Antibiotic resistance among
Abstract
Urinary tract infections (UTI) are the most common bacterial infections affecting humans. Escherichia coli and Klebsiella pneumoniae were common enterobacteria engaged with community-acquired UTIs. Efflux pumps were vital resistance mechanisms for antibiotics, especially among enterobacteria. Overexpression of an efflux system, which results in a decrease in antibiotic accumulation, is an effective mechanism for drug resistance. The ATP-binding cassette (ABC) transporters, small multidrug resistance (SMR), and multidrug and toxic compound extrusion (MATE) families, the major facilitator superfamily (MFS), and the resistance-nodulation- cell division (RND) family are the five superfamilies of efflux systems linked to drug resistance. This chapter highlights the results of studying the prevalence of efflux pump genes among local isolates of E. coli and K. pneumoniae in Hilla City, Iraq. class RND AcrAB-TolC, AcrAD-TolC, and AcrFE-TolC genes detected by conventional PCR of E. coli and K. pneumoniae respectively. The result revealed approximately all studied efflux transporter were found in both E. coli and K. pneumoniae in different percentages. Biofilm formation were observed in 50(100%) of K. pneumoniae and 49(98%) of E. coli isolates were biofilm former and follow: 30(60%), 20(40%) were weak, 12(24%), 22(44%) were moderate and 7(14%) and 8(16%) were Strong biofilm former for E. coli and K. pneumoniae, respectively.
Keywords
- UTIs
- AcrAB-TolC
- AcrAD-TolC
- AcrFE-TolC
- EmrAB-TolC
- EmrD
- MdfA
- EmrE
- YnfA
- MacAB-TolC
- MdlAB-TolCTehA
1. Introduction
Urinary tract infections (UTI) are the most common bacterial infections affecting humans (Zhanel et al. [1]). They may be simple or complicated urinary tract infections (cUTIs), with the latter occurring in patients with urinary tract anatomic or functional abnormalities or major comorbidities [2]. UTIs may be categorized as either population- or hospital-acquired. In community-acquired UTIs,
In addition to being a clinically significant pathogen,
Several studies indicate that efflux pumps can play at least four roles in biofilm formation efflux of EPSs and/or QS and quorum quenching (QQ) molecules to promote biofilm environment creation and regulate QS, correspondingly; indirect regulation of genes engagement in biofilm formation; abolition of harmful particles such as antibiotics and metabolic intermediates; and efflux of harmful molecules such as antibiotics and metabolic intermediates and by encouraging or preventing adhesion to surfaces and other cells, aggregation can be influenced [14]. Overexpression of an efflux system, which results in a decrease in antibiotic accumulation, is an effective mechanism for drug resistance [15, 16].
1.1 Efflux pumps
Efflux pumps are membrane proteins that are involved in the export of noxious substances from within the bacterial cell into the external environment. Efflux proteins are found in both Gram-negative and Gram-positive bacteria as well as in eukaryotic organisms [17]. The ATP-binding cassette (ABC) superfamily [18], the resistance-nodulation-division (RND) family [19], the small multidrug resistance (SMR) family [20], the major facilitator superfamily (MFS) [21], and the multidrug and toxic compound extrusion (MATE) [22] family. The ABC family uses ATP hydrolysis to power substrate export, while the other families depend on the proton motive force for energy. The MFS, ABC, SMR, and MATE families are found in Gram-positive and Gram-negative bacteria, respectively, while the RND superfamily is only found in Gram-negative bacteria. Members of the RND family are often found as part of a three-part complex that spans Gram-negative bacteria’s two membranes [23].
1.1.1 Resistance-nodulation-division (RND) efflux pump
This type of pump is occupied as a tripartite complex constituting the RND protein (the inner membrane component), membrane fusion protein (the periplasmic compartment), and the outer membrane protein. These three proteins form a constitute channel crossways the Gram-negative cell envelope guaranteeing that the molecule, taken from the outer leaflet of the inner membrane bilayer, is replied directly transversely to the periplasm and the outer membrane into the exterior medium with the assistance of the proton-gradient as an energy source. RND family shows a significant role in the intrinsic resistance of Gram-negative bacteria [24, 25]. The most frequent member of RND family in enterobacteria include AcrAB-TolC, AcrAD-TolC, and AcrFE-TolC.
