, id);

 if (location != null)

 jsonData.put(LOCATION_KEY, location);

 if (nickname != null)

 jsonData.put(NICK_NAME_KEY, nickname);

 NetworkUtil.sendJSON(url, "", jsonData.toString());

 result = true;

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 } catch (JSONException e) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 407

 extMessage = e.toString();

 }

 return result;

 }

 @Override

 protected void onPostExecute(Boolean result) {

 String status = result ? "Success" : "Error";

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T

oast.LENGTH_SHORT).show();

 }

 }

}

ConfirmFragment.java
package org.jssec.android.privacypolicy;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.app.DialogFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.TextView;

public class ConfirmFragment extends DialogFragment {

 private DialogListener mListener = null;

 public static interface DialogListener {

 public void onPositiveButtonClick(int type);

 public void onNegativeButtonClick(int type);

 }

 public static ConfirmFragment newInstance(int title, int sentence, int type) {

 ConfirmFragment fragment = new ConfirmFragment();

 Bundle args = new Bundle();

 args.putInt("title", title);

 args.putInt("sentence", sentence);

 args.putInt("type", type);

 fragment.setArguments(args);

 return fragment;

 }

 @Override

 public Dialog onCreateDialog(Bundle args) {

 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data that wi

ll be handled by the application.

 // *** POINT 3 *** Obtain specific consent before transmitting user data that requires particularly delicate

handling.

 final int title = getArguments().getInt("title");

 final int sentence = getArguments().getInt("sentence");

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

408 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 final int type = getArguments().getInt("type");

 LayoutInflater inflater = (LayoutInflater) getActivity().getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 View content = inflater.inflate(R.layout.fragment_comfirm, null);

 TextView linkPP = (TextView) content.findViewById(R.id.tx_link_pp);

 linkPP.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 // *** POINT 5 *** Provide methods by which the user can review the application privacy policy.

 Intent intent = new Intent();

 intent.setClass(getActivity(), WebViewAssetsActivity.class);

 startActivity(intent);

 }

 });

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 builder.setIcon(R.drawable.ic_launcher);

 builder.setTitle(title);

 builder.setMessage(sentence);

 builder.setView(content);

 builder.setPositiveButton(R.string.buttonConsent, new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int whichButton) {

 if (mListener != null) {

 mListener.onPositiveButtonClick(type);

 }

 }

 });

 builder.setNegativeButton(R.string.buttonDonotConsent, new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int whichButton) {

 if (mListener != null) {

 mListener.onNegativeButtonClick(type);

 }

 }

 });

 Dialog dialog = builder.create();

 dialog.setCanceledOnTouchOutside(false);

 return dialog;

 }

 @Override

 public void onAttach(Activity activity) {

 super.onAttach(activity);

 if (!(activity instanceof DialogListener)) {

 throw new ClassCastException(activity.toString() + " must implement DialogListener.");

 }

 mListener = (DialogListener) activity;

 }

 public void setDialogListener(DialogListener listener) {

 mListener = listener;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 409

WebViewAssetsActivity.java
package org.jssec.android.privacypolicy;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

 // *** POINT 9 *** Place a summary version of the application privacy policy in the assets folder

 private static final String ABST_PP_URL = "file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0

.html";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_webview);

 WebView webView = (WebView) findViewById(R.id.webView);

 WebSettings webSettings = webView.getSettings();

 webSettings.setAllowFileAccess(false);

 webView.loadUrl(ABST_PP_URL);

 }

}

5.5.1.2. Broad consent is granted: Applications that incorporate application privacy policy

Points: (Broad consent is granted: Applications that incorporate application privacy policy)

1. On first launch (or application update), obtain broad consent to transmit user data that will be

handled by the application.

1. If the user does not grant broad consent, do not transmit user data.

2. Provide methods by which the user can review the application privacy policy.

3. Provide methods by which transmitted data can be deleted by user operations.

4. Provide methods by which transmitting data can be stopped by user operations.

5. Use UUIDs or cookies to keep track of user data.

6. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java
package org.jssec.android.privacypolicynopreconfirm;

import java.io.IOException;

import org.json.JSONException;

import org.json.JSONObject;

import org.jssec.android.privacypolicynopreconfirm.MainActivity;

import org.jssec.android.privacypolicynopreconfirm.R;

import org.jssec.android.privacypolicynopreconfirm.ConfirmFragment.DialogListener;

import android.os.AsyncTask;

import android.os.Bundle;

import android.content.Intent;

import android.content.SharedPreferences;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

410 All rights reserved © Japan Smartphone Security Association. Handling privacy data

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.support.v4.app.FragmentActivity;

import android.support.v4.app.FragmentManager;

import android.telephony.TelephonyManager;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity implements DialogListener {

 private final String BASE_URL = "https://www.example.com/pp";

 private final String GET_ID_URI = BASE_URL + "/get_id.php";

 private final String SEND_DATA_URI = BASE_URL + "/send_data.php";

 private final String DEL_ID_URI = BASE_URL + "/del_id.php";

 private final String ID_KEY = "id";

 private final String NICK_NAME_KEY = "nickname";

 private final String IMEI_KEY = "imei";

 private final String PRIVACY_POLICY_AGREED_KEY = "privacyPolicyAgreed";

 private final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";

 private String UserId = "";

 private final int DIALOG_TYPE_COMPREHENSIVE_AGREEMENT = 1;

 private final int VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW = 1;

 private TextWatcher watchHandler = new TextWatcher() {

 @Override

 public void beforeTextChanged(CharSequence s, int start, int count, int after) {

 }

 @Override

 public void onTextChanged(CharSequence s, int start, int before, int count) {

 boolean buttonEnable = (s.length() > 0);

 MainActivity.this.findViewById(R.id.buttonStart).setEnabled(buttonEnable);

 }

 @Override

 public void afterTextChanged(Editable s) {

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // Fetch user ID from serverFetch user ID from server

 new GetDataAsyncTask().execute();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 411

 findViewById(R.id.buttonStart).setEnabled(false);

 ((TextView) findViewById(R.id.editTextNickname)).addTextChangedListener(watchHandler);

 }

 @Override

 protected void onStart() {

 super.onStart();

 SharedPreferences pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 int privacyPolicyAgreed = pref.getInt(PRIVACY_POLICY_AGREED_KEY, -1);

 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha

t will be handled by the application.

 // When the application is updated, it is only necessary to renew the user's grant of broad consent if the

 updated application will handle new types of user data.

 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.privacyPolicy, R.string.agreePrivacyPolicy,

 DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);

 dialog.setDialogListener(this);

 FragmentManager fragmentManager = getSupportFragmentManager();

 dialog.show(fragmentManager, "dialog");

 }

 }

 public void onSendToServer(View view) {

 String nickname = ((TextView) findViewById(R.id.editTextNickname)).getText().toString();

 TelephonyManager tm = (TelephonyManager) getSystemService(TELEPHONY_SERVICE);

 String imei = tm.getDeviceId();

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + "¥n - nickname : " + nickname + ", imei =

 " + imei, Toast.LENGTH_SHORT).show();

 new SendDataAsyncTack().execute(SEND_DATA_URI, UserId, nickname, imei);

 }

 public void onPositiveButtonClick(int type) {

 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha

t will be handled by the application.

 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();

 pref.putInt(PRIVACY_POLICY_AGREED_KEY, getVersionCode());

 pref.apply();

 }

 }

 public void onNegativeButtonClick(int type) {

 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

 // *** POINT 2 *** If the user does not grant general consent, do not transmit user data.

 // In this sample application we terminate the application in this case.

 finish();

 }

 }

 private int getVersionCode() {

 int versionCode = -1;

 PackageManager packageManager = this.getPackageManager();

 try {

 PackageInfo packageInfo = packageManager.getPackageInfo(this.getPackageName(), PackageManager.GET_ACTIVIT

IES);

 versionCode = packageInfo.versionCode;

 } catch (NameNotFoundException e) {

 // This is sample, so omit the exception process

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

412 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 }

 return versionCode;

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_show_pp:

 // *** POINT 3 *** Provide methods by which the user can review the application privacy policy.

 Intent intent = new Intent();

 intent.setClass(this, WebViewAssetsActivity.class);

 startActivity(intent);

 return true;

 case R.id.action_del_id:

 // *** POINT 4 *** Provide methods by which transmitted data can be deleted by user operations.

 new SendDataAsyncTack().execute(DEL_ID_URI, UserId);

 return true;

 case R.id.action_donot_send_id:

 // *** POINT 5 *** Provide methods by which transmitting data can be stopped by user operations.

 // If the user stop sending data, user consent is deemed to have been revoked.

 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();

 pref.putInt(PRIVACY_POLICY_AGREED_KEY, 0);

 pref.apply();

 // In this sample application if the user data cannot be sent by user operations,

 // finish the application because we do nothing.

 String message = getString(R.string.stopSendUserData);

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + message, Toast.LENGTH_SHORT).

show();

 finish();

 return true; }

 return false;

 }

 private class GetDataAsyncTask extends AsyncTask<String, Void, String> {

 private String extMessage = "";

 @Override

 protected String doInBackground(String... params) {

 // *** POINT 6 *** Use UUIDs or cookies to keep track of user data

 // In this sample we use an ID generated on the server side

 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 UserId = sp.getString(ID_KEY, null);

 if (UserId == null) {

 // No token in SharedPreferences; fetch ID from server

 try {

 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 413

 // Store the fetched ID in SharedPreferences

 sp.edit().putString(ID_KEY, UserId).commit();

 }

 return UserId;

 }

 @Override

 protected void onPostExecute(final String data) {

 String status = (data != null) ? "success" : "error";

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T

oast.LENGTH_SHORT).show();

 }

 }

 private class SendDataAsyncTack extends AsyncTask<String, Void, Boolean> {

 private String extMessage = "";

 @Override

 protected Boolean doInBackground(String... params) {

 String url = params[0];

 String id = params[1];

 String nickname = params.length > 2 ? params[2] : null;

 String imei = params.length > 3 ? params[3] : null;

 Boolean result = false;

 try {

 JSONObject jsonData = new JSONObject();

 jsonData.put(ID_KEY, id);

 if (nickname != null)

 jsonData.put(NICK_NAME_KEY, nickname);

 if (imei != null)

 jsonData.put(IMEI_KEY, imei);

 NetworkUtil.sendJSON(url, "", jsonData.toString());

 result = true;

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 } catch (JSONException e) {

 extMessage = e.toString();

 }

 return result;

 }

 @Override

 protected void onPostExecute(Boolean result) {

 String status = result ? "Success" : "Error";

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T

oast.LENGTH_SHORT).show();

 }

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

414 All rights reserved © Japan Smartphone Security Association. Handling privacy data

ConfirmFragment.java
package org.jssec.android.privacypolicynopreconfirm;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.app.DialogFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.TextView;

public class ConfirmFragment extends DialogFragment {

 private DialogListener mListener = null;

 public static interface DialogListener {

 public void onPositiveButtonClick(int type);

 public void onNegativeButtonClick(int type);

 }

 public static ConfirmFragment newInstance(int title, int sentence, int type) {

 ConfirmFragment fragment = new ConfirmFragment();

 Bundle args = new Bundle();

 args.putInt("title", title);

 args.putInt("sentence", sentence);

 args.putInt("type", type);

 fragment.setArguments(args);

 return fragment;

 }

 @Override

 public Dialog onCreateDialog(Bundle args) {

 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data that wi

ll be handled by the application.

 final int title = getArguments().getInt("title");

 final int sentence = getArguments().getInt("sentence");

 final int type = getArguments().getInt("type");

 LayoutInflater inflater = (LayoutInflater) getActivity().getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 View content = inflater.inflate(R.layout.fragment_comfirm, null);

 TextView linkPP = (TextView) content.findViewById(R.id.tx_link_pp);

 linkPP.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 // *** POINT 3 *** Provide methods by which the user can review the application privacy policy.

 Intent intent = new Intent();

 intent.setClass(getActivity(), WebViewAssetsActivity.class);

 startActivity(intent);

 }

 });

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 builder.setIcon(R.drawable.ic_launcher);

 builder.setTitle(title);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 415

 builder.setMessage(sentence);

 builder.setView(content);

 builder.setPositiveButton(R.string.buttonConsent, new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int whichButton) {

 if (mListener != null) {

 mListener.onPositiveButtonClick(type);

 }

 }

 });

 builder.setNegativeButton(R.string.buttonDonotConsent, new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int whichButton) {

 if (mListener != null) {

 mListener.onNegativeButtonClick(type);

 }

 }

 });

 Dialog dialog = builder.create();

 dialog.setCanceledOnTouchOutside(false);

 return dialog;

 }

 @Override

 public void onAttach(Activity activity) {

 super.onAttach(activity);

 if (!(activity instanceof DialogListener)) {

 throw new ClassCastException(activity.toString() + " must implement DialogListener.");

 }

 mListener = (DialogListener) activity;

 }

 public void setDialogListener(DialogListener listener) {

 mListener = listener;

 }

}

WebViewAssetsActivity.java
package org.jssec.android.privacypolicynopreconfirm;

import org.jssec.android.privacypolicynopreconfirm.R;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

 // *** POINT 7 *** Place a summary version of the application privacy policy in the assets folder

 private final String ABST_PP_URL = "file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_webview);

 WebView webView = (WebView) findViewById(R.id.webView);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

416 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 WebSettings webSettings = webView.getSettings();

 webSettings.setAllowFileAccess(false);

 webView.loadUrl(ABST_PP_URL);

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 417

5.5.1.3. Broad consent is not needed: Applications that incorporate application privacy policy

Points: (Broad consent is not needed: Applications that incorporate application privacy policy)

1. Provide methods by which the user can review the application privacy policy.

2. Provide methods by which transmitted data can be deleted by user operations.

3. Provide methods by which transmitting data can be stopped by user operations

4. Use UUIDs or cookies to keep track of user data.

5. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java
package org.jssec.android.privacypolicynocomprehensive;

import java.io.IOException;

import org.json.JSONException;

import org.json.JSONObject;

import android.os.AsyncTask;

import android.os.Bundle;

import android.content.Intent;

import android.content.SharedPreferences;

import android.support.v4.app.FragmentActivity;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity {

 private static final String BASE_URL = "https://www.example.com/pp";

 private static final String GET_ID_URI = BASE_URL + "/get_id.php";

 private static final String SEND_DATA_URI = BASE_URL + "/send_data.php";

 private static final String DEL_ID_URI = BASE_URL + "/del_id.php";

 private static final String ID_KEY = "id";

 private static final String NICK_NAME_KEY = "nickname";

 private static final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";

 private String UserId = "";

 private TextWatcher watchHandler = new TextWatcher() {

 @Override

 public void beforeTextChanged(CharSequence s, int start, int count, int after) {

 }

 @Override

 public void onTextChanged(CharSequence s, int start, int before, int count) {

 boolean buttonEnable = (s.length() > 0);

 MainActivity.this.findViewById(R.id.buttonStart).setEnabled(buttonEnable);

 }

 @Override

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

418 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 public void afterTextChanged(Editable s) {

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // Fetch user ID from serverFetch user ID from server

 new GetDataAsyncTask().execute();

 findViewById(R.id.buttonStart).setEnabled(false);

 ((TextView) findViewById(R.id.editTextNickname)).addTextChangedListener(watchHandler);

 }

 public void onSendToServer(View view) {

 String nickname = ((TextView) findViewById(R.id.editTextNickname)).getText().toString();

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + "¥n - nickname : " + nickname, Toast.LENG

TH_SHORT).show();

 new sendDataAsyncTack().execute(SEND_DATA_URI, UserId, nickname);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_show_pp:

 // *** POINT 1 *** Provide methods by which the user can review the application privacy policy.

