Ontology-based Data Access A Tutorial on Query Reformulation and Optimization

Diego Calvanese

KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

Seminar on Ontology Research in Brazil (ONTOBRAS) Sãu Paulo, Brazil, 1–3 October 2018

Outline

- Query rewriting wrt an OWL 2 QL ontology
- 2 Mapping specification
- Saturation and optimization of the mapping
- 4
 - Query reformulation and optimization

Outline

- 2 Mapping specification
- Saturation and optimization of the mapping
- 4 Query reformulation and optimization

Saturation

Query answering via query reformulation

To compute the certain answers to a SPARQL query q over an OBDA instance $O = \langle \mathcal{P}, \mathcal{D} \rangle$, with $\mathcal{P} = \langle \mathcal{T}, \mathcal{S}, \mathcal{M} \rangle$:

- Compute the perfect rewriting of q w.r.t. \mathcal{T} .
- 2 Unfold the perfect rewriting wrt the mapping \mathcal{M} .
- Optimize the unfolded query, using database constraints.
- Evaluate the resulting SQL query over *D*.

Steps **()**– **()** are collectively called **query reformulation**.

The rewriting Step **()** deals with the objects that are existentially implied by the axioms of the ontology.

Example of existential reasoning

Suppose that every graduate student is supervised by some professor, i.e.

 $GraduateStudent \sqsubseteq \exists isSupervisedBy.Professor$

and john is a graduate student: GraduateStudent(john).

What is the answer to the following query?

 $q(x) \leftarrow isSupervisedBy(x, y), Professor(y)$

The answer should be john, even though we don't know who is John's supervisor (under existential reasoning).

Existential reasoning and query rewriting

Canonical model

Every consistent *DL-Lite* KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ has a **canonical model** $I_{\mathcal{K}}$, which gives the right answers to all CQs, i.e., $cert(q, \mathcal{K}) = ans(q, I_{\mathcal{K}})$

- The core part can be handled by saturating the mapping.
- The anonymous part can be handled by **Tree-witness rewriting**.

Saturation

Example of existential reasoning (continued)

Using the (tree witness) rewriting algorithm, the query

 $q(x) \leftarrow isSupervisedBy(x, y), Professor(y)$

is rewritten to a union of two conjunctive queries (or a SPARQL union query):

 $q(x) \leftarrow isSupervisedBy(x, y), Professor(y)$ $q(x) \leftarrow GraduateStudent(x)$

Therefore, over the Abox *GraduateStudent*(john), the rewritten query returns john as an answer.

Note: In *Ontop*, if one wants to answer queries by performing existential reasoning, the tree-witness rewriting algorithm needs to be switched on explicitly.

The PerfectRef algorithm for query rewriting

To illustrate Step • of the query reformulation algorithm, we briefly describe *PerfectRef*, a simple query rewriting algorithm that requires to iterate over:

- rewriting steps that involve TBox inclusion assertions, and
- unification of query atoms.

The perfect rewriting of q is still a SPARQL query involving UNION.

Note: disjointness assertions play a role in ontology satisfiability, but can be ignored during query rewriting (i.e., we have **separability**).

Query rewriting step: Basic idea

Intuition: an inclusion assertion corresponds to a logic programming rule.

Basic rewriting step:

When an atom in the query unifies with the **head** of the rule, generate a new query by substituting the atom with the **body** of the rule.

We say that the inclusion assertion applies to the atom.

Example		
The inclusion assertion corresponds to the logic programming rule	$\begin{array}{l} \textit{FullProf} \sqsubseteq \textit{Prof} \\ \textit{Prof}(z) \leftarrow \textit{FullProf}(z). \end{array}$	
Consider the query $q(x) \leftarrow Prof(x)$.		
By applying the inclusion assertion to the atom $Prof(x)$, we generate: $q(x) \leftarrow FullProf(x)$.		
This query is added to the input query, and contributes to the perfect rewriting.		

Satura

Query rewriting (cont'd)

Example

Consider the query $q(x) \leftarrow teaches(x, y), Course(y)$

and the inclusion assertion $\exists teaches^- \sqsubseteq Course$ as a logic programming rule: $Course(z_2) \leftarrow teaches(z_1, z_2)$.

The inclusion applies to Course(y), and we add to the rewriting the query

 $q(x) \leftarrow teaches(x, y), teaches(z_1, y).$

Example

Consider now the query $q(x) \leftarrow teaches(x, y)$

and the inclusion assertion $FullProf \subseteq \exists teaches$ as a logic programming rule: $teaches(z, f(z)) \leftarrow FullProf(z)$.

