
 Thirty Second International Conference on Information Systems, Shanghai 2011 1

OPTIMAL REFACTORING POLICY FOR AGILE
INFORMATION SYSTEMS MAINTENANCE: A

CONTROL THEORETIC APPROACH
Research-in-Progress

Jimmy SJ. Ren

Department of Information Systems,
City University of Hong Kong
83 Tat Chee Avenue, Hong Kong
sjren2@student.cityu.edu.hk

Wei Wang
Department of Information Systems,
City University of Hong Kong
83 Tat Chee Avenue, Hong Kong
wewang8@student.cityu.edu.hk

Zhimin Hua
Department of Information Systems,
City University of Hong Kong
83 Tat Chee Avenue, Hong Kong
zmhua2@student.cityu.edu.hk

Kaiquan Xu
Department of Information Systems,
City University of Hong Kong
83 Tat Chee Avenue, Hong Kong
xkaiquan2@student.cityu.edu.hk

Stephen SY Liao

Department of Information Systems,
City University of Hong Kong
83 Tat Chee Avenue, Hong Kong

issliao@cityu.edu.hk

Abstract

Many information systems development companies are facing the question on how to
apply agile methods in information systems maintenance (ISM). Performing correction
of software defects in ISM inevitably degenerates program structure. On the other
hand, agile methods provide refactoring to improve program structure without
changing its behavior. This paper builds an optimal control model to balance the trade-
off between defect correction and refactoring. We answer three questions. First, is that
optimal to perform parallel defect correction and refactoring? Second, how to
determine the iteration length for agile ISM if team wants to include refactoring in the
iteration? Third, how long the iteration should be if team wants to improve program’s
structure to a certain level at the end of the iteration? To our knowledge, this paper is
the pioneer in understanding agile ISM policy analytically. Managerial implications of
the results are also discussed in the paper.

Keywords: Agile maintenance, optimal control, refactoring, defect correction

Project Management, Outsourcing and IS Development

2 Thirty Second International Conference on Information Systems, Shanghai 2011

Introduction

In the last decade, a set of information systems development (ISD) methods, collectively labeled agile
methods, were proposed and prevalent in the ISD community. These methods include eXtreme
Programming (XP), Scrum, Crystal, Agile modeling, Feature Driven Design, etc. (Dybå and Dingsøyr
2008). The main motivation of using agile methods originates from the unsatisfactory performance of the
traditional ISD methods, the "waterfall" model as a representative, in the current increasingly turbulent
business environment. In such a business environment, it is not uncommon to encounter issues like
quickly evolving requirements, constantly changing stakeholder preferences, as well as time-to-market
pressures. Values and practices in traditional ISD methods such as thorough plan, strict control and non-
iterative manner are challenged by these issues mainly because of the lack of flexibility and ability to
adapt to change under uncertainty (Conboy 2009). It is worth mentioning that though different agile
methods are available, they share common characteristics in facilitating flexibility (Maruping et al. 2009).

As agile methods were gradually adopted by many ISD companies in the industry, such methods are not
only used in the development stage of the software life cycle but other stages such as information systems
maintenance (ISM) as well. This is simply because business agility in general is not only required in the
development stage but every stage of the software life cycle (Auer and Miller 2001). It’s widely accepted
that software maintenance is one of the most important stages in the software life cycle. The main reason
is the maintenance stage usually occupies a large portion of time in the whole cycle. Besides, the cost of
the maintenance stage also contributes much to the whole expense of a project. Studies reported that in
many software projects, the maintenance cost constitutes more than half of the total expense of the
projects (Banker et al. 1993, Lientz and Swanson 1981). With the continuous prevalence of agile methods,
it is believed that more ISM practitioners will tend to use agile as the maintenance process because using
two distinct processes within an organization generally lowers the business efficiency (Senge 2006,
Svensson & Host 2005). Therefore, there is a need to re-scrutinize maintenance in the agile context.

However, despite the importance of investigating how agile methods interact with maintenance, not many
studies in the extant literature can be found to show how to manage agile methods under ISM context. In
this paper, we study two important competing efforts, namely refactoring and defect correction, in agile
maintenance by an analytical model. The analysis shall answer fundamental questions of using agile
methods in ISM. While the theoretical analysis should fill the current research gap in agile maintenance,
the managerial implications generated by the study should be of interest to ISM practitioners as well.

