
Ontology-based Data Access
A Tutorial on Query Reformulation and Optimization

Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

..

KRDB
1

Seminar on Ontology Research in Brazil (ONTOBRAS)

Sãu Paulo, Brazil, 1–3 October 2018

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Outline

1 Query rewriting wrt an OWL 2 QL ontology

2 Mapping specification

3 Saturation and optimization of the mapping

4 Query reformulation and optimization

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (1/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Outline

1 Query rewriting wrt an OWL 2 QL ontology

2 Mapping specification

3 Saturation and optimization of the mapping

4 Query reformulation and optimization

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (2/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query answering via query reformulation

To compute the certain answers to a SPARQL query q over an OBDA instance
O = 〈P,D〉, with P = 〈T ,S,M〉:

1 Compute the perfect rewriting of q w.r.t. T .
2 Unfold the perfect rewriting wrt the mappingM.
3 Optimize the unfolded query, using database constraints.
4 Evaluate the resulting SQL query over D.

Steps 1 – 3 are collectively called query reformulation.

The rewriting Step 1 deals with the objects that are existentially implied by the
axioms of the ontology.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (2/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Example of existential reasoning

Suppose that every graduate student is supervised by some professor, i.e.

GraduateStudent v ∃isSupervisedBy.Professor

and john is a graduate student: GraduateStudent(john).

What is the answer to the following query?

q(x) ← isSupervisedBy(x, y), Professor(y)

The answer should be john, even though we don’t know who is John’s
supervisor (under existential reasoning).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (3/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Existential reasoning and query rewriting

Canonical model

Every consistent DL-Lite KB K = (T ,A) has a canonical model IK , which
gives the right answers to all CQs, i.e., cert(q,K) = ans(q,IK)

Core
individuals
from A

Anonymous part
trees rooted at individuals,
using unnamed objects

x
R

y
⇡(x)

⇡(y)

x
R

y
⇡(x)

⇡(y)

The core part can be handled by saturating the mapping.

The anonymous part can be handled by Tree-witness rewriting.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (4/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Example of existential reasoning (continued)

Using the (tree witness) rewriting algorithm, the query

q(x) ← isSupervisedBy(x, y), Professor(y)

is rewritten to a union of two conjunctive queries (or a SPARQL union query):

q(x) ← isSupervisedBy(x, y), Professor(y)
q(x) ← GraduateStudent(x)

Therefore, over the Abox GraduateStudent(john), the rewritten query returns
john as an answer.

Note: In Ontop, if one wants to answer queries by performing existential
reasoning, the tree-witness rewriting algorithm needs to be switched on
explicitly.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (5/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

The PerfectRef algorithm for query rewriting

To illustrate Step 1 of the query reformulation algorithm, we briefly describe
PerfectRef , a simple query rewriting algorithm that requires to iterate over:

rewriting steps that involve TBox inclusion assertions, and

unification of query atoms.

The perfect rewriting of q is still a SPARQL query involving UNION.

Note: disjointness assertions play a role in ontology satisfiability, but can be
ignored during query rewriting (i.e., we have separability).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (6/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting step: Basic idea

Intuition: an inclusion assertion corresponds to a logic programming rule.

Basic rewriting step:

When an atom in the query unifies with the head of the rule, generate a new
query by substituting the atom with the body of the rule.

We say that the inclusion assertion applies to the atom.

Example

The inclusion assertion FullProf v Prof
corresponds to the logic programming rule Prof (z) ← FullProf (z).

Consider the query q(x) ← Prof (x).

By applying the inclusion assertion to the atom Prof (x), we generate:
q(x) ← FullProf (x).

This query is added to the input query, and contributes to the perfect rewriting.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (7/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting (cont’d)

Example

Consider the query q(x) ← teaches(x, y),Course(y)

and the inclusion assertion ∃teaches− v Course
as a logic programming rule: Course(z2) ← teaches(z1, z2).

