
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1783

Copyright ⓒ 2011 KSII

The part of this paper was presented in the ICONI (International Conference on Internet) 2010, December 16-20,

2010, Philippines. This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant

funded by the Korea government(MEST) (No. 2009-0086 148).

DOI: 10.3837/tiis.2011.10.006

A Practical Implementation of Fuzzy
Fingerprint Vault

Sungju Lee
1
, Yongwha Chung

1
, Daesung Moon

2
, Sung Bum Pan

3
and Chang-Ho Seo

4

1
Department of Computer and Information Science, Korea University

Seochang 208, Chochiwon, Chungnam, 339-700, Korea

[e-mail : {peacfeel, ychungy}@korea.ac.kr]
2
ETRI Human Identification Research Team, ETRI

161 Gajeong-dong, Yuseong-gu, Daejeon 305-700, Korea

[e-mail : daesung@etri.re.kr]
3
Department of Control, Instrumentation and Robot Engineering, Chosun University

375, Seosuk-dong, Dong-gu, Gwangju, 501-759, Korea

[e-mail : sbpan@chosun.ac.kr]
4
Department of Applied Mathematics, Kongju National University

182, Singwan-dong, Gongju-si, 314-701, Korea

[e-mail : chseo@kongju.ac.kr]

*Corresponding authors: Yongwha Chung and Sung Bum Pan

Received March 31, 2011; revised August 4, 2011; accepted August 15, 2011;

published October 31, 2011

Abstract

Recently, a cryptographic construct, called fuzzy vault, has been proposed for

crypto-biometric systems, and some implementations for fingerprint have been reported to

protect the stored fingerprint template by hiding the fingerprint features. In this paper, we

implement the fuzzy fingerprint vault, combining fingerprint verification and fuzzy vault

scheme to protect fingerprint templates. To implement the fuzzy fingerprint vault as a

complete system, we have to consider several practical issues such as automatic fingerprint

alignment, verification accuracy, execution time, error correcting code, etc. In addition, to

protect the fuzzy fingerprint vault from the correlation attack, we propose an approach to

insert chaffs in a structured way such that distinguishing the fingerprint minutiae and the chaff

points obtained from two applications is computationally hard. Based on the experimental

results, we confirm that the proposed approach provides higher security than inserting chaffs

randomly without a significant degradation of the verification accuracy, and our

implementation can be used for real applications.

Keywords: Information security, fingerprint recognition, internet banking/home networking,

fuzzy fingerprint vault, correlation attack

1784 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

1. Introduction

Many of the limitations of password-based key release can be eliminated by incorporating

biometric data. It is inherently more reliable than password-based key release as biometric

characteristics cannot be lost or forgotten. Further, biometric characteristics are difficult to

copy, share, and distribute, and require the person being authenticated to be present at the time

and feature of authentication. Thus, biometrics-based solution is a potential candidate to

replace password-based solution, either for providing complete authentication mechanism or

for securing the traditional cryptographic keys. In this paper, the fingerprint has been chosen

as the biometrics for user authentication. It is more mature in terms of the algorithm

availability and feasibility [1].

However, the fact that fingerprint templates are stored in a database and/or a something

introduces a number of security risks, and several threats can be identified [2][3][4]: if the

fingerprint template storing the user’s features (i.e., minutiae) is compromised, the user may

quickly run out of his fingers to be used for user authentication and cannot re-enroll forever.

To solve this problem, some researches have reported in order to protect the fingerprint

template [5]. For examples, some results using idea of the fuzzy vault scheme [6] have been

reported [7][8][9][10][11][12][13]. Juels and Sudan [6] proposed a scheme called fuzzy vault.

In LOCK function of the fuzzy vault scheme, the secret k (such as private key) is encoded as

the coefficients of a Galois field polynomial f(x). A user’s biometric minutiae (set A) are

encoded as pairs (ai, f(ai)), where ai is a minutia and f(ai) is a mapping value from the minutia

to the polynomial. Additionally, to hide these “real” minutiae, numerous “chaff” minutiae are

encoded, in which the value of f(ai) is random. During UNLOCK function, new biometric

input minutiae (set B) are calculated, and the minutiae ai closest to the bi are chosen. The f(ai)

corresponding to these minutiae are used to estimate the polynomial, using a Reed-Solomon

error correcting code framework. If enough legitimate (i.e., real) minutiae are taken, the

correct polynomial will be obtained and the correct secret k can be decrypted.

Some results using the fuzzy fingerprint vault have been reported [7][8][9][10][11][12][13].

However, these approaches are difficult to apply the realistic for the industrial environment

because they do not consider every possible issues such as automatic fingerprint alignment,

verification accuracy, execution time, RS decode, etc. For example, Clancy et al. [7] proposed

a fuzzy fingerprint vault scheme based on the location of minutiae in a fingerprint. However,

the False Reject Rate (FRR) of their system was 20~30%. Uludag et al. [8] introduced a

modification to the fuzzy vault scheme, which uses a simple Cyclic Redundancy Check (CRC)

for error-correction. However, they assumed that fingerprints were pre-aligned. Nandakumar

et al. [9] also proposed the fuzzy fingerprint vault based on the helper data for the

auto-alignment. However, this solution also has some limitations such as a slow decoding time

or a possibility of failure to find the core point in some images. Also, [14] reported that

transform-based cancelable templates may not be secure against the dictionary attack.

Therefore, to implement the fuzzy fingerprint vault practically, we have to consider several

issues such as automatic fingerprint alignment, verification accuracy, execution time, error

correcting code, etc.