The rest of the paper arranges as the following. In the second section we review the literature, identify the
research gap and form the research questions. In the third section we present an optimal control model
and its solution process to solve the research questions. In the fourth section, we highlighted our
contributions and summarize the managerial implications. We also discuss the limitations, the unfinished
work and how we are going to complete the work in the last section.

Literature Review

Empirical evidences can be found in the literature to justify the usefulness of agile methods in ISM.
Svensson & Host (2005) conducted a case study in a software maintenance and evolution organization
and results showed that a large number of agile practices such as planning game, pair programming and
continuous integration are appropriate in maintenance context and facilitate the transition of knowledge.
Shaw (2007) studied the application of agile practices in a maintenance project and also found many agile
practices were effective in maintenance work. In addition, the study showed that to do the maintenance in
short iterations conforms to the nature of ISM. Rico (2008) also looked at agile methods in the
maintenance context and argued that ISM practitioners would benefit from many agile practices including
refactoring. The study also reported a case in which the code size in the project was reduced over 40
percent by using refactoring. Though these empirical studies may confirm the effectiveness of agile
methods in maintenance context, however, no general rule could be found to guide the operation of agile
maintenance. Therefore, while confidence of using agile methods maybe gained from these studies,
practitioners can hardly find any concrete rules to follow. On the other hand, due to the lack of theoretical
implications in current studies, it is not easy to generalize the research result to a wider context or to form
the theoretical foundation for other researchers. Given the status of the extant literature on agile

 Ren et.al. / Optimal Refactoring Policy for Agile Information Systems Maintenance

 Thirty Second International Conference on Information Systems, Shanghai 2011 3

maintenance, together with the importance of investigating this topic which we discussed in the
introduction section, we believe the research gap in understanding how to use agile methods in ISM
effectively is significant.

In order to fill the gap and conduct a theoretical analysis, we first turn to maintenance literature to seek
evidence of important factors in maintenance. We found that correcting defects and improving software
attributes are two of the most important tasks in software maintenance (Kemerer and Slaughter 1997).
Usually, the software sent to the maintenance team is far from “bug free”, therefore it is maintenance
team’s job to further reduce the defects in the software. We can also conclude from some more recent
studies that similar to the regular maintenance projects, software defect correction occupies much of the
workload in agile maintenance as well (Poole et al. 2001, Shaw 2007, Rico 2008, Svensson & Host 2005).
The other major maintenance task, improving software attributes is equally important. The key attribute
to address in the maintenance stage is maintainability which in the source code level, means the quality of
software’s internal structure (Kitchenham et al. 1999, Oman and Hagemeister 1992). In agile practices,
refactoring is the one to improve software structure (Fowler et al. 1999).

Refactoring is a well-established technique to improve software maintainability by improving program
structure and fixing implicit problems without changing software's behavior (Griswold 1991). In the
maintenance project, maintainers usually focus on correcting specific defects and overlook the overall
structure of the program. Studies showed that defect correction will inevitably degenerate the system
architecture, creates more implicit issues and eventually makes the system hard to maintain (Griswold
1991, Opdyke 1992). Maruping et al. (2009) investigated typical agile practices including refactoring in
the eXtreme Programming context within a large scale company. They argued that refactoring shall
improve the program structure and reduce various aspects of software complexity. Their results showed
that the overall software complexity is indeed reduced after adopting agile methods. While the overall
defects in the system are reduced, there is no evidence to show refactoring explicitly addresses these
defects. Similar argument could be concluded in the study in another large company under the scenario of

ISD (Fitzgerald et al. 2006). Within the development procedure, programmers restructured the system,
without modifying functionalities, to improve non-functional aspects such as duplication of code,
simplicity and flexibility. By continuously doing this during the development the potential implicit
structural problems were successfully reduced.

