
Managing Change in Graph-structured Data
Using Description Logics

Diego Calvanese

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

..

KRDB
1

Based on joint work with: S. Ahmetaj, M. Ortiz, M. Šimkus

28th International Workshop on Description Logics (DL 2016)

Cape Town, South Africa, April 22, 2016

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Motivations for this research

Comes from two important “trends” in data and information management:

1 Graph-structured data (GSD)

2 Dealing with dynamic systems, while properly taking into account data

What we are going to do here:

We argue that research in DLs has provided important contributions to
both settings.

We combine the two aspects in a novel setting based on DLs for the
management of evolving GSD.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (1/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Outline

1 Motivations

2 DLs for Graph-structured Data

3 Reasoning in Dynamic Systems

4 DLs for Evolving Graph Structured Data

5 Conclusions

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (2/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Outline

1 Motivations

2 DLs for Graph-structured Data

3 Reasoning in Dynamic Systems

4 DLs for Evolving Graph Structured Data

5 Conclusions

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (3/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Graph-structured data are everywhere

The data underlying many settings is inherently graph structured:

Web data

Social data

RDF data

Open linked data

XML data

States of a program (pointer structure)

We need formalisms, techniques, and tools to properly manage GSD:

modeling languages and constraints

query languages

efficient query answering

dealing with evolving GSD

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (3/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Graph-structured data is nothing new for us

A graph-structured database instance =
An edge and node labeled graph =

A finite relational structure with unary and binary relations only =
A finite DL interpretation

Example:

KRDB-RC

Dept

KRCourse EMCL Program

ODBS ModulepaulFacMember

offers offers

partOf requiresteaches

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (4/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Path constraints for GSD

The problem of specifying and reasoning over integrity constraints for GSD has
been addressed in the database community.

Path constraints [Abiteboul and Vianu 1999; Buneman, Fan, and Weinstein 2000;

Grahne and Thomo 2003]

Make use of regular expressions P , interpreted over GSD instances I:

P I = set of pairs of nodes connected by a path in I whose labels
spell a word in P .

Path constraints ϕ come in two forms: P` ⊆ Pr [Pp](P` ⊆ Pr)
Semantics:

(P` ⊆ Pr)I = {n | for all n′, if (n, n′) ∈ P I` then (n, n′) ∈ P Ir }

([Pp](P` ⊆ Pr))I = {n | for all n1, if (n, n1) ∈ P Ip , then for all n′,
if (n1, n

′) ∈ P I` then (n1, n
′) ∈ P Ir }

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (5/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reasoning with path constraints

Global semantics: I |= ϕ, if every node is in ϕI

Pointed semantics: I, a |= ϕ, if aI ∈ ϕI for some node a

Central problem: implication of path constraints

Given a set Γ of path constraints, and a path constraint ϕ (and a node a),
decide:

Unrestricted implication: Does Γ(, a) |= ϕ?
i.e., I(, a) |= ϕ for every I such that I(, a) |= Γ

Finite implication: Does Γ(, a) |=fin ϕ?
same as above, but over finite instances

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (6/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Implication of path constraint is undecidable

Finite and unrestricted implication of path constraints shown undecidable
by [Buneman, Fan, and Weinstein 2000; Grahne and Thomo 2003]:

for pointed semantics, and general constraints [Pp](P` ⊆ Pr)
for global semantics, even for prefix-empty, word constraints w` ⊆ wr

; Decidability requires both pointed semantics and empty prefixes.

Recently, undecidability has been tightened to rather simple (word) constraints,
of the forms [C., Ortiz, and Simkus 2016]:

[r](r1 ◦ r2 ⊆ r3) [r](r1 ⊆ r2 ◦ r3) (for both semantics)

or: r1 ◦ r2 ⊆ r3 r1 ⊆ r2 ◦ r3 (for global semantics)

where all r are role names (i.e., no ε, no inverse roles).

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (7/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Core ideas of the undecidability proof

Based on encoding Turing Machine computations.

Constraints Γ generate the TM computation grid.