 Intent intent = new Intent();

 intent.setClass(this, WebViewAssetsActivity.class);

 startActivity(intent);

 return true;

 case R.id.action_del_id:

 // *** POINT 2 *** Provide methods by which transmitted data can be deleted by user operations.

 new sendDataAsyncTack().execute(DEL_ID_URI, UserId);

 return true;

 case R.id.action_donot_send_id:

 // *** POINT 3 *** Provide methods by which transmitting data can be stopped by user operations.

 // In this sample application if the user data cannot be sent by user operations,

 // finish the application because we do nothing.

 String message = getString(R.string.stopSendUserData);

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + message, Toast.LENGTH_SHORT).

show();

 finish();

 return true;

 }

 return false;

 }

 private class GetDataAsyncTask extends AsyncTask<String, Void, String> {

 private String extMessage = "";

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 419

 @Override

 protected String doInBackground(String... params) {

 // *** POINT 4 *** Use UUIDs or cookies to keep track of user data

 // In this sample we use an ID generated on the server side

 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 UserId = sp.getString(ID_KEY, null);

 if (UserId == null) {

 // No token in SharedPreferences; fetch ID from server

 try {

 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 }

 // Store the fetched ID in SharedPreferences

 sp.edit().putString(ID_KEY, UserId).commit();

 }

 return UserId;

 }

 @Override

 protected void onPostExecute(final String data) {

 String status = (data != null) ? "success" : "error";

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T

oast.LENGTH_SHORT).show();

 }

 }

 private class sendDataAsyncTack extends AsyncTask<String, Void, Boolean> {

 private String extMessage = "";

 @Override

 protected Boolean doInBackground(String... params) {

 String url = params[0];

 String id = params[1];

 String nickname = params.length > 2 ? params[2] : null;

 Boolean result = false;

 try {

 JSONObject jsonData = new JSONObject();

 jsonData.put(ID_KEY, id);

 if (nickname != null)

 jsonData.put(NICK_NAME_KEY, nickname);

 NetworkUtil.sendJSON(url, "", jsonData.toString());

 result = true;

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 } catch (JSONException e) {

 extMessage = e.toString();

 }

 return result;

 }

 @Override

 protected void onPostExecute(Boolean result) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

420 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 String status = result ? "Success" : "Error";

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T

oast.LENGTH_SHORT).show();

 }

 }

}

WebViewAssetsActivity.java
package org.jssec.android.privacypolicynocomprehensive;

import org.jssec.android.privacypolicynocomprehensive.R;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

 // *** POINT 5 *** Place a summary version of the application privacy policy in the assets folder

 private static final String ABST_PP_URL = "file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0

.html";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_webview);

 WebView webView = (WebView) findViewById(R.id.webView);

 WebSettings webSettings = webView.getSettings();

 webSettings.setAllowFileAccess(false);

 webView.loadUrl(ABST_PP_URL);

 }

}

5.5.1.4. Applications that do not incorporate an application privacy policy

Points: (Applications that do not incorporate an application privacy policy)

1. You do not need to display an application privacy policy if your application will only use the

information it obtains within the device.

2. In the documentation for marketplace applications or similar applications, note that the

application does not transmit the information it obtains to the outside world

MainActivity.java
package org.jssec.android.privacypolicynoinfosent;

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.GooglePlayServicesClient;

import com.google.android.gms.location.LocationClient;

import android.location.Location;

import android.net.Uri;

import android.os.Bundle;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 421

import android.content.Intent;

import android.content.IntentSender;

import android.support.v4.app.FragmentActivity;

import android.view.Menu;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity implements GooglePlayServicesClient.ConnectionCallbacks, GooglePl

ayServicesClient.OnConnectionFailedListener {

 private LocationClient mLocationClient = null;

 private final int CONNECTION_FAILURE_RESOLUTION_REQUEST = 257;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 mLocationClient = new LocationClient(this, this, this);

 }

 @Override

 protected void onStart() {

 super.onStart();

 // Used to obtain location data

 if (mLocationClient != null) {

 mLocationClient.connect();

 }

 }

 @Override

 protected void onStop() {

 if (mLocationClient != null) {

 mLocationClient.disconnect();

 }

 super.onStop();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void onStartMap(View view) {

 // *** POINT 1 *** You do not need to display an application privacy policy if your application will only use

the information it obtains within the device.

 if (mLocationClient != null && mLocationClient.isConnected()) {

 Location currentLocation = mLocationClient.getLastLocation();

 if (currentLocation != null) {

 Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse("geo:" + currentLocation.getLatitude() + ","

+ currentLocation.getLongitude()));

 startActivity(intent);

 }

 }

 }

 @Override

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

422 All rights reserved © Japan Smartphone Security Association. Handling privacy data

 public void onConnected(Bundle connectionHint) {

 if (mLocationClient != null && mLocationClient.isConnected()) {

 Location currentLocation = mLocationClient.getLastLocation();

 if (currentLocation != null) {

 String locationData = "Latitude ¥t: " + currentLocation.getLatitude() + "¥n¥tLongitude ¥t: " + current

Location.getLongitude();

 String text = "¥n" + getString(R.string.your_location_title) + "¥n¥t" + locationData;

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + text, Toast.LENGTH_SHORT).show();

 TextView appText = (TextView) findViewById(R.id.appText);

 appText.setText(text);

 }

 }

 }

 @Override

 public void onConnectionFailed(ConnectionResult result) {

 if (result.hasResolution()) {

 try {

 result.startResolutionForResult(this, CONNECTION_FAILURE_RESOLUTION_REQUEST);

 } catch (IntentSender.SendIntentException e) {

 e.printStackTrace();

 }

 }

 }

 @Override

 public void onDisconnected() {

 mLocationClient = null;

 Toast.makeText(this, "Disconnected. Please re-connect.", Toast.LENGTH_SHORT).show();

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 423

Sample description on the marketplace is below.

Figure 5.5-3 Description on the marketplace

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

424 All rights reserved © Japan Smartphone Security Association. Handling privacy data

5.5.2. Rule Book

When working with private date, obey the following rules.

1. Restrict transmissions of user data to the minimum necessary (Required)

2. On first launch (or application update), obtain broad consent to transmit user data that requires

particularly delicate handling or that may be difficult for users to change (Required)

3. Obtain specific consent before transmitting user data that requires particularly delicate handling

 (Required)

4. Provide methods by which the user can review the application privacy policy (Required)

5. Place a summary version of the application privacy policy in the assets folder(Recommended)

6. Provide methods by which transmitted data can be deleted and transmitting data can be stopped

by user operations (Recommended)

7. Separate device-specific IDs from UUIDs and cookies (Recommended)

8. If you will only be using user data within the device, notify the user that data will not be

transmitted externally. (Recommended)

5.5.2.1. Restrict transmissions of user data to the minimum necessary (Required)

When transmitting usage data to external servers or other destinations, restrict transmissions to the

bare minimum necessary to provide service. In particular, you should design that applications have

access to only user data of which purpose of use the user can imagine on the basis of the application

description.

For example, an application that the user can imagine it is an alarm application, must not have

access location data. On the other hand, if an alarm application can sound the alarm depending on

the location of user and its feature is written on the description of the application, the application

may have access to location data.

In cases where information need only be accessed within an application, avoid transmitting it

externally and take other steps to minimize the possibility of inadvertent leakage of user data.

5.5.2.2. On first launch (or application update), obtain broad consent to transmit user data that

requires particularly delicate handling or that may be difficult for users to change (Required)

If an application will transmit to external servers any user data that may be difficult for users to

change, or any user data that requires particularly delicate handling, the application must obtain

advance consent (opt-in) from the user—before the user begins using the application—informing the

user of what types of information will be sent, for what purposes, to servers, and whether or not any

third-party providers will be involved. More specifically, on first launch the application should display

its application privacy policy and confirm that the user has reviewed it and consented. Also, whenever

an application is updated in such a way that it now transmits new types of user data to external

servers, it must again confirm that the user has reviewed and consented to these changes. If the user

does not consent, the application should terminate or otherwise take steps to ensure that all

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 425

functions requiring the transmission of data are disabled.

These steps serve to guarantee that users understand how their data will be handled when they use

an application, providing users with a sense of security and enhancing their trust in the application.

MainActivity.java
protected void onStart() {

 super.onStart();

 (some portions omitted)

 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

 // *** POINT *** On first launch (or application update), obtain broad consent to transmit

user data that will be handled by the application.

 // When the application is updated, it is only necessary to renew the user’s grant of broad

 consent if the updated application will handle new types of user data.

 ConfirmFragment dialog = ConfirmFragment.newInstance(

 R.string.privacyPolicy, R.string.agreePrivacyPolicy,

 DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);

 dialog.setDialogListener(this);

 FragmentManager fragmentManager = getSupportFragmentManager();

 dialog.show(fragmentManager, "dialog");

 }

Figure 5.5-4 Example of broad consent

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

426 All rights reserved © Japan Smartphone Security Association. Handling privacy data

5.5.2.3. Obtain specific consent before transmitting user data that requires particularly delicate

handling (Required)

When transmitting to external servers any user data that requires particularly delicate handling, an

application must obtain advance consent (opt-in) from users for each such type of user data (or for

each feature that involves the transmission of user data); this is in addition to the need to obtain

general consent. If the user does not grant consent, the application must not transmit the

corresponding data to the external server.

This ensures that users can obtain a more thorough understanding of the relationship between an

application’s features (and the services it provides) and the transmission of user data for which the

user granted general consent; at the same time, application providers can expect to obtain user

consent on the basis of more precise decision-making.

MainActivity.java
 public void onSendToServer(View view) {

 // *** POINT *** Obtain specific consent before transmitting user data that requires particularly del

icate handling.

 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.sendLocation, R.string.cofirmSendLocat

ion, DIALOG_TYPE_PRE_CONFIRMATION);

 dialog.setDialogListener(this);

 FragmentManager fragmentManager = getSupportFragmentManager();

 dialog.show(fragmentManager, "dialog");

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 427

Figure 5.5-5 Example of specific consent

5.5.2.4. Provide methods by which the user can review the application privacy policy (Required)

In general, the Android application marketplace will provide links to application privacy policies for

users to review before choosing to install the corresponding application. In addition to supporting

this feature, it is important for applications to provide methods by which users can review application

privacy policies after installing applications on their devices. It is particularly important to provide

methods by which users can easily review application privacy policies in cases involving consent to

transmit user data to external servers to assist users in making appropriate decisions.

MainActivity.java
 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_show_pp:

 // *** POINT *** Provide methods by which the user can review the application privacy polic

y.

 Intent intent = new Intent();

 intent.setClass(this, WebViewAssetsActivity.class);

 startActivity(intent);

 return true;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

428 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Figure 5.5-6 Context menu to show privacy policy

5.5.2.5. Place a summary version of the application privacy policy in the assets folder

 (Recommended)

It is a good idea to place a summary version of the application privacy policy in the assets folder to

ensure that users may review it as necessary. Ensuring that the application privacy policy is present in

the assets folder not only allows users to access it easily at any time, but also avoids the risk that

users may see a counterfeit or corrupted version of the application privacy policy prepared by a

malicious third party.

5.5.2.6. Provide methods by which transmitted data can be deleted and transmitting data can be

stopped by user operations (Recommended)

It is a good idea to provide methods by which user data that has been transmitted to external

servers can be deleted at the user’s request. Similarly, in cases in which the application itself has

stored user data (or a copy thereof) within the device, it is a good idea to provide users with methods

for deleting this data. And, it is a good idea to provide methods by which transmitting user data can

be stopped at the user’s request.

This rule (recommendation) is codified by the “right to be forgotten” promoted in the EU; more

generally, in the future it seems clear that various proposals will call for further strengthening the

rights of users to have their data protected, and for this reason in these guidelines we recommend

the provision of methods for the deletion of user data unless there is some specific reason to do

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 429

otherwise. And, regarding stop transmitting data, it is the one that is defined by the point of view "Do

Not Track (deny track)" of the correspondence by the browser is progressing mainly.

MainActivity.java
 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 (some portions omitted)

 case R.id.action_del_id:

 // *** POINT *** Provide methods by which transmitted data can be deleted by user operation

s.

 new SendDataAsyncTack().execute(DEL_ID_URI, UserId);

 return true;

 }

5.5.2.7. Separate device-specific IDs from UUIDs and cookies (Recommended)

IMEIs and other device-specific IDs should not be transmitted in ways that are tied to user data.

Indeed, if a device -specific ID and a piece of user data are bundled together and released or leaked

to public—even just once—it will be impossible subsequently to change that device -specific ID,

whereupon it will be impossible (or at least difficult) to sever ties between the ID and the user data. In

such cases, it is better to use UUIDs or cookies—that is, variable IDs that are regenerated each time

based on random numbers—in place of device -specific IDs when transmitting together with user

data. This allows an implementation of the notion, discussed above, of the “right to be forgotten.”

MainActivity.java
 @Override

 protected String doInBackground(String... params) {

 // *** POINT *** Use UUIDs or cookies to keep track of user data

 // In this sample we use an ID generated on the server side

 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

 UserId = sp.getString(ID_KEY, null);

 if (UserId == null) {

 // No token in SharedPreferences; fetch ID from server

 try {

 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

 } catch (IOException e) {

 // Catch exceptions such as certification errors

 extMessage = e.toString();

 }

 // Store the fetched ID in SharedPreferences

 sp.edit().putString(ID_KEY, UserId).commit();

 }

 return UserId;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

430 All rights reserved © Japan Smartphone Security Association. Handling privacy data

5.5.2.8. If you will only be using user data within the device, notify the user that data will not be

transmitted externally. (Recommended)

Even in cases in which user data will only be accessed temporarily within the user’s device, it is a

good idea to communicate this fact to the user to ensure that the user’s understanding of the

application’s behavior remains full and transparent. More specifically, users should be informed that

the user data accessed by an application will only be used within the device for a certain specific

purpose and will not be stored or transmitted externally. Possible methods for communicating this

content to users include specifying it within the description of the application on the application

marketplace. Information that is only used temporarily within a device need not be discussed in the

application privacy policy.

Figure 5.5-7 Description on the marketplace

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Handling privacy data 431

5.5.3. Advanced Topics

5.5.3.1. Some background and context regarding privacy policies

For cases in which a smartphone application will obtain user data and transmit this data externally,

it is necessary to prepare and display an application privacy policy to inform users of details such as

the types of data will be collected and the ways in which the data will be handled. The content that

should be included in an application privacy policy is detailed in the Smartphone Privacy Initiative

advocated by JMIC’s SPI. The primary objective of the application privacy policy should be to state

clearly all types of user data that will be accessed by an application, the purposes for which the data

will be used, where the data will be stored, and to what destinations the data will be transmitted.

 A second document, separate from and required in addition to the application privacy policy, is the

Enterprise Privacy Policy, which details how all user data gathered by a corporation from its various

applications will be stored, managed, and disposed of. This Enterprise Privacy Policy corresponds to

the privacy policy that would traditionally have been prepared to comply with Japan’s Personal

Information Protection Law.

A detailed description of proper methods for preparing and displaying privacy policies, together with

a discussion of the roles played by the various different types of privacy policies, may be found in the

document “A Discussion of the Creation and Presentation of Privacy Policies for JSSEC Smartphone

Applications”, available at this URL: http://www.jssec.org/event/20140206/03-1_app_policy.pdf

(Japanese only).