If take a more careful scrutiny, it is not hard to discern the trade-off between refactoring and defect
correction. If refactoring is not performed, system architecture tends to be degenerated rapidly by defect
correction in agile projects (Auer and Miller 2001). Worse system structure directly lowers maintenance
team’s agility since implicit structural issues make defects become harder to correct and code becomes
harder to understand. Then slower reaction to the new defect reports, which are imposed by the
customers, could be expected. In agile, refactoring is used to increase agility by fixing implicit structural
issues, namely improving the design. Fowler et al. (1999) defined the rule on when to conduct refactoring
in general. They proposed that at the time you add functions, need to fix a bug and do code review,
refactoring should be carried out. It is important to see that all of these three activities previously
mentioned could be found in defect correction activities in agile maintenance projects (Poole et al. 2001).
This reaffirms the necessity of conducting refactoring if defect correction occurs in the maintenance.
Fowler et al. (1999) also pointed out that refactoring is a regular practice which is expected to be carried
out often. However, there’s one cost that refactoring has to pay, that is refactoring doesn’t directly address
explicit defects in the system. If refactoring is improperly conducted the efficiency and effectiveness of the
overall maintenance may be negatively affected. For example, if too much effort is devoted to refactoring,
the progress of defect correction may be delayed.

In order to get a better understanding of such a trade-off in agile maintenance, we visualize it by drawing
the following diagram.

Project Management, Outsourcing and IS Development

4 Thirty Second International Conference on Information Systems, Shanghai 2011

Figure 1. Trade-off between defect correction and refactoring in agile

maintenance

So we can conclude that refactoring is not only critical to software maintenance in practice, it also has the
nature of competing with defect correction. Therefore, there is a call for investigation on the detailed
relationship between refactoring and defect correction.

In the previous discussion, we identified a research gap in understanding how to use agile methods in the
maintenance context. Particularly, we found the trade-off between refactoring and defect correction is a
key problem to tackle in order to fill this gap and therefore this problem is of our interest. However, there
is little research in the extant literature to study how to balance such an important trade-off to minimize
the program structural issues. Because optimal control theory is an effective tool to investigate trade-offs
between variables (Chiang 1992), this paper attempts to use an optimal control model to answer three
basic questions in balancing this trade-off. First, is that optimal to perform parallel defect correction and
refactoring? Second, how to determine the iteration length for Agile maintenance project if the project
team wants to include refactoring activities in the iteration? Third, how long the iteration should be if
team wants to improve program’s structure to a certain level at the end of the iteration?

Optimal Control Model and the Solution Process

Optimal control model

Ji et al. (2005) used an optimal control model to solve the trade-off between software construction and
bug fixing. Though this model was not designed for agile maintenance projects, we found that this model
conceptually fits the agile maintenance context. Therefore, we draw from the structure of the model and
build an optimal control model to solve our problem. We first present the notations used in the model in
Table 1.

Table 1. Notations used in the optimal control model

Notation Definition Remarks

b Number of explicit defects to be fixed in the system State variable

s Number of structural problems in the system State variable

u Effort on defect correction Control variable

1 u− Effort on refactoring correction

T Time horizon of one iteration

B Number of defects left in the system at the beginning of
the iteration

Explicit
defects

Defect
correction

Implicit structural
issues

Refactoring

Fix

Increase

(Degenerate)

Indirectly
address

Fix

(Improve)

 Ren et.al. / Optimal Refactoring Policy for Agile Information Systems Maintenance

 Thirty Second International Conference on Information Systems, Shanghai 2011 5

B% Number of defects left in the system at the end of the
iteration

0a to 5a Constant coefficients

The detailed setting of the model is presented as the following.

Minimize ()S s T= , (1)

Subject to 0

1

()
a bu

b
a

= −& , (2)

 2 3 4 5()() ()(1)s a a b a s b a s u= + + − − −&& , (3)

and (0)b B= , ()b T B= % , 0b ≥ , (0) 0s = , 0 1u≤ ≤ . (4)

S is a functional represents the number of program’s structural problems. As we indicated previously,
the objective functional (1) is to minimize the number of program’s structural problems at the end of the
iteration. We then explain the first state equation. Defects in the maintenance project normally decreases,
thus the rate of change of defects should be negative. This explains the negative sign in (1). Maintenance
team tends to fix the “easy but important” defects first and leave the “hard to fix and less important”
defects to the end. Therefore, the more defects the system has in the system, the faster the defects are to

be fixed. The constant 0a is the defect complexity coefficient. It captures the extent to which the

correction process of defects needs to involve different components in the system. The more components

the correction is involved, the more complex the defect is to be fixed (less 0a). So, smaller 0a leads to

slower defect fixing speed. Control variable u is the effort to be devoted in defect correction. Larger u
leads to higher rate of change of defects, this is reasonable because more defect correction speed is gained

if more effort is devoted to defect fixing. In the denominator, constant 1a is the initial design quality

factor, higher value of 1a represents more serious structural problems in the system at the beginning of

the iteration. It is expected that more structural problems cause lower defect correction rate. From (4) we
can show that this equation is a fixed endpoint problem.