In addition, fuzzy fingerprint vault is shown recently to be susceptible to a correlation

attack that correlates the two vaults created using the same finger in order to reveal the

fingerprint minutiae hidden in the vault [15][16]. In fact, this type of correlation attack is very

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1785

effective for cryptographic schemes which are based on the principle of “chaffing and

winnowing” [17]. That is, the security of this scheme relies on a presence of randomly

generated chaff that disguises the actual secret data (i.e., fingerprint minutiae) but does not

cover the entire universe generated from any fingerprint. Then, the intersection of such vault

information gathered from multiple systems (i.e., enrolled for different applications) would

likely reveal the secret data [18]. Therefore, we need to cover the entire universe with chaffs in

order to make multiple systems look similar.

In this paper, we propose an approach to protect fingerprint templates stored in a database

by using the idea of the fuzzy vault [6]. Fuzzy vault is a cryptographic construct and has the

characteristics that make it suitable for applications combining biometric authentication and

cryptography. Additionally, to avoid the correlation attack [15][16] against the fuzzy vault

(i.e., obtains the real minutiae from multiple enrolled vaults), we apply an approach to insert

chaffs in a structured way such that distinguishing the fingerprint minutiae and the chaff points

obtained from two applications is computationally hard.

The rest of the paper is structured as follows. Section II explains the overview of the fuzzy

fingerprint vault and correlation attack. Section III describes the proposed fingerprint template

protection approach. The experimental results and conclusions are made in Section IV and V,

respectively.

2. Background

2.1 Fingerprint Verification

A typical fingerprint verification system has two phases: enrollment and verification [1]. In the
off-line enrollment phase, an enrolled fingerprint image for each user is preprocessed, and the
minutiae are extracted and stored in a server. In the on-line verification phase, the input
minutiae are compared to the stored template, and the result of the comparison is returned.

In general, there are three steps involved in the verification phase: Image Pre-Processing,
Minutiae Extraction, and Minutiae Matching. Image Pre-Processing refers to the refinement of
the fingerprint image against the image distortion obtained from a fingerprint sensor. Minutiae
Extraction refers to the extraction of features in the fingerprint image. After this step, some of
the minutiae are detected and stored into a pattern file, which includes the position, orientation,
and type (ridge ending or bifurcation) of the minutiae. Based on the minutiae, the input
fingerprint is compared with the enrolled database in the Minutiae Matching step.

Note that Image Pre-Processing and Minutiae Extraction steps require a lot of integer

computations, and the computational workload of both steps occupies 96% of the total

workload of the fingerprint verification. When the fingerprint verification phase is

implemented into client-server environments, it is reasonable to assign the time-consuming

steps to the server, rather than to the resource-constrained client. This kind of task assignment

can also solve the vendor interoperability problem [19]. That is, the fingerprint minutiae

extracted by one vendor may not match well with the stored fingerprint template extracted by

another vendor. To solve this vendor interoperability, the fingerprint image itself needs to be

transmitted from the handheld device to the server. Also, in order to reduce the size of the

transmission, the Wavelet Scalar Quantization (WSQ) fingerprint compression standard can

be applied [20]. Finally, there are global feature (i.e., orientation model) based feature

extraction methods [21]. Since every fuzzy fingerprint vaults are based on local features (i.e.,

minutiae), however, we also assume minutiae-based fuzzy fingerprint vault in this paper. The

details of global feature based feature extraction methods can be found in [21].

1786 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

In typical fingerprint verification systems, the fingerprint features are often stored in a

central database as an enrolled template. With the central storage of the fingerprint feature,

there are open issues of misuse of the fingerprint feature such as the “Big Brother” problem.

To solve these open issues [2][3][4][5], new cryptographic constructs combining biometric

authentication and cryptography such as fuzzy vault [6] need to be developed.

2.2 Fuzzy Vault Scheme

In the fuzzy vault scheme [6], Alice can place a secret value S in a vault and lock it using an

unordered locking set L. Bob, using an unordered unlocking set U, can unlock the vault only if

U overlaps with L to a great extent.

The procedure for constructing the fuzzy vault is as follows: Secret value S is first encoded

as the coefficients of some degree k polynomial in x over a finite field GF(p). This polynomial

p(x) is now the secret to protect. The locking set L is a set of n values)(pGFli  making up the

fuzzy encryption key, where n>k. The locked vault contains all the pairs (li, p(li)) and some

large number of chaff points),(jj  , where
jjp  )(. After adding the chaff points, the total

number of items in the vault is r.

In order to crack this system, an attacker must be able to separate the chaff points from the

legitimate points in the vault. The difficulty of this operation is a function of the number of

chaff points, among other things. A legitimate user should be able to unlock the vault if they

can narrow the search space. In general, to successfully interpolate the polynomial, they have

an unlocking set U of m elements such that L ∩U contains at least k + 1 elements. The details

of the fuzzy vault can be found in [6].

 Using the error-correction coding, it is assumed that the legitimate user can reconstruct p

(and hence k). The security of the scheme is based on the infeasibility of the polynomial

reconstruction problem (i.e., if Bob does not know many points that lie on p, he cannot feasibly

find the parameters of p, hence he cannot access k). Since this fuzzy vault can work with

unordered sets (common in biometric templates, including fingerprint minutiae data), it is a

promising candidate for crypto-biometric systems.