AcrAB-TolC, one of the efflux systems, constitutively expressed in
AcrD is a component of an efflux pump that mediates the export of aminoglycosides and a few amphiphilic compounds such as sodium dodecyl sulfate (SDS), deoxycholate, and novobiocin, AcrA is a periplasmic fusion protein that also exports aminoglycosides in association with the cytoplasmic membrane protein AcrD [30]. Despite increased acrA expression, the mutant strain showed no increase in resistance, suggesting that the deletion of acrD contributes to adaptive resistance directly, rather than indirectly via mechanisms like control of other efflux components. As a result, the previously reported adaptive cross-resistance to non-aminoglycoside antibiotics cannot be due to the development of the AcrAB-TolC complex as shown by an acrD mutant that showed significantly reduced biofilm formation and expression of key biofilm proteins encoded by csgBD, the AcrD efflux pump has an effect on biofilm formation, and appears to play a special biological function, according to Buckner et al. [32] findings. The transcriptome showed major changes, which supported this theory. The transcriptomes of the acrD mutant were compared to the transcriptome of the acrB mutant, which had previously been released AcrD is not a “backup” efflux pump, but serves a physiological function in the cell, as shown by the fact that the effect was quite distinct. This comparison found 232 major gene expression changes that were only caused by the inactivation of acrD and not by the disruption of acrB. Both the acrB and acrD mutant transcriptomes had 169 genes that were differentially expressed as compared to the acrB mutant transcriptome. Experiments have shown that the AcrB and AcrD efflux pumps have different substrate profiles when it refers to aminoglycoside antibiotics [33]. AcrEF-TolC pump is known to exhibit higher expression levels in quinolone-resistant
1.1.2 ATP-binding cassette (ABC) efflux pump
There is a variety of transport systems in
The MacA-MacB-TolC assembly of
In a macrolide-susceptible AcrAB deficient
1.1.3 Small multidrug resistance (SMR) efflux pump
Small multidrug resistance transporters (SMR) systems provide to study the minimal requirements for active transport [43]. They are also small multidrug transporters, with four transmembrane helices and no significant extra membrane domain, although they function as dimers the minimum functional unit is a bundle of eight α-helices [44]. SMR transporter exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. Genes encoding SMR proteins (variously annotated emrE, ynfA and tehA) are frequently found in mobile drug resistance gene arrays, and provide a broad selective advantage by conferring resistance to ubiquitous environmental pollutants with low-grade toxicity to microbes [45]. The SMR family consists of small hydrophobic proteins of about 100 amino acid residues with four transmembrane α-helical spanners [46].
SMR family includes more than 40 proteins in eubacteria, a few of which have been studied in detail. One of them, EmrE, is an
The gene, ynfA of
1.1.4 Major facilitator superfamily (MFS) efflux pump
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. The major facilitator transporters form a superfamily that composed a number of subfamilies; of these subfamilies, transporters of sugars and drugs are by far the most numerous [52].
These MFS transporters are typically composed of approximately 400 amino acids that are putatively arranged in 12 membrane-spanning helices, with a large cytoplasmic loop among helices six and seven [43]. The MFS family of drug transporters is made up of two domains that are centered around a central pore and two domains that transfer conformations from the cytoplasmic to the periplasmic side of the membrane in response to a Na + or H+ ion gradient [53]. The MFS drug transporters are classified into subfamilies −12-helix and 14-helix transporters (e.g., TetA(B) and TetA(K), class two and class K tetracycline transporters from
EmrAB–TolC from
EmrD is a multidrug transporter from the Major Facilitator Superfamily that expels amphipathic compounds across the inner membrane of
1.1.5 Multidrug and toxic compound extrusion (MATE) efflux pump
Export of substrates and toxins by the cell is a fundamental life process and members of the MATE family represent the last class of multidrug resistance (MDR) transporters to be structurally characterized. MATE transporters involved a variety of important biological functions across all kingdoms of life [60]. MATE transporters are very similar in size to the MFS transporters and are typically composed of approx. 450 amino acids which are putatively arranged into 12 helices however, they do not have any sequence similarity to members of the MFS transporters [61]. MdtK is one of the important MATE inner membrane transporter in