We also interpret the rate of change of structural issues’ number in the system as the rate of change of
system degeneration. In the second equation, two factors are connected to this rate. First, the faster the
maintenance team corrects the defects, the more likely the team is to degenerate the program structure.
Second, if more effort is allocated to refactoring, the program structure tends to be better and the rate of
change of the program degeneration will therefore be decreased. Such relationship explains the negative
sign between the two portions in the equation. On the other hand, given the same defect correction speed,

if the maintenance team’s defect correction quality is high (lower 2a), program degeneration tends to be

slower. Thus, 2a is the defect correction quality coefficient. 3a captures the extent to which the defects

intertwine with each other. Therefore 3a b measures the degree of cohesion among defects, the higher the

cohesion is the faster the system tends to be degenerated when fixing these defects. And 4a is the system

quality coefficient. The number of structural problems in the system is proportional to the extent to which
the system is degenerated by code modification. The more serious the system is degenerated, the faster it

will be degenerated again. On the other hand, given the same refactoring effort 1 u− , the less structured
the program is, the more potential benefit the refactoring could bring. Therefore, the refactoring will be

more effective if the program is more contaminated. Thus, 5a is the refactoring effectiveness coefficient

and 5a s measures the effectiveness of refactoring.

Project Management, Outsourcing and IS Development

6 Thirty Second International Conference on Information Systems, Shanghai 2011

In the model, we assume that at the beginning of the maintenance project, the program does not have

structural issues, therefore (0) 0s = . Finally, we need to impose the constraint to the control variable

0 1u≤ ≤ .

The solution process

We formulate the Hamiltonian function as the following

0
1 2 1 2 2 3 4 5

1

() [()() ()(1)]
a bu

H b s a a b a s b a s u
a

λ λ λ λ= + = − + + + − − −& && . (5)

The costate variables 1λ and 2λ can then be shown

0 0 2 0 3 0 4
1 1 2

1 1

2
()

a u a a u a a bu a a suH

b a a
λ λ λ

+ +∂
= − = −

∂
& , (6)

0 4
2 2 5 5

1

()
a a buH

a a u
s a

λ λ
∂

= − = − −
∂

& . (7)

To minimize the objective functional is to maximize the Hamiltonian function with respect to u . We can

observe that H is linear in u , therefore the optimal solution for the control variable in general is

*

1 0

() 0

0 0

u

u

u

H

u t to be known H

H

>

= =
 <

. (8)

We can provide the economic interpretations of the costate variables 1λ , 2λ and the Hamiltonian

function. Because our objective functional is to minimize the program’s structural problems with the
constraint of finishing the defect correction work in the iteration. This objective reflects the value of agile

maintenance activity. Therefore, the costate variable 1()tλ is the shadow value of software defects at time

t . And the costate variable 2 ()tλ is the shadow value of program’s structural problems at time t . We can

now provide the economic interpretations of the Hamiltonian function as the sum of rate of change of
defect value and structural problem value which represents the future value effect of the control variable
u .

Because at the beginning of the iteration, the structure of the program is not degenerated by the defect
correction activity, so all the effort should be devoted to the defect correction. It means the optimal

solution for the control variable u should be set to 1 at the beginning of the maintenance. Thus, we plug

in
* 1u = to (2), the differential equation of the state variable b , we solve the equation and the solution is

0

1()

a
t

a
b t Be

−

= . (9) The solution shows the number of defects decreases exponentially with time t . Such

path of defect correction is consistent with classical empirical study (Belady and Lehman 1976) and
software reliability model (Goel and Okumoto 1979).