The inclusion applies to Course(y), and we add to the rewriting the query

q(x) ← teaches(x, y), teaches(z1, y).

Example

Consider now the query q(x) ← teaches(x, y)

and the inclusion assertion FullProf v ∃teaches
as a logic programming rule: teaches(z, f (z)) ← FullProf (z).

The inclusion applies to teaches(x, y), and we add to the rewriting the query

q(x) ← FullProf (x).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (8/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting – Constants

Example

Conversely, for the query q(x) ← teaches(x, databases)

and the same inclusion assertion as before FullProf v ∃teaches
as a logic programming rule: teaches(z, f (z)) ← FullProf (z)

teaches(x, databases) does not unify with teaches(z, f (z)), since the skolem
term f (z) in the head of the rule does not unify with the constant databases.
Remember: We adopt the unique name assumption.

We say that the inclusion does not apply to the atom teaches(x, databases).

Example

The same holds for the following query, where y is distinguished, since unifying
f (z) with y would correspond to returning a skolem term as answer to the query:

q(x, y) ← teaches(x, y).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (9/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Example

Consider the query q(x) ← teaches(x, y),Course(y)

and the inclusion assertion FullProf v ∃teaches
as a logic programming rule: teaches(z, f (z)) ← FullProf (z).

The inclusion assertion above does not apply to the atom teaches(x, y).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (10/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting – Reduce step

Example

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the inclusion assertion FullProf v ∃teaches
as a logic rule: teaches(z, f (z)) ← FullProf (z).

This inclusion assertion does not apply to teaches(x, y) or teaches(z, y), since y
is in join, and we would again introduce the skolem term in the rewritten query.

Example

However, we can transform the above query by unifying the atoms teaches(x, y)
and teaches(z, y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y).

Now, we can apply the inclusion above, and add to the rewriting the query

q(x) ← FullProf (x).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (11/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting – Summary
To compute the perfect rewriting of a query q, start from q, iteratively get a CQ
q′ to be processed, and do one of the following:

Apply to some atom of q′ an inclusion assertion in T as follows:

A1 v A2 . . . , A2(x), . . . { . . . , A1(x), . . .
∃P v A . . . , A(x), . . . { . . . , P(x,), . . .
∃P− v A . . . , A(x), . . . { . . . , P(, x), . . .

A v ∃P . . . , P(x,), . . . { . . . , A(x), . . .
A v ∃P− . . . , P(, x), . . . { . . . , A(x), . . .

∃P1 v ∃P2 . . . , P2(x,), . . . { . . . , P1(x,), . . .
P1 v P2 . . . , P2(x, y), . . . { . . . , P1(x, y), . . .
P1 v P−2 . . . , P2(x, y), . . . { . . . , P1(y, x), . . .
· · ·

(’ ’ denotes a variable that appears only once)

Choose two atoms of q′ that unify, and apply the unifier to q′.
Each time, the result of the above step is added to the queries to be processed.

Note: Unifying atoms can make rules applicable that were not so before, and is
required for completeness of the method [C. et al. 2007].

The UCQ resulting from this process is the perfect rewriting rq,T .
Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (12/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query rewriting algorithm

Algorithm PerfectRef(Q,TP)
Input: union of conjunctive queries Q, set TP of DL-Lite inclusion assertions
Output: union of conjunctive queries PR
PR := Q;
repeat

PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each inclusion assertion I in TP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g, I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR′ = PR;
return PR

Observations:

Termination follows from having only finitely many different rewritings.