Since the introduction of the fuzzy vault scheme, some implementations results for

fingerprint have been reported [7][8][9][10][11][12][13]. Clancy et al. [7] proposed a fuzzy

fingerprint vault scheme based on the location of minutiae in a fingerprint. However, the False

Reject Rate (FRR) of their system was 20~30%. Uludge et al. [8] introduced a modification to

the fuzzy vault scheme, which uses a simple Cyclic Redundancy Check (CRC) for

error-correction, instead of the Reed-Solomon polynomial decoding. Also, the FRR of their

system was 21%, and execution time was 52 seconds with a 3.4 GHz processor. An additional

problem with these implementations [7][8] is that they assumed fingerprints were pre-aligned.

This is not a realistic assumption for fingerprint-based authentication systems, and limits the

applicability of their implementations.

Nandakumar et al. [9] also proposed the fuzzy fingerprint vault based on the helper data for

the auto-alignment. They got a significant improvement in the Genuine Accept Rate (GAR)

[9]. However, they have some limitations such as a slow decoding time (e.g., the median and

mean decoding time was 3 and 8 seconds, respectively) or a possibility of failure to find the

core point in some images. Furthermore, the helper data may leak some information of the

fingerprint ridges because the helper data is generated by using the ridge information.

Yang and Verbauwhede [10] aligned automatically two fingerprint templates in the fuzzy

vault domain using a concept of reference minutia, which could be generated with the distance

and the orientation of two nearest-neighbor minutiae. That is, their system is based on the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1787

impractical assumption that two reference minutia can always be extracted accurately from

both the input and the enrolled fingerprints. They reported a FRR of 17% and FAR of 0% as

the verification performance.

Finally, Chung and Moon [11][12][13] proposed an automatic alignment approach by using

the geometric hashing technique which has been used for model-based object recognition

applications. Note that, the accuracy problem related with rotation transform which may be

critical in bio-cryptographic solutions was analyzed in [22]. Also, the difficulty and

importance of the alignment problem in fuzzy fingerprint vault was explained in [23]. By

using the relative information between minutiae, the geometric hashing technique can solve

the geometrical transformation problem like shift and rotation. A similar idea based on

composite features was proposed and the details of this solution can be found in [23].

To implement the fuzzy fingerprint vault practically, we have to consider several issues

such as automatic fingerprint alignment, verification accuracy, execution time, error

correcting code, etc.

2.3 Correlation Attack

Recently, Scheirer et al. [15] suggested three critical attacks against fuzzy vaults scheme: i)

attacks via record multiplicity, ii) stolen key-inversion attack, and iii) blended substitution

attack. Among these attacks, the attack via record multiplicity, called correlation attack [16] as

shown in Fig. 1, is most important because this type of correlation attack is very effective for

cryptographic schemes which are based on the principle of chaffing and winnowing [17]. Fig.

1 (c) shows the correlation attack to two different vaults from the same finger.

(a) vault A (b) vault B (c) result of correlation

Fig. 1. Illustrating the correlation attack to fuzzy fingerprint vault. The correlation attack is (c) with two

enrolled fingerprint vaults (a) and (b). White points show fingerprint minutiae, whereas black points

show redundant chaff points added randomly to hide the fingerprint minutiae.

In order to show this correlation attack, A. Kholmatov et al. [16] reported an

implementation of correlation attack to fuzzy fingerprint vaults. For that, they matched each

vault pair using exhaustive matching, seeking the best alignment between two vaults over all

of their relative rotations and translations. The best alignment is decided as the one which

maximizes the number of matching points between the two vaults. After the alignment, two

candidate point sets (CA;CB) were obtained, one for each of the two vaults, containing a

mixture of genuine and chaff points. The vault(s) can be unlocked if i) the number of matching

minutiae points M (i.e. LCA ∩LCB) within a candidate set is sufficient to decode the polynomial

of K degree (i.e., M >=K + 1) and ii) the total number of matching points N is not too large

with respect to M, so that the brute force attack (i.e. trying all possible combinations of K + 1

out of N points) to reconstruct the polynomial is computationally feasible. During the

1788 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

experiments, it was observed that 59% of vault pairs were reconstructed by correlation attack,

and it took approximately 50 seconds for a non-optimized implementation on a PC with 3GHz

CPU.

However, as long as the security of a scheme relies on a presence of randomly generated

chaff that disguises the actual secret data but does not cover the entire universe, the

intersection of such information gathered from multiple systems would likely reveal the secret

[18]. To resist this type of attack, we need to cover the entire universe with chaffs in order to

make multiple systems look similar.

3. Proposed Algorithm

In this section, we describe the implementation details of the fuzzy fingerprint and the

structured insertion of chaffs in order to protect the correlation attack.

3.1 Implementation of Fuzzy Fingerprint Vault

3.1.1 Fuzzy Fingerprint Vault

Minutiae are represented as a point within a 2D fingerprint image. For that reason, the

fingerprint is more suitable for applications that combine biometrics and the fuzzy vault

scheme than other biometric modalities such as iris and face.

As explained in Section II, a fingerprint minutia represented by mi = (xi, yi, i, ti) is

composed of four elements: x-, y-coordinates, angle, and type. In typical fingerprint

verification systems, minutiae are stored in a template file, and input minutiae are compared

with the template minutiae after aligning them. In this typical fingerprint verification system,

an attacker can reuse the template minutiae once he steals it.