We then try to solve the equation (3), the differential equation for the state variable z and it can be
shown in the following general form

() () () ()s t p t s t q t= +& , 1 1()s t s= . (10) We now solve this general differential equation. Let
()p t dt

u e
−∫= ,

then multiplies both side of the equation and integrate both sides, we get

 Ren et.al. / Optimal Refactoring Policy for Agile Information Systems Maintenance

 Thirty Second International Conference on Information Systems, Shanghai 2011 7

() ()'(()) ()
p t dt p t dt

s t e dt q t e dt
− −∫ ∫=∫ ∫ . Then we can get from the previous equation that

0 0
() ()

0
() (())

t x
tp x dx p y dy

s t e q x e dx C
−∫ ∫= +∫ , C is a constant. Plug in the initial condition 1 1()s t s= we get

1 1
1

0 0 0
() () ()

1
0

(())

t x t
tp x dx p y dy p x dx

C s e q x e dx e
− −∫ ∫ ∫= − ∫ . Plug in C back, we get the solution as the following

1

0 0 0

1

() () ()

1() (())

t t x
tp x dx p x dx p y dy

t
s t e s e q x e dx

− −∫ ∫ ∫= + ∫ . (11) If we plug in
* 1u = to (3), the differential

equation of s , and according to the general form (10), we can let 4() ()p t b t a= − & , 2 3() ()q t b a a b= − +& .

Plug in them to the general solution form (11), we can get the specific solution of s

4 4(()) (())3 2 4 3

2

4 4

() (1)() (())a b t B a b t Ba a a a
s t e b t Be

a a

− − − −−
= − − − . (12)

The expression (12) represents the path of system degeneration at the first stage of the maintenance. We
can show in (12) that s is increasing with t . This solution is consistent with our speculation, because pure
defect correction will generate more structural problems in the system.

When the maintenance team has corrected some defects, the system structure will be degenerated to a
certain extend governed by the path described in (12). In order to finish the defect correction task and, at
the same time, to improve the system structure, there will be three possible actions the maintenance team
can choose in the next period of time. We assume the workload of defect correction planed in the iteration
is reasonable. Figure 2 shows these three choices.

Figure 2. Three possible actions in the second stage of the iteration

The first possible action, showed in figure 2(a), is to perform defect correction and refactoring

simultaneously (from time 1t to 2t) and switch to pure refactoring once all the defects are corrected in 2t .

The second possible action, showed in figure 2(b), is to finish the defect correction first and then switch to
pure refactoring. The third one, showed in figure 2(c), is to switch to refactoring right away and switch
back to defect correction when appropriate thereafter. Then to switch between defect correction and
refactoring back and forth in the iteration until all the defects are corrected.

Next we need to find out which of the three possible actions is optimal. We start with the first possible
action, to do the refactoring and defect correction simultaneously in the next stage. According to the
general solution form for the control variable u , if we would like to allocate defect correction and

refactoring simultaneously, the control variable needs to satisfy 0 1u< < . From (8), we can show this

T

()a
1t 2t

t

u

1

T
1t

t

u

1

()b

t
T

1t 2t

u

1

()c
3t

Project Management, Outsourcing and IS Development

8 Thirty Second International Conference on Information Systems, Shanghai 2011

means
u

H has to be equal to 0. And if we would like to keep the value of
u

H zero, the derivative of
u

H

with respect to time t,
u

H& , has to be 0. We first get the expression for
u

H

0 2 3 4 0
1 2 5

1 1

()
[]

u

a b a a b a z a b
H a s

a a
λ λ

+ +
= − + + . (13) If we let 0

1

a b
V

a
= , 2 3 4 0

5

1

()a a b a s a b
a s R

a

+ +
+ = ,

we can get 1 1 2 2()
u

H V V R Rλ λ λ λ= − + + +& && & & . (14) Then we plug in 1λ& , 2λ& , b
& , s& , and through some

careful calculation we are able to show that

2

0 2 5 0 3 5
2

1 1

()
u

a a a b a a a b
H

a a
λ= +& .(15) If we let 0

u
H =& , since

2 0λ ≠ , all the constants 0
i

a > and 0b ≥ , the only possibility is 0b = . This means if to perform defect

correction and refactoring simultaneously is optimal, the necessary condition is the number of defect
needs to be 0. This obviously contradicts to the first possible action we just mentioned, because if the
number of defect is 0, we don’t need to perform defect correction anymore. However, this result still can’t
differentiate whether the second or the third possible action, is optimal because both the second and the
third actions do not require performing defect correction and refactoring at the same time.

