

Deep Convolutional Neural Network for Image Deconvolution

Li Xu¹, Jimmy SJ. Ren¹, Ce Liu², Jiaya Jia³ ¹Lenovo Research & Technology ²Microsoft Research ³The Chinese University of Hong Kong

http://lxu.me/projects/dcnn/

Challenges in deconvolution

Saturation

Compression

Noise

 \bullet

0

Blur Degradation

Problems of existing methods

Architecture Limitation

->Deconvolution involves much larger Spatial Support

 $x = \mathcal{F}^{-1}\left(\frac{1}{\mathcal{F}(k)}\left\{\frac{|\mathcal{F}(k)|^2}{|\mathcal{F}(k)|^2 + \frac{1}{|\mathcal{F}(k)|^2}}\right\}\right) * y = k^{\dagger} * y,$

Training Limitation

->Difficult to model all the degradations

->Difficult to train a network blindly

Figure 6: Comparisons of intermediate results from deconvolution CNN. (a) Maps from random initialization. (b) Our final maps.

Direct Adoption of Learning Fails

(c) CNN [15]

image-related problems Many fundamental involve deconvolution operators. Real blur degradation seldom complies with an ideal linear convolution model due to camera noise, saturation, image compression, to name a few. Instead of perfectly modeling outliers, we develop a deep convolutional neural network to capture the characteristics of degradation. Our solution is to establish the connection between traditional optimization-based schemes and a neural network architecture where a novel, separable structure is introduced as a reliable support for robust deconvolution against artifacts. Our novel approach yields decent performance on non-blind image deconvolution compared to previous generative-model based methods.

Г	184x18

Two sub-networks, deconvolution CNN (DCNN) and Outlierrejection deconvolution CNN (ODCNN) trained supervised respectively and merged as a integrated network through finetuning. Weights in DCNN is theoretically initialized from the separable kernel inversion.

(a) input

(b) SSDAE [14]

Overview

Our Deconvolution CNN

disk sat. disk motion sat. motion

Microsoft[®] Research

Theory guided weights initialization

Figure 4: PSNRs produced in different stages of our convolutional neural network architecture.

Our Results

	KIISIIIaii [5]	Levin [/]		whyte [10]	Schuler [15]	Schindt [4]	Ours		
	24.05dB	24.44dB	25.35dB	24.47dB	23.14dB	24.01dB	26.23dB		
	25.94dB	24.54dB	23.97dB	22.84dB	24.67dB	24.71dB	26.01dB		
	24.07dB	23.58dB	25.65 dB	25.54dB	24.92dB	25.33dB	27.76dB		
	25.07dB	24.47 dB	24.29dB	23.65dB	25.27dB	25.49dB	27.92dB		

Table 1: Quantitative comparison on the evaluation image set.