
Reasoning over Evolving Graph-structured Data
Under Constraints

Diego Calvanese

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

..

KRDB
1

Based on joint work with: S. Ahmetaj, M. Ortiz, M. Šimkus

Alberto Mendelzon International Workshop on
Foundations of Data Management (AMW 2016)

Panama City, Panama, June 6–10, 2016

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Outline

1 Description Logics for Graph-structured Data

2 Reasoning in Dynamic Systems

3 Description Logics for Evolving Graph Structured Data

4 Planning

5 Conclusions

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (1/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Motivations for this research

Comes from two important “trends” in data and information management:

1 Graph databases [Mendelzon and Wood 1995], aka
graph-structured data (GSD).

2 Dealing with dynamic systems, while properly taking into account data.

What we are going to do here:

We argue that research in knowledge representation has provided
important contributions to both settings.

We combine the two aspects in a novel setting relying on constraints
expressed in Description Logics (DLs) for managing evolving GSD.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (2/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Outline

1 Description Logics for Graph-structured Data

2 Reasoning in Dynamic Systems

3 Description Logics for Evolving Graph Structured Data

4 Planning

5 Conclusions

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (3/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Graph-structured data are everywhere

The data underlying many settings is inherently graph structured:

Web data

Social data

RDF data

Open linked data

XML data

Pointer structure in a program

We need formalisms, techniques, and tools to properly manage GSD:

modeling languages and constraints

query languages

efficient query answering

dealing with evolving GSD

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (3/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Graph-structured data is not really new

A graph-structured database instance =
An edge and node labeled graph =

A finite relational structure with unary and binary relations only =
A finite Description Logic interpretation

Example:

KRDB-RC

Dept

KRCourse EMCL Program

ODBS ModulepaulFacMember

offers offers

partOf requiresteaches

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (4/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Path constraints for GSD

The problem of specifying and reasoning over integrity constraints for GSD has
been addressed in the database community.

Path constraints [Abiteboul and Vianu 1999; Buneman, Fan, and Weinstein 2000;

Grahne and Thomo 2003]

Make use of regular expressions P , interpreted over GSD instances I:

JP KI = set of pairs of nodes connected in I by a path
whose sequence of labels is a word in the language of P .

Path constraints ϕ come in two forms: P` ⊆ Pr [Pp](P` ⊆ Pr)
Semantics: set of nodes satisfying the constraint

JP` ⊆ PrKI = {n | if (n, n′) ∈ JP`KI then (n, n′) ∈ JPrKI , for all n′}

J[Pp](P` ⊆ Pr)KI = {n | for all n1 s.t. (n, n1) ∈ JPpKI ,
if (n1, n

′) ∈ JP`KI then (n1, n
′) ∈ JPrKI , for all n′}

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (5/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning with path constraints

Global semantics: I |= ϕ, if every node is in JϕKI .

Pointed semantics: I, a |= ϕ, if a ∈ JϕKI , where a is some given node.

Central problem: implication of path constraints

Given a set Γ of path constraints, and a path constraint ϕ decide:

Unrestricted implication: Does Γ |= ϕ?
I.e., for every I, whenever I |= Γ then also I |= ϕ.

Finite implication: Does Γ |=fin ϕ?
Same as above, but over finite instances.

Similarly for unrestricted and finite implication under pointed semantics.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (6/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Implication of path constraint is undecidable

Finite and unrestricted implication of path constraints was shown undecidable
[Buneman, Fan, and Weinstein 2000; Grahne and Thomo 2003]:

for pointed semantics, and general constraints [Pp](P` ⊆ Pr)
for global semantics, even for prefix-empty, word constraints w` ⊆ wr

; Decidability requires both pointed semantics and empty prefixes.

Recently, undecidability has been tightened to rather simple (word) constraints,
of the forms [C., Ortiz, and Simkus 2016]:

[r](r1 ◦ r2 ⊆ r3) [r](r1 ⊆ r2 ◦ r3) (for both semantics)

or: r1 ◦ r2 ⊆ r3 r1 ⊆ r2 ◦ r3 (for global semantics)

where all r are simple labels (i.e., no ε, no inverse labels).