In order to judge whether the second or the third possible action is optimal, we need to determine the sign

of 2λ . To see the sign of 2λ , we draw from the variational view of optimal control (Chiang 1992). Because

the objective functional is to minimize ()z T , therefore the terminal condition of 2λ is 2 () 1Tλ = − . And

with the aid of this terminal condition we can solve the differential equation for 2λ ,

0 4
5 5

1

()()

2 ()

a a bu
t T a a u dt

a
t eλ

− − −∫
= − . (16) Therefore, we can show that 2 0λ < throughout the maintenance

period. We already know that at the beginning of the maintenance period, 1u = . That means 0
u

H > .

From (8) we also know that when the control variable switches from 1 to 0, the sign of
u

H must switch

from positive to negative. Since now we know 2 0λ < at all time, we can know that the rate of change of

u
H witch respect to time t ,

u
H& is always less than zero. Then it’s not possible for

u
H to be larger than

zero again once its sign becomes negative from positive. Now we can eventually eliminate the third
possible action.

If the team always wants refactoring activity to be able to occur in the iteration, it can generate the

threshold time by using equation (9). If we plug in 1()b t B= % to equation (9) we get 1
1

0

ln()
a B

t
a B

= −
%

. (17)

1t is a positive value because B B<% and ln() 0
B

B
<

%

. The length of the iteration must be longer than the

time determined by 1t to allow refactoring to be able to occur in the iteration.

In addition, if the team always wants to improve program’s structure to a certain level s% and wants to

determine the time 2t for that. This could be done by solving equation (3) by plugging in 1u = . If we plug

in 1u = , the solution of (3) is 5()
a t

s t Ce
−= , (18) with the initial condition

4 1 4 1(()) (())3 2 4 3
1 12

4 4

() (1)() (())a b t B a b t Ba a a a
s t e b t Be

a a

− − − −−
= − − − . (19) Plug in (19) to (18) to solve C we

get 5 1

1()
a t

C s t e= . Then we can finally get the solution for (18) 5 1 5

1() ()
a t a t

s t s t e e
−= . (20) With (20), if we

let 2()s s t=% , we can easily solve for 2t and 1 2t t+ is the duration length which enables the team to

 Ren et.al. / Optimal Refactoring Policy for Agile Information Systems Maintenance

 Thirty Second International Conference on Information Systems, Shanghai 2011 9

achieve certain structural requirement imposed on the program structure s at the end of the iteration. So
far, three research questions raised in the previous sections can all be answered.

Managerial Implications and Contributions

Several managerial implications can be generated from our research result. First of all, our finding
suggests maintenance managers or agile coach of agile ISM projects should not plan tasks which conduct
parallel defect correction and refactoring. Maintainers should also try not to perform parallel defect
correction and refactoring in their daily work. Secondly, the length of the iteration is usually determined
empirically. Team usually proposes tentative iteration durations and tries to fit the work into such
duration. Adjustments may be made if team fails to achieve the iteration goal. There was no tool or
analytical method to support the team in determining the iteration length in maintenance projects. Our
study provides an analytical method to aid the determination of iteration length.

There are two major contributions in this study. Firstly, while many researchers focused on ISM under
traditional process and some of the other studies tried to understand agile maintenance empirically, there
is few theoretical analysis research studies maintenance in agile context. Our work is the pioneer study to
gain theoretical insights of agile maintenance analytically. Our results not only address key issues of filling
the research gap we identified, it can also form the theoretical foundation for other researchers in the
future study. Secondly, our findings and proposed managerial implications may benefit the maintenance
practitioners who want to adopt agile methods in work.

Limitations and Future Work

We studied the trade-off between defect correction and refactoring. We found it is not optimal to perform
parallel defect correction and refactoring. This is an interesting finding because the conventional wisdom
tends to believe that parallel work or multi-tasking should be superior in terms of the overall performance.
However, our finding denies this intuition and it suggests that agile maintenance team should always try
to correct all the defects listed in the correction plan of the current iteration and leave the rest of the time
to refactoring.

The majority portion of the unfinished work is a numerical experiment. We didn’t perform such an
experiment to gain deeper insights on how every constant coefficient influences the variables such as the
time threshold in the model. Numerical experiment shall enable us not only be able to understand the
phenomenon analytically but also approach the problem quantitatively. More interesting findings could
be generated from such numerical experiment. For example, we may answer the question “to what extent
the defect complexity effects the overall program structure?”.