The inclusion applies to teaches(x, y), and we add to the rewriting the query

 $q(x) \leftarrow FullProf(x).$

Saturation

Query rewriting – Constants

Example

Conversely, for the query $q(x) \leftarrow teaches(x, databases)$

and the same inclusion assertion as before as a logic programming rule: $FullProf \sqsubseteq \exists teaches$ $teaches(z, f(z)) \leftarrow FullProf(z)$

teaches(x, databases) does not unify with *teaches*(z, f(z)), since the **skolem** term f(z) in the head of the rule does not unify with the constant databases. Remember: We adopt the **unique name assumption**.

We say that the inclusion does **not** apply to the atom *teaches*(*x*, databases).

Example

The same holds for the following query, where *y* is **distinguished**, since unifying f(z) with *y* would correspond to returning a skolem term as answer to the query:

 $q(x, y) \leftarrow teaches(x, y).$

Query rewriting - Join variables

An analogous behavior to the one with constants and with distinguished variables holds when the atom contains **join variables** that would have to be unified with skolem terms.

Example	
Consider the query $q(x)$	$\leftarrow teaches(x, y), Course(y)$
and the inclusion assertion as a logic programming rule:	FullProf \sqsubseteq \exists teachesteaches(z, f(z)) \leftarrow FullProf(z).

The inclusion assertion above does **not** apply to the atom teaches(x, y).

Saturation

Query rewriting – Reduce step

Example

Consider now the query $q(x) \leftarrow teaches(x, y), teaches(z, y)$

and the inclusion assertion $FullProf \sqsubseteq \exists teaches$ as a logic rule: $teaches(z, f(z)) \leftarrow FullProf(z)$.

This inclusion assertion does not apply to teaches(x, y) or teaches(z, y), since y is in join, and we would again introduce the skolem term in the rewritten query.

Example

However, we can transform the above query by unifying the atoms teaches(x, y) and teaches(z, y). This rewriting step is called **reduce**, and produces the query

 $q(x) \leftarrow teaches(x, y).$

Now, we can apply the inclusion above, and add to the rewriting the query

 $q(x) \leftarrow FullProf(x)$.

Query rewriting – Summary

To compute the perfect rewriting of a query q, start from q, iteratively get a CQ q' to be processed, and do one of the following:

• Apply to some atom of q' an inclusion assertion in \mathcal{T} as follows:

$A_1 \sqsubseteq A_2$	$\ldots, A_2(x), \ldots$	\sim	$\ldots, A_1(x), \ldots$
$\exists P \sqsubseteq A$	$\ldots, A(x), \ldots$	\sim	$\ldots, P(x, _), \ldots$
$\exists P^- \sqsubseteq A$	$\ldots, A(x), \ldots$	\sim	$\ldots, P(_, x), \ldots$
$A \sqsubseteq \exists P$	$\ldots, P(x, _), \ldots$	\sim	$\ldots, A(x), \ldots$
$A \sqsubseteq \exists P^-$	$\ldots, P(_, x), \ldots$	\sim	$\ldots, A(x), \ldots$
$\exists P_1 \sqsubseteq \exists P_2$	$\ldots, P_2(x, _), \ldots$	\sim	$\ldots, P_1(x, _), \ldots$
$P_1 \sqsubseteq P_2$	$\ldots, P_2(x, y), \ldots$	\sim	$\ldots, P_1(x, y), \ldots$
$P_1 \sqsubseteq P_2^-$	$\ldots, P_2(x, y), \ldots$	\sim	$\ldots, P_1(y, x), \ldots$

('_' denotes a variable that appears only once)

• Choose two atoms of q' that unify, and apply the unifier to q'.

Each time, the result of the above step is added to the queries to be processed.

Note: Unifying atoms can make rules applicable that were not so before, and is required for completeness of the method [C. et al. 2007].

The UCQ resulting from this process is the **perfect rewriting** $r_{q,\mathcal{T}}$.