Employs spy point technique known from DLs with nominals [Tobies 2001]:
Spy points are connected to all nodes of the domain, and are used to
enforce conditions on such nodes.

uin

fqini,

uout

uini

uaux uin

fqini,

uout

uini

u in
u

out

Creating the arc fqini, for the first tape position Connecting the new arc to the spy-points

uini ⊆ uaux ◦ uout

uaux ⊆ uin ◦ fqini,

uin ◦ fqini, ⊆ uin

[uin](fqini, ◦ uout ⊆ uout)

Conditions to correctly encode the TM computation are then enforced on
the grid points, making also use of “diagonals”.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (8/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Impact on inference over TGDs

The previous result can easily be rephrased in terms of tuple-generating
dependencies (TGDs):

r1 ◦ r2 ⊆ r3 is equivalent to r1(x, y), r2(y, z)→ r3(x, y)

r1 ⊆ r2 ◦ r3 is equivalent to r1(x, y)→ ∃z.r2(x, z), r3(z, y)

Undecidability of TGD entailment and of query answering under TGDs

(Finite) entailment of TGDs, and (finite) entailment of atomic queries under
TGDs are undecidable already for TGDs of the forms:

r1(x, y), r2(y, z)→ r3(x, y) r1(x, y)→ ∃z.r2(x, z), r3(z, y)

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (9/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Expressive DLs for constraints on GSD

Expressive DLs are well suited to express constraints on GSD:

powerful features for structuring the domain into classes (i.e., concepts)

complex conditions for typing binary relations (i.e., roles)

when resorting to expressive DLs with regular expressions over roles, we
also have a mechanism to navigate the graph

Let us consider one such DL: ALCOIbreg,

also known as ZOI.

ZOI Is closely related to PDL and (positive) regular XPath.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (10/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

The DL ZOI

The vocabulary of ZOI has three alphabets:

NC concept names unary predicates, node symbols
NR role names binary predicates, edge symbols
NI individuals constants, node names

Note: each nodes and edge can be labeled with a set of symbols.

Concepts, i.e., node formulas A ∈ NC, a ∈ NI

C,C ′ −→ A | {a} | ¬C | C u C ′ | C t C ′ | ∀P .C | ∃P .C

Roles, i.e., path formulas r ∈ NR, a, b ∈ NI, S: simple role

S, S′ −→ r | r− | {(a, b)} | S ∩ S′ | S ∪ S′ | S \ S′

P, P ′ −→ O | ε | id(C) | S | P ∪ P ′ | P ◦ P ′ | P ∗

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (11/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Formulas in ZOI

An atomic formula α of ZOI corresponds to a TBox or ABox assertion:

Inclusions between concepts and between simple roles:

C1 v C2 S1 v S2

Assertions on concepts and on simple roles

C(a) S(a, b)

A ZOI knowledge base is a boolean combination of atomic formulas:

K −→ α | K ∧ K′ | K ∨ K′ | ¬̇K

Semantics: standard one for DLs.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (12/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Example of constraints expressible in ZOI

Complex domain and range restrictions

∃offers.Course v Dept Department v ∀offers.(Program t Course)

∃requires.> v Program > v ∀requires.(∃partOf−
∗
.Course)

Conditions requiring navigation on the graph

Course v ∃taughtBy.FacMember

∃(partOf−
∗ ◦ requires).Program v ∃offers−.Department

Course u ∃requires−.UndergradProgram v
∃teaches−.(∃(memberOf ◦ partOf∗).Institute

)

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (13/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Expressing path constraints in ZOI

For empty prefixes and pointed semantics:

ϕ = P` ⊆ Pr ; Tϕ = {a} v ∀P`.∃inv(Pr).{a}

Lemma

Let Γ be set of constraints, ϕ a constraint, all prefix-empty, and a ∈ NI.
Then:

Γ |=(fin) ϕ iff (
∧
γ∈Γ

Tγ) ∧ ¬̇Tϕ is not (finitely) satisfiable

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (14/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Complexity of path-constraint implication

From satisfiability of ZOI in ExpTime , we get:

Theorem ([C., Ortiz, and Simkus 2016])

The implication of prefix-empty path constraints under pointed semantics,
is decidable in ExpTime

Previous known bound: N2ExpTime

What about finite implication?

Finite model reasoning for ZOI has not been considered so far.

However, it turns out that ZOI has the finite model property – Proof
needs ideas from PDL and from 2-variable fragment [C., Ortiz, and Simkus

2016].

Theorem ([C., Ortiz, and Simkus 2016])

The finite implication of prefix-empty path constraints under pointed
semantics, is decidable in ExpTime

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (15/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Other classes of path constraints

We cannot anymore make use of a nominal to encode the inclusion of the
left-tail in the right-tail

under global semantic, or

in the presence of a prefix.