Disjointness assertions and functionalities do not play any role in the
rewriting of the query.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (13/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query answering in DL-Lite – Example

TBox: Corresponding rules:
FullProf v Prof

Prof v ∃teaches
∃teaches− v Course

Prof (x)← FullProf (x)
∃y(teaches(x, y))← Prof (x)

Course(x)← teaches(y, x)

Query: q(x)← teaches(x, y),Course(y)

Perfect rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(, y)
q(x)← teaches(x,)
q(x)← Prof (x)
q(x)← FullProf (x)

ABox: teaches(jim, databases) FullProf (jim)
teaches(julia, security) FullProf (nicole)

Evaluating the perfect rewriting over the ABox (seen as a DB) produces as
answer {jim, julia, nicole}.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (14/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query answering in DL-Lite – An interesting example

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(john)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2,)
� Apply Person v ∃hasFather to the atom hasFather(y2,)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(, y2)
� Unify atoms hasFather(y1, y2) and hasFather(, y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
· · ·

q(x)← Person(x), hasFather(x,)
� Apply Person v ∃hasFather to the atom hasFather(x,)

q(x)← Person(x)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (15/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Complexity of query answering in DL-Lite

Query answering for UCQs / SPARQL queries is:

Efficiently tractable in the size of the TBox, i.e., PTime.

Very efficiently tractable in the size of the ABox, i.e., AC0.

Exponential in the size of the query, more precisely NP-complete.

In theory this is not bad, since this is precisely the complexity of evaluating
CQs in plain relational DBs.

Can we go beyond DL-Lite?

Essentially no! By adding essentially any additional DL constructor we lose
first-order rewritability and hence these nice computational properties.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (16/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Outline

1 Query rewriting wrt an OWL 2 QL ontology

2 Mapping specification

3 Saturation and optimization of the mapping

4 Query reformulation and optimization

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (17/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Impedance mismatch

We need to address the impedance mismatch problem

In relational databases, information is represented as tuples of values.
In ontologies, information is represented using both objects and values . . .

. . . with objects playing the main role, . . .

. . . and values playing a subsidiary role as fillers of object attributes.

Proposed solution:

We specify how to construct from the data values in the relational sources
the (abstract) objects that populate the data layer of the ontology.

This specification is embedded in the mappings between the data sources
and the ontology.

Note: the data layer (typically) is only virtual, since the objects are not
materialized at the level of the ontology.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (17/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Solution to the impedance mismatch problem

We need to define a mapping language that allows for specifying how to
transform data values into abstract objects:

Each mapping assertion maps:
a query that retrieves values from a data source to . . .
a set of atoms specified over the ontology.

Basic idea: use Skolem functions (or more concretely, pattern
templates) in the atoms over the ontology to “generate” the objects from
the data values.

Semantics of mappings:
Objects are denoted by terms (of exactly one level of nesting).
Different terms denote different objects (i.e., we make the unique name
assumption on terms).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (18/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Impedance mismatch – Example

Employee
empCode: Integer
salary: Integer

Project
projectName: String

1..?
worksFor
H

1..?

Actual data is stored in a DB:
– An employee is identified by her SSN.
– A project is identified by its name.

D1[SSN: String,PrName: String]
Employees and projects they work for

D2[Code: String,Salary: Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Intuitively:

An employee should be created from her SSN: pers(SSN)

A project should be created from its name: proj(PrName)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (19/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

We introduce an alphabet Λ of function symbols, each with an
associated arity.

To denote values, we use value constants from an alphabet ΓV .
To denote objects, we use object terms instead of object constants.

An object term has the form f(d1, . . . , dn), with f ∈ Λ, and each di a value
constant in ΓV .
Concretely, the object terms are obtained by instantiating the patterns with
values from the database.

Example

If a person is identified by her SSN, we can introduce a function symbol
pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.

If a person is identified by her name and dateOfBirth, we can introduce a
function symbol pers/2. Then pers(Vardi, 25/2/56) denotes a person.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (20/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Mapping assertions

Mapping assertions are used to extract the data from the DB to populate the
ontology.

We make use of variable terms, which are like object terms, but with variables
instead of values as arguments of the functions.