Diego Calvanese (unibz)

Tutorial on OBDA

ONTOBRAS - 1-3/10/2018 (12/38)

Saturation

Query rewriting algorithm

```
Algorithm PerfectRef(O, \mathcal{T}_P)
Input: union of conjunctive queries Q, set \mathcal{T}_P of DL-Lite inclusion assertions
Output: union of conjunctive queries PR
PR := O;
repeat
   PR' := PR:
   for each q \in PR' do
     for each g in q do
        for each inclusion assertion I in \mathcal{T}_{P} do
           if I is applicable to g then PR := PR \cup \{ Apply Pl(q, g, I) \};
     for each g_1, g_2 in q do
        if g_1 and g_2 unify then PR := PR \cup \{\tau(\text{Reduce}(q, g_1, g_2))\};
until PR' = PR:
return PR
```

Observations:

- Termination follows from having only finitely many different rewritings.
- Disjointness assertions and functionalities do not play any role in the rewriting of the query.

Diego Calvanese (unibz)

Query answering in *DL-Lite* – Example

Corresponding rules:
$Prof(x) \leftarrow FullProf(x)$
$\exists y(teaches(x, y)) \leftarrow Prof(x)$
$Course(x) \leftarrow teaches(y, x)$

Query: $q(x) \leftarrow teaches(x, y), Course(y)$

Perfect rewriting: $q(x) \leftarrow teaches(x, y), Course(y)$ $q(x) \leftarrow teaches(x, y), teaches(_, y)$ $q(x) \leftarrow teaches(x, _)$ $q(x) \leftarrow Prof(x)$ $q(x) \leftarrow FullProf(x)$

ABox: teaches(jim, databases) FullProf(jim) teaches(julia, security) FullProf(nicole)

Evaluating the perfect rewriting over the ABox (seen as a DB) produces as answer {jim, julia, nicole}.

Diego Calvanese (unibz)

Query answering in *DL-Lite* – An interesting example

TBox: $Person \sqsubseteq \exists hasFather$ ABox: Person(john) $\exists hasFather^{-} \sqsubseteq Person$

Query: $q(x) \leftarrow Person(x)$, hasFather (x, y_1) , hasFather (y_1, y_2) , hasFather (y_2, y_3)

 $q(x) \leftarrow Person(x)$, has Father (x, y_1) , has Father (y_1, y_2) , has Father $(y_2, -)$ \blacksquare Apply Person $\sqsubseteq \exists$ hasFather to the atom hasFather($y_2, _$) $q(x) \leftarrow Person(x)$, hasFather (x, y_1) , hasFather (y_1, y_2) , Person (y_2) \blacksquare **Apply** \exists hasFather⁻ \sqsubseteq Person to the atom Person(y_2) $q(x) \leftarrow Person(x)$, hasFather (x, y_1) , hasFather (y_1, y_2) , hasFather $(-, y_2)$ \bigcup Unify atoms hasFather(y_1, y_2) and hasFather($_, y_2$) $q(x) \leftarrow Person(x), hasFather(x, y_1), hasFather(y_1, y_2)$ Ш . . . $q(x) \leftarrow Person(x), hasFather(x, _)$ \square Apply Person $\sqsubseteq \exists$ hasFather to the atom hasFather(x, _) $q(x) \leftarrow Person(x)$

Saturation

Complexity of query answering in DL-Lite

Query answering for UCQs / SPARQL queries is:

- Efficiently tractable in the size of the TBox, i.e., PTIME.
- Very efficiently tractable in the size of the ABox, i.e., AC⁰.
- Exponential in the size of the query, more precisely NP-complete.

In theory this is not bad, since this is precisely the complexity of evaluating CQs in plain relational DBs.

Can we go beyond DL-Lite?

Essentially no! By adding essentially any additional DL constructor we lose first-order rewritability and hence these nice computational properties.

Outline

2 Mapping specification

- 3 Saturation and optimization of the mapping
- 4 Query reformulation and optimization

Saturation

Impedance mismatch

We need to address the impedance mismatch problem

- In relational databases, information is represented as tuples of values.
- In ontologies, information is represented using both objects and values ...
 - ... with objects playing the main role, ...
 - ... and values playing a subsidiary role as fillers of object attributes.

Proposed solution:

- We specify how to construct from the data values in the relational sources the (abstract) objects that populate the data layer of the ontology.
- This specification is embedded in the mappings between the data sources and the ontology.

Note: the **data layer** (typically) is only **virtual**, since the objects are not materialized at the level of the ontology.