1.2 Antibiotic resistance and efflux pumps
The study include antibiotic susceptibility profile (for 20 antibiotics) according to CLSI-2021 [63] and efflux pumps gene profile for (19 genes) for 50 isolates of
Antibiotic | Resistance % | |
---|---|---|
Amoxicillin | 100% | 92% |
Piperacillin | 14% | 16% |
Ceftriaxone | 54% | 92% |
Ceftazidime | 100% | 98% |
Cefepime | 58% | 80% |
Cefixime | 52% | 84% |
Cefotaxime | 100% | 92% |
Cefoxitin | 42% | 46% |
Nitrfuraniton | 38% | 58% |
streptomycin | 36% | 78% |
Gentamycin | 4% | 40% |
Kanamycin | 42% | 50% |
Tobramycin | 20% | 44% |
Amikacin | 14% | 10% |
Netlimicin | 2% | 4% |
Imipenem | 0% | 12% |
Meropenem | 6% | 8% |
Aztreonam | 20% | 58% |
Azithromycin | 10% | 24% |
Nalidixic acid | 26% | 16% |
Classes of MDR | ||
---|---|---|
MDR-8 classes | 0% | 4% |
MDR-7 classes | 4% | 8% |
MDR-6 classes | 12% | 20% |
MDR-5 classes | 2% | 22% |
MDR-4 classes | 24% | 28% |
MDR-3 classes | 20% | 8% |
non-MDR | 38% | 10% |
Total | 100% | 100% |
Biofilm Formation Pattern | ||
---|---|---|
non-biofilm former | 2% | 0% |
weak biofilm former | 60% | 40% |
moderate biofilm former | 24% | 44% |
strong biofilm former | 14% | 16% |
Total | 100% | 100% |
Efflux pumps gene | Presence % | |
---|---|---|
100 | 96 | |
86 | 88 | |
96 | 100 | |
100 | 92 | |
66 | 64 | |
100 | 92 | |
98 | 100 | |
100 | 100 | |
100 | 96 | |
100 | 98 | |
96 | 70 | |
100 | 66 | |
98 | 76 | |
100 | 76 | |
98 | 96 | |
100 | 76 | |
98 | 100 | |
100 | 100 | |
100 | 86 |
1.3 Coexisted genotypes of efflux pumps
Concern results of coexisted pumps in the same
Genotype | No. | % |
---|---|---|
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/TehA/ MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 32 | 64 |
AcrAB-TolC/ AcrAD-TolC/ AcrFE-TolC/ MdfA/ EmrD/ EmrAB-TolC/ YnfA/ TehA/ MacAB-TolC/ MdlAB-TolC/ Mdtk/ DinF | 1 | 2 |
AcrAB-TolC/ AcrAD-TolC/ MdfA/ EmrD/ EmrAB-TolC/ EmrE/ YnfA/ TehA/ MacAB-TolC/ MdlAB-TolC/ Mdtk/ DinF | 16 | 32 |
AcrAB-TolC/ AcrAD-TolC/ MdfA/ EmrD/ EmrAB-TolC/ EmrE/ YnfA/ MacAB-TolC | 1 | 2 |
Genotypes | No. | % |
---|---|---|
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 8 | 16 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/YnfA/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 3 | 6 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 2 | 4 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/TehA/MacAB-TolC/MdlAB-TolC/Mdtk | 2 | 4 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/ YnfA/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 8 | 16 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/MacAB-TolC/Mdtk/DinF | 3 | 6 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/TehA/MdlAB-TolC/Mdtk | 2 | 4 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/YnfA/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/YnfA/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/YnfA/TehA/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/TehA/MacAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/ TehA/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/TehA/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/YnfA/TehA/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/TehA/ MacAB- TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/YnfA/TehA/ MacAB-TolC/MdlAB-TolC/Mdtk | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/TehA/ MacAB- TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/ MacAB-TolC/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/MacAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/TehA/MacAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/YnfA/TehA/ MdlAB-TolC/ Mdtk/ DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/AcrFE-TolC/MdfA/EmrD/EmrE/ YnfA/MdlAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/AcrAD-TolC/MdfA/EmrD/EmrAB-TolC/MacAB-TolC/Mdtk/DinF | 1 | 2 |
AcrAB-TolC/MdfA/EmrD/EmrAB-TolC/EmrE/TehA/MacAB-TolC/Mdtk | 1 | 2 |
AcrFE-TolC/MdfA/EmrD/EmrAB-TolC/YnfA/MdlAB-TolC/Mdtk/ DinF | 1 | 2 |
2. Conclusion
There is a strong correlation between antibiotic resistance, especially to β-lactams, and the presence of efflux pump genes, which may be reflected in biofilm formation in both
References
- 1.
Zhanel GG, Walkty AJ, Karlowsky JA. Fosfomycin: A first-line oral therapy for acute uncomplicated cystitis. Canadian Journal of Infectious Diseases and Medical Microbiology. 2016; 2016 :2082693. DOI: 10.1155/2016/2082693 - 2.