There are several limitations in the current study. First, agile maintenance is an iterative process. In this
study we assume the maintenance work in each iteration shares the same or at least a similar pattern.
Such assumption may threat the validity of the findings when special requirements are imposed to some
iteration. For instance, in some iteration, customers may require the team to fix much more defects than
regular to meet some particular deadline. In the future work, we need to consider the situation in more
iterations to see whether the result will change significantly.

Second, in equation (2) of the current model, only the constant 1a is used to reflect how structural issues

affect the defect correction rate. This may be considered insufficient since the program’s structure is
actually a dynamic variable rather than a constant. If the change in program’s structure significantly
affects the defect correction rate, the validity of the findings may be threatened. In the future study, we
plan to integrate the second state variable s with equation (2). We expect the solution of such a modified
model will disclose more insights of agile maintenance.

Project Management, Outsourcing and IS Development

10 Thirty Second International Conference on Information Systems, Shanghai 2011

References

Auer, K. and R. Miller. 2001. Extreme Programming Applied: Playing to Win, Addison-Wesley
Professional.

Banker, R., S. Datar, et al. 1993. “Software complexity and maintenance costs,” Communications of the
ACM (36:11), pp. 81-94

Belady, L. A. and M. M. Lehman. 1976. "A model of large program development," IBM Systems Journal
(15:3), pp. 225-252.

Chiang, A. C. 1992. Elements of Dynamic Optimization, McGraw-Hill.
Conboy, K. 2009. “Agility from First Principles: Reconstructing the Concept of Agility in Information
Systems Development,” Information Systems Research (20:3), pp. 329-354.

Dybå, T. and T. Dingsøyr. 2008. "Empirical studies of agile software development: A systematic review,"
Information and Software Technology (50:9-10), pp. 833-859.

Fitzgerald, B., G. Hartnett, et al. 2006. “Customising agile methods to software practices at Intel
Shannon,” European Journal of Information Systems (15:2), pp. 200-213.

Fowler, M., K. Beck, et al. 1999. Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional.

Goel, A. L. and K. Okumoto. 1979. "A time dependent error detection model for software reliability and
other performance measures," IEEE Transactions on Reliability (28:3), pp. 206-211.

Griswold, W. G. 1991. “Program restructuring as an aid to software maintenance,” University of
Washington. Ph.D Thesis.

Ji, Y., V. S. Mookerjee, et al. 2005. "Optimal Software Development: A Control Theoretic Approach,"
Information Systems Research (16:3), pp. 292–306.

Kemerer, C. F. and S. A. Slaughter. 1997. “Determinants of Software Maintenance Profiles: An Empirical
Investigation,” Software maintenance: research and practice (9:4), pp. 235-251.

Kitchenham, B. A., G. H. Travassos, et al. 1999. “Towards an Ontology of Software Maintenance,” Journal
of Software Maintenance: Research and Practice (11:6), pp. 365-389.

Lientz, B. P. and B. Swanson. 1981. Software Maintenance Management, Addison-Wesley
Maruping, L. M., V. Venkatesh, et al 2009. “A Control Theory Perspective on Agile Methodology Use and
Changing User Requirements,” Information Systems Research (20:3), pp. 377-399.

Oman, P., Hagemeister, J. 1992. “Metrics for assessing a software system's maintainability,” in
Proceedings of Conference on Software Maintenance, Orlando, FL , USA, pp. 337-344.

Opdyke, W. 1992. “Refactoring object-oriented frameworks,” University of Illinois at Urbana-
Champaign. PhD thesis.

Poole, C. and J.W.Huisman. 2001. "Using Extreme Programming in a Maintenance Environment," IEEE
Software (18:6), pp. 42-50.

Poole, C., T. Murphy, et al. 2001. “Extreme maintenance,” in Proceedings of the 17th IEEE International
Conference on Software Maintenance, Florence, Italy.

Rico, D. F. 2008. “Agile Methods and Software Maintenance,” http://davidfrico.com/rico08f.pdf.
Senge, P. 2006. The Fifth Discipline : The Art & Practice of the Learning Organization, Doubleday
Business.

Shaw, S. 2007. “Using Agile Practices in a Maintenance Environment,” Intelliware Development Inc.
Svensson, H. and M. Host. 2005. “Introducing an Agile Process in a Software Maintenance and Evolution
Organization,” Ninth European Conference on Software Maintenance and Reengineering(CSMR
2005).

http://davidfrico.com/rico08f.pdf