For protecting template minutiae from the attacker, we apply the idea of the fuzzy vault

scheme that stores a number of chaff minutiae generated structurally as well as the real

minutiae. That is, we consider the template including both real and chaff minutiae and the

input minutiae as the locking and the unlocking set, respectively. Then, it is not feasible for the

attacker to reuse the fuzzy fingerprint vault directly without separating the real minutiae from

the chaff minutiae even if he steals the fingerprint fuzzy vault. Note that, a legitimate user also

should not be able to separate the real minutiae without the fingerprint image from the same

finger.

Fig. 2 shows our fuzzy fingerprint vault system. As shown in Fig. 2, the fuzzy fingerprint

vault system is composed of two steps, locking and unlocking. Each step is explained in detail

in the following. Note that, a fingerprint minutia represented by mi = (xi, yi, i, ti) is composed

of four elements: x-, y-coordinates, angle, and type.

Feature Extractor

Secret 1
Fingerprint

Vault

Chaff Points

Locking Processing Storage

Polynomial

Constructer

Projection

Fingerprint

Vault

H(Secret1)

Stored Data

degree

(a) Locking Process

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1789

Storage

Enrolled

Template

H(S1)

Stored Data

Polynomial

Reconstructer

S2

Unlocking Processing

Feature

Extractor

Fingerprint

Matching

Matching

(H(S1), H(S2)

degree

(b) Unlocking Process

Fig. 2. Illustration of the fuzzy fingerprint vault system

Locking Processing :

○1 Extract minutiae from the template fingerprint image of a user. These minutiae are called as

real minutiae.

},...,1|),,,{(nityxL iiii   (1)

where n denote the number of minutiae.

○2 Generate a degree-k polynomial from a secret S, and compute a hash value  from a hash

function hash(S)

kk xaxaaxp  10)((2)

)||||||(10 kaaaS 
(3)

)(GF 2pai 
(4)

)(Shash
(5)

○3 Compute the polynomial projections p(x) after converting all elements of L to an element of

GF(p
2
), and define this result as Set RL. For example, if an element of GF(p

2
) is represented

as AX+B (A, BGF(p
2
)), we can replace x and y coordinates of the minutia to A and B,

respectively.

),,,(},,...,1|),{(iiiiiiiL tyxrnivrR 
(6)

nipyXxXXpv iiiii ,...,1),(GF),(2 
 (7)

○4 Structurally generate chaff minutiae that do not lie on p(x) to protect real minutiae.

),,,(},,...,1|),{(iiiiiii tyxcrnivcC 
(8)

rnipyXxXXpv iiiiii ,...,1),(GF,)(2   (9)

where I is a non-zero element over finite fields of the form GF(p
2
).

○5 Structurally generate Set R that is integrated with RL and C.

),,,(},,...,1|),{(iiiiiii tyxrrivrR 
(10)

○6 Finally, the vault is constituted by the real and chaff minutiae, the degree k of the

polynomial and the secret. The secret should be stored in a hashed form.

},...,1|,),,{(rikvrV ii  
(11)

Unlocking Processing :

Unlocking processing is the step that reconstructs the polynomial from minutiae of the input

fingerprint image.

○1 Extract minutiae from the input fingerprint image. We called set U as unlocking set.

1790 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

},...,1|)',',','{(mityxU iiii   (12)

where m denotes the number of minutiae.

○2 Execute fingerprint matching with Set U and ri of Set V stored in the Locking processing.

The matching results are stored in Set M with t matched minutiae and corresponding vi in

Set V.

),,,(},,...,1|),{(iiiiiii tyxmtivmM  (13)

where rtRM  , .

○3 If k and M are used as input values for the RSDECODE, the degree-k polynomial p’(x) will be

returned. Then, ’ is computed by (16).

),(RS)(DECODE

' Mkxp  (14)

kk xaxaaxp ''')(' 10 
(15)

)'||||'||'(' 10 kaaahash 
(16)

○4 If ’ and  are exactly same, the user is accepted. Otherwise, he is rejected.



 


otherwise

if

 ,Reject

 ' ,Accept
 Decision



(17)

If set M contains k+1 real minutiae, the fuzzy fingerprint vault can reconstruct the same

polynomial used in the locking process. However, the chaff minutiae should be removed by

using an error correct code such as Reed Solomon (RS) decode because set M may contain

some chaff minutiae as well as the real minutiae (even if the user is genuine).

The RS decoding algorithm can remove these chaff minutiae and reconstruct a polynomial

using a set of over-sampled minutiae that contains a reasonable number of errors [8]. To

reconstruct the k degree polynomial, the RS decode requires at least (k+t)/2 real minutiae (i.e.,

t is the number of matched minutiae). Also, the performance of the RS code is very important

for real applications.

3.1.2 Automatic Alignment

In the previous result [11], the geometric hashing was used to provide a scalable performance

for one-to-many matching of fingerprints on large-scale databases. Chung and Moon

[11][12][13] proposed the approach to solve the auto-alignment problem in the fuzzy

fingerprint vault using the idea of the geometric hashing [24]. This is reasonable because the

idea of the geometric hashing can also be used for pre-computing the possible alignments to

save time for alignment in the one-to-one fuzzy fingerprint vault problem.

In typical fingerprint verification systems, minutiae are stored in the template file, and input

minutiae are compared with the template minutiae after aligning them. Similarly, the

geometric hashing consists of two procedures – preprocessing (or enrollment) and recognition

(or identification).

The preprocessing procedure is executed off-line and only once. In this procedure, the

model features are encoded and are stored in a hash table. The information is stored in a highly

redundant multiple-viewpoint way. Assume each model in the database has n features. For

each ordered pair of features in the model chosen as a basis, the coordinates of all other

features in the model are computed in the orthogonal coordinate frame defined by the basis

pair. Then, (model, basis) pairs are entered into the hash table bins by applying a given hash

function f to the transformed coordinates.