Bader MS, Hawboldt J, Brooks A. Management of complicated urinary tract infections in the era of antimicrobial resistance. Postgraduate Medicine. 2010; 122 (6):7-15. DOI: 10.3810/pgm.2010.11.2217 - 3.
Liu HY, Lin HC, Lin YC, Yu SH, Wu WH, Lee YJ. Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli andKlebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. Journal of Microbiology, Immunology, and Infection. 2011;44 (5):364-368. DOI: 10.1016/j.jmii.2010.08.012 - 4.
Neugent ML, Hulyalkar NV, Nguyen VH, Zimmern PE, De Nisco NJ. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. MBio. 2020; 11 (2):e00218-e00220. DOI: 10.1128/mBio.00218-20 - 5.
Foxman B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America. 2014; 28 (1):1-13. DOI: 10.1016/j.idc.2013.09.003 - 6.
Lo Y, Zhang L, Foxman B, Zöllner S. Whole-genome sequencing of uropathogenic Escherichia coli reveals long evolutionary history of diversity and virulence. Infection, Genetics and Evolution. 2015;34 :244-250. DOI: 10.1016/j.meegid.2015.06.023 - 7.
Dang TND, Zhang L, Zöllner S, Srinivasan U, Abbas K, Marrs CF, et al. Uropathogenic Escherichia coli are less likely than paired fecalE. coli to have CRISPR loci. Infection, Genetics and Evolution. 2013;19 :212-218. DOI: 10.1016/j.meegid.2013.07.017 - 8.
Graham SE, Zhang L, Ali I, Cho YK, Ismail MD, Carlson HA, et al. Prevalence of CTX-M extended-spectrum beta-lactamases and sequence type 131 in Korean blood, urine, and rectal Escherichia coli isolates. Infection, Genetics and Evolution. 2016;41 :292-295. DOI: 10.1016/j.meegid.2016.04.020 - 9.
Caneiras C, Lito L, Melo-Cristino J, Duarte A. Community- and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: Virulence and antibiotic resistance. Microorganisms. 2019;7 (5):138. DOI: 10.3390/microorganisms7050138 - 10.
Marques C, Menezes J, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, et al. Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: Population structure, antimicrobial resistance and virulence genes. The Journal of Antimicrobial Chemotherapy. 2019; 74 (3):594-602. DOI: 10.1093/jac/dky499 - 11.
Ewers C, Stamm I, Pfeifer Y, Wieler LH, Kopp PA, Schønning K, et al. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. The Journal of Antimicrobial Chemotherapy. 2014; 69 (10):2676-2680. DOI: 10.1093/jac/dku217 - 12.
Chetri S, Dolley A, Bhowmik D, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional response of AcrEF-TolC against fluoroquinolone and carbapenem in Escherichia coli of clinical origin. Indian Journal of Medical Microbiology. 2018; 36 (4):537-540. DOI: 10.4103/ijmm.IJMM_18_308 - 13.
Kumar S, Varela MF. Molecular mechanisms of bacterial resistance to antimicrobial agents. Chemotherapy. 2013; 14 :522-534 - 14.
Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. The Journal of Antimicrobial Chemotherapy. 2018; 73 (8):2003-2020. DOI: 10.1093/jac/dky042 - 15.
Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochimica et Biophysica Acta. 2009; 1794 (5):769-781. DOI: 10.1016/j.bbapap.2008.10.004 - 16.
Kumar S, Varela MF. Biochemistry of bacterial multidrug efflux pumps. International Journal of Molecular Sciences. 2012; 13 (4):4484-4495. DOI: 10.3390/ijms13044484 - 17.
Saier MH. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiology and Molecular Biology Reviews. 2000; 64 (2):354-411. DOI: 10.1128/MMBR.64.2.354-411.2000 - 18.
Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiology and Molecular Biology Reviews. 2007; 71 (3):463-476. DOI: 10.1128/MMBR.00001-07 - 19.
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology. 2015; 6 :587. DOI: 10.3389/fmicb.2015.00587 - 20.
Chung YJ, Saier MH Jr. SMR-type multidrug resistance pumps. Current Opinion in Drug Discovery & Development. 2001; 4 (2):237-245 - 21.
Law CJ, Maloney PC, Wang DN. Ins and outs of major facilitator superfamily antiporters. Annual Review of Microbiology. 2008; 62 :289-305. DOI: 10.1146/annurev.micro.61.080706.093329 - 22.
Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta. 2009; 1794 (5):763-768. DOI: 10.1016/j.bbapap.2008.11.012 - 23.
Nikaido H. Structure and mechanism of RND-type multidrug efflux pumps. Advances in Enzymology and Related Areas of Molecular Biology. 2011; 77 :1-60. DOI: 10.1002/9780470920541.ch1 - 24.
Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiology Reviews. 2012; 36 (2):340-363. DOI: 10.1111/j.1574-6976.2011.00290.x - 25.
Zgurskaya HI. Multicomponent drug efflux complexes: Architecture and mechanism of assembly. Future Microbiology. 2009; 4 (7):919-932. DOI: 10.2217/fmb.09.62 - 26.
Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, et al. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nature Communications. 2019; 10 (1):2635. DOI: 10.1038/s41467-019-10512-6 - 27.
Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology. 2015; 13 (1):42-51. DOI: 10.1038/nrmicro3380 - 28.
Nikaido H, Zgurskaya HI. AcrAB and related multidrug efflux pumps of Escherichia coli. Journal of Molecular Microbiology and Biotechnology. 2001; 3 (2):215-218 - 29.
Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: Drug efflux across two membranes. Molecular Microbiology. 2000; 37 (2):219-225. DOI: 10.1046/j.1365-2958.2000.01926.x - 30.
Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. Journal of Bacteriology. 2002; 184 (23):6490-6498. DOI: 10.1128/JB.184.23.6490-6499.2002 - 31.
Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrobial Agents and Chemotherapy. 2005; 49 (2):791-793. DOI: 10.1128/AAC.49.2.791-793.2005 - 32.
Buckner MM, Blair JM, La Ragione RM, Newcombe J, Dwyer DJ, Ivens A, et al. Beyond antimicrobial resistance: Evidence for a distinct role of the AcrD efflux pump in Salmonella biology. mBio. Nov 22, 2016; 7 (6):1-10. DOI: 10.1128/mBio.01916-16. PMID: 27879336 - 33.
Kobayashi N, Tamura N, van Veen HW, Yamaguchi A, Murakami S. β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. The Journal of Biological Chemistry. 2014; 289 (15):10680-10690. DOI: 10.1074/jbc.M114.547794 - 34.
Kobayashi K, Tsukagoshi N, Aono R. Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 or IS2 element. Journal of Bacteriology. 2001; 183 (8):2646-2653. DOI: 10.1128/JB.183.8.2646-2653.2001 - 35.
Moussatova A, Kandt C, O’Mara ML, Tieleman DP. ATP-binding cassette transporters in Escherichia coli. Biochimica et Biophysica Acta. 2008; 1778 (9):1757-1771. DOI: 10.1016/j.bbamem.2008.06.009 - 36.
Fuellen G, Spitzer M, Cullen P, Lorkowski S. Correspondence of function and phylogeny of ABC proteins based on an automated analysis of 20 model protein data sets. Proteins. 2005; 61 (4):888-899. DOI: 10.1002/prot.20616 - 37.
Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bai XC, Okada U, et al. Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nature Microbiology. 2017; 2 (7):17070. DOI: 10.1038/nmicrobiol.2017.70 - 38.
Yamanaka H, Kobayashi H, Takahashi E, Okamoto K. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. Journal of Bacteriology. 2008; 190 (23):7693-7698. DOI: 10.1128/JB.00853-08 - 39.
Zgurskaya HI, Yamada Y, Tikhonova EB, Ge Q , Krishnamoorthy G. Structural and functional diversity of bacterial membrane fusion proteins. Biochimica et Biophysica Acta. 2009; 1794 (5):794-807. DOI: 10.1016/j.bbapap.2008.10.010 - 40.
Modali SD, Zgurskaya HI. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Molecular Microbiology. 2011; 81 (4):937-951. DOI: 10.1111/j.1365-2958.2011.07744.x - 41.
Yum S, Xu Y, Piao S, Sim SH, Kim HM, Jo WS, et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. Journal of Molecular Biology. 2009; 387 (5):1286-1297. DOI: 10.1016/j.jmb.2009.02.048 - 42.
Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, et al. Improving microbial biogasoline production in Escherichia coli using tolerance engineering. MBio. 2014; 5 (6):e01932. DOI: 10.1128/mBio.01932-14 - 43.