5.5.3.2. Glossary of Terms

In the table below we define a number of terms that are used in these guidelines; these definitions

are taken from the document “A Discussion of the Creation and Presentation of Privacy Policies for

JSSEC Smartphone Applications” (http://www.jssec.org/event/20140206/03-1_app_policy.pdf)

(Japanese only).

Table 5.5-1

Term Description

Enterprise Privacy Policy A privacy policy that defines a corporation’s policies for protecting

personal data. Created in accordance with Japan’s Personal

Information Protection Law.

Application Privacy Policy An application-specific privacy policy.

Created in accordance with the guidelines of the Smartphone

Privacy Initiative (SPI) of Japan’s Ministry of Internal Affairs and

Communications (MIC). It is best to provide both summary and

detailed versions containing easily understandable explanations.

Summary version of the Application Privacy

Policy

A brief document that concisely summarizes what user information

an application will use, for what purpose, and whether or not this

information will be provided to third parties.

Detailed version of the Application Privacy

Policy

A detailed document that complies with the 8 items specified by the

Smartphone Privacy Initiative (SPI) and the Smartphone Privacy

Initiative II (SPI II) of Japan’s Ministry of Internal Affairs and

Communications (MIC).

http://www.jssec.org/event/20140206/03-1_app_policy.pdf
http://www.jssec.org/event/20140206/03-1_app_policy.pdf

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

432 All rights reserved © Japan Smartphone Security Association. Handling privacy data

User data that is easy for users to change Cookies, UUIDs, etc.

User data that is difficulty for users to

change

IMEIs, IMSIs, ICCIDs, MAC addresses, OS-generated IDs, etc.

User data requiring particularly delicate

handling

Location information, address books, telephone numbers, email

addresses, etc.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 433

5.6. Using Cryptography

In the security world, the terms "confidentiality", "integrity", and "availability" are used in analyzing

responses to threats. These three terms refer, respectively, to measures to prevent the third parties

from viewing private data, protections to ensure that the data referenced by users has not been

modified (or techniques for detecting when it has been falsified) and the ability of users to access

services and data at all times. All three of these elements are important to consider when designing

security protections. In particular, encryption techniques are frequently used to ensure

confidentiality and integrity, and Android is equipped with a variety of cryptographic features to

allow applications to realize confidentiality and integrity.

In this section we will use sample code to illustrate methods by which Android applications can

securely implement encryption and decryption (to ensure confidentiality) and message

authentication codes (MAC) or digital signatures (to ensure integrity).

5.6.1. Sample Code

A variety of cryptographic methods have been developed for specific purposes and conditions,

including use cases such as encrypting and decrypting data (to ensure confidentiality) and detecting

falsification of data (to ensure integrity). Here is sample code that is categorized into three broad

groups of cryptography techniques on the basis of the purpose of each technology. The features of

the cryptographic technology in each case should make it possible to choose an appropriate

encryption method and key type. For cases in which more detailed considerations are necessary, see

Section “5.6.3.1 Choosing encryption methods“.

Before designing an implementation that uses encryption technology, be sure to read Section

“5.6.3.3 Measures to Protect against Vulnerabilities in Random-Number Generators“.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

434 All rights reserved © Japan Smartphone Security Association. Using Cryptography

 Protecting data from third-party eavesdropping

Figure 5.6-1

 Detecting falsification of data made by a third party

Figure 5.6-2

5.6.1.1. Encrypting and Decrypting With Password-based Keys

You may use password-based key encryption for the purpose of protecting a user’s confidential data

assets.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption technologies (specifically, technologies that meet the relevant criteria),

Start

Encryption / decryption using
shared-key cryptography

Encryption / decryption using
public-key cryptography

Encryption / decryption using
password-based cryptography

Need to protect important
user data

Encryption will be done on
the terminal, but decryption will be done

elsewhere in a safe place

Yes No

Yes No

Start

Detect data falsification using
shared-key cryptography

(MAC: Message Authentication Code)

Detect data falsification using
public-key cryptography

(digital signatures)

Detect data falsification using
password-based cryptography

(MAC: Message Authentication Code)

Need to protect important
user data

Signature verification will be done
on the terminal, but signing will be done

elsewhere in a safe place

Yes No

Yes No

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 435

including algorithms, block cipher modes, and padding modes.

3. When generating a key from password, use Salt.

4. When generating a key from password, specify an appropriate hash iteration count.

5. Use a key of length sufficient to guarantee the strength of encryption.

AesCryptoPBEKey.java
package org.jssec.android.cryptsymmetricpasswordbasedkey;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.security.spec.InvalidKeySpecException;

import java.util.Arrays;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.PBEKeySpec;

public final class AesCryptoPBEKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant criteria

), including algorithms, block cipher modes, and padding modes.

 // Parameters passed to the getInstance method of the Cipher class: Encryption algorithm, block encryption mode,

padding rule

 // In this sample, we choose the following parameter values: encryption algorithm=AES, block encryption mode=CBC,

 padding rule=PKCS7Padding

 private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";

 // A string used to fetch an instance of the class that generates the key

 private static final String KEY_GENERATOR_MODE = "PBEWITHSHA256AND128BITAES-CBC-BC";

 // *** POINT 3 *** When generating a key from a password, use Salt.

 // Salt length in bytes

 public static final int SALT_LENGTH_BYTES = 20;

 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.

 // Set the number of mixing repetitions used when generating keys via PBE

 private static final int KEY_GEN_ITERATION_COUNT = 1024;

 // *** POINT 5 *** Use a key of length sufficient to guarantee the strength of encryption.

 // Key length in bits

 private static final int KEY_LENGTH_BITS = 128;

 private byte[] mIV = null;

 private byte[] mSalt = null;

 public byte[] getIV() {

 return mIV;

 }

 public byte[] getSalt() {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

436 All rights reserved © Japan Smartphone Security Association. Using Cryptography

 return mSalt;

 }

 AesCryptoPBEKey(final byte[] iv, final byte[] salt) {

 mIV = iv;

 mSalt = salt;

 }

 AesCryptoPBEKey() {

 mIV = null;

 initSalt();

 }

 private void initSalt() {

 mSalt = new byte[SALT_LENGTH_BYTES];

 SecureRandom sr = new SecureRandom();

 sr.nextBytes(mSalt);

 }

 public final byte[] encrypt(final byte[] plain, final char[] password) {

 byte[] encrypted = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant c

riteria), including algorithms, modes, and padding.

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 // *** POINT 3 *** When generating keys from passwords, use Salt.

 SecretKey secretKey = generateKey(password, mSalt);

 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 mIV = cipher.getIV();

 encrypted = cipher.doFinal(plain);

 } catch (NoSuchAlgorithmException e) {

 } catch (NoSuchPaddingException e) {

 } catch (InvalidKeyException e) {

 } catch (IllegalBlockSizeException e) {

 } catch (BadPaddingException e) {

 } finally {

 }

 return encrypted;

 }

 public final byte[] decrypt(final byte[] encrypted, final char[] password) {

 byte[] plain = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant c

riteria), including algorithms, block cipher modes, and padding modes.

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 // *** POINT 3 *** When generating a key from a password, use Salt.

 SecretKey secretKey = generateKey(password, mSalt);

 IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);

 cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);

 plain = cipher.doFinal(encrypted);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 437

 } catch (NoSuchAlgorithmException e) {

 } catch (NoSuchPaddingException e) {

 } catch (InvalidKeyException e) {

 } catch (InvalidAlgorithmParameterException e) {

 } catch (IllegalBlockSizeException e) {

 } catch (BadPaddingException e) {

 } finally {

 }

 return plain;

 }

 private static final SecretKey generateKey(final char[] password, final byte[] salt) {

 SecretKey secretKey = null;

 PBEKeySpec keySpec = null;

 try {

 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant c

riteria), including algorithms, block cipher modes, and padding modes.

 // Fetch an instance of the class that generates the key

 // In this example, we use a KeyFactory that uses SHA256 to generate AES-CBC 128-bit keys.

 SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);

 // *** POINT 3 *** When generating a key from a password, use Salt.

 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.

 // *** POINT 5 *** Use a key of length sufficient to guarantee the strength of encryption.

 keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);

 // Clear password

 Arrays.fill(password, '?');

 // Generate the key

 secretKey = secretKeyFactory.generateSecret(keySpec);

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeySpecException e) {

 } finally {

 keySpec.clearPassword();

 }

 return secretKey;

 }

}

5.6.1.2. Encrypting and Decrypting With Public Keys

In some cases, only data encryption will be performed -using a stored public key- on the application

side, while decryption is performed in a separate safe location (such as a server) under a private key.

In cases such as this, it is possible to use public-key (asymmetric-key) encryption.

Points:

1. Explicitly specify the encryption mode and the padding

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the strength of encryption.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

438 All rights reserved © Japan Smartphone Security Association. Using Cryptography

RsaCryptoAsymmetricKey.java
package org.jssec.android.cryptasymmetrickey;

import java.security.InvalidKeyException;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.interfaces.RSAPublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.PKCS8EncodedKeySpec;

import java.security.spec.X509EncodedKeySpec;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

public final class RsaCryptoAsymmetricKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in

cluding algorithms, block cipher modes, and padding modes..

 // Parameters passed to getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padd

ing rule

 // In this sample, we choose the following parameter values: encryption algorithm=RSA, block encryption mode=NONE

, padding rule=OAEPPADDING.

 private static final String TRANSFORMATION = "RSA/NONE/OAEPPADDING";

 // encryption algorithm

 private static final String KEY_ALGORITHM = "RSA";

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption.

 // Check the length of the key

 private static final int MIN_KEY_LENGTH = 2000;

 RsaCryptoAsymmetricKey() {

 }

 public final byte[] encrypt(final byte[] plain, final byte[] keyData) {

 byte[] encrypted = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes..

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 PublicKey publicKey = generatePubKey(keyData);

 if (publicKey != null) {

 cipher.init(Cipher.ENCRYPT_MODE, publicKey);

 encrypted = cipher.doFinal(plain);

 }

 } catch (NoSuchAlgorithmException e) {

 } catch (NoSuchPaddingException e) {

 } catch (InvalidKeyException e) {

 } catch (IllegalBlockSizeException e) {

 } catch (BadPaddingException e) {

 } finally {

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 439

 return encrypted;

 }

 public final byte[] decrypt(final byte[] encrypted, final byte[] keyData) {

 // In general, decryption procedures should be implemented on the server side;

 // however, in this sample code we have implemented decryption processing within the application to ensure co

nfirmation of proper execution.

 // When using this sample code in real-world applications, be careful not to retain any private keys within th

e application.

 byte[] plain = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes..

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 PrivateKey privateKey = generatePriKey(keyData);

 cipher.init(Cipher.DECRYPT_MODE, privateKey);

 plain = cipher.doFinal(encrypted);

 } catch (NoSuchAlgorithmException e) {

 } catch (NoSuchPaddingException e) {

 } catch (InvalidKeyException e) {

 } catch (IllegalBlockSizeException e) {

 } catch (BadPaddingException e) {

 } finally {

 }

 return plain;

 }

 private static final PublicKey generatePubKey(final byte[] keyData) {

 PublicKey publicKey = null;

 KeyFactory keyFactory = null;

 try {

 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

 publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));

 } catch (IllegalArgumentException e) {

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeySpecException e) {

 } finally {

 }

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption.

 // Check the length of the key

 if (publicKey instanceof RSAPublicKey) {

 int len = ((RSAPublicKey) publicKey).getModulus().bitLength();

 if (len < MIN_KEY_LENGTH) {

 publicKey = null;

 }

 }

 return publicKey;

 }

 private static final PrivateKey generatePriKey(final byte[] keyData) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

440 All rights reserved © Japan Smartphone Security Association. Using Cryptography

 PrivateKey privateKey = null;

 KeyFactory keyFactory = null;

 try {

 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

 privateKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));

 } catch (IllegalArgumentException e) {

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeySpecException e) {

 } finally {

 }

 return privateKey;

 }

}

5.6.1.3. Encrypting and Decrypting Using Pre Shared Keys

Pre shared keys may be used when working with large data sets or to protect the confidentiality of an

application’s or a user’s assets.

Points:

1. Explicitly specify the encryption mode and the padding

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the strength of encryption.

AesCryptoPreSharedKey.java
package org.jssec.android.cryptsymmetricpresharedkey;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public final class AesCryptoPreSharedKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in

cluding algorithms, block cipher modes, and padding modes.

 // Parameters passed to getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padd

ing rule

 // In this sample, we choose the following parameter values: encryption algorithm=AES, block encryption mode=CBC,

 padding rule=PKCS7Padding

 private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";

 // Encryption algorithm

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 441

 private static final String KEY_ALGORITHM = "AES";

 // Length of IV in bytes

 public static final int IV_LENGTH_BYTES = 16;

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption

 // Check the length of the key

 private static final int MIN_KEY_LENGTH_BYTES = 16;

 private byte[] mIV = null;

 public byte[] getIV() {

 return mIV;

 }

 AesCryptoPreSharedKey(final byte[] iv) {

 mIV = iv;

 }

 AesCryptoPreSharedKey() {

 }

 public final byte[] encrypt(final byte[] keyData, final byte[] plain) {

 byte[] encrypted = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 SecretKey secretKey = generateKey(keyData);

 if (secretKey != null) {

 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

 mIV = cipher.getIV();

 encrypted = cipher.doFinal(plain);

 }

 } catch (NoSuchAlgorithmException e) {

 } catch (NoSuchPaddingException e) {

 } catch (InvalidKeyException e) {

 } catch (IllegalBlockSizeException e) {

 } catch (BadPaddingException e) {

 } finally {

 }

 return encrypted;

 }

 public final byte[] decrypt(final byte[] keyData, final byte[] encrypted) {

 byte[] plain = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 SecretKey secretKey = generateKey(keyData);

 if (secretKey != null) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

442 All rights reserved © Japan Smartphone Security Association. Using Cryptography

 IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);

 cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);

 plain = cipher.doFinal(encrypted);

 }

 } catch (NoSuchAlgorithmException e) {

 } catch (NoSuchPaddingException e) {

 } catch (InvalidKeyException e) {

 } catch (InvalidAlgorithmParameterException e) {

 } catch (IllegalBlockSizeException e) {

 } catch (BadPaddingException e) {

 } finally {

 }

 return plain;

 }

 private static final SecretKey generateKey(final byte[] keyData) {

 SecretKey secretKey = null;

 try {

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption

 if (keyData.length >= MIN_KEY_LENGTH_BYTES) {

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant cr

iteria), including algorithms, block cipher modes, and padding modes.

 secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);

 }

 } catch (IllegalArgumentException e) {

 } finally {

 }

 return secretKey;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 443

5.6.1.4. Using Password-based Keys to Detect Data Falsification

You may use password-based (shared-key) encryption to verify the integrity of a user’s data.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.

3. When generating a key from a password, use Salt.

4. When generating a key from a password, specify an appropriate hash iteration count.

5. Use a key of length sufficient to guarantee the MAC strength.

HmacPBEKey.java
package org.jssec.android.signsymmetricpasswordbasedkey;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.security.spec.InvalidKeySpecException;

import java.util.Arrays;

import javax.crypto.Mac;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.PBEKeySpec;

public final class HmacPBEKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in

cluding algorithms, block cipher modes, and padding modes.

 // Parameters passed to the getInstance method of the Mac class: Authentication mode

 private static final String TRANSFORMATION = "PBEWITHHMACSHA1";

 // A string used to fetch an instance of the class that generates the key

 private static final String KEY_GENERATOR_MODE = "PBEWITHHMACSHA1";

 // *** POINT 3 *** When generating a key from a password, use Salt.

 // Salt length in bytes

 public static final int SALT_LENGTH_BYTES = 20;

 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.