In the recognition procedure, a scene consisting of S features is given as input. An arbitrary

ordered pair of features in the scene is chosen. Taking this pair as a basis, the coordinates of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1791

the remaining features are computed. Using the hash function on the transformed coordinates,

a bin in the hash table (constructed in the preprocessing procedure) is accessed. For every

recorded (model, basis) pair in the bin, a vote is collected for that pair. The pair winning the

maximum number of votes is taken as a matching candidate. The execution of the recognition

procedure corresponding to one basis pair is termed as a probe. If no (model, basis) pair scores

high enough, another basis from the scene is chosen and a different probe is performed.

When we apply this geometric hashing to the fuzzy vault, we should perform 1:1

comparisons. Thus, we use the notion of verification, instead of identification. After the

enrollment procedure, the verification procedure separates the chaff minutiae C from the real

minutiae G in the enrollment minutiae table. That is, the minutiae information (unlocking set

B) of a verification user is computed and a table, called verification minutiae table, is

generated according to the geometric characteristic of the minutiae. Then, the verification

minutiae table is compared with the enrollment minutiae table, and the subset of real minutiae

is finally selected. Note that, the verification minutiae table is generated in the same way as the

enrollment procedure. Fig. 3 shows an illustration of the processing of the hash table

generation and the auto-alignment processing with enrollment and input hash table.

matching

Geometric

hashing

Geometric

hashing

Enrollment hash table

Input hash tableInput Features

Enrollment Features

Fig. 3. An Illustration of the Auto-Alignment Processing with Enrollment and Input Hash Table [11].

Although the FFV using the geometric hashing technique can solve the alignment problem,

it requires large memory space at the enrollment phase. Also, the enrolment hash table

increases with the number of the chaff minutiae inserted as well as the number of the real

minutiae. Thus, inserting more chaff minutiae for higher security requires a larger hash table.
Therefore, to reduce the size of hash table, we implemented the automatic alignment in the

fuzzy fingerprint vault by using memory-efficient geometric hashing technique [13][25]. That
is, in order to reduce the static memory requirement, the hash table is generated “on-the-fly” at
the verification phase (on-line), instead of the enrollment phase (off-line). With this solution,
we can reduce the fingerprint template size up to the minimum.

Fig. 4 compares the auto-alignment of fuzzy fingerprint vault based on the geometric

hashing technique [11][12] with memory-efficient geometric hashing technique. Since the

hash table is generated on-the-fly, the execution speed may be degraded. With the careful

selection of the basis set, however, this solution can avoid the significant increase in the

1792 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

execution time as well as reduce the dynamic memory requirement [13][25]. Additional

details can be found in [11][12][13][24][25][26].

Pre-processing
Generate the

hash table

Recognition

processing

Off-Line(Enrollment) On-Line(Verification)

(a) Geometric hashing technique [11][12]

Pre-processing
Select the

basis points

Generate the

hash table

Recognition

processing

Off-Line(Enrollment) On-Line(Verification)

(b) Memory-efficient geometric hashing technique [13][25]

Fig. 4. Comparison of Geometric Hashing Technique.

3.1.3 Reed-Solomon Decoder

To completely reconstruct the secret locked within the fuzzy vault, the points in the unlocking

set (i.e., contain both real and chaff points) must be used to interpolate a polynomial.

Polynomial interpolation method is to use a standard error correcting code such as hamming or

Reed-Solomon. We implemented RS code suggested by Jules and Sudan [6]. Note that,

although all the previous results assumed RS code, they have not implemented the RS code in

fuzzy fingerprint vault [7][10][11][12][13] or used CRC to verify their solutions [8][9]. While

RS codes are traditionally used to correct errors in messages transmitted over noisy channels,

they essentially a generalization of the polynomial reconstruction problem. From a

generalized point of view, the encoding algorithm for the RS code is a repeated sampling of a

polynomial defined over a finite field, and the decoding algorithm is a reconstruction of this

polynomial using a set of over-sampled points that contains a reasonable number of errors.

While the encoding procedure is straightforward, there are a few well-known approaches

for the decoding procedure. The simplest mechanism for polynomial reconstruction is an

exhaustive search. That is, for every possible combination of k points out of the set of r points

(r>k), we interpolate a polynomial with degree k-1 and then select the most probable

polynomial using a majority vote. Though this approach is easy to implement, its execution

requires more computational power to deal with all the possible cases. Therefore, more elegant

decoding algorithms such as the Berlekamp-Massey algorithm [27] and the Guruswami-Sudan

algorithm [28] need to be considered.

More recently, Gao [29] proposed a new RS decoding algorithm based on the Extended

Euclidean Algorithm. From our viewpoint, the Gao’s algorithm has several desirable features

as follows:

- It directly reconstructs the original polynomial without finding syndromes, error locations,

and error magnitudes as the Berlekamp-Massey algorithm does. Hence, it is more intuitive

in the sense that the target polynomial is visible in the whole decoding process.

- It is composed of efficient operations such as interpolation of a polynomial without error,

partial GCD computation, and a polynomial division. Hence, it is easier to implement than

the Guruswami-Sudan algorithm, with the reasonable performance guaranteed.