Solution to the impedance mismatch problem

We need to define a **mapping language** that allows for specifying how to transform data values into abstract objects:

- Each mapping assertion maps:
 - a query that retrieves values from a data source to ...
 - a set of atoms specified over the ontology.
- Basic idea: use Skolem functions (or more concretely, pattern templates) in the atoms over the ontology to "generate" the objects from the data values.
- Semantics of mappings:
 - Objects are denoted by terms (of exactly one level of nesting).
 - Different terms denote different objects (i.e., we make the unique name assumption on terms).

Impedance mismatch – Example

Actual data is stored in a DB:

- An employee is identified by her SSN.
- A project is identified by its name.
- D₁[SSN: String, PrName: String] Employees and projects they work for
- D₂[Code: String, Salary: Int]
 - Employee's code with salary
- D₃[Code: String, SSN: String] Employee's Code with SSN

Intuitively:

• An employee should be created from her SSN: pers(SSN)

. . .

• A project should be created from its name: proj(PrName)

Saturation

Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

- We introduce an alphabet ∧ of **function symbols**, each with an associated arity.
- To denote values, we use value constants from an alphabet Γ_V .
- To denote objects, we use object terms instead of object constants.
 - An object term has the form $\mathbf{f}(d_1, \ldots, d_n)$, with $\mathbf{f} \in \Lambda$, and each d_i a value constant in Γ_V .
 - Concretely, the object terms are obtained by instantiating the patterns with values from the database.

Example

- If a person is identified by her SSN, we can introduce a function symbol pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.
- If a person is identified by her *name* and *dateOfBirth*, we can introduce a function symbol **pers**/2. Then **pers**(Vardi, 25/2/56) denotes a person.

Mapping assertions

Mapping assertions are used to extract the data from the DB to populate the ontology.

We make use of **variable terms**, which are like object terms, but with variables instead of values as arguments of the functions.

A mapping assertion between a database with schema \mathcal{S} and an ontology \mathcal{O} has the form

 $\Phi(\vec{x}) \rightsquigarrow \Psi(\vec{t}, \vec{y})$

where

- Φ is an arbitrary SQL query of arity n > 0 over S;
- Ψ is a conjunctive query over *O* of arity *n*′ > 0 without existentially quantified variables;
- \vec{x} , \vec{y} are variables, with $\vec{y} \subseteq \vec{x}$;
- \vec{t} are variable terms of the form $\mathbf{f}(\vec{z})$, with $\mathbf{f} \in \Lambda$ and $\vec{z} \subseteq \vec{x}$.

Mapping assertions – Example

. . .

D₁[SSN: String, PrName: String] Employees and Projects they work for D₂[Code: String, Salary: Int] Employee's code with salary D₃[Code: String, SSN: String] Employee's code with SSN

- SELECT SSN, PrName m_1 : FROM D₁
- \rightsquigarrow Employee(pers(SSN)), Project(**proj**(PrName)), projectName(proj(PrName), PrName), worksFor(pers(SSN), proj(PrName))
- SELECT SSN, Salary \rightsquigarrow Employee(pers(SSN)), m_2 : FROM D_2 , D_3 WHERE D_2 .Code = D_3 .Code
- salary(pers(SSN), Salary)

Saturation

Concrete mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:

- They assume that the ontology is populated in terms of RDF triples.
- Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ¹, SML², Ontop³

R2RML

- Most popular RDB to RDF mapping language
- W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/
- R2RML mappings are themselves expressed as RDF graphs and written in Turtle syntax.

²http://sparqlify.org/wiki/Sparqlification_mapping_language ³https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Diego Calvanese (unibz)

Tutorial on OBDA

ONTOBRAS - 1-3/10/2018 (23/38)

¹http://d2rq.org/d2rq-language

Ontology-based data access: Formalization

To formalize OBDA, we distinguish between the intensional and the extensional level information.

An **OBDA specification** is a triple $\mathcal{P} = \langle O, \mathcal{M}, \mathcal{S} \rangle$, where:

- O is the (intensional level of an) ontology. We consider ontologies formalized in description logics (DLs), hence the intensional level is a DL TBox.
- *S* is a (possibly federated) relational database schema for the data source(s), possibly with constraints;
- *M* is a set of mapping assertions between *O* and *S*.

An **OBDA instance** is a pair $\mathcal{J} = \langle \mathcal{P}, \mathcal{D} \rangle$, where

- $\mathcal{P} = \langle O, \mathcal{M}, \mathcal{S} \rangle$ is an OBDA specification, and
- \mathcal{D} is a relational database compliant with \mathcal{S} .