A mapping assertion between a database with schema S and an ontology O
has the form

Φ(~x) Ψ(~t, ~y)
where

Φ is an arbitrary SQL query of arity n > 0 over S;

Ψ is a conjunctive query over O of arity n′ > 0 without existentially
quantified variables;

~x, ~y are variables, with ~y ⊆ ~x;
~t are variable terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (21/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Mapping assertions – Example

Employee
empCode: Integer
salary: Integer

Project
projectName: String

1..?
worksFor
H

1..?

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary: Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s code with SSN

. . .

m1: SELECT SSN, PrName

FROM D1

 Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

 Employee(pers(SSN)),
salary(pers(SSN), Salary)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (22/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Concrete mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:

They assume that the ontology is populated in terms of RDF triples.

Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ1, SML2, Ontop3

R2RML

Most popular RDB to RDF mapping language

W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/

R2RML mappings are themselves expressed as RDF graphs and written in
Turtle syntax.

1http://d2rq.org/d2rq-language
2http://sparqlify.org/wiki/Sparqlification_mapping_language
3https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (23/38)

http://www.w3.org/TR/r2rml/
http://d2rq.org/d2rq-language
http://sparqlify.org/wiki/Sparqlification_mapping_language
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Ontology-based data access: Formalization

To formalize OBDA, we distinguish between the intensional and the extensional
level information.

An OBDA specification is a triple P = 〈O,M,S〉, where:

O is the (intensional level of an) ontology.
We consider ontologies formalized in description logics (DLs), hence the
intensional level is a DL TBox.

S is a (possibly federated) relational database schema for the data
source(s), possibly with constraints;

M is a set of mapping assertions between O and S.

An OBDA instance is a pair J = 〈P,D〉, where

P = 〈O,M,S〉 is an OBDA specification, and

D is a relational database compliant with S.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (24/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Semantics of OBDA: Intuition

In an OBDA instance J = 〈〈O,M,S〉,D〉, the mappingM encodes how the
data D in the source(s) S should be used to populate the elements of O.

Virtual data layer

The data D and the mappingM define a
virtual data layerV =M(D)

Queries are answered w.r.t. O andV.

We do not really materialize the data of
V (it is virtual!).

Instead, the intensional information in
O andM is used to translate queries
over O into queries formulated over S.

Ontology

Virtual Data Layer

Data
Sources

. . .

. . .

. . .

. . .

QueryResult

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (25/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Virtual data layer – Example
Employee

empCode: Integer
salary: Integer

Project
projectName: String

1..?

worksFor
H

1..?

D1

SSN PrName

23AB optique

· · · · · ·

D2

Code Salary

e23 1500

· · · · · ·

D3

Code SSN

e23 23AB

· · · · · ·

m1: SELECT SSN, PrName

FROM D1

 Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

 Employee(pers(SSN)),
salary(pers(SSN), Salary)

Applying m1 and m2 to the database, generates a virtual data layer:

Object terms: pers(23AB), proj(optique), . . . Values: optique, 1500, . . .
ABox assertions: Employee(pers(23AB)), . . . Project({proj(optique)), . . .

projectName(proj(optique), optique), . . .
worksFor(pers(23AB),proj(optique)), . . .
salary(pers(23AB), 1500), . . .

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (26/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Semantics of mappings

To formally define the semantics of an OBDA instance J = 〈P,D〉, where
P = 〈O,M,S〉, we first need to define the semantics of mappings.

Satisfaction of a mapping assertion with respect to a database

An interpretation I satisfies a mapping assertion Φ(~x) Ψ(~x) inM with
respect to a database D for S, if the following FOL sentence is true in I ∪D:

∀~x. Φ(~x)→ Ψ(~x)

Intuitively, I satisfies Φ Ψ w.r.t. D if all facts obtained by evaluating Φ over
D and then propagating the answers to Ψ, hold in I.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (27/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Semantics of mappings – Example
Employee

empCode: Integer
salary: Integer

Project
projectName: String

1..?

worksFor
H

1..?