Now, we consider the underlying field for the RS code. Though any finite field can be used,

finite fields of the form GF(p
2
) seem to be ideal for our purpose as is suggested in [7]. This is

because the information being encoded by the RS code is pixel coordinates (xi, yi) of

fingerprint minutiae. To be more precise, we use p = 2
16

-17 = 65,519 for the characteristic.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1793

Thus, we can support almost 16-bit resolutions for x and y coordinates for a fingerprint minutia,

fully utilizing the integer operations over a 32-bit architecture.

3.2 Structured Insertion of Chaffs

In the proposed approach, the chaffs are generated by using the user’s minutiae direction

information. To avoid the correlation attack (i.e., to make multiple systems look similar), we

structurally inserts chaffs into a vault, instead of randomly, by using the direction information.

Fig. 5 shows the illustration of the structured insertion. Fig. 5 (a) shows that a minutiae

consists of the location of the x-y coordinates, direction information θ, and projection f(x). To

structurally insert chaffs, Fig. 5 (b) shows an example of inserting chaffs using direction θ,

and Fig. 6 shows an example of the result of structured insertion of chaffs. For example, a

minutia generates a line using direction θ, then chaffs are generated with having the same

direction and inserted along the line.

Note that, to guarantee both the fingerprint verification accuracy and the security level

simultaneously, we should be careful to determine the distance dt between each point along the

line. Then, ∆x and ∆y can be calculated by using the minutia’s direction information θ and dt as

follows. For each user’s minutia, the chaffs are inserted along the line by adding/subtracting

∆x and ∆y to/from the x-y coordinates of the minutia. However, both the location and the

orientation of minutia are not changed.









t

t

dy

d





sin

 cos x

(18)

(a) (b)

Fig. 5. Chaff insertion by using the minutiae information : (a) minutiae information, (b) inserted chaffs

along the line generated by the direction information (●: chaff minutiae, ○: real minutiae).

(a) (b)

Fig. 6. The result of chaffs inserted : (a) the real minutiae extracted from a fingerprint image, (b) the

result of structured insertion of chaffs.

1794 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

4. Experimental Results

In this section, we describe the performance of both security level and verification

accuracy. We used Set A of the FVC2002-DB1 fingerprint database [30]. The average

number of minutiae was 30, and we inserted about 200, 300, and 400 chaffs, respectively.

Also, since the fingerprint authentication system can be assumed to request a user who

inputs a low quality fingerprint image to re-enter fingerprint image, we excluded low

quality fingerprint images. Therefore, among the 8 impressions, we used only two

impressions of good image quality for each finger 200 images in total. All experiments

were performed on a system with a 2.66 GHz processor.

Table 1 and Table 2 show the number of instructions and the execution times of the locking

process and the unlocking process, respectively. As shown in Table 1, the execution time of

the locking process is about 0.12 second on a 2.66 GHz processor. Especially, the locking

process can be executed in real-time, regardless of the number of chaff minutiae.

Table 1. Experimental result of locking process.

of Chaff 200 300 400

Feature Extraction 0.119 s 0.119 s 0.119 s

Creating Polynomial 0.000 s 0.000 s 0.000 s

Adding Chaff 0.001 s 0.001 s 0.001 s

Total 0.120 s 0.120 s 0.120 s

The time required to unlock the vault is about 0.3, 0.46, and 0.7 second in case of adding

200, 300, and 400 chaff minutiae, respectively. As shown in Table 2, in spite of adding 400

chaff minutiae in the fuzzy fingerprint vault, the careful implementation of the proposed

approach can guarantee the real time execution.

Table 2. Experimental result of unlocking process.

of Chaff 200 300 400

Feature Extraction 0.119 s 0.119 s 0.119 s

Matching 0.129 s 0.217 s 0.369 s

RS decode 0.001 s 0.001 s 0.001 s

Total 0.300 s 0.469 s 0.706 s

Table 3 shows a comparison of several implementations of the fuzzy fingerprint vault

[7][8][9][10][11][12] including the proposed approach. In the first column, manual and

automatic alignment are denoted by M and A, respectively. Also, the second column

indicates the real minutiae (R), chaff minutiae (C), and helper data (H). It is difficult to

compare the experimental results directly because the experimental environments (e.g.,

fingerprint database, processor capacity, etc) are different with each other. For example,

the proposed approach had fast unlocking execution time than other approaches

[8][9][11][12], nevertheless this approach performed the geometric hashing. Also, using

memory-efficient geometric hashing, we can reduce the template size, and improve the

execution time with careful selection of a basis [13][23]. Therefore, the proposed

approach can provide the acceptable performance as shown in Table 3, and can be applied

to real applications.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1795

Table 3. Comparison of the Previous Researches and the Proposed Approach.

 Align
Template

Size
ECC

Unlocking

Time

(sec)

Verification

Accuracy

FAR FRR

Clancy [7] M R+C N/A N/A N/A N/A

Uludag [8] M R+C CRC 52 0 21

Nandakumar [9] A R+C+H CRC 3 0.01 5

Yang [10] A R+C N/A N/A N/A 17

Chung [11]

Moon [12]
A (R+C)(R+C-1) N/A 1.3 [11] 0.16 [12] 5 [12]

Proposed A R+C
RS

decode
0.7 0.5 6

Additionally, for the purpose of evaluating the security level against the correlation

attack, we compared the performance of the structured chaff insertion approach (i.e., the

chaffs are generated by using the user’s minutiae direction information) with that of

random chaff insertion approach (i.e., we implemented it based on [8] to evaluate the

security level). In order to determine the security level against the correlation attack (i.e.,

securityCA), we first define some notations. ReconstructCA is defined as the number of

evaluations (i.e., C(no. of minutiae + no. of chaffs obtained from the correlation attack,

degree+1)/C(no. of minutiae obtained from the correlation attack, degree+1)) required for

an attacker to crack the vaults by applying the correlation attack. ProbabilityCA is defined

as the probability of obtaining the minutiae enough to reconstruct the polynomial by

applying the correlation attack. Then, securityCA can be represented by

reconstructCA/probabilityCA.