Saturation

Semantics of OBDA: Intuition

In an OBDA instance $\mathcal{J} = \langle \langle O, \mathcal{M}, \mathcal{S} \rangle, \mathcal{D} \rangle$, the **mapping** \mathcal{M} encodes how the data \mathcal{D} in the source(s) \mathcal{S} should be used to populate the elements of O.

Virtual data layer

The data \mathcal{D} and the mapping \mathcal{M} define a virtual data layer $\mathcal{V} = \mathcal{M}(\mathcal{D})$

- Queries are answered w.r.t. O and V.
- We do not really materialize the data of *V* (it is virtual!).
- Instead, the intensional information in *O* and *M* is used to translate queries over *O* into queries formulated over *S*.

Saturation

Virtual data layer – Example

salary(pers(23AB), 1500), ...

Saturation

Semantics of mappings

To formally define the semantics of an OBDA instance $\mathcal{J} = \langle \mathcal{P}, \mathcal{D} \rangle$, where $\mathcal{P} = \langle \mathcal{O}, \mathcal{M}, \mathcal{S} \rangle$, we first need to define the semantics of mappings.

Satisfaction of a mapping assertion with respect to a database

An interpretation \mathcal{I} satisfies a mapping assertion $\Phi(\vec{x}) \rightsquigarrow \Psi(\vec{x})$ in \mathcal{M} with respect to a database \mathcal{D} for \mathcal{S} , if the following FOL sentence is true in $\mathcal{I} \cup \mathcal{D}$:

 $\forall \vec{x} \cdot \Phi(\vec{x}) \rightarrow \Psi(\vec{x})$

Intuitively, \mathcal{I} satisfies $\Phi \rightsquigarrow \Psi$ w.r.t. \mathcal{D} if all facts obtained by evaluating Φ over \mathcal{D} and then propagating the answers to Ψ , hold in \mathcal{I} .

Semantics of mappings – Example

The following interpretation I satisfies the mapping assertions m_1 and m_2 with respect to the above database:

```
 \begin{split} \Delta_o^I &= \{ \texttt{pers}(23AB), \texttt{proj}(\texttt{optique}), \ldots \}, \qquad \Delta_V^I &= \{\texttt{optique}, 1500, \ldots \} \\ Employee^I &= \{ \texttt{pers}(23AB), \ldots \}, \quad Project^I &= \{\texttt{proj}(\texttt{optique}), \ldots \}, \\ projectName^I &= \{ (\texttt{proj}(\texttt{optique}), \texttt{optique}), \ldots \}, \\ worksFor^I &= \{ (\texttt{pers}(23AB), \texttt{proj}(\texttt{optique})), \ldots \}, \\ salary^I &= \{ (\texttt{pers}(23AB), 1500), \ldots \} \end{split}
```

Saturation

Semantics of an OBDA instance

An OBDA instance \mathcal{J} is **satisfiable** if it admits at least one model.

- 1 Query rewriting wrt an OWL 2 QL ontology
- 2 Mapping specification
- Saturation and optimization of the mapping
 - 4 Query reformulation and optimization

Querying the OBDA system

OBDA system $\mathcal{K} = \langle \mathcal{T}, \mathcal{M}, \mathcal{D} \rangle$

- DL-Lite_R TBox T
- RDF graph G obtained from the mapping M and the data sources D
- G can be viewed as the ABox

Query answering

- SPARQL query q over ${\cal K}$
- If there is no existential restriction $B \sqsubseteq \exists R.C \text{ in } \mathcal{T}, q \text{ can be directly}$ evaluated over \mathcal{G}_{sat}

Saturated RDF graph \mathcal{G}_{sat}

- \bullet Saturation of ${\cal G}$ w.r.t. ${\cal T}$
- H-complete ABox

How to handle the RDF graph \mathcal{G}_{sat} in practice?