 // Set the number of mixing repetitions used when generating keys via PBE

 private static final int KEY_GEN_ITERATION_COUNT = 1024;

 // *** POINT 5 *** Use a key of length sufficient to guarantee the MAC strength.

 // Key length in bits

 private static final int KEY_LENGTH_BITS = 160;

 private byte[] mSalt = null;

 public byte[] getSalt() {

 return mSalt;

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

444 All rights reserved © Japan Smartphone Security Association. Using Cryptography

 HmacPBEKey() {

 initSalt();

 }

 HmacPBEKey(final byte[] salt) {

 mSalt = salt;

 }

 private void initSalt() {

 mSalt = new byte[SALT_LENGTH_BYTES];

 SecureRandom sr = new SecureRandom();

 sr.nextBytes(mSalt);

 }

 public final byte[] sign(final byte[] plain, final char[] password) {

 return calculate(plain, password);

 }

 private final byte[] calculate(final byte[] plain, final char[] password) {

 byte[] hmac = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 Mac mac = Mac.getInstance(TRANSFORMATION);

 // *** POINT 3 *** When generating a key from a password, use Salt.

 SecretKey secretKey = generateKey(password, mSalt);

 mac.init(secretKey);

 hmac = mac.doFinal(plain);

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeyException e) {

 } finally {

 }

 return hmac;

 }

 public final boolean verify(final byte[] hmac, final byte[] plain, final char[] password) {

 byte[] hmacForPlain = calculate(plain, password);

 if (Arrays.equals(hmac, hmacForPlain)) {

 return true;

 }

 return false;

 }

 private static final SecretKey generateKey(final char[] password, final byte[] salt) {

 SecretKey secretKey = null;

 PBEKeySpec keySpec = null;

 try {

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 // Fetch an instance of the class that generates the key

 // In this example, we use a KeyFactory that uses SHA1 to generate AES-CBC 128-bit keys.

 SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 445

 // *** POINT 3 *** When generating a key from a password, use Salt.

 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.

 // *** POINT 5 *** Use a key of length sufficient to guarantee the MAC strength.

 keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);

 // Clear password

 Arrays.fill(password, '?');

 // Generate the key

 secretKey = secretKeyFactory.generateSecret(keySpec);

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeySpecException e) {

 } finally {

 keySpec.clearPassword();

 }

 return secretKey;

 }

}

5.6.1.5. Using Public Keys to Detect Data Falsification

When working with data whose signature is determined using private keys stored in distinct, secure

locations (such as servers), you may utilize public-key (asymmetric-key) encryption for applications

involving the storage of public keys on the application side solely for the purpose of authenticating

data signatures.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the signature strength.

RsaSignAsymmetricKey.java
package org.jssec.android.signasymmetrickey;

import java.security.InvalidKeyException;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.Signature;

import java.security.SignatureException;

import java.security.interfaces.RSAPublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.PKCS8EncodedKeySpec;

import java.security.spec.X509EncodedKeySpec;

public final class RsaSignAsymmetricKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in

cluding algorithms, block cipher modes, and padding modes.

 // Parameters passed to the getInstance method of the Cipher class: Encryption algorithm, block encryption mode,

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

446 All rights reserved © Japan Smartphone Security Association. Using Cryptography

padding rule

 // In this sample, we choose the following parameter values: encryption algorithm=RSA, block encryption mode=NONE

, padding rule=OAEPPADDING.

 private static final String TRANSFORMATION = "SHA256withRSA";

 // encryption algorithm

 private static final String KEY_ALGORITHM = "RSA";

 // *** POINT 3 *** Use a key of length sufficient to guarantee the signature strength.

 // Check the length of the key

 private static final int MIN_KEY_LENGTH = 2000;

 RsaSignAsymmetricKey() {

 }

 public final byte[] sign(final byte[] plain, final byte[] keyData) {

 // In general, signature procedures should be implemented on the server side;

 // however, in this sample code we have implemented signature processing within the application to ensure con

firmation of proper execution.

 // When using this sample code in real-world applications, be careful not to retain any private keys within th

e application.

 byte[] sign = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 Signature signature = Signature.getInstance(TRANSFORMATION);

 PrivateKey privateKey = generatePriKey(keyData);

 signature.initSign(privateKey);

 signature.update(plain);

 sign = signature.sign();

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeyException e) {

 } catch (SignatureException e) {

 } finally {

 }

 return sign;

 }

 public final boolean verify(final byte[] sign, final byte[] plain, final byte[] keyData) {

 boolean ret = false;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 Signature signature = Signature.getInstance(TRANSFORMATION);

 PublicKey publicKey = generatePubKey(keyData);

 signature.initVerify(publicKey);

 signature.update(plain);

 ret = signature.verify(sign);

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 447

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeyException e) {

 } catch (SignatureException e) {

 } finally {

 }

 return ret;

 }

 private static final PublicKey generatePubKey(final byte[] keyData) {

 PublicKey publicKey = null;

 KeyFactory keyFactory = null;

 try {

 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

 publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));

 } catch (IllegalArgumentException e) {

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeySpecException e) {

 } finally {

 }

 // *** POINT 3 *** Use a key of length sufficient to guarantee the signature strength.

 // Check the length of the key

 if (publicKey instanceof RSAPublicKey) {

 int len = ((RSAPublicKey) publicKey).getModulus().bitLength();

 if (len < MIN_KEY_LENGTH) {

 publicKey = null;

 }

 }

 return publicKey;

 }

 private static final PrivateKey generatePriKey(final byte[] keyData) {

 PrivateKey privateKey = null;

 KeyFactory keyFactory = null;

 try {

 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

 privateKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));

 } catch (IllegalArgumentException e) {

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeySpecException e) {

 } finally {

 }

 return privateKey;

 }

}

5.6.1.6. Using Pre Shared Keys to Detect Data Falsification

You may use pre-shared keys to verify the integrity of application assets or user assets.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

448 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the MAC strength.

HmacPreSharedKey.java
package org.jssec.android.signsymmetricpresharedkey;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import javax.crypto.Mac;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

public final class HmacPreSharedKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in

cluding algorithms, block cipher modes, and padding modes.

 // Parameters passed to the getInstance method of the Mac class: Authentication mode

 private static final String TRANSFORMATION = "HmacSHA256";

 // Encryption algorithm

 private static final String KEY_ALGORITHM = "HmacSHA256";

 // *** POINT 3 *** Use a key of length sufficient to guarantee the MAC strength.

 // Check the length of the key

 private static final int MIN_KEY_LENGTH_BYTES = 16;

 HmacPreSharedKey() {

 }

 public final byte[] sign(final byte[] plain, final byte[] keyData) {

 return calculate(plain, keyData);

 }

 public final byte[] calculate(final byte[] plain, final byte[] keyData) {

 byte[] hmac = null;

 try {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter

ia), including algorithms, block cipher modes, and padding modes.

 Mac mac = Mac.getInstance(TRANSFORMATION);

 SecretKey secretKey = generateKey(keyData);

 if (secretKey != null) {

 mac.init(secretKey);

 hmac = mac.doFinal(plain);

 }

 } catch (NoSuchAlgorithmException e) {

 } catch (InvalidKeyException e) {

 } finally {

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 449

 return hmac;

 }

 public final boolean verify(final byte[] hmac, final byte[] plain, final byte[] keyData) {

 byte[] hmacForPlain = calculate(plain, keyData);

 if (hmacForPlain != null && Arrays.equals(hmac, hmacForPlain)) {

 return true;

 }

 return false;

 }

 private static final SecretKey generateKey(final byte[] keyData) {

 SecretKey secretKey = null;

 try {

 // *** POINT 3 *** Use a key of length sufficient to guarantee the MAC strength.

 if (keyData.length >= MIN_KEY_LENGTH_BYTES) {

 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant cr

iteria), including algorithms, block cipher modes, and padding modes.

 secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);

 }

 } catch (IllegalArgumentException e) {

 } finally {

 }

 return secretKey;

 }

}

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

450 All rights reserved © Japan Smartphone Security Association. Using Cryptography

5.6.2. Rule Book

When using encryption technology, it is important to obey the following rules.

1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the Padding

 (Required)

2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)

3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)

4. When Generating Keys from Passwords, Use Salt (Required)

5. When Generating Key from Password, Specify Appropriate Hash Iteration Count

 (Required)

6. Take Steps to Increase the Strengths of Passwords (Recommended)

5.6.2.1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the

Padding (Required)

When using cryptographic technologies such as encryption and data verification, it is important that

the encryption mode and the padding be explicitly specified. When using encryption in Android

application development, you will primarily use the Cipher class within java.crypto. To use the Cipher

class, you will first create an instance of Cipher class object by specifying the type of encryption to

use. This specification is called a Transformation, and there are two formats in which

Transformations may be specified:

 “algorithm/mode/padding”

 “algorithm”

In the latter case, the encryption mode and the padding will be implicitly set to the appropriate

default values for the encryption service provider that Android may access. These default values are

chosen to prioritize convenience and compatibility and in some cases may not be particularly secure

choices. For this reason, to ensure proper security protections it is mandatory to use the former of

the two formats, in which the encryption mode and padding are explicitly specified.

5.6.2.2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)

When using cryptographic technologies it is important to choose strong algorithms which meet

certain criteria. In addition, in cases where an algorithm allows multiple key lengths, it is important to

consider the application’s full product lifetime and to choose keys of length sufficient to guarantee

security. Moreover, for some encryption modes and padding modes there exist known strategies of

attack; it is important to make choices that are robust against such threats.

Indeed, choosing weak encryption methods can have disastrous consequences; for example, files

which were supposedly encrypted to prevent eavesdropping by a third party may in fact be only

ineffectually protected and may allow third-party eavesdropping. Because the continual progress of

IT leads to continual improvements in encryption-analysis technologies, it is crucial to consider and

select algorithms that can guarantee security throughout the entire period during which you expect

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 451

an application to remain in operation.

Standards for actual encryption technologies differ from country to country, as detailed in the tables

below.

Table 5.6-1 NIST(USA) NIST SP800-57

Algorithm

Lifetime

Symmetric-key

encryption

Asymmetric-key

encryption

Elliptic-curve

encryption

HASH

(digital

signature,

HASH)

HASH (HMA, KD,

random-number

generation)

～2010 80 1024 160 160 160

～2030 112 2048 224 224 160

2030～ 128 3072 256 256 160

Unit: bit

Table 5.6-2 ECRYPT II (EU)

Algorithm lifetime Symmetric-key

encryption

Asymmetric-key

encryption

Elliptic-curve

encryption

HASH

2009～2012 80 1248 160 160

2009～2020 96 1776 192 192

2009～2030 112 2432 224 224

2009～2040 128 3248 256 256

2009～ 256 15424 512 512

Unit: bit

Table 5.6-3 CRYPTREC(Japan) CRYPTREC Ciphers List

Technology family Name

Public-key

cryptography

Signature DSA,ECDSA,RSA-PSS,RSASSA-PKCS1-V1_5

Confidentiality RSA-OAEP

Key sharing DH,ECDH

Shared-key

cryptography

64 bit block

encryption

3-key Triple DES

128 bit block

encryption

AES,Camellia

Stream encryption KCipher-2

Hash function SHA-256,SHA-384,SHA-512

Encryption usage

mode

Cipher mode CBC,CFB,CTR,OFB

Authenticated

cipher modes

CCM,GCM

Message authentication codes CMAC,HMAC

Entity authentication ISO/IEC 9798-2,ISO/IEC 9798-3

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

452 All rights reserved © Japan Smartphone Security Association. Using Cryptography

5.6.2.3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)

In password-based encryption, when generating an encryption key based on a password input by a

user, do not store the password within the device. The advantage of password-based encryption is

that it eliminates the need to manage encryption keys; storing the password on the device eliminates

this advantage. Needless to say, storing passwords on a device invites the risk of eavesdropping by

other applications, and thus storing passwords on devices is also unacceptable for security reasons.

5.6.2.4. When Generating Keys from Passwords, Use Salt (Required)

In password-based encryption, when generating an encryption key based on a password input by a

user, always use Salt. In addition, if you are providing features to different users within the same

device, use a different Salt for each user. The reason for this is that, if you generate encryption keys

using only a simple hash function without using Salt, the passwords may be easily recovered using a

technique known as a “rainbow table.” When Salt is applied, keys generated from the same password

will be distinct (different hash values), preventing the use of a rainbow table to search for keys.

(Sample) When generating keys from passwords, use salt
 public final byte[] encrypt(final byte[] plain, final char[] password) {

 byte[] encrypted = null;

 try {

 // *** POINT *** Explicitly specify the encryption mode and the padding.

 // *** POINT *** Use strong encryption methods (specifically, technologies that meet the re

levant criteria), including algorithms, block cipher modes, and padding modes.

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 // *** POINT *** When generating keys from passwords, use Salt.

 SecretKey secretKey = generateKey(password, mSalt);

5.6.2.5. When Generating Key from Password, Specify Appropriate Hash Iteration Count

 (Required)

In password-based encryption, when generating an encryption key based on a password input by a

user, you will choose a number of times for the hashing procedure to be repeated during the process

of key generation (“stretching”); it is important to specify this number large enough to ensure

security. In general, the iteration count equal to 1,000 or greater is considered sufficient. If you are

using the key to protect even more valuable assets, specify a count equal to 1,000,000 or greater.

Because the processing time required for a single computation of the hash function is minuscule, it

may be easy for attackers to launch brute-force attacks. Thus, by using the stretching method - in

which hash processing is repeated many times - we can purposely ensure that the process consumes

significant time and thus that brute-force attacks are more costly. Note that the number of stretching

repetitions will also affect your application’s processing speed, so take care in choosing an

appropriate value.

(Sample) When generating key from password, Set hash iteration counts
 private static final SecretKey generateKey(final char[] password, final byte[] salt) {

 SecretKey secretKey = null;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 453

 PBEKeySpec keySpec = null;

 (Omit)

 // *** POINT *** When generating a key from password, use Salt.

 // *** POINT *** When generating a key from password, specify an appropriate hash iteration

 count.

 // *** POINT *** Use a key of length sufficient to guarantee the strength of encryption.

 keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);

5.6.2.6. Take Steps to Increase the Strengths of Passwords (Recommended)

In password-based encryption, when generating an encryption key based on a password input by a

user, the strength of the generated key is strongly affected by the strength of the user’s password,

and thus it is desirable to take steps to strengthen the passwords received from users. For example,

you might require that passwords be at least 8 characters long and contain multiple types of

characters—perhaps at least one letter, one numeral, and one symbol.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

454 All rights reserved © Japan Smartphone Security Association. Using Cryptography

5.6.3. Advanced Topics

5.6.3.1. Choosing encryption methods

In the above sample codes, we showed implementation examples involving three types of

cryptographic methods each for encryption and decryption and for detecting data falsification. You

may use “Figure 5.6-1“, “Figure 5.6-2“ to make a coarse-grained choice of which cryptographic

method to use based on your application. On the other hand, more fine-tuned choices of

cryptographic methods require more detailed comparisons of the features of various methods. In

what follows we consider some of these comparisons.

 Comparison of cryptographic methods for encryption and decryption

Public-key cryptography has high processing cost and thus is not well suited for large-scale data

processing. However, because the keys used for encryption and for decryption are different, it is

relatively easy to manage keys in cases where you handle only the public key on the application side

(i.e. you only perform encryption) and perform decryption in a separate (secure) location. Shared-key

cryptography is an all-purpose encryption scheme with few limitations, but in this case the same key

is used for encryption and decryption, and thus it is necessary to store the key securely within the

application, making key management difficult. Password-based cryptography (shared-key

cryptography based on a password) generates keys from user-specified passwords, obviating the

need to store key-related secrets within devices. This method is used for applications protecting only

user assets but not application assets. Because the strength of the encryption depends on the

strength of the password, it is necessary to choose passwords whose complexity grows in proportion

to the value of assets to be protected. Please refer to “5.6.2.6 Take Steps to Increase the Strengths of

Passwords (Recommended)“.