To express other path constraints, we need to resort to an extension of ZOI:

We can capture all forms of path constraints in ZOI extended with role
difference for non-simple roles:

ϕ = [Pp](P` ⊆ Pr) ; Cϕ = ∀Pp.(∀(P` \ Pr).⊥)

Lemma

Let Γ be a set of constraints, ϕ a constraint, and a ∈ NI.
Then:

Γ, a |=(fin) ϕ iff
(d

γ∈Γ Cγ u ¬Cϕ
)
(a) is not (finitely) satisfiable,

Γ |=(fin) ϕ iff ¬̇
(d

γ∈Γ Cγ v Cϕ
)

is not (finitely) satisfiable

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (16/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Outline

1 Motivations

2 DLs for Graph-structured Data

3 Reasoning in Dynamic Systems

4 DLs for Evolving Graph Structured Data

5 Conclusions

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (17/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Dynamic systems taking into account data

Traditional approach to model dynamic systems: divide et impera of

static, data-related aspects

dynamic, process/interaction-related aspects

These two aspects traditionally treated separately by different communities:

Data management community:
data modeling, constraints, analysis deal (mostly) with static aspects

(Business) process management and verification community:
data is abstracted away

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (17/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reasoning about evolving data and knowledge

However, the KR community, and also the DL one, traditionally has paid
attention to the combination of static and dynamic aspects:

The combination in a single logical theory is well-known to be difficult
[Wolter and Zakharyaschev 1999; Gabbay et al. 2003]

Reasoning about actions in the Situation Calculus, cf. [Reiter 2001]

Automated planning, cf. [Ghallab, Nau, and Traverso 2004]

DL-based action languages [Baader, Lutz, et al. 2005; Baader and Zarriess

2013]

Data Centric Dynamic Systems [Bagheri Hariri, C., De Giacomo, et al. 2013]

Knowledge and Action Bases [Bagheri Hariri, C., Montali, et al. 2013]

Bounded Situation Calculus [De Giacomo, Lesperance, and Patrizi 2012]

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (18/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Relevant assumptions about the system behaviour

In the dynamic setting, there is a huge variety of different assumptions made,
that deeply affect the inference services of interest and their computational
properties:

1 System dynamics specified procedurally (e.g., through a finite state
machine) vs. declaratively (e.g., through a set of condition-action rules).

2 Simple vs. complex actions.

3 Actions operate on the single instances (i.e., models), as opposed to
adopting the functional approach [Levesque 1984].

4 Completely specified initial state vs. incomplete initial state.

5 Deterministic vs. non-deterministic effects of actions.

6 During system execution, new objects may enter the system or not.

7 The intentional knowledge about the system is fixed vs. changes.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (19/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

The setting we adopt here

In our setting, we specialize the above options as follows:

We assume to have available a finite set of parametric actions.

Actions might be complex, and allow for checking conditions.

Actions operate on the single instances.

We assume incomplete information in the initial state, i.e., the initial state
is not specified completely, and we are interested in reasoning over all
possible initial states.

Our actions are deterministic.

Our actions do not incorporate new objects in the system . . . but (when
relevant) we allow for arbitrarily extending the domain in the initial state.

The intentional knowledge might change, since it is affected in complex
ways by the extensional knowledge.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (20/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reasoning services of interest

We consider several classical reasoning services that are of relevance in this
setting:

Verification.

Existence of a plan.

Existence of a plan from a given precondition.

Conformant planning.

Variants of the previous three, where we impose a priori a finite bound on
the length of the plan.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (21/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reasoning services – Verification

Let K be a KB, I a finite interpretation for K, and α a (possibly complex)
action.

Then α(I) denotes the interpretation obtained by applying α to I.

Verification (V)

Given K and α, is α K-preserving?
I.e., do we have that, for every finite interpretation I, if I |= K then α(I) |= K?

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (22/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reasoning services – Plan existence

Let K be a KB, I = 〈∆I , ·I〉 a finite interpretation for K, and Act a finite set
of actions.

Plan

A finite sequence α1 ◦ · · · ◦ αn of actions in Act is a plan (of length n) for K
from I, if there exists a finite set ∆ such that (α1 ◦ · · · ◦ αn)(I ′) |= K, where
I ′ = 〈∆I ∪∆, ·I〉.

Note: ∆ allows for extending the interpretation domain, which might account
for new objects needed in the plan.

Planning (P) and Bounded planning (Pb)

Given Act, I, and K, does there exist a plan for K from I.

Given Act, I, K, and a bound k, does there exist a plan for K from I
where |∆| is at most k.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (23/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reasoning services – Planning with incompleteness

In this variant of planning, we are not given the initial interpretation, but want
to check existence of a plan from some interpretation satisfying a given
precondition.