Table 4 compares the security level and verification accuracy of different chaff

insertion approaches. Based on the experimental results, we confirmed that the proposed

approach can improve the security level by a factor of 153 against the correlation attack

without significant degradation of the verification accuracy.

Table 4. Performance comparison against the correlation attack.

About 300 chaffs

Security Verification Accuracy

Brute-force

Attack

Correlation

Attack
FAR FRR

Random Insertion of

Chaffs
2.93×10

7

1.69×10
4
 0.2 7.5

Structured Insertion of

Chaffs
2.59×10

6
 0.5 6.0

5. Conclusions

To implement the fuzzy fingerprint vault practically, we have to consider several issues such

as automatic fingerprint alignment, verification accuracy, execution time, error correcting

code. We have implemented a fuzzy fingerprint vault as a complete system. Additionally, to

avoid the correlation attack against the fuzzy vault, we applied an approach to insert chaffs in

a structured way such that distinguishing the fingerprint minutiae and the chaff points obtained

1796 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

from two applications is computationally hard. Based on the experimental results, we

confirmed that the proposed approach can be resistant to the correlation attack (by a factor of

153) as well as satisfy the verification accuracy requirement.

References

[1] D. Maltoni, et al., Handbook of Fingerprint Recognition, 2003.

[2] R. Bolle, J. Connell, and N. Ratha, “Biometric Perils and Patches,” Pattern Recognition, vol. 35, pp.

2727-2738, 2002. Article (CrossRef Link)

[3] B. Schneier, “The Uses and Abuses of Biometrics,” Communications of the ACM, vol. 42, no, 8, pp.

136, 1999. Article (CrossRef Link)

[4] S. Prabhakar, et al., “Biometric Recognition: Security and Privacy Concerns,” IEEE Security and

Privacy, pp. 33-42, 2003. Article (CrossRef Link)

[5] J. Hu, “Mobile Fingerprint Template Protection: Progress and Open Issues,” in Proc. of IEEE

ICIEA Conference, pp. 3-5, 2008. Article (CrossRef Link)

[6] A. Juels and M. Sudan, “A Fuzzy Vault Scheme,” in Proc. of Symp. on Information Theory, pp. 408,

2002. Article (CrossRef Link)

[7] T. Clancy, et al., “Secure Smartcard-based Fingerprint Authentication,” in Proc. of ACM SIGMM

Multim., Biom. Met. & App., pp. 45-52, 2003. Article (CrossRef Link)

[8] U. Uludag, et al., “Fuzzy Vault for Fingerprints,” in Proc. of Audio- and Video-based Biometric

Person Authentication, pp. 310-319, 2005. Article (CrossRef Link)

[9] K. Nandakumar, et al., “Fingerprint-based Fuzzy Vault: Implementation and Performance,” IEEE

Transactions on Information Forensics and Security, vol. 2, no. 4, pp. 744-757, 2007. Article

(CrossRef Link)

[10] S. Yang and I. Verbauwhede, “Automatic Secure Fingerprint Verification System Based on Fuzzy

Vault Scheme,” in Proc. of IEEE International Conference on Acoustics, Speech, and Signal

Processing, Vol. 5, pp. 609-612, 2005. Article (CrossRef Link)

[11] Y. Chung, et al., “Automatic Alignment of Fingerprint Features for Fuzzy Fingerprint Vault,”

LNCS 3822, pp. 358-369, 2005. Article (CrossRef Link)

[12] D. Moon, et al., “Fingerprint Template Protection Using Fuzzy Vault,” LNCS 4707, pp.1141-1151,

2007. Article (CrossRef Link)

[13] D. Moon, et al., “Configurable Fuzzy Fingerprint Vault for Match-on-Card System,” IEICE

Electron Express, vol. 6, no. 14, pp. 993-999, 2009. Article (CrossRef Link)

[14] S. Shin, M. Lee, D. Moon, and K. Moon, “Dictionary Attack on Functional Transform-based

Cancelable Fingerprint Templates,” ETRI Journal, vol. 31, no. 5, pp. 628–630, 2009. Article

(CrossRef Link)

[15] W. Scheirer and T. Boult, “Cracking Fuzzy Vaults and Biometric Encryption,” in Proc. of IEEE

Biometrics Research Symposium at the National Biometrics Consortium Conference, 2007. Article

(CrossRef Link)

[16] A. Kholmatov and B. Yanikoglu, “Realization of Correlation Attack against the Fuzzy Vault

Scheme,” in Proc. of SPIE, vol. 6819, pp. 68190O.1-68190O.7, 2008. Article (CrossRef Link)

[17] R. Rivest, et al., “Chaffing and Winnowing: Confidentiality without Encryption,”

http://theory.lcs.mit.edu/~rivest/chaffing.txt, 1998.

[18] D. Socek, D. Culibrk, and V. Bozovic, “Issues and Challenges in Storing Biometric Templates

Securely,” in Proc. of CRISIS, pp. 75-81, 2007. Article (CrossRef Link)

[19] N. Ratha and R. Bolle, “Automatic Fingerprint Recognition Systems,” Springer, 2004.