Table 5.6-4 Comparison of cryptographic methods for encryption and decryption

Encryption method

Item

Public key Shared key Password-based

Processing of large-scale

data

NO (processing cost

too high)

OK OK

Protecting application (or

service) assets

OK OK NO (allows

eavesdropping by

users)

Protecting user assets OK OK OK

Strength of encryption Depends on key

length

Depends on key

length

Depends on strength

of password, on Salt,

and on the number of

hash repetitions

Key storage Easy (only public keys) Difficult Easy

Processing carried out by

application

Encryption (decryption

is done on servers or

Encryption and

decryption

Encryption and

decryption

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 455

elsewhere)

 Comparison of cryptographic methods for detecting data falsification

The comparison here is similar to that discussed above for encryption and decryption, with the

exception that that table item corresponding to data size is no longer relevant.

Table 5.6-5 Comparison of cryptographic methods for detecting data falsification

Encryption method

Item

Public key Shared key Password-based

Protecting application (or

service) assets

OK OK NO (allows

falsification by

users)

Protecting user assets OK OK OK

Strength of encryption Depends on key

length

Depends on key

length

Depends on strength

of password, on Salt,

and on the number of

hash repetitions

Key storage Easy (only public keys) Difficult

Please refer to

“5.6.3.4Protecting

Key“

Easy

Processing carried out by

application

Signature verification

(signing is done on

servers or elsewhere)

MAC computation;

MAC verification

MAC computation;

MAC verification

MAC: Message authentication code

Note that these guidelines are primarily concerned with the protection of assets deemed low-level or

medium-level assets according to the classification discussed in Section “3.1.3 Asset Classification

and Protective Countermeasures“. Because the use of encryption involves the consideration of a

greater number of issues—such as the problem of key storage—than other preventative measures

(such as access controls), encryption should only be considered for cases in which assets cannot be

adequately protected within the Android OS security mode.

5.6.3.2. Generation of random numbers

When using cryptographic technologies, it is extremely important to choose strong encryption

algorithms and encryption modes and sufficiently long keys in order to ensure the security of the

data handled by applications and services. However, even if all of these choices are made

appropriately, the strength of the security guaranteed by the algorithms in use plummets

immediately to zero when the keys that form the linchpin of the security protocol are leaked or

guessed.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

456 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Even for the initial vector (IV) used for shared-key encryption under AES and similar protocols, or the

Salt used for password-based encryption, large biases can make it easy for third parties to launch

attacks, heightening the risk of exposure to data leakage or corruption. To prevent such situations, it

is necessary to generate keys and IVs in such a way as to make it difficult for third parties to guess

their values, and random numbers play an immensely important role in ensuring the realization of

this imperative. A device that generates random numbers is called a random-number generator.

Whereas hardware random-number generators (RNGs) may use sensors or other devices to produce

random numbers by measuring natural phenomena that cannot be predicted or reproduced, it is

more common to encounter software-implemented random-number generators, known as

pseudorandom-number generators (PRNGS).

In Android applications, random numbers of sufficient security for use in encryption may be

generated via the SecureRandom class. The functionality of the SecureRandom class is provided by

an implementation known as Provider. It is possible for multiple Providers (implementations) to exist

internally, and if no Provider is clearly specified than the default Provider will be selected. For this

reason, it is also possible to use SecureRandom in implementation without being aware of the

existence of Providers. In what follows we offer examples to demonstrate the use of SecureRandom.

Note that SecureRandom may exhibit a number of weaknesses depending on the Android version,

requiring preventative measures to be put in place in implementations. Please refer to “5.6.3.3

Measures to Protect against Vulnerabilities in Random-Number Generators“.

Using SecureRandom (using the default implementation)
import java.security.SecureRandom;

(snip...)

 SecureRandom random = new SecureRandom();

 byte[] randomBuf = new byte [128];

 random.nextBytes(randomBuf);

(snip...)

Using SecureRandom (with explicit specification of the algorithm)
import java.security.SecureRandom;

(snip...)

 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

 byte[] randomBuf = new byte [128];

 random.nextBytes(randomBuf);

(snip...)

Using SecureRandom (with explicit specification of the implementation (Provider))
import java.security.SecureRandom;

(snip...)

 SecureRandom random = SecureRandom.getInstance("SHA1PRNG", “Crypto”);

 byte[] randomBuf = new byte [128];

 random.nextBytes(randomBuf);

(snip...)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 457

The pseudorandom-number generators found in programs like SecureRandom typically operate on

the basis of a process like that illustrated in “Figure 5.6-3 Inner process of pseudorandom number

generator“. A random number seed is entered to initialize the internal state; thereafter, the internal

state is updated each time a random number is generated, allowing the generation of a sequence of

random numbers.

Figure 5.6-3 Inner process of pseudorandom number generator

Random number seeds

The seed plays an extremely important role in a pseudorandom number generator (PRNG).

As noted above, PRNGs must be initialized by specifying a seed. Thereafter, the process used to

generate random numbers is a deterministic algorithm, so if you specify the same seed you will get

the same sequence of random numbers. This means that if a third party gains access to (that is,

eavesdrops upon) or guesses the seed of a PRNG, he can produce the same sequence of random

numbers, thus destroying the properties of confidentiality and integrity that the random numbers

provide.

For this reason, the seed of a random number generator is itself a highly confidential piece of

information—and one which must be chosen in such a way as to be impossible to predict or guess.

For example, time information or device-specific data (such as a MAC address, IMEI, or Android ID)

should not be used to construct RNG seeds. On many Android devices, /dev/urandom or

/dev/random is available, and the default implementation of SecureRandom provided by Android

uses these device files to determine seeds for random number generators. As far as confidentiality is

concerned, as long as the RNG seed exists only in memory, there is little risk of discovery by third

parties with the exception of malware tools that acquire root privileges. If you need to implement

security measures that remain effective even on rooted devices, consult an expert in secure design

and implementation.

The internal state of a pseudorandom number generator

The internal state of a pseudorandom number generator is initialized by the seed, then updated each

time a random number is generated. Just as for the case of PRNGs initialized by the same seed, two

PRNGs with the same internal state will subsequently produce precisely the same sequence of

random numbers. Consequently, it is also important to protect the internal state against

Seed
Internal

state
Random
number

Random-
number

generation

Update internal state

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

458 All rights reserved © Japan Smartphone Security Association. Using Cryptography

eavesdropping by third parties. However, because the internal state exists in memory, there is little

risk of discovery by third parties except in cases involving malware tools that acquire root access. If

you need to implement security measures that remain effective even on rooted devices, consult an

expert in secure design and implementation.

5.6.3.3. Measures to Protect against Vulnerabilities in Random-Number Generators

The “Crypto” Provider implementation of SecureRandom, found in Android versions 4.3.x and earlier,

suffered from the defect of insufficient entropy (randomness) of the internal state. In particular, in

Android versions 4.1.x and earlier, the “Crypto” Provider was the only available implementation of

SecureRandom, and thus most applications that use SecureRandom either directly or indirectly were

affected by this vulnerability. Similarly, the “AndroidOpenSSL” Provider offered as the default

implementation of SecureRandom in Android versions 4.2 and later exhibited the defect that the

majority of the data items used by OpenSSL as random-number seeds were shared between

applications (Android versions 4.2.x—4.3.x), creating a vulnerability in which any one application can

easily predict the random numbers generated by other applications. The table below details the

impact of the vulnerabilities present in various versions of Android OS.

Table 5.6-6 Android OS version and feature influenced by each vulnerabilities

Vulnerability

Android OS

Insufficient entropy in the

“Crypto” Provider implementation

of SecureRandom

Can guess the random number seeds

used by OpenSSL in other applications

Android 4.1.x and

before

-Default implementation of

SecureRandom

-Explicit use of Crypto Provider

-Encryption functionality

provided by the Cipher class

-HTTPS communication

functionality, etc.

No impact

Android 4.2 - 4.3.x -Use a clearly identified Crypto

Provider

-Default implementation of

SecureRandom

-Explicit use of AndroidOpenSSL Provider

-Direct use of random-number

generation functionality provided by

OpenSSL

-Encryption functionality provided by the

Cipher class

-HTTPS communication functionality,

etc.

Android 4.4 and

later

No impact No impact

Since August 2013, patches that remove these Android OS vulnerabilities have been distributed by

Google to its partners (device makers, etc.)

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 459

However, these vulnerabilities associated with SecureRandom affected a wide range of

applications—including encryption functionality and HTTPS communication functionality—and

presumably many devices remain unpatched. For this reason, when designing applications targeted

at Android 4.3.x and earlier, we recommend that you incorporate the countermeasures

(implementations) discussed in the following site.

http://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html

5.6.3.4. Protecting Key

When using encryption techniques to ensure the security (confidentiality and integrity) of sensitive

data, even the most robust encryption algorithm and key lengths will not protect data from

third-party attacks if the data content of the keys themselves are readily available. For this reason,

the proper handling of keys is among the most important items to consider when using encryption.

Of course, depending on the level of the assets you are attempting to protect, the proper handling of

keys may require extremely sophisticated design and implementation techniques which exceed the

scope of these guidelines. Here we can only offer some basic ideas regarding the secure handling of

keys for various applications and key storage locations; our discussion does not extend to specific

implementation methods, and as necessary we recommend that you consult an expert in secure

design and implementation for Android.

To begin, “Figure 5.6-4 Places of encrypt keys and strategies for protecting them.“ illustrates the

various places in which keys used for encryption and related purposes in Android smartphones and

tablets may exist, and outlines strategies for protecting them.

Figure 5.6-4 Places of encrypt keys and strategies for protecting them.

The table below summarizes the asset classes of the assets protected by keys, as well as the

Application directory
(/data/data/<app>/)

Application process

Memory

External memory device
(e.g. SD cards)Encrypti

on /
obfuscati

on

Password

Protected
by user’s
memory

APK file

Obfuscat
ion

Prevent access
from other
applications

and/or encrypt
/ obfuscate

http://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

460 All rights reserved © Japan Smartphone Security Association. Using Cryptography

protection policies appropriate for various asset owners. For more information on asset classes,

please refer to “3.1.3 Asset Classification and Protective Countermeasures“.

Table 5.6-7 Asset classification and protective countermeasures

Asset owner Device User Application / Service Provider

Asset level High Medium / Low High Medium / Low

Key storage

location

Protection policy

User’s memory Improve password strength Disallow the use of user

passwords

Application

directory

(non-public

storage)

Encryption or

obfuscation of

key data

Forbid

read/write

operations

from outside

the application

Encryption or

obfuscation of

key data

Forbid

read/write

operations

from outside

the application

APK file Obfuscation of key data

Note: Be aware that most Java obfuscation tools, such as Proguard, do

not obfuscate data (character) strings.

SD card or

elsewhere (public

storage)

Encryption or obfuscation of key data

In what follows, we will augment the discussion of protective measures appropriate for the various

places in which keys may be stored.

Keys stored in a user’s memory

Here we are considering password-based encryption. When keys are generated from passwords, the

key storage location is the user’s memory, so there is no danger of leakage due to malware. However,

depending on the strength of the password, it may be easy to reproduce keys. For this reason, it is

necessary to take steps—similar to those taken when asking users to specify service login

passwords—to ensure the strength of passwords; for example, passwords may be restricted by the UI,

or warning messages may be used. Please refer to “5.6.2.6 Take Steps to Increase the Strengths of

Passwords (Recommended)“. Of course, when passwords are stored in a user’s memory one must

keep in mind the possibility that the password will be forgotten. To ensure that data may be

recovered in the event of a forgotten password, it is necessary to store backup data in a secure

location other than the device (for example, on a server).

Keys stored in application directories

When keys are stored in Private mode in application directories, the key data cannot be read by other

applications. In addition, if the application has disabled backup functionality, users will also be

unable to access the data. Thus, when storing keys used to protect application assets in application

directories, you should disable backups.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using Cryptography 461

However, if you also need to protect keys from applications or users with root privileges, you must

encrypt or obfuscate the keys. For keys used to protect user assets, you may use password-based

encryption. For keys used to encrypt application assets that you wish to keep private from users as

well, you must store the key used for key encryption in an APK file, and the key data must be

obfuscated.

Keys stored in APK Files

Because data in APK files may be accessed, in general this is not an appropriate place to store

confidential data such as keys. When storing keys in APK files, you must obfuscate the key data and

take steps to ensure that the data may not be easily read from the APK file.

Keys stored in public storage locations (such as SD cards)

Because public storage can be accessed by all applications, in general it is not an appropriate place to

store confidential data such as passwords. When storing keys in public locations, it is necessary to

encrypt or obfuscate the key data to ensure that the data cannot be easily accessed. See also the

protections suggested above under “Keys stored in application directories” for cases in which keys

must also be protected from applications or users with root privileges.

Handling of keys within process memory

When using the cryptographic technologies available in Android, key data that have been encrypted

or obfuscated somewhere other than the application process shown in the figure above must be

decrypted (or, for password-based keys, generated) in advance of the encryption procedure; in this

case, key data will reside in process memory in unencrypted form. On the other hand, the memory of

an application process may not generally be read by other applications, so if the asset class falls

within the range covered by these guidelines there is no particular need to take specific steps to

ensure security. In cases where—due to the specific objective in question or to the level of the assets

handled by an application—it is unacceptable for key data to appear in unencrypted form (even

though they are present that way in process memory), it may be necessary to resort to obfuscation or

other techniques for key data and encryption logic. However, these methods are difficult to realize at

the Java level; instead, you will use obfuscation tools at the JNI level. Such measures fall outside the

scope of these guidelines; consult an expert in secure design and implementation.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

462 All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features

5.7. Using fingerprint authentication features

A variety of methods for biological authentication are currently under research and development,

with methods using facial information and vocal signatures particularly prominent. Among these

methods, methods for using fingerprint authentication to identify individuals have been used since

ancient times, and are used today for purposes such as signatures (by thumbprint) and crime

investigation. Applications of fingerprinting have also advanced in several areas of the computer

world, and in recent years these methods have begun to enjoy wide recognition as highly convenient

techniques (offering advantages such as ease of input) for use in areas such as identifying the owner

of a smartphone (primarily for unlocking screens).

Capitalizing on these trends, Android 6.0(API Level 23) incorporates a framework for fingerprint

authentication on terminals, which allows apps to make use of fingerprint authentication features to

identify individuals. In what follows we discuss some security precautions to keep in mind when

using fingerprint authentication.

5.7.1. Sample Code

Below we present sample code to allow an app to use Android's fingerprint authentication features.