Planning with incompleteness (PI) and
Bounded planning with infcompleteness (PIb)

Given Act, I, K, and Kpre, does there exist a plan for K from I, for some
finite I such that I |= Kpre.
Given Act, I, K, Kpre, and a bound `, does there exist a plan for K from
I of length at most `, for some finite I such that I |= Kpre.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (24/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Outline

1 Motivations

2 DLs for Graph-structured Data

3 Reasoning in Dynamic Systems

4 DLs for Evolving Graph Structured Data

5 Conclusions

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (25/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Update language for GSD

We consider an update language for GSD that allows for various types of
actions:

Adding the result of a concept/role to an atomic concept/role, resp.

Removing the result of a concept/role from an atomic concept/role, resp.

Conditional execution / composition / parameters.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (25/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Update Language for GSD – Example

Example

A complex action with input parameters x, y, z that transfers an employee x
from a project y to the project z:

α =

Condition︷ ︸︸ ︷
(Employee(x) ∧ Project(y) ∧ Project(z) ∧ worksFor)(x, y) ?

worksFor 	 {(x, y)} · worksFor ⊕ {(x, z)} : ε

α checks if x is an Employee, y and z are Projects, and x worksFor y.

If yes, it removes the worksFor link between x and y, and creates a
worksFor link between x and z.

If no (i.e., any of the checks fails), it does nothing.

Recall: We use α(I) to denote the result of applying α to I.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (26/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Result of conditional action – Example

Before being executed, the action in grounded.

Example of execution of a grounded action:

Given:

α = (Employee(e) ∧ Project(p1) ∧ Project(p2) ∧ worksFor(e, p1)) ?
worksFor 	 {(e, p1)} · worksFor ⊕ {(e, p2)} : ε

I = { Employee(e), worksFor(e, p1),
Project(p1), Project(p2) }

Result:
α(I) = { Employee(e), worksFor(e, p2),

Project(p1), Project(p2) }

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (27/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Solving the verification problem

The verification problem can be reduced to finite (un)satisfiability of a ZOI
KB using a form of regression.

Let KL←L′ be the KB obtained from K by replacing each occurrence of L by L′.

Transformation TR(K, α) of a KB K via an action α is defined inductively:

TR(K, ε) = K
TR(K, (A⊕ C) · α) = (TR(K, α))A←AtC

TR(K, (A	 C) · α) = (TR(K, α))A←Au¬C

TR(K, (r ⊕ P) · α) = (TR(K, α))r←r∪P

TR(K, (r 	 P) · α) = (TR(K, α))r←r\P

TR(K, (K1?α1 : α2)) = (¬̇K1 ∨ TR(K, α1)) ∧ (K1 ∨ TR(K, α2))

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (28/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Transforming a KB via an action – Example

Example

K1 = (Project v ActiveProject t ConcludedProject) ∧
(Employee v ProjectEmployee t PermanentEmployee) ∧

(∃worksFor.Project v ProjectEmployee)

α1 = ActiveProject	 {optique} ·
ConcludedProject⊕ {optique} ·
ProjectEmployee	 ∃worksFor.{optique}

TR(K1, α1) =
(Project v (ActiveProject u ¬{optique})

t (ConcludedProject t {optique})) ∧
(Employee v (ProjectEmployee u ¬∃worksFor.{optique})

t PermanentEmployee) ∧
(∃worksFor.Project v (ProjectEmployee u ¬∃worksFor.{optique}))

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (29/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Reducing verification to unsatisfiability

For a ground action α and a KB K, the transformation TR(K, α) correctly
captures the meaning of α.

Lemma

For every ground action α and interpretation I:

α(I) |= K iff I |= TR(K, α).

Theorem

For every action α and KB K

α is K-preserving
iff

K ∧ ¬̇TR(K, αg) is finitely unsatisfiable

where αg is obtained from α by replacing each variable with a fresh individual
name not occurring in α and K.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (30/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Deciding verification

In order to obtain from the previous result decidability of verification, we need
to ensure that TR(K, αg) is expressible in ZOI.

Key issue: form of basic actions: (A⊕ C), (A	 C), (r ⊕ P), (r 	 P)

We can allow for arbitrary concepts C to be added and removed via
(A⊕ C) and (A	 C).

Instead, in basic actions (r ⊕ P) and (r 	 P), the role P must be simple:
role name, inverse role name, {(a, b)}, and their boolean combination, but
no concatenation or transitive closure.