By materializing it

- Materialization of *G* (ETL)
 + saturation
- Large volume
- Maintenance
- Typical profile: OWL 2 RL

By keeping it virtual

- Query rewriting
- + No materialization required
- Saturated mapping \mathcal{M}_{sat}
- Typical profile: OWL 2 QL

Saturation

H-complete ABox

[Rodriguez-Muro, Kontchakov, and Zakharyaschev 2013; Kontchakov and Zakharyaschev 2014]

ABox saturation

- H-complete ABox: contains all the inferable ABox assertions
- Let K be a DL-Lite_R knowledge base, and let K_{sat} be the result of saturating K. Then, for every ABox assertion α, we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in \mathcal{K}_{sat}$

Saturated mapping \mathcal{M}_{sat} (also called *T*-mapping)

- Composition of the mapping $\mathcal M$ and the $\textit{DL-Lite}_{\mathcal R}\, \mathsf{TBox}\, \mathcal T.$
- \mathcal{M}_{sat} applied to \mathcal{D} produces \mathcal{G}_{sat} (H-complete ABox).
- Does not depend of the SPARQL query *q* (can be pre-computed).
- Can be optimized (exploiting query containment).

uninz

	Mappings	Saturation	Reformulation+Optimizatio
TBox, user-defined mapping asso	ertions, and foreign ke	у	
Student ⊔ PostDoc ⊔ AssociateF	Professor ⊔ ∃teaches	⊑ Person	
Studen	t(iri1(scode)) ↔ stu	dent(scode, fn, ln)	(1)
PostDoc	c(iri2(acode)) ↔ aca	<pre>demic(acode, fn, ln, pos), pos =</pre>	= 9 (2)
AssociateProfessor	r(iri2 (<i>acode</i>)) < aca	<pre>demic(acode, fn, ln, pos), pos =</pre>	= 2 (3)
FacultyMember	r(iri2 (<i>acode</i>)) < aca	demic(acode, fn, ln, pos)	(4)
teaches(iri2(acode),	iri3(course)) ↔ tea	ching(course, acode)	(5)
FK : $\exists v_1 + eaching(v_1 - r) \rightarrow \exists v_2 v_3$		``````````````````````````````````````	
$TR: \exists y_1 \colon Ceaching(y_1, x) \to \exists y_2 y_3$	$3y_4$.academic(x, y_2, y_3)	y4)	
By saturating the mapping, we	obtain mapping asser	y4) tions for <i>Person</i>	
By saturating the mapping, we $Person(iri1(s))$	obtain mapping asser	y ₄) tions for <i>Person</i> code, fn, ln)	(6)
By saturating the mapping, we Person(iri1(s_{i} Person(iri2(a_{i}	obtain mapping asser code)) \$\lambda\$ student(s code)) \$\lambda\$ academic(s	y_4) tions for Person code, fn, ln) acode, fn, ln, pos), pos = 9	(6) (7)
By saturating the mapping, we Person(iri1(s Person(iri2(a Person(iri2(a)	obtain mapping asser code)) <~ student(s code)) <~ academic(code)) <~ academic(code)) <~ academic(y_4) tions for Person code, fn, ln) acode, fn, ln, pos), pos = 9 acode, fn, ln, pos), pos = 2	(6) (7) (8)
By saturating the mapping, we Person(iri1(su Person(iri2(au Person(iri2(au Person(iri2(au	obtain mapping asser code)) student(s code)) academic(code)) academic(code)) academic(code)) academic(code)) academic(tions for Person code, fn , ln) acode, fn, ln, pos), $pos = 9acode, fn, ln, pos$), $pos = 2acode, fn, ln, pos$)	(6) (7) (8) (9)
By saturating the mapping, we Person(iri1(s Person(iri2(a Person(iri2(a Person(iri2(a)	obtain mapping asser code)) \$\lambda student(s code)) \$\lambda student(s code)) \$\lambda academic(c code)) \$\lambda academic(c	tions for Person code, fn , ln) acode, fn, ln, pos), $pos = 9acode, fn, ln, pos$), $pos = 2acode, fn, ln, pos$) course, acode)	(6) (7) (8) (9) (10)

By **optimizing the mapping** using query containment and the FK, we can remove mapping assertions 7, 8, and 10

Person(iri1(scode)) ↔	<pre>student(scode, fn, ln)</pre>	(6)
Person(iri2(acode)) ↔	<pre>academic(acode, fn, ln, pos)</pre>	(9)

Outline

- Query rewriting wrt an OWL 2 QL ontology
- 2 Mapping specification
- 3 Saturation and optimization of the mapping
- Query reformulation and optimization

Query reformulation as implemented by Ontop

Saturation

SQL query optimization

Objective : produce SQL queries that are ...

- similar to manually written ones
- adapted to existing query planners

Structural optimization

- From join-of-unions to union-of-joins
- IRI decomposition to improve joining performance

Semantic optimization

- Redundant join elimination
- Redundant union elimination
- Using functional constraints

Integrity constraints

- Primary and foreign keys, unique constraints
- Sometimes implicit
- Vital for query reformulation!