Points:

1. Declare the use of the USE_FINGERPRINT permission

2. Obtain an instance from the "AndroidKeyStore" Provider

3. Notify users that fingerprint registration will be required to create a key

4. When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets

standards)

5. When creating (registering) keys, enable requests for user (fingerprint) authentication (do not

specify the duration over which authentication is enabled)

6. Design your app on the assumption that the status of fingerprint registration will change

between when keys are created and when keys are used

7. Restrict encrypted data to items that can be restored (replaced) by methods other than

fingerprint authentication

MainActivity.java
package authentication.fingerprint.android.jssec.org.fingerprintauthentication;

import android.app.AlertDialog;

import android.hardware.fingerprint.FingerprintManager;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

import android.util.Base64;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import java.text.SimpleDateFormat;

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features 463

import java.util.Date;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

public class MainActivity extends AppCompatActivity {

 private FingerprintAuthentication mFingerprintAuthentication;

 private static final String SENSITIVE_DATA = "sensitive data";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 mFingerprintAuthentication = new FingerprintAuthentication(this);

 Button button_fingerprint_auth = (Button) findViewById(R.id.button_fingerprint_auth);

 button_fingerprint_auth.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (!mFingerprintAuthentication.isAuthenticating()) {

 if (authenticateByFingerprint()) {

 showEncryptedData(null);

 setAuthenticationState(true);

 }

 } else {

 mFingerprintAuthentication.cancel();

 }

 }

 });

 }

 private boolean authenticateByFingerprint() {

 if (!mFingerprintAuthentication.isFingerprintHardwareDetected()) {

 // Terminal is not equipped with a fingerprint sensor

 return false;

 }

 if (!mFingerprintAuthentication.isFingerprintAuthAvailable()) {

 // *** POINT 3 *** Notify users that fingerprint registration will be required to create a key

 new AlertDialog.Builder(this)

 .setTitle(R.string.app_name)

 .setMessage("No fingerprint information has been registered.¥n" +

 "Click ¥"Security¥" on the Settings menu to register fingerprints. ¥n" +

 "Registering fingerprints allows easy authentication.")

 .setPositiveButton("OK", null)

 .show();

 return false;

 }

 // Callback that receives the results of fingerprint authentication

 FingerprintManager.AuthenticationCallback callback = new FingerprintManager.AuthenticationCallback() {

 @Override

 public void onAuthenticationError(int errorCode, CharSequence errString) {

 showMessage(errString, R.color.colorError);

 reset();

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

464 All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features

 @Override

 public void onAuthenticationHelp(int helpCode, CharSequence helpString) {

 showMessage(helpString, R.color.colorHelp);

 }

 @Override

 public void onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

 Cipher cipher = result.getCryptoObject().getCipher();

 try {

 // *** POINT 7*** Restrict encrypted data to items that can be restored (replaced) by methods other

 than fingerprint authentication

 byte[] encrypted = cipher.doFinal(SENSITIVE_DATA.getBytes());

 showEncryptedData(encrypted);

 } catch (IllegalBlockSizeException | BadPaddingException e) {

 }

 showMessage(getString(R.string.fingerprint_auth_succeeded), R.color.colorAuthenticated);

 reset();

 }

 @Override

 public void onAuthenticationFailed() {

 showMessage(getString(R.string.fingerprint_auth_failed), R.color.colorError);

 }

 };

 if (mFingerprintAuthentication.startAuthentication(callback)) {

 showMessage(getString(R.string.fingerprint_processing), R.color.colorNormal);

 return true;

 }

 return false;

 }

 private void setAuthenticationState(boolean authenticating) {

 Button button = (Button) findViewById(R.id.button_fingerprint_auth);

 button.setText(authenticating ? R.string.cancel : R.string.authenticate);

 }

 private void showEncryptedData(byte[] encrypted) {

 TextView textView = (TextView) findViewById(R.id.encryptedData);

 if (encrypted != null) {

 textView.setText(Base64.encodeToString(encrypted, 0));

 } else {

 textView.setText("");

 }

 }

 private String getCurrentTimeString() {

 long currentTimeMillis = System.currentTimeMillis();

 Date date = new Date(currentTimeMillis);

 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss.SSS");

 return simpleDateFormat.format(date);

 }

 private void showMessage(CharSequence msg, int colorId) {

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features 465

 TextView textView = (TextView) findViewById(R.id.textView);

 textView.setText(getCurrentTimeString() + " :¥n" + msg);

 textView.setTextColor(getResources().getColor(colorId, null));

 }

 private void reset() {

 setAuthenticationState(false);

 }

}

FingerprintAuthentication.java
package authentication.fingerprint.android.jssec.org.fingerprintauthentication;

import android.app.KeyguardManager;

import android.content.Context;

import android.hardware.fingerprint.FingerprintManager;

import android.os.CancellationSignal;

import android.security.keystore.KeyGenParameterSpec;

import android.security.keystore.KeyInfo;

import android.security.keystore.KeyPermanentlyInvalidatedException;

import android.security.keystore.KeyProperties;

import java.io.IOException;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.UnrecoverableKeyException;

import java.security.cert.CertificateException;

import java.security.spec.InvalidKeySpecException;

import javax.crypto.Cipher;

import javax.crypto.KeyGenerator;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

public class FingerprintAuthentication {

 private static final String KEY_NAME = "KeyForFingerprintAuthentication";

 private static final String PROVIDER_NAME = "AndroidKeyStore";

 private KeyguardManager mKeyguardManager;

 private FingerprintManager mFingerprintManager;

 private CancellationSignal mCancellationSignal;

 private KeyStore mKeyStore;

 private KeyGenerator mKeyGenerator;

 private Cipher mCipher;

 public FingerprintAuthentication(Context context) {

 mKeyguardManager = (KeyguardManager) context.getSystemService(Context.KEYGUARD_SERVICE);

 mFingerprintManager = (FingerprintManager) context.getSystemService(Context.FINGERPRINT_SERVICE);

 reset();

 }

 public boolean startAuthentication(final FingerprintManager.AuthenticationCallback callback) {

 if (!generateAndStoreKey())

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

466 All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features

 return false;

 if (!initializeCipherObject())

 return false;

 FingerprintManager.CryptoObject cryptoObject = new FingerprintManager.CryptoObject(mCipher);

 mCancellationSignal = new CancellationSignal();

 // Callback to receive the results of fingerprint authentication

 FingerprintManager.AuthenticationCallback hook = new FingerprintManager.AuthenticationCallback() {

 @Override

 public void onAuthenticationError(int errorCode, CharSequence errString) {

 if (callback != null) callback.onAuthenticationError(errorCode, errString);

 reset();

 }

 @Override

 public void onAuthenticationHelp(int helpCode, CharSequence helpString) {

 if (callback != null) callback.onAuthenticationHelp(helpCode, helpString);

 }

 @Override

 public void onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) {

 if (callback != null) callback.onAuthenticationSucceeded(result);

 reset();

 }

 @Override

 public void onAuthenticationFailed() {

 if (callback != null) callback.onAuthenticationFailed();

 }

 };

 // Execute fingerprint authentication

 mFingerprintManager.authenticate(cryptoObject, mCancellationSignal, 0, hook, null);

 return true;

 }

 public boolean isAuthenticating() {

 return mCancellationSignal != null && !mCancellationSignal.isCanceled();

 }

 public void cancel() {

 if (mCancellationSignal != null) {

 if (!mCancellationSignal.isCanceled())

 mCancellationSignal.cancel();

 }

 }

 private void reset() {

 try {

 // *** POINT 2 *** Obtain an instance from the "AndroidKeyStore" Provider

 mKeyStore = KeyStore.getInstance(PROVIDER_NAME);

 mKeyGenerator = KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, PROVIDER_NAME);

 mCipher = Cipher.getInstance(KeyProperties.KEY_ALGORITHM_AES

 + "/" + KeyProperties.BLOCK_MODE_CBC

 + "/" + KeyProperties.ENCRYPTION_PADDING_PKCS7);

 } catch (KeyStoreException | NoSuchPaddingException

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features 467

 | NoSuchAlgorithmException | NoSuchProviderException e) {

 throw new RuntimeException("failed to get cipher instances", e);

 }

 mCancellationSignal = null;

 }

 public boolean isFingerprintAuthAvailable() {

 return (mKeyguardManager.isKeyguardSecure()

 && mFingerprintManager.hasEnrolledFingerprints()) ? true : false;

 }

 public boolean isFingerprintHardwareDetected() {

 return mFingerprintManager.isHardwareDetected();

 }

 private boolean generateAndStoreKey() {

 try {

 mKeyStore.load(null);

 if (mKeyStore.containsAlias(KEY_NAME))

 mKeyStore.deleteEntry(KEY_NAME);

 mKeyGenerator.init(

 // *** POINT 4 *** When creating (registering) keys, use an encryption algorithm that is not vulner

able (meets standards)

 new KeyGenParameterSpec.Builder(KEY_NAME, KeyProperties.PURPOSE_ENCRYPT)

 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)

 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)

 // *** POINT 5 *** When creating (registering) keys, enable requests for user (fingerprint)

 authentication (do not specify the duration over which authentication is enabled)

 .setUserAuthenticationRequired(true)

 .build());

 // Generate a key and store it in Keystore(AndroidKeyStore)

 mKeyGenerator.generateKey();

 return true;

 } catch (IllegalStateException e) {

 return false;

 } catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException

 | CertificateException | KeyStoreException | IOException e) {

 throw new RuntimeException("failed to generate a key", e);

 }

 }

 private boolean initializeCipherObject() {

 try {

 mKeyStore.load(null);

 SecretKey key = (SecretKey) mKeyStore.getKey(KEY_NAME, null);

 SecretKeyFactory factory = SecretKeyFactory.getInstance(KeyProperties.KEY_ALGORITHM_AES, PROVIDER_NAME);

 KeyInfo info = (KeyInfo) factory.getKeySpec(key, KeyInfo.class);

 mCipher.init(Cipher.ENCRYPT_MODE, key);

 return true;

 } catch (KeyPermanentlyInvalidatedException e) {

 // *** POINT 6 *** Design your app on the assumption that the status of fingerprint registration will chan

ge between when keys are created and when keys are used

 return false;

 } catch (KeyStoreException | CertificateException | UnrecoverableKeyException | IOException

 | NoSuchAlgorithmException | InvalidKeySpecException | NoSuchProviderException | InvalidKeyException

e) {

 throw new RuntimeException("failed to init Cipher", e);

 }

 }

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

468 All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features

}

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="authentication.fingerprint.android.jssec.org.fingerprintauthentication" >

 <!-- +++ POINT 1 *** Declare the use of the USE_FINGERPRINT permission -->

 <uses-permission android:name="android.permission.USE_FINGERPRINT" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:screenOrientation="portrait" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features 469

5.7.2. Rule Book

Observe the following rules when using fingerprint authentication.

1. When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets

standards). (Required)

2. Restrict encrypted data to items that can be restored (replaced) by methods other than

fingerprint authentication (Required)

3. Notify users that fingerprint registration will be required to create a key (Recommended)

5.7.2.1. When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets

standards). (Required)

Like the password keys and public keys discussed in Section “5.6 Using Cryptography”, when using

fingerprint authentication features to create keys it is necessary to use encryption algorithms that are

not vulnerable---that is, algorithms that meet certain standards adequate to prevent eavesdropping

by third parties. Indeed, safe and non-vulnerable choices must be made not only for encryption

algorithms but also for encryption modes and padding.

For more information on selecting algorithms, see Section ”5.6.2.2 Use Strong Algorithms

(Specifically, Algorithms that Meet the Relevant Criteria) (Required)”.

5.7.2.2. Restrict encrypted data to items that can be restored (replaced) by methods other than

fingerprint authentication (Required)

When an app uses fingerprint authentication features for the encryption of data within the app, the

app must be designed in such a way as to allow the data to be recovered (replaced) by methods other

than fingerprint authentication.

In general, the use of biological information entails various problems---including secrecy, the

difficulty of making modifications, and erroneous identifications---and it is thus best to avoid

relying solely on biological information for authentication.

For example, suppose that data internal to an app is encrypted with a key generated using fingerprint

authentication features, but that the fingerprint data stored within the terminal is subsequently

deleted by the user. Then the key used to encrypt the data is not available for use, nor is it possible to

copy the data. If the data cannot be recovered by some means other than fingerprint-authentication

functionality, there is substantial risk that the data will be made useless.

Moreover, the deletion of fingerprint information is not the only scenario in which keys created using

fingerprint authentication functions can become unusable. In Nexus5X, if fingerprint authentication

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

470 All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features

features are used to create a key and this key is then newly registered as an addition to the

fingerprint information, keys created earlier have been observed to become unusable.20 In addition,

one cannot exclude the possibility that a key which would ordinarily allow correct use may become

unusable due to erroneous identification by a fingerprint sensor.

5.7.2.3. Notify users that fingerprint registration will be required to create a key (Recommended)

In order to create a key using fingerprint authentication, it is necessary that a user's fingerprints be

registered on the terminal. When designing apps to guide users to the Settings menu to encourage

fingerprint registration, developers must keep in mind that fingerprints represent important

personal data, and it is desirable to explain to users why it is necessary or convenient for the app to

use fingerprint information.

Notify users the fingerprint registration will be required
 if (!mFingerprintAuthentication.isFingerprintAuthAvailable()) {

 // **Point** Notify users that fingerprint registration will be required to create a key

 new AlertDialog.Builder(this)

 .setTitle(R.string.app_name)

 .setMessage("No fingerprint information has been registered.¥n" +

 " Click ¥"Security¥" on the Settings menu to register fingerprints.¥n" +

 " Registering fingerprints allows easy authentication.")

 .setPositiveButton("OK", null)

 .show();

 return false;

 }

20 Information current as of the February 1, 2016 version. This may be revised in the future.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features 471

5.7.3. Advanced Topics

5.7.3.1. Preconditions for the use of fingerprint authentication features by Android apps

The following two conditions must be satisfied in order for an app to use fingerprint authentication.

 User fingerprints must be registered within the terminal.

 An (application-specific) key must be associated with registered fingerprints.

Registering user fingerprints

User fingerprint information can only be registered via the "Security" option in the Settings menu;

ordinary applications may not perform the fingerprint registration procedure. For this reason, if no

fingerprints have been registered when an app attempts to use fingerprint authentication features,

the app must guide the user to the Settings menu and encourage the user to register fingerprints. At

this time, it is desirable for the app to offer the user some explanation of why it is necessary and

convenient to use fingerprint information.

In addition, as a necessary precondition for fingerprint registration to be possible, the terminal must

be configured with an alternative screen-locking mechanism. If the screen lock is disabled in a state

in which fingerprints have been registered in the terminal, the registered fingerprint information will

be deleted.

Creating and registering keys

To associate a key with fingerprints registered in a terminal, use a KeyStore instance provided by an

"AndroidKeyStore" Provider to create and register a new key or to register an existing key.

To create a key associated with fingerprint information, configure the parameter settings when

creating a KeyGenerator to enable requests for user authentication.

Creating and registering a key associated with fingerprint information
 try {

 // Obtain an instance from the "AndroidKeyStore" Provider

 KeyGenerator keyGenerator = KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");

 keyGenerator.init(

 new KeyGenParameterSpec.Builder(KEY_NAME, KeyProperties.PURPOSE_ENCRYPT)

 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)

 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)

 .setUserAuthenticationRequired(true) // Enable requests for user (fingerprint) authentication

 .build());

 keyGenerator.generateKey();

 } catch (IllegalStateException e) {

 // no fingerprints have been registered in this terminal

 throw new RuntimeException(“No fingerprint registered”, e);

 } catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException

 | CertificateException | KeyStoreException | IOException e) {

 // failed to generate a key

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

472 All rights reserved © Japan Smartphone Security Association. Using fingerprint authentication features

 throw new RuntimeException("Failed to generate a key", e);

 }

To associate fingerprint information with an existing key, register the key with a KeyStore entry to

which has been added a setting to enable user authentication requests.