Complex actions containing these restricted basic actions are called role-simple.

Examples of role-simple actions:

friendOf 	 (hasAunt ∩ sendsCandyCrushInv−)

friendOf 	 (supports|{Trump})

preferredAIColl⊕ ∃
(
collabWith|(¬∃projWith.{Darpa})

)∗
.ExpertAI

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (31/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Complexity of verification

Theorem

For ZOI KBs and role-simple actions, verification is ExpTime-complete.

The lower bound follows from the fact that a KB K is finitely satisfiable iff
(A′ ⊕{o}) is not (K∧ (Av¬A′)∧ (o : A))-preserving, where A, A′, and o
are fresh.

For the upper bound:

Observe that the KB TR(K, α) might be exponential in α, since conditional
actions lead to duplication of K.
However, the resulting KB can be put in disjunctive normal form, with
exponentially many conjunctions of atoms, each of polynomial size.
Hence, once can run an exponential number of checks on polynomial-size
KBs, each of which takes at most exponential time.
The resulting algorithm runs in single exponential time.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (32/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Complexity of verification

When actions are not role-simple, i.e., contain role concatenation, or transitive
closure, verification becomes undecidable.

Theorem

Deciding whether α is K-preserving is undecidable, even when

K consists of a single fact r(a, b), and

α is just a sequence of basic actions of the form

(r ⊕ P) (r 	 P)

with P a sequence of one or two symbols.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (33/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

A restricted setting based on DL-Lite

We restrict the setting so as to simplify verification.

A DL-Lite+
R KB is a KB satisfying the following conditions:

Concept and role inclusions and disjointness are those allowed in standard
DL-LiteR.

In concept assertions C(a), the concept C might be a boolean combination
of concept names A, unqualified existentials ∃r, and nominals {a′}.
¬̇ may occur only in front of ABox assertions (while ∧ and ∨ may be
applied freely on formulae).

Localized actions

A localized action is one where in K?α1:α2, the KB K is a boolean combination
of ABox assertions (hence, it may not contain concept or role inclusions).

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (34/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Verification for DL-Lite+
R KBs and localized actions

Theorem

Verification for DL-Lite+
R KBs and localized actions can be reduced in linear

time to finite unsatisfiability of DL-Lite+
R KBs.

Intuition:

1 Construct as before K′ = K ∧ ¬̇TR(K, α∗).

2 Push ¬̇ inside so that it occurs in front of inclusions and assertions only.

3 Replace each ¬̇(B1 vB2) by o : B1 u ¬B2, where o is fresh,
and each ¬̇(r1 v r2) by (o, o′) : r1 \ r2, where o, o′ are fresh.

We obtain a DL-Lite+
R KB that we can check for unsatisfiability.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (35/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Complexity of verification in the DL-Lite setting

Theorem

Finite satisfiability of DL-Lite+
R KBs is NP-complete.

NP-hardness is immediate.

Membership in NP: we define a non-deterministic polynomial time
rewriting procedure that transforms a DL-Lite+

R KB K into a DL-LiteR KB
K′, s.t., K is satisfiable iff there exists a K′ that is satisfiable.

Theorem

Verification for DL-Lite+
R KBs and localized actions is coNP-complete.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (36/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Intractability in a very restricted setting

coNP-hardness does not depend on intractability of DL-Lite+
R!

Theorem

Verification is coNP-hard already when:

KBs consist of a conjunction of concept disjointness assertions:
(A0 v ¬A′0) ∧ · · · ∧ (An v ¬A′n), and

actions are localized ground sequences of basic actions of the forms
(A⊕ C) and (A	 C).

The proof is by a reduction of non-3-colorability.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (37/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Complexity of planning and conformant planning

Planning (P) and Planning with incompleteness (CI)

1 Given Act, I, and K, does there exist a plan for K from I.

2 Given Act, I, K, and Kpre, does there exist a plan for K from I, for some
finite I such that I |= Kpre.

Undecidable in general, even for DL-Lite+
R KBs and simple actions.

(1) is PSpace-complete, when a bound on the number of fresh values is
given.

(2) is ExpTime-complete, when a bound on the lenght of the plan is
given. It is NP-complete for DL-Lite+

R.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (38/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Outline

1 Motivations

2 DLs for Graph-structured Data

3 Reasoning in Dynamic Systems

4 DLs for Evolving Graph Structured Data

5 Conclusions

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (39/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Summing up

Main observations

By exploiting DL techniques and tools, one can obtain strong decidability
and complexity results for reasoning about the evolving GSD under
constraints.