D1

SSN PrName

23AB optique

· · · · · ·

D2

Code Salary

e23 1500

· · · · · ·

D3

Code SSN

e23 23AB

· · · · · ·

m1: SELECT SSN, PrName

FROM D1

 Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

 Employee(pers(SSN)),
salary(pers(SSN), Salary)

The following interpretation I satisfies the mapping assertions m1 and m2 with respect to
the above database:
∆ I

O = {pers(23AB),proj(optique), . . .}, ∆ I
V = {optique, 1500, . . .}

EmployeeI = {pers(23AB), . . .}, ProjectI = {proj(optique), . . .},
projectNameI = {(proj(optique), optique), . . .},
worksForI = {(pers(23AB),proj(optique)), . . . },
salaryI = {(pers(23AB), 1500), . . .}

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (28/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Semantics of an OBDA instance

. . .

. . .

. . .

. . .

Query

Result

Let I = (∆I, ·I) be an interpretation of the ontology O.

Model of an OBDA instance

I is a model of J = 〈P,D〉, with P = 〈O,M,S〉 if:

I is a model of O, and

I satisfiesM w.r.t. D, i.e., it satisfies every assertion inM w.r.t. D.

An OBDA instance J is satisfiable if it admits at least one model.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (29/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Outline

1 Query rewriting wrt an OWL 2 QL ontology

2 Mapping specification

3 Saturation and optimization of the mapping

4 Query reformulation and optimization

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (30/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Querying the OBDA system

OBDA system K = 〈T ,M,D〉

DL-LiteR TBox T

RDF graph G obtained from the
mappingM and the data sources D

G can be viewed as the ABox

Query answering

SPARQL query q over K

If there is no existential restriction
B v ∃R.C in T , q can be directly
evaluated over Gsat

RDFR2RML

Saturated
graph

Saturated RDF graph Gsat

Saturation of G w.r.t. T

H-complete ABox

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (30/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

How to handle the RDF graph Gsat in practice?

By materializing it

Materialization of G (ETL)
+ saturation

− Large volume

− Maintenance

Typical profile: OWL 2 RL

By keeping it virtual

Query rewriting

+ No materialization required

Saturated mappingMsat

Typical profile: OWL 2 QL

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (31/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

H-complete ABox

[Rodriguez-Muro, Kontchakov, and Zakharyaschev 2013; Kontchakov and
Zakharyaschev 2014]

ABox saturation

H-complete ABox: contains all the inferable ABox assertions

Let K be a DL-LiteR knowledge base, and let Ksat be the result of
saturating K . Then, for every ABox assertion α, we have:

K |= α iff α ∈ Ksat

Saturated mappingMsat (also called T-mapping)

Composition of the mappingM and the DL-LiteR TBox T .

Msat applied to D produces Gsat (H-complete ABox).

Does not depend of the SPARQL query q (can be pre-computed).

Can be optimized (exploiting query containment).

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (32/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

TBox, user-defined mapping assertions, and foreign key

Student t PostDoc t AssociateProfessor t ∃teaches v Person

Student(iri1(scode)) f student(scode, fn, ln) (1)

PostDoc(iri2(acode)) f academic(acode, fn, ln, pos), pos = 9 (2)

AssociateProfessor(iri2(acode)) f academic(acode, fn, ln, pos), pos = 2 (3)

FacultyMember(iri2(acode)) f academic(acode, fn, ln, pos) (4)

teaches(iri2(acode), iri3(course)) f teaching(course, acode) (5)

FK: ∃y1.teaching(y1, x)→ ∃y2y3y4.academic(x, y2, y3, y4)

By saturating the mapping, we obtain mapping assertions for Person

Person(iri1(scode)) f student(scode, fn, ln) (6)

Person(iri2(acode)) f academic(acode, fn, ln, pos), pos = 9 (7)

Person(iri2(acode)) f academic(acode, fn, ln, pos), pos = 2 (8)