Associating fingerprint information with an existing key
 SecretKey key = …; // existing key

 KeyStore keyStore = KeyStore.getInstance(“AndroidKeyStore”);

 keyStore.load(null);

 keyStore.setEntry(

 "alias_for_the_key",

 new KeyStore.SecretKeyEntry(key),

 new KeyProtection.Builder(KeyProperties.PURPOSE_ENCRYPT)

 .setUserAuthenticationRequired(true) // Enable requests for user (fingerprint) authentication

 .build());

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 473

6. Difficult Problems

In Android, there are some problems that it is difficult to assure a security by application

implementation due to a specification of Android OS or a function which Android OS provides. By

being abused by the malicious third party or used by users carelessly, these functions are always

holding risks that may lead to security problems like information leakage. In this chapter, by

indicating risk mitigation plans that developers can take against these functions, some topics that

needs calling attentions, are picked up as articles.

6.1. Risk of Information Leakage from Clipboard

Copy & paste are the functions which users often use in a casual manner. For example, not a few

users use these functions to store curious information or important information to remember in a

mail or a web page into a notepad, or to copy and to paste a password from a notepad in which

passwords are stored in order not to forget in advance. These are very casual actions at a glance, but

actually there's a hidden risk that user handling information may be stolen.

The risk is related to mechanism of copy & paste in Android system. The information which was

copied by user or application, is once stored in the buffer called Clipboard. The information stored in

Clipboard is distributed to other applications when it is pasted by a user or an application. So there is

a risk which leads to information leakage in this Clipboard function. It is because the entity of

Clipboard is single in a system and any application can obtain the information stored in Clipboard at

any time by using ClipboardManager. It means that all the information which user copied/cut, is

leaked out to the malicious application.

Hence, application developers need to take measures to minimize the possibility of information

leakage, considering the Android OS specifications.

6.1.1. Sample Code

Roughly speaking, there are two outlooks of counter-measures to mitigate the risk of information

leakage form Clipboard.

1. Counter-measure when copying from other applications to your application.

2. Counter-measure when copying from your application to other applications.

Firstly, let us discuss the countermeasure 1 above. Supposing that a user copies character strings

from other applications like note pad, Web browser or mailer application, and then paste it to

EditText in your application. As it turns out, there's no basic counter-measure to prevent from

sensitive information leakage due to copy & paste, in this scenario. Since there's no function in

Android to control copy operations by the third party application.

So, regarding the countermeasure 1, there's no method other than explaining users the risk of

copying & pasting sensitive information, and just continuing to enlighten users to decrease the

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

474 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

actions themselves continuously.

Next discussion is the countermeasure 2 above, supposing that the scenario that a user copies

sensitive information displayed in your application. In this case, the sound counter-measure for

leakage is to prohibit copying/cutting operations from View (TextView, EditText etc.). If there are no

copy/cut functions in View where the sensitive information (like personal information) is

input/output, information leakage will never happen from your application via Clipboard.

There are several methods to prohibit copying/cutting. This section herein describes the easy and

effective methods: One method is to disable long press View and another method is to delete

copy/cut items from menu when selecting character string.

Necessary of counter-measure can be determined as per the flow of Figure 6.1-1. In Figure 6.1-1,

"Input type is fixed to Password attribute" means, the input type is necessarily either of the followings

three when application is running. In this case, no counter-measures are required since copy/cut are

prohibited as default.

 InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD

 InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_WEB_PASSWORD

 InputType.TYPE_CLASS_NUMBER | InputType.TYPE_NUMBER_VARIATION_PASSWORD

Figure 6.1-1Decision flow of counter-measure is required or not.

The following subsections detail each countermeasure with sample codes.

Start

Input/Output
the sensitive information?

No Counter-measure needed

No

Yes

Prohibit copy/cut

Is input type of view
fixed to password attribute?

Yes No

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 475

6.1.1.1. Delete copy/cut from the menu when character string selection

TextView.setCustomSelectionActionMODECallback() method cannot be used in before Android

3.0(API Level 11). In this case, the easiest method to prohibit copying/cutting is to disable Long Click

View. Disabling Long Click View can be specified in layout xml file.

Sample code to delete copy/cut item from menu of character string selection in EditText, is shown as

per below.

Points:

1. Delete android.R.id.copy from the menu of character string selection.

2. Delete android.R.id.cut from the menu of character string selection.

UncopyableActivity.java
package org.jssec.android.clipboard.leakage;

import android.app.Activity;

import android.os.Bundle;

import android.support.v4.app.NavUtils;

import android.view.ActionMode;

import android.view.Menu;

import android.view.MenuItem;

import android.widget.EditText;

public class UncopyableActivity extends Activity {

 private EditText copyableEdit;

 private EditText uncopyableEdit;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.uncopyable);

 copyableEdit = (EditText) findViewById(R.id.copyable_edit);

 uncopyableEdit = (EditText) findViewById(R.id.uncopyable_edit);

 // By setCustomSelectionActionMODECallback method,

 // Possible to customize menu of character string selection.

 uncopyableEdit.setCustomSelectionActionModeCallback(actionModeCallback);

 }

 private ActionMode.Callback actionModeCallback = new ActionMode.Callback() {

 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {

 return false;

 }

 public void onDestroyActionMode(ActionMode mode) {

 }

 public boolean onCreateActionMode(ActionMode mode, Menu menu) {

 // *** POINT 1 *** Delete android.R.id.copy from the menu of character string selection.

 MenuItem itemCopy = menu.findItem(android.R.id.copy);

 if (itemCopy != null) {

 menu.removeItem(android.R.id.copy);

 }

 // *** POINT 2 *** Delete android.R.id.cut from the menu of character string selection.

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

476 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

 MenuItem itemCut = menu.findItem(android.R.id.cut);

 if (itemCut != null) {

 menu.removeItem(android.R.id.cut);

 }

 return true;

 }

 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {

 return false;

 }

 };

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.uncopyable, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case android.R.id.home:

 NavUtils.navigateUpFromSameTask(this);

 return true;

 }

 return super.onOptionsItemSelected(item);

 }

}

6.1.1.2. Disable Long Click View

Prohibiting copying/cutting can also be realized by disabling Long Click View. Disabling Long Click

View can be specified in layout xml file.

Point:

1. Set false to android:longClickable in View to prohibit copy/cut.

unlongclickable.xml
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="@string/unlongclickable_description" />

 <!-- EditText to prohibit copy/cut EditText -->

 <!-- *** POINT 1 *** Set false to android:longClickable in View to prohibit copy/cut. -->

 <EditText

 android:layout_width="match_parent"

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 477

 android:layout_height="wrap_content"

 android:longClickable="false"

 android:hint="@string/unlongclickable_hint" />

</LinearLayout>

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

478 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

6.1.2. Rule Book

Follow the rule below when copying sensitive information from your application to other

applications.

1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

6.1.2.1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

If there's a View which displays sensitive information in an application and besides the information is

allowed to be copied/cut like EditText in the View, the information may be leaked via Clipboard.

Therefore, copy/cut must be disabled in View where sensitive information is displayed.

There are two methods to disable copy/cut. One method is to delete items of copy/cut from menu of

character string selection, and another method is to disable Long Click View.

Please refer to "6.1.3.1 Precautions When Applying Rules."

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 479

6.1.3. Advanced Topics

6.1.3.1. Precautions When Applying Rules

In TextView, selecting character string is impossible as default, so normally no counter-measure is

required, but in some cases copying is possible depends on application's specifications. The

possibility of selecting/copying character strings can be dynamically determined by using

TextView.setTextIsSelectable() method. When setting copying possible in TextView, investigate the

possibility that any sensitive information is displayed in TextView, and if there are any possibilities, it

should not be set as possible to copy.

In addition, described in the decision flow of "6.1.1Sample Code" regarding EditText which is input

type (InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD etc.), supposing

password input, normally any counter-measures are not required since copying character strings are

prohibited as default. However, as described in "5.1.2.2 Provide the Option to Display Password in a

Plain Text (Required)," when the option to [display password in a plain text] is prepared, in case of

displaying password in a plain text, input type will change and copy/cut is enabled. So the same

counter-measure should be required.

Note that, developers should also take usability of application into consideration when applying rules.

For example, in the case of View which user can input text freely, if copy/cut is disabled because

there is the slight possibility that sensitive information is input, users may feel inconvenience. Of

course, the rule should unconditionally be applied to View which treats highly important information

or independent sensitive information, but in the case of View other than those, the following

questions will help developers to understand how properly to treat View.

 Prepare some other component for the exclusive use of sensitive information

 Send information with alternative methods when the pasted-to application is obvious

 Call users for cautions about inputting/outputting information

 Reconsider the necessity of View

The root cause of the information leakage risk is that the specifications of Clipboard and

ClipboardManager in Android OS leave the security risk out of consideration. Application developers

need to create higher quality applications in terms of user integrity, usability, functions, and so forth.

6.1.3.2. Operating Information Stored in Clipboard

As mentioned in "6.1 Risk of Information Leakage from Clipboard," an application can manipulate

information stored in Clipboard by using ClipboardManager. In addition, there is no need to set

particular Permission for using ClipboardManager and thus the application can use

ClipboardManager without being recognized by user.

Information, called ClipData, stored in Clipboard can be obtained with

ClipboardManager.getPrimaryClip() method. If a listener is registered to ClipboardManager by

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

480 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

ClipboardManager.addPrimaryClipChangedListener() method implementing

OnPrimaryClipChangedListener, the listener is called every time copy/cut operations occurred by

user. Therefore ClipData can be got without overlooking the timing. Listener call is executed when

copy/cut operations occur in any application regardless.

The following shows the source code of Service, which gets ClipData whenever copy/cut is executed

in a device and displays it through Toast. You can realize that information stored in Clipboard is

leaked out doe to simple codes as follows. It's necessary to pay attention that the sensitive

information is not taken at least by the following source code.

ClipboardListeningService.java
package org.jssec.android.clipboard;

import android.app.Service;

import android.content.ClipData;

import android.content.ClipboardManager;

import android.content.ClipboardManager.OnPrimaryClipChangedListener;

import android.content.Context;

import android.content.Intent;

import android.os.IBinder;

import android.util.Log;

import android.widget.Toast;

public class ClipboardListeningService extends Service {

 private static final String TAG = "ClipboardListeningService";

 private ClipboardManager mClipboardManager;

 @Override

 public IBinder onBind(Intent arg0) {

 return null;

 }

 @Override

 public void onCreate() {

 super.onCreate();

 mClipboardManager = (ClipboardManager) getSystemService(Context.CLIPBOARD_SERVICE);

 if (mClipboardManager != null) {

 mClipboardManager.addPrimaryClipChangedListener(clipListener);

 } else {

 Log.e(TAG, "Failed to get ClipboardService . Service is closed.");

 this.stopSelf();

 }

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 if (mClipboardManager != null) {

 mClipboardManager.removePrimaryClipChangedListener(clipListener);

 }

 }

 private OnPrimaryClipChangedListener clipListener = new OnPrimaryClipChangedListener() {

 public void onPrimaryClipChanged() {

 if (mClipboardManager != null && mClipboardManager.hasPrimaryClip()) {

 ClipData data = mClipboardManager.getPrimaryClip();

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 481

 ClipData.Item item = data.getItemAt(0);

 Toast

 .makeText(

 getApplicationContext(),

 "Character stirng that is copied or cut:¥n"

 + item.coerceToText(getApplicationContext()),

 Toast.LENGTH_SHORT)

 .show();

 }

 }

 };

}

Next, below shows an example code of Activity which uses ClipboardListeningService touched in the

above.

ClipboardListeningActivity.java
package org.jssec.android.clipboard;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Intent;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

public class ClipboardListeningActivity extends Activity {

 private static final String TAG = "ClipboardListeningActivity";

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_clipboard_listening);

 }

 public void onClickStartService(View view) {

 if (view.getId() != R.id.start_service_button) {

 Log.w(TAG, "View ID is incorrect.");

 } else {

 ComponentName cn = startService(

 new Intent(ClipboardListeningActivity.this, ClipboardListeningService.class));

 if (cn == null) {

 Log.e(TAG, "Failed to launch the service.");

 }

 }

 }

 public void onClickStopService(View view) {

 if (view.getId() != R.id.stop_service_button) {

 Log.w(TAG, "View ID is incorrect.");

 } else {

 stopService(new Intent(ClipboardListeningActivity.this, ClipboardListeningService.class));

 }

 }

}

How to obtain information stored in Clipboard is described so far. On the other hand it is also

Android Application Secure Design/Secure Coding Guidebook February 1st, 2016 Edition

http://www.jssec.org/dl/android_securecoding_en.pdf

482 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

possible to store new information in Clipboard. In the case of API Level 11 or later,

ClipboardManager.setPrimaryClip() can be used. And in the case of before that API 11,

ClipboardManager.setText() method can be used.

Note that setPrimaryClip() method will overwrite the information stored in Clipboard, therefore the

information stored by user's copy/cut may be lost. When providing custom copy/cut functions with

these methods, it's necessary to design/implement in order not that the contents stored in Clipboard

are changed to unexpected contents, by displaying a dialogue to notify the contents are to be

changed, according the necessity.

	1. Introduction
	1.1. Building a Secure Smartphone Society
	1.2. Timely Feedback on a Regular Basis Through the Beta Version
	1.3. Usage Agreement of the Guidebook
	1.4. Correction articles of June 1 2015 edition

	2. Composition of the Guidebook
	2.1. Developer's Context
	2.2. Sample Code, Rule Book, Advanced Topics
	2.2.1. Sample Code
	2.2.2. Rule Book
	2.2.3. Advanced Topics

	2.3. The Scope of the Guidebook
	2.4. Literature on Android Secure Coding
	2.5. Steps to Install Sample Codes into Android Studio
	2.5.1. Installing the Sample Project
	2.5.2. Setup the debug.keystore to run and test the Sample Code

	3. Basic Knowledge of Secure Design and Secure Coding
	3.1. Android Application Security
	3.1.1. Asset: Object of Protection
	3.1.1.1. Information Asset of an Android Smartphone
	3.1.1.2. Function Assets of an Android Smartphone

	3.1.2. Threats: Attacks that Threaten Assets
	3.1.2.1. Network-based Third-Party
	3.1.2.2. Threat Due to User-Installed Malware
	3.1.2.3. Threat of an Malicious File that Exploits a Vulnerability in an Application
	3.1.2.4. Threats from a Malicious Smartphone User
	3.1.2.5. Threats from Third Party in the Proximity of a Smartphone
	3.1.2.6. Summary of Threats

	3.1.3. Asset Classification and Protective Countermeasures
	3.1.4. Sensitive Information

	3.2. Handling Input Data Carefully and Securely

	4. Using Technology in a Safe Way
	4.1. Creating/Using Activities
	4.1.1. Sample Code
	4.1.1.1. Creating/Using Private Activities
	4.1.1.2. Creating/Using Public Activities
	4.1.1.3. Creating/Using Partner Activities
	4.1.1.4. Creating/Using In-house Activities

	4.1.2. Rule Book
	4.1.2.1. Activities that are Used Only Internally to the Application Must be Set Private (Required)
	4.1.2.2. Do Not Specify taskAffinity (Required)
	4.1.2.3. Do Not Specify launchMode (Required)
	4.1.2.4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)
	4.1.2.5. Handling the Received Intent Carefully and Securely (Required)
	4.1.2.6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House Application (Required)
	4.1.2.7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Destination Application (Required)
	4.1.2.8. Use the explicit Intents if the destination Activity is predetermined. (Required)
	4.1.2.9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)
	4.1.2.10. Verify the Destination Activity if Linking with Another Company's Application (Required)
	4.1.2.11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of Protection (Required)
	4.1.2.12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

	4.1.3. Advanced Topics
	4.1.3.1. Combining Exported Attributes and Intent Filter Settings (For Activities)
	4.1.3.2. Validating the Requesting Application
	4.1.3.3. Reading Intents Sent to an Activity
	4.1.3.4. Root Activity
	standard
	singleTop
	singleTask
	singleInstance