Reformulation example - 1. Unfolding

Saturated mapping

Teacher(iri2(acode)) \iff academic(acode, fn, ln, pos), pos \in [1..8]

Teacher(iri2(acode)) <-> teaching(course, acode)

firstName(iri1(scode), fn) <~ student(scode, fn, ln)</pre>

firstName(iri2(acode),fn) <-> academic(acode,fn,ln,pos)

lastName(**iri1**(*scode*), *ln*) ↔ student(*scode*, *fn*, *ln*)

lastName(iri2(acode), ln) <-- academic(acode, fn, ln, pos)</pre>

Query (we assume that the ontology is empty, hence $q_{tw} = q$)

 $q(x, y, z) \leftarrow \text{Teacher}(x), \text{ firstName}(x, y), \text{ lastName}(x, z)$

Query unfolding, and normalization, to make the join conditions explicit

 $q_{norm}(x, y, z) \leftarrow q_{1unf}(x), q_{2unf}(x_1, y), q_{3unf}(x_2, z), x = x_1, x = x_2$

 $q1_{unf}(iri2(acode)) \leftarrow academic(acode, fn, ln, pos), pos \in [1..8]$

 $q1_{unf}(iri2(acode)) \leftarrow teaching(course, acode)$

 $q2_{unf}(iri1(scode), fn) \leftarrow student(scode, fn, ln)$

 $q2_{unf}(iri2(acode), fn) \leftarrow academic(acode, fn, ln, pos)$

 $q_{3unf}(iri1(scode), ln) \leftarrow student(scode, fn, ln)$

 $q_{\text{Junf}}(\text{iri2}(acode), ln) \leftarrow \text{academic}(acode, fn, ln, pos)$

Reformulation example – 2. Structural optimization

Unfolded normalized query

$$q_{\text{norm}}(x, y, z) \leftarrow q_{1\text{unf}}(x), q_{2\text{unf}}(x_1, y), q_{3\text{unf}}(x_2, z), x = x_1, x = x_2$$

 $\boldsymbol{q} \boldsymbol{1}_{\mathsf{unf}}(\mathsf{iri2}(a)) \leftarrow \operatorname{academic}(a, f, l, p), \\ p \in [1..8]$

 $\boldsymbol{q} \boldsymbol{1}_{\mathsf{unf}}(\mathsf{iri2}(a)) \ \leftarrow \ \mathtt{teaching}(c,a)$

 $q2_{unf}(iri1(s), f) \leftarrow student(s, f, l)$

 $q2_{unf}(iri2(a), f) \leftarrow academic(a, f, l, p)$

 $q3_{unf}(iri1(s), l) \leftarrow student(s, f, l)$

- $q3_{unf}(iri2(a), l) \leftarrow academic(a, f, l, p)$
- While flattening, we can avoid to generate those queries that contain in their body an equality between two terms with incompatible IRI templates.
- This might avoid a potential exponential blowup.

Flattening (URI template lifting) – Part 1/2

(One sub-query not shown)

```
\begin{aligned} q_{\text{lift}}(\text{iri2}(a), y, z) &\leftarrow \text{academic}(a, f_1, l_1, p_1), \\ &\text{academic}(a_1, y, l_2, p_2), \\ &\text{academic}(a_2, f_3, z, p_3), \\ &\text{iri2}(a) = \text{iri2}(a_1), \\ &\text{iri2}(a) = \text{iri2}(a_2), \\ &p_1 \in [1..8] \end{aligned}
```

unndZ

Reformulation example – 2. Structural optimization

Unfolded	norma	lized	query
----------	-------	-------	-------

$$q_{\text{norm}}(x, y, z) \leftarrow q_{1\text{unf}}(x), q_{2\text{unf}}(x_1, y), q_{3\text{unf}}(x_2, z), x = x_1, x = x_2$$

- $\boldsymbol{q} \boldsymbol{1}_{\mathsf{unf}}(\mathsf{iri2}(a)) \leftarrow \operatorname{academic}(a, f, l, p), \\ p \in [1..8]$
- $\boldsymbol{q} \boldsymbol{1}_{\mathsf{unf}}(\mathsf{iri2}(a)) \ \leftarrow \ \mathtt{teaching}(c,a)$
- $\boldsymbol{q}2_{\mathsf{unf}}(\mathsf{iri1}(s),f) \ \leftarrow \ \mathtt{student}(s,f,l)$
- $q2_{unf}(iri2(a), f) \leftarrow academic(a, f, l, p)$

 $q3_{unf}(iri1(s), l) \leftarrow student(s, f, l)$

- $q3_{unf}(iri2(a), l) \leftarrow academic(a, f, l, p)$
- While flattening, we can avoid to generate those queries that contain in their body an equality between two terms with incompatible IRI templates.
- This might avoid a potential exponential blowup.