[20] T. Hopper, C. Brislawn, J. Bradley, “WSQ Gray-Scale Fingerprint Image Compression

Specification,” Federal Bureau of Investigation, Document No. IAFIS-IC-0110 (v2), 1993. Article

(CrossRef Link)

[21] Y. Wang, J. Hu, and D. Philip, “A Fingerprint Orientation Model Based on 2D Fourier Expansion

(FOMFE) and its Application to Singular-point Detection and Fingerprint Indexing,” IEEE

http://dx.doi.org/10.1016/S0031-3203(01)00247-3
http://dx.doi.org/10.1145/310930.310988
http://dx.doi.org/10.1109/MSECP.2003.1193209
http://dx.doi.org/10.1109/ICIEA.2008.4582896
http://dx.doi.org/10.1007/s10623-005-6343-z
http://dx.doi.org/10.1145/982507.982516
http://dx.doi.org/10.1007/11527923_32
http://dx.doi.org/10.1109/TIFS.2007.908165
http://dx.doi.org/10.1109/TIFS.2007.908165
http://dx.doi.org/10.1109/ICASSP.2005.1416377
http://dx.doi.org/10.1007/11599548_31
http://dl.acm.org/citation.cfm?id=1793259
http://dx.doi.org/10.1587/elex.6.993
http://dx.doi.org/10.4218/etrij.09.0209.0137
http://dx.doi.org/10.4218/etrij.09.0209.0137
http://dx.doi.org/10.1109/BCC.2007.4430534
http://dx.doi.org/10.1109/BCC.2007.4430534
http://dx.doi.org/10.1117/12.766861
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.211
https://www.fbibiospecs.org/biometric_specs.html
https://www.fbibiospecs.org/biometric_specs.html

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1797

Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 573-585, 2007.

Article (CrossRef Link)

[22] P. Zhang, J. Hu, C. Li, M. Bennamound, and V. Bhagavatulae, “A Pitfall in Fingerprint

Bio-Cryptographic Key Generation,” Computers and Security, Elsevier, 2011. Article (CrossRef

Link)

[23] K. Xi and J. Hu. “Biometric Mobile Template Protection: A Composite Feature Based Fingerprint

Fuzzy Vault,” in Proc. of IEEE ICC, 2009. Article (CrossRef Link)

[24] H. Wolfson and I. Rigoutsos, “Geometric Hashing: an Overview,” IEEE Computational Science

and Engineering, vol. 4, pp. 10-21, Oct.-Dec. 1997.

[25] S. Lee, et al., “Memory-Efficient Fuzzy Fingerprint Vault Based on the Geometric Hashing,” in

Proc. of ISA, pp. 312-315, 2008. Article (CrossRef Link)

[26] S. Chae, S. Lim, S. Bae, Y. Chung, and S. Pan, “Parallel Processing of the Fuzzy Fingerprint Vault

based on Geometric Hashing,” KSII Tr. Internet & Info Systems, vol. 4, no. 6, pp. 1294-1310, 2010.

Article (CrossRef Link)

[27] E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968. (Revised edition,

Laguna Hills: Aegean Park Press, 1984.

[28] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic Geometric

Codes,” in Proc. of FOCS, pp. 28-39, 1998.

[29] S. Gao, “A New Algorithm for Decoding Reed-Solomon Codes,” Communications, Information

and Network Security, pp. 55-68, Kluwer Academic Press, 2003.

[30] http://bias.csr.unibo.it/fvc2002/databases.asp.

Sungju Lee received his B.S. and M.S. degrees from Korea University, Korea in 2006

and 2008, respectively. He is currently in Ph.D. program in the Department of Computer

and Information Science at The Korea University. His research interests include

biometrics, information security, and energy-efficiency of image compression

Yongwha Chung received the BS and MS degrees from Hanyang University, Korea,

in 1984 and 1986. He received the PhD degree from the University of Southern

California, USA in 1997. He worked for ETRI from 1986 to 2003 as a Team Leader.

Currently, he is a Professor in the Department of Computer Information, Korea

University. His research interests include biometrics, security, and performance

optimization.

http://dx.doi.org/10.1109/TPAMI.2007.1003
http://dx.doi.org/10.1016/j.cose.2011.02.003
http://dx.doi.org/10.1016/j.cose.2011.02.003
http://dx.doi.org/10.1109/ICC.2009.5198785
http://dx.doi.org/10.1109/ISA.2008.60
http://findarticles.com/p/articles/mi_7101/is_6_5/ai_n57389200/

1798 Lee et al.: A Practical Implementation of Fuzzy Fingerprint Vault

Daesung Moon received his M.S. degrees from Busan National University, Korea in

2001. He received his Ph.D. degree from the University of Korea, Korea in 2007. He

joined ETRI in 2001 and he has been a senior member of research staff at Human

Identification Research Team. His research areas are intelligent video surveillance,

biometric, image processing, and security.

Sung Bum Pan received his Ph.D. degrees in Electronics Engineering from Sogang

University, Korea, in 1999, respectively. He was a team leader at Biometric Technology

Research Team of ETRI from 1999 to 2005. He is now professor at Chosun University.

His current research interests are biometrics, security, and VLSI architectures for

real-time image processing.

Changho Seo received his B.S., M.S. and Ph.D. degrees from Korea University,

Korea in 1990 and 1992 and 1996 in the Department of Mathematics at Korea

University, respectively. His research interests include cryptography, information

security, and system security.