	4.1.3.5. Log Output When using Activities
	4.1.3.6. Protecting against Fragment Injection in PreferenceActivity

	4.2. Receiving/Sending Broadcasts
	4.2.1. Sample Code
	4.2.1.1. Private Broadcast Receiver - Receiving/Sending Broadcasts
	4.2.1.2. Public Broadcast Receiver - Receiving/Sending Broadcasts
	4.2.1.3. In-house Broadcast Receiver - Receiving/Sending Broadcasts

	4.2.2. Rule Book
	4.2.2.1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)
	4.2.2.2. Handle the Received Intent Carefully and Securely (Required)
	4.2.2.3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house Application (Required)
	4.2.2.4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the Destination Application (Required)
	4.2.2.5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)
	4.2.2.6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)
	4.2.2.7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be Delivered (Required)
	4.2.2.8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)
	4.2.2.9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection Level (Required)

	4.2.3. Advanced Topics
	4.2.3.1. Combinations of the exported Attribute and the Intent-filter setting (For Receiver)
	4.2.3.2. Receiver Won't Be Registered before Launching the Application in Android 3.1 or later
	4.2.3.3. Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID Application
	4.2.3.4. Types and Features of Broadcasts
	4.2.3.5. Broadcasted Information May be Output to the LogCat
	4.2.3.6. Items to Keep in Mind When Placing an App Shortcut on the Home Screen

	4.3. Creating/Using Content Providers
	4.3.1. Sample Code
	4.3.1.1. Creating/Using Private Content Providers
	4.3.1.2. Creating/Using Public Content Providers
	4.3.1.3. Creating/Using Partner Content Providers
	4.3.1.4. Creating/Using In-house Content Providers
	4.3.1.5. Creating/Using Temporary permit Content Providers

	4.3.2. Rule Book
	4.3.2.1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API Level 8) or Earlier (Required)
	4.3.2.2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)
	4.3.2.3. Handle the Received Request Parameter Carefully and Securely (Required)
	4.3.2.4. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house Application (Required)
	4.3.2.5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Destination Application (Required)
	4.3.2.6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of Protection (Required)
	4.3.2.7. Handle the Returned Result Data from the Content Provider Carefully and Securely (Required)

	4.4. Creating/Using Services
	4.4.1. Sample Code
	4.4.1.1. Creating/Using Private Services
	4.4.1.2. Creating/Using Public Services
	4.4.1.3. Creating/Using Partner Services
	4.4.1.4. Creating/Using In-house Services

	4.4.2. Rule Book
	4.4.2.1. Service that Is Used Only in an application, Must Be Set as Private (Required)
	4.4.2.2. Handle the Received Data Carefully and Securely (Required)
	4.4.2.3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house Application (Required)
	4.4.2.4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)
	4.4.2.5. When Returning a Result Information, Pay Attention the Result Information Leakage from the Destination Application (Required)
	4.4.2.6. Use the Explicit Intent if the Destination Service Is fixed (Required)
	4.4.2.7. Verify the Destination Service If Linking with the Other Company's Application (Required)
	4.4.2.8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level Protection (Required)
	4.4.2.9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

	4.4.3. Advanced Topics
	4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)
	4.4.3.2. How to Implement Service
	startService type
	IntentService type
	local bind type
	Messenger bind type
	AIDL bind type

	4.5. Using SQLite
	4.5.1. Sample Code
	4.5.1.1. Creating/Operating Database

	4.5.2. Rule Book
	4.5.2.1. Set DB File Location and Access Right Correctly (Required)
	Using SQLiteOpenHelper
	Using Context#openOrCreateDatabase

	4.5.2.2. Use Content Provider for Access Control When Sharing DB Data with Other Application (Required)
	4.5.2.3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation. (Required)
	When Using SQLiteDatabase#compileStatement():
	In the Case Using Method for Each Process which SQLiteDatabase provides:

	4.5.3. Advanced Topics
	4.5.3.1. When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be Implemented
	4.5.3.2. Use External Input to SQL Command in which Place Holder Cannot Be Used
	4.5.3.3. Take a Countermeasure that Database Is Not Overwritten Unexpectedly
	4.5.3.4. Verify the Validity of Input/Output Data of DB, According to Application's Requirement
	4.5.3.5. Consideration - the Data Stored into Database
	4.5.3.6. [Reference] Encrypt SQLite Database (SQLCipher for Android)
	How to Use
	Library Structure

	4.6. Handling Files
	4.6.1. Sample Code
	4.6.1.1. Using Private Files
	4.6.1.2. Using Public Read Only Files
	4.6.1.3. Using Public Read/Write Files
	4.6.1.4. Using Eternal Memory (Read Write Public) Files

	4.6.2. Rule Book
	4.6.2.1. File Must Be Created as a Private File in Principle (Required)
	4.6.2.2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications (Required)
	4.6.2.3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Required)
	4.6.2.4. Application Should Be Designed Considering the Scope of File (Required)

	4.6.3. Advanced Topics
	4.6.3.1. File Sharing Through File Descriptor
	4.6.3.2. Access Permission Setting for the Directory
	MODE_WORLD_READABLE
	MODE_WORLD_WRITABLE

	4.6.3.3. Access Permission Setting for Shared Preference and Database File
	4.6.3.4. Specification Change regarding External Storage Access in Android 4.4 (API Level 19) and later

	4.7. Using Browsable Intent
	4.7.1. Sample Code
	4.7.2. Rule Book
	4.7.2.1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link (Required)
	4.7.2.2. Handle the URL Parameter Carefully and Securely (Required)

	4.8. Outputting Log to LogCat
	4.8.1. Sample Code
	4.8.2. Rule Book
	4.8.2.1. Sensitive Information Must Not Be Included in Operation Log Information (Required)
	4.8.2.2. Construct the Build System to Auto-delete Codes which Output Development Log Information When Build for the Release (Recommended)
	4.8.2.3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)
	4.8.2.4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

	4.8.3. Advanced Topics
	4.8.3.1. Two Ways of Thinking for the Log Outputting in Release version application
	4.8.3.2. Selection Standards of Log Level and Log Output Method
	4.8.3.3. DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically
	4.8.3.4. BuildConfig.DEBUG Should Be Used in ADT 21 or Later
	4.8.3.5. Remove Sensitive Information from Assembly
	4.8.3.6. The Contents of Intent Is Output to LogCat
	4.8.3.7. Restrain Log which Is Output to System.out/err

	4.9. Using WebView
	4.9.1. Sample Code
	4.9.1.1. Show Only Contents Stored under assets/res Directory in the APK
	4.9.1.2. Show Only Contents which Are Managed In-house
	4.9.1.3. Show Contents which Are Not Managed In-house

	4.9.2. Rule Book
	4.9.2.1. Enable JavaScript Only If Contents Are Managed In-house (Required)
	Services managed In-house
	Services unmanaged in-house

	4.9.2.2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)
	4.9.2.3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)
	4.9.2.4. Handle SSL Error Properly (Required)

	4.9.3. Advanced Topics
	4.9.3.1. Vulnerability caused by addJavascriptInterface() at Android versions 4.1 or earlier
	4.9.3.2. Issue caused by file scheme
	4.9.3.3. Specifying a Sender Origin When Using Web Messaging

	4.10. Using Notifications
	4.10.1. Sample Code
	4.10.2. Rule Book
	4.10.2.1. Regardless of the Visibility setting, Notifications must not contain sensitive information (although private information is an exception) (Required)
	4.10.2.2. Notifications with Visibility=Public must not contain private information (Required)
	4.10.2.3. For Notifications that contain private information, Visibility must be explicitly set to Private or Secret (Required)
	4.10.2.4. When using Notifications with Visibility=Private, create an additional Notification with Visibility=Public for public display (Recommended)

	4.10.3. Advanced Topics
	4.10.3.1. On User-granted Permission to View Notifications

	5. How to use Security Functions
	5.1. Creating Password Input Screens
	5.1.1. Sample Code
	5.1.2. Rule Book
	5.1.2.1. Provide the Mask Display Feature, If the Password Is Entered (Required)
	5.1.2.2. Provide the Option to Display Password in a Plain Text (Required)
	5.1.2.3. Mask the Password when Activity Is Launched (Required)
	5.1.2.4. When Displaying the Last Input Password, Dummy Password Must Be Displayed (Required)

	5.1.3. Advanced Topics
	5.1.3.1. Login Process
	Error message when login fail
	Auto Login function

	5.1.3.2. Changing Password
	5.1.3.3. Regarding "Make passwords visible" Setting
	5.1.3.4. Disabling Screen Shot

	5.2. Permission and Protection Level
	5.2.1. Sample Code
	5.2.1.1. How to Use System Permissions of Android OS
	5.2.1.2. How to Communicate Between In-house Applications with In-house-defined Signature Permission
	5.2.1.3. How to Verify the Hash Value of an Application's Certificate
	How to verify it with Keytool
	How to Verify it with JSSEC Certificate Hash Value Checker

	5.2.1.4. Methods for using Dangerous Permissions in Android 6.0 and later

	5.2.2. Rule Book
	5.2.2.1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets (Required)
	5.2.2.2. Your Own Dangerous Permission Must Not Be Used (Required)
	5.2.2.3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application (Required)
	5.2.2.4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application (Required)
	5.2.2.5. Your Own Normal Permission Should Not Be Used (Recommended)
	5.2.2.6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of Application (Recommended)

	5.2.3. Advanced Topics
	5.2.3.1. Characteristics of Android OS that Avoids Self-defined Signature Permission and Its Counter-measures
	5.2.3.2. Falsification of AndroidManifest.xml by a User
	5.2.3.3. Detection of APK Falsification
	5.2.3.4. Permission Re-delegation Problem
	5.2.3.5. Signature check mechanism for custom permissions (Android 5.0 and later)
	5.2.3.6. Modifications to the Permission model specifications in Android versions 6.0 and later
	The timing of permission grants and refusals
	Units of permission grants and refusals
	The affected range of the revised specifications

	5.3. Add In-house Accounts to Account Manager
	5.3.1. Sample Code
	5.3.1.1. Creating In-house accounts
	5.3.1.2. Using In-house Accounts

	5.3.2. Rule Book
	5.3.2.1. Service that Provides Authenticator Must Be Private (Required)
	5.3.2.2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)
	5.3.2.3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by Other Applications (Required)
	5.3.2.4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity (Required)
	5.3.2.5. Sensitive Information (like Account Information and Authentication Token) Must Not Be Output to the Log (Required)
	5.3.2.6. Password Should Not Be Saved in Account Manager (Recommended)
	5.3.2.7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service (Required)
	5.3.2.8. Account Process Should Be Executed after verifying if the Authenticator is the regular one (Required)

	5.3.3. Advanced Topics
	5.3.3.1. Usage of Account Manager and Permission
	5.3.3.2. Exception Occurs When Signature Keys of User Application and Authenticator Application Are Different, in Android 4.0.x

	5.4. Communicating via HTTPS
	5.4.1. Sample Code
	5.4.1.1. Communicating via HTTP
	5.4.1.2. Communicating via HTTPS
	5.4.1.3. Communicating via HTTPS with private certificate

	5.4.2. Rule Book
	5.4.2.1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)
	5.4.2.2. Received Data over HTTP Must be Handled Carefully and Securely (Required)
	5.4.2.3. SSLException Must Be Handled Appropriately like Notification to User (Required)
	5.4.2.4. Custom TrustManager Must Not Be Created (Required)
	5.4.2.5. Custom HostnameVerifier Must Not Be Created (Required)

	5.4.3. Advanced Topics
	5.4.3.1. How to Create Private Certificate and Configure Server Settings
	Create private certificate authority
	Create private certificate

	5.4.3.2. Install Root Certificate of Private Certificate Authority to Android OS's Certification Store
	5.4.3.3. Risky Code that Disables Certificate Verification

	5.5. Handling privacy data
	5.5.1. Sample Code
	5.5.1.1. Both broad consent and specific consent are granted: Applications that incorporate application privacy policy
	5.5.1.2. Broad consent is granted: Applications that incorporate application privacy policy
	5.5.1.3. Broad consent is not needed: Applications that incorporate application privacy policy
	5.5.1.4. Applications that do not incorporate an application privacy policy

	5.5.2. Rule Book
	5.5.2.1. Restrict transmissions of user data to the minimum necessary (Required)
	5.5.2.2. On first launch (or application update), obtain broad consent to transmit user data that requires particularly delicate handling or that may be difficult for users to change (Required)
	5.5.2.3. Obtain specific consent before transmitting user data that requires particularly delicate handling (Required)
	5.5.2.4. Provide methods by which the user can review the application privacy policy (Required)
	5.5.2.5. Place a summary version of the application privacy policy in the assets folder (Recommended)
	5.5.2.6. Provide methods by which transmitted data can be deleted and transmitting data can be stopped by user operations (Recommended)
	5.5.2.7. Separate device-specific IDs from UUIDs and cookies (Recommended)
	5.5.2.8. If you will only be using user data within the device, notify the user that data will not be transmitted externally. (Recommended)

	5.5.3. Advanced Topics
	5.5.3.1. Some background and context regarding privacy policies
	5.5.3.2. Glossary of Terms

	5.6. Using Cryptography
	5.6.1. Sample Code
	5.6.1.1. Encrypting and Decrypting With Password-based Keys
	5.6.1.2. Encrypting and Decrypting With Public Keys
	5.6.1.3. Encrypting and Decrypting Using Pre Shared Keys
	5.6.1.4. Using Password-based Keys to Detect Data Falsification
	5.6.1.5. Using Public Keys to Detect Data Falsification
	5.6.1.6. Using Pre Shared Keys to Detect Data Falsification

	5.6.2. Rule Book
	5.6.2.1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the Padding (Required)
	5.6.2.2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)
	5.6.2.3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)
	5.6.2.4. When Generating Keys from Passwords, Use Salt (Required)
	5.6.2.5. When Generating Key from Password, Specify Appropriate Hash Iteration Count (Required)
	5.6.2.6. Take Steps to Increase the Strengths of Passwords (Recommended)

	5.6.3. Advanced Topics
	5.6.3.1. Choosing encryption methods
	5.6.3.2. Generation of random numbers
	Random number seeds
	The internal state of a pseudorandom number generator

	5.6.3.3. Measures to Protect against Vulnerabilities in Random-Number Generators
	5.6.3.4. Protecting Key
	Keys stored in a user’s memory
	Keys stored in application directories
	Keys stored in APK Files
	Keys stored in public storage locations (such as SD cards)
	Handling of keys within process memory

	5.7. Using fingerprint authentication features
	5.7.1. Sample Code
	5.7.2. Rule Book
	5.7.2.1. When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets standards). (Required)
	5.7.2.2. Restrict encrypted data to items that can be restored (replaced) by methods other than fingerprint authentication (Required)
	5.7.2.3. Notify users that fingerprint registration will be required to create a key (Recommended)

	5.7.3. Advanced Topics
	5.7.3.1. Preconditions for the use of fingerprint authentication features by Android apps
	Registering user fingerprints
	Creating and registering keys

	6. Difficult Problems
	6.1. Risk of Information Leakage from Clipboard
	6.1.1. Sample Code
	6.1.1.1. Delete copy/cut from the menu when character string selection
	6.1.1.2. Disable Long Click View

	6.1.2. Rule Book
	6.1.2.1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

	6.1.3. Advanced Topics
	6.1.3.1. Precautions When Applying Rules
	6.1.3.2. Operating Information Stored in Clipboard