Person(iri2(acode)) f academic(acode, fn, ln, pos) (9)

Person(iri2(acode)) f teaching(course, acode) (10)

By optimizing the mapping using query containment and the FK, we can remove mapping
assertions 7, 8, and 10

Person(iri1(scode)) f student(scode, fn, ln) (6)

Person(iri2(acode)) f academic(acode, fn, ln, pos) (9)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (33/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Outline

1 Query rewriting wrt an OWL 2 QL ontology

2 Mapping specification

3 Saturation and optimization of the mapping

4 Query reformulation and optimization

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (34/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Query reformulation as implemented by Ontop

Tree-witness
rewriting

Query unfolding
based on
saturated
mappings

Optimization
q

SPARQL

qtw

SPARQL

qunf

SQL

qopt

SQL

Step Input Output

1. Tree-witness rewriting q (SPARQL) and T qtw (SPARQL)

2. Query unfolding qtw andMsat qunf (SQL)

3. Query optimization qunf, primary and foreign keys qopt (SQL)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (34/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

SQL query optimization

Objective : produce SQL queries that are . . .

similar to manually written ones

adapted to existing query planners

Structural optimization

From join-of-unions to
union-of-joins

IRI decomposition to improve
joining performance

Semantic optimization

Redundant join elimination

Redundant union elimination

Using functional constraints

Integrity constraints

Primary and foreign keys, unique constraints

Sometimes implicit

Vital for query reformulation!

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (35/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Reformulation example – 1. Unfolding
Saturated mapping

Teacher(iri2(acode)) f academic(acode, fn, ln, pos), pos ∈ [1..8]

Teacher(iri2(acode)) f teaching(course, acode)

firstName(iri1(scode), fn) f student(scode, fn, ln)

firstName(iri2(acode), fn) f academic(acode, fn, ln, pos)

lastName(iri1(scode), ln) f student(scode, fn, ln)

lastName(iri2(acode), ln) f academic(acode, fn, ln, pos)

Query (we assume that the ontology is empty, hence qtw = q)

q(x, y, z) ← Teacher(x), firstName(x, y), lastName(x, z)

Query unfolding, and normalization, to make the join conditions explicit

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y), q3unf(x2, z), x = x1, x = x2

q1unf(iri2(acode)) ← academic(acode, fn, ln, pos), pos ∈ [1..8]

q1unf(iri2(acode)) ← teaching(course, acode)

q2unf(iri1(scode), fn) ← student(scode, fn, ln)

q2unf(iri2(acode), fn) ← academic(acode, fn, ln, pos)

q3unf(iri1(scode), ln) ← student(scode, fn, ln)

q3unf(iri2(acode), ln) ← academic(acode, fn, ln, pos)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (36/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Reformulation example – 2. Structural optimization
Unfolded normalized query

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z),
x = x1, x = x2

q1unf(iri2(a)) ← academic(a, f , l, p),
p ∈ [1..8]

q1unf(iri2(a)) ← teaching(c, a)

q2unf(iri1(s), f) ← student(s, f , l)

q2unf(iri2(a), f) ← academic(a, f , l, p)

q3unf(iri1(s), l) ← student(s, f , l)

q3unf(iri2(a), l) ← academic(a, f , l, p)

While flattening, we can avoid to
generate those queries that contain in
their body an equality between two
terms with incompatible IRI templates.

This might avoid a potential
exponential blowup.