Flattening (URI template lifting) – Part 2/2

```
\begin{aligned} q_{\text{lift}}(\text{iri2}(a), y, z) &\leftarrow \text{teaching}(c, a), \\ &\quad \text{student}(s, f_2, I_2), \\ &\quad \text{student}(s_1, f_3, l_3), \\ &\quad \text{iri2}(a) = \text{iri1}(s), \\ &\quad \text{iri2}(a) = \text{iri1}(s_1) \end{aligned}
q_{\text{lift}}(\text{iri2}(a), y, z) \leftarrow \text{teaching}(c, a), \\ &\quad \text{student}(s, f_2, I_2), \\ &\quad \text{academic}(a_2, f_3, z, p_3), \\ &\quad \text{iri2}(a) = \text{iri1}(s), \\ &\quad \text{iri2}(a) = \text{iri2}(a_2) \end{aligned}
q_{\text{lift}}(\text{iri2}(a), y, z) \leftarrow \text{teaching}(c, a), \end{aligned}
```

```
f_{\text{lift}}(\texttt{III2}(a), y, z) \leftarrow \texttt{teaching}(c, a), \\ \text{academic}(a_1, y, l_2, p_2), \\ \text{student}(s, f_3, l_3), \\ \text{iri2}(a) = \text{iri2}(a_1), \\ \text{iri2}(a) = \texttt{iri1}(s)
```

```
q_{\text{lift}}(\text{iri2}(a), y, z) \leftarrow \text{teaching}(c, a), \\ \text{academic}(a_1, y, l_2, p_2), \\ \text{academic}(a_2, f_3, z, p_3), \\ \text{iri2}(a) = \text{iri2}(a_1), \\ \text{iri2}(a) = \text{iri2}(a_2) \end{cases}
```

Reformulation example – 3. Semantic optimization

We are left with just two queries, that we can simplify by eliminating equalities

$$\begin{split} \boldsymbol{q}_{\mathsf{struct}}(\mathsf{iri2}(a), y, z) &\leftarrow & \mathsf{academic}(a, f_1, l_1, p_1), \ p_1 \in [1..8], \\ &\quad \mathsf{academic}(a, y, l_2, p_2), \\ &\quad \mathsf{academic}(a, f_3, z, p_3) \end{split}$$
$$\boldsymbol{q}_{\mathsf{struct}}(\mathsf{iri2}(a), y, z) &\leftarrow & \mathsf{teaching}(c, a), \\ &\quad \mathsf{academic}(a, y, l_2, p_2), \end{split}$$

We can then exploit database constraints (such as primary keys) for semantic optimization of the query.

 $academic(a, f_3, z, p_3)$

Self-join elimination (semantic optimization)

$$\begin{array}{ll} \mathsf{PK:} & \mathsf{academic}(acode,f,l,p) \land \mathsf{academic}(acode,f',l',p') \\ & \rightarrow (f=f') \land (l=l') \land (p=p') \end{array}$$

$$q_{opt}(iri2(a), y, z) \leftarrow academic(a, y, z, p_1), p_1 \in [1..8]$$

 $q_{opt}(iri2(a), y, z) \leftarrow teaching(c, a), academic(a, y, z, p_2)$

References I

- Diego C. et al. "Tractable Reasoning and Efficient Query Answering in Description Logics: The *DL-Lite* Family". In: *J. of Automated Reasoning* 39.3 (2007), pp. 385–429.
- [2] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. "Ontology-Based Data Access: Ontop of Databases". In: *Proc. of ISWC*. Vol. 8218. LNCS. 2013, pp. 558–573. doi: 10.1007/978-3-642-41335-3_35.
- [3] Roman Kontchakov and Michael Zakharyaschev. "An Introduction to Description Logics and Query Rewriting". In: *RW 2014 Tutorial Lectures*. Vol. 8714. LNCS. Springer, 2014, pp. 195–244. doi: 10.1007/978-3-319-10587-1_5.