Kroeger JK, Hassan K, Vörös A, Simm R, Saidijam M, Bettaney KE, et al. Bacillus cereus efflux protein BC3310 - a multidrug transporter of the unknown major facilitator family, UMF-2. Frontiers in Microbiology. 2015; 6 :1063. DOI: 10.3389/fmicb.2015.01063 - 44.
Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007; 446 (7137):749-757. DOI: 10.1038/nature05630 - 45.
Kermani AA, Macdonald CB, Burata OE, Ben Koff BB, Koide A, Denbaum E, et al. The structural basis of promiscuity in small multidrug resistance transporters. Nature Communications. 2020; 11 (1):6064. DOI: 10.1038/s41467-020-19820-8 - 46.
Schuldiner S, Granot D, Steiner SS, Ninio S, Rotem D, Soskin M, et al. Precious things come in little packages. Journal of Molecular Microbiology and Biotechnology. 2001; 3 (2):155-162 - 47.
Tal N, Schuldiner S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106 (22):9051-9056. DOI: 10.1073/pnas.0902400106 - 48.
Gottschalk KE, Soskine M, Schuldiner S, Kessler H. A structural model of EmrE, a multi-drug transporter from Escherichia coli. Biophysical Journal. 2004; 86 (6):3335-3348. DOI: 10.1529/biophysj.103.034546 - 49.
Ma C, Chang G. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101 (9):2852-2857. DOI: 10.1073/pnas.0400137101 - 50.
Yerushalmi H, Schuldiner S. A model for coupling of H(+) and substrate fluxes based on “time-sharing” of a common binding site. Biochemistry. 2000; 39 (48):14711-14719. DOI: 10.1021/bi001892i - 51.
Sarkar SK, Bhattacharyya A, Mandal SM. YnfA, a SMR family efflux pump is abundant in Escherichia coli isolates from urinary infection. Indian Journal of Medical Microbiology. 2015; 33 (1):139-142. DOI: 10.4103/0255-0857.148415 - 52.
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chemical Reviews. 2021; 121 (9):5289-5335. DOI: 10.1021/acs.chemrev.0c00983 - 53.
Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr. The major facilitator superfamily (MFS) revisited. FEBS Journal. 2012; 279 (11):2022-2035. DOI: 10.1111/j.1742-4658.2012.08588.x - 54.
Lynch AS. Efflux systems in bacterial pathogens: An opportunity for therapeutic intervention? An industry view. Biochemical Pharmacology. 2006; 71 (7):949-956. DOI: 10.1016/j.bcp.2005.10.021 - 55.
Tanabe M, Szakonyi G, Brown KA, Henderson PJ, Nield J, Byrne B. The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochemical and Biophysical Research Communications. 2009; 380 (2):338-342. DOI: 10.1016/j.bbrc.2009.01.081 - 56.
Puértolas-Balint F, Warsi O, Linkevicius M, Tang PC, Andersson DI. Mutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. The Journal of Antimicrobial Chemotherapy. 2020; 75 (2):300-308. DOI: 10.1093/jac/dkz434 - 57.
Yin Y, He X, Szewczyk P, Nguyen T, Chang G. Structure of the multidrug transporter EmrD from Escherichia coli. Science. 2006; 312 (5774):741-744. DOI: 10.1126/science/1125629 - 58.
Koita K, Rao CV. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli. PLoS One. 2012; 7 (8):e43700. DOI: 10.1371/journal.pone.0043700 - 59.
Lewinson O, Adler J, Poelarends GJ, Mazurkiewicz P, Driessen AJ, Bibi E. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100 (4):1667-1672. DOI: 10.1073/pnas.0435544100 - 60.
He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q , et al. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature. 2010; 467 (7318):991-994. DOI: 10.1038/nature09408 - 61.
Jack DL, Yang NM, Saier MH Jr. The drug/metabolite transporter superfamily. European Journal of Biochemistry. 2001; 268 (13):3620-3639. DOI: 10.1046/j.1432-1327.2001.02265.x - 62.
Eshaghi E, Shahvaroughi Farahani A, Mousaei S, Khalifeh-Gholi M, Adnani Sadati J, Fateh R. Detecting efflux pumps genes in the fluoroquinolones resistant and sensitive strains of Escherichia coli in patients with urinary tract infection in Qom, Iran. Qom University of Medical Sciences Journal. 2021; 15 (3):210-221. DOI: 10.52547/qums.15.3.210 - 63.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st. CLSI Supplement M100-S31. Wayne, PA: Clinical and Laboratory Standards Institute; 2021