Flattening (URI template lifting) – Part 1/2

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
student(s, f2, l2),
student(s1, f3, l3),
iri2(a) = iri1(s),
iri2(a) = iri1(s1),
p1 ∈ [1..8]

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
student(s, f2, l2),
academic(a2, f3, z, p3),
iri2(a) = iri1(s),
iri2(a) = iri2(a2),
p1 ∈ [1..8]

(One sub-query not shown)

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
academic(a1, y, l2, p2),
academic(a2, f3, z, p3),
iri2(a) = iri2(a1),
iri2(a) = iri2(a2),
p1 ∈ [1..8]

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (37/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Reformulation example – 2. Structural optimization
Unfolded normalized query

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z),
x = x1, x = x2

q1unf(iri2(a)) ← academic(a, f , l, p),
p ∈ [1..8]

q1unf(iri2(a)) ← teaching(c, a)

q2unf(iri1(s), f) ← student(s, f , l)

q2unf(iri2(a), f) ← academic(a, f , l, p)

q3unf(iri1(s), l) ← student(s, f , l)

q3unf(iri2(a), l) ← academic(a, f , l, p)

While flattening, we can avoid to
generate those queries that contain in
their body an equality between two
terms with incompatible IRI templates.

This might avoid a potential
exponential blowup.

Flattening (URI template lifting) – Part 2/2

qlift(iri2(a), y, z) ← teaching(c, a),
student(s, f2, l2),
student(s1, f3, l3),
iri2(a) = iri1(s),
iri2(a) = iri1(s1)

qlift(iri2(a), y, z) ← teaching(c, a),
student(s, f2, l2),
academic(a2, f3, z, p3),
iri2(a) = iri1(s),
iri2(a) = iri2(a2)

qlift(iri2(a), y, z) ← teaching(c, a),
academic(a1, y, l2, p2),
student(s, f3, l3),
iri2(a) = iri2(a1),
iri2(a) = iri1(s)

qlift(iri2(a), y, z) ← teaching(c, a),
academic(a1, y, l2, p2),
academic(a2, f3, z, p3),
iri2(a) = iri2(a1),
iri2(a) = iri2(a2)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (37/38)

Query rewriting wrt an OWL 2 QL ontology Mappings Saturation Reformulation+Optimization

Reformulation example – 3. Semantic optimization

We are left with just two queries, that we can simplify by eliminating equalities

qstruct(iri2(a), y, z) ← academic(a, f1, l1, p1), p1 ∈ [1..8],
academic(a, y, l2, p2),
academic(a, f3, z, p3)

qstruct(iri2(a), y, z) ← teaching(c, a),
academic(a, y, l2, p2),
academic(a, f3, z, p3)

We can then exploit database constraints (such as primary keys) for semantic
optimization of the query.

Self-join elimination (semantic optimization)

PK: academic(acode, f , l, p) ∧ academic(acode, f ′, l′, p′)
→ (f = f ′) ∧ (l = l′) ∧ (p = p′)

qopt(iri2(a), y, z) ← academic(a, y, z, p1), p1 ∈ [1..8]

qopt(iri2(a), y, z) ← teaching(c, a), academic(a, y, z, p2)

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (38/38)

References References

References I

[1] Diego C. et al. “Tractable Reasoning and Efficient Query Answering in
Description Logics: The DL-Lite Family”. In: J. of Automated Reasoning
39.3 (2007), pp. 385–429.

[2] Mariano Rodriguez-Muro, Roman Kontchakov, and
Michael Zakharyaschev. “Ontology-Based Data Access: Ontop of
Databases”. In: Proc. of ISWC. Vol. 8218. LNCS. 2013, pp. 558–573. doi:
10.1007/978-3-642-41335-3_35.

[3] Roman Kontchakov and Michael Zakharyaschev. “An Introduction to
Description Logics and Query Rewriting”. In: RW 2014 Tutorial Lectures.
Vol. 8714. LNCS. Springer, 2014, pp. 195–244. doi:
10.1007/978-3-319-10587-1_5.

Diego Calvanese (unibz) Tutorial on OBDA ONTOBRAS – 1-3/10/2018 (39/38)

https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-319-10587-1_5

	Query rewriting wrt an OWL2QL ontology
	Mapping specification
	Saturation and optimization of the mapping
	Query reformulation and optimization
	Appendix
	References
	

	References