This is an indication that the capabilities of DLs in managing the structure
of data can be extended also towards managing the dynamics of data.

Further work

Investigate further useful fragments with lower complexity.

Can we extend the update language while preserving decidability?

while loops
richer queries than concepts and roles

Can we consider other forms of constraints

keys
identification constraints

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (39/39)

Motivations DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Conclusions

Thank you for your attention!

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (40/39)

References References

References I

[1] Serge Abiteboul and Victor Vianu. “Regular Path Queries with
Constraints”. In: J. of Computer and System Sciences 58.3 (1999),
pp. 428–452.

[2] Peter Buneman, Wenfei Fan, and Scott Weinstein. “Path Constraints in
Semistructured Databases”. In: J. of Computer and System Sciences
61.2 (2000), pp. 146–193. issn: 0022-0000. doi:
10.1006/jcss.2000.1710. url: http://www.sciencedirect.com/
science/article/pii/S0022000000917100.

[3] Gösta Grahne and Alex Thomo. “Query Containment and Rewriting using
Views for Regular Path Queries under Constraints”. In: Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS). 2003, pp. 111–122.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (41/39)

https://doi.org/10.1006/jcss.2000.1710
http://www.sciencedirect.com/science/article/pii/S0022000000917100
http://www.sciencedirect.com/science/article/pii/S0022000000917100

References References

References II

[4] Diego C., Magdalena Ortiz, and Mantas Simkus. “Verification of Evolving
Graph-structured Data under Expressive Path Constraints”. In: Proc. of
the 19th Int. Conf. on Database Theory (ICDT). Vol. 48. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, 15:1–15:19.

[5] Stephan Tobies. “Complexity Results and Practical Algorithms for Logics
in Knowledge Representation”. PhD thesis. LuFG Theoretical Computer
Science, RWTH-Aachen, Germany, 2001.

[6] Frank Wolter and Michael Zakharyaschev. “Temporalizing Description
Logic”. In: Frontiers of Combining Systems. Ed. by D. Gabbay and
M. de Rijke. Studies Press/Wiley, 1999, pp. 379–402.

[7] Dov Gabbay et al. Many-dimensional Modal Logics: Theory and
Applications. Elsevier Science Publishers, 2003.

[8] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. The MIT Press, 2001.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (42/39)

References References

References III

[9] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning –
Theory and Practice. Elsevier, 2004. isbn: 978-1-55860-856-6.

[10] Franz Baader, Carsten Lutz, et al. “Integrating Description Logics and
Action Formalisms: First Results”. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI). 2005, pp. 572–577.

[11] Franz Baader and Benjamin Zarriess. “Verification of Golog Programs
over Description Logic Actions”. In: Proc. of the 9th Int. Symp. on
Frontiers of Combining Systems (FroCoS). Vol. 8152. Lecture Notes in
Computer Science. Springer, 2013, pp. 181–196. isbn:
978-3-642-40884-7. doi: 10.1007/978-3-642-40885-4_12. url:
http://dx.doi.org/10.1007/978-3-642-40885-4_12.

[12] Babak Bagheri Hariri, Diego C., Giuseppe De Giacomo, et al.
“Verification of Relational Data-Centric Dynamic Systems with External
Services”. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGAI Symp. on
Principles of Database Systems (PODS). 2013, pp. 163–174.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (43/39)

https://doi.org/10.1007/978-3-642-40885-4_12
http://dx.doi.org/10.1007/978-3-642-40885-4_12

References References

References IV

[13] Babak Bagheri Hariri, Diego C., Marco Montali, et al. “Description Logic
Knowledge and Action Bases”. In: J. of Artificial Intelligence Research
46 (2013), pp. 651–686. issn: 1076-9757. doi: 10.1613/jair.3826.

[14] Giuseppe De Giacomo, Yves Lesperance, and Fabio Patrizi. “Bounded
Situation Calculus Action Theories and Decidable Verification”. In: Proc.
of the 13th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR). 2012, pp. 467–477.

[15] Hector J. Levesque. “Foundations of a Functional Approach to Knowledge
Representation”. In: Artificial Intelligence 23 (1984), pp. 155–212.

Diego Calvanese (FUB) Managing Change in GSD Using DLs DL 2016, Cape Town – 22/4/2016 (44/39)

https://doi.org/10.1613/jair.3826

	Motivations
	DLs for Graph-structured Data
	Reasoning in Dynamic Systems
	DLs for Evolving Graph Structured Data
	Conclusions
	Appendix
	References