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (7/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Impact on inference over TGDs

The previous result can easily be rephrased in terms of tuple-generating
dependencies (TGDs):

r1 ◦ r2 ⊆ r3 is equivalent to r1(x, y), r2(y, z)→ r3(x, y)

r1 ⊆ r2 ◦ r3 is equivalent to r1(x, y)→ ∃z.r2(x, z), r3(z, y)

Undecidability of TGD entailment and of query answering under TGDs

(Finite) entailment of TGDs, and (finite) entailment of atomic queries under
TGDs are undecidable already for TGDs of the forms:

r1(x, y), r2(y, z)→ r3(x, y) r1(x, y)→ ∃z.r2(x, z), r3(z, y)

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (8/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Expressive DLs for constraints on GSD

Expressive DLs are well suited to express constraints on GSD:

powerful features for structuring the domain into classes (i.e., concepts)

complex conditions for typing binary relations (i.e., roles)

when resorting to expressive DLs with regular expressions over roles, we
also have a mechanism to navigate the graph

Let us consider one such DL: ALCOIbreg,

also known as ZOI.

ZOI Is closely related to (positive) regular XPath with nominals [Cate and

Segoufin 2008; C., De Giacomo, Lenzerini, et al. 2009] and Propositional Dynamic
Logic [Fischer and Ladner 1979].

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (9/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

The DL ZOI

The vocabulary of ZOI has three alphabets:

NC: concept names, or node symbols – denote unary predicates
NR: role names, or edge symbols – denote binary predicates
NI: individuals, or node names – denote constants

Note: each node and edge can be labeled with a set of symbols.

Concepts, i.e., node formulas A ∈ NC, a ∈ NI

C,C ′ −→ A | {a} | ¬C | C u C ′ | C t C ′ | ∀P .C | ∃P .C

Roles, i.e., path formulas r ∈ NR, a, b ∈ NI, S: simple role

S, S′ −→ r | r− | {(a, b)} | S ∩ S′ | S ∪ S′ | S \ S′

P, P ′ −→ O | ε | id(C) | S | P ∪ P ′ | P ◦ P ′ | P ∗

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (10/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Formulas in ZOI

An atomic formula α of ZOI corresponds to a TBox or ABox assertion:

Inclusions between concepts and between simple roles:

C1 v C2 S1 v S2

Assertions on concepts and on simple roles

C(a) S(a, b)

A ZOI knowledge base is a boolean combination of atomic formulas:

K −→ α | K ∧ K′ | K ∨ K′ | ¬̇K

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (11/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Semantics of ZOI
We have the standard DL semantics, based on (finite) FO interpretations.

Roles (i.e., paths) are interpreted as binary relations:
Regular expressions are analogous to those in path constraints.
Inverse role r− denotes the inverse of the binary relation denoted by r.
Also: εI = {(o, o) | o ∈ ∆I}

OI = ∆I ×∆I

{(a, b)}I = {(aI , bI)}
Concepts are interpreted as unary relations (i.e., sets of objects):

The boolean operators u, t, ¬ are as usual.
Nominal {a} denotes a singleton, i.e., {a}I = {aI}.
∃P .C denotes the starting points of a P -path ending in (an instance of) C.
∀P .C denotes the objects for which all P -paths starting there end in C.

Inclusions are interpreted as implications (i.e., as set inclusion):
I satisfies C1 v C2 if CI1 ⊆ CI2 .
Analogously for roles.

Assertions C(a) and S(a, b) are analogous to facts, but can make use of
complex concept and role expressions.

Booleans in a KB have the usual meaning.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (12/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Example of constraints expressible in ZOI

Complex domain and range restrictions

∃offers.Course v Dept Department v ∀offers.(Program t Course)

∃requires.> v Program > v ∀requires.(∃partOf−
∗
.Course)

Conditions requiring navigation on the graph

Course v ∃taughtBy.FacMember

∃(partOf−
∗ ◦ requires).Program v ∃offers−.Department

Course u ∃requires−.UndergradProgram v
∃teaches−.(∃(memberOf ◦ partOf∗).Institute

)

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (13/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Expressing path constraints in ZOI

We can encode path constraints in ZOI, for empty prefixes under
pointed semantics (for individual a):

ϕ = P` ⊆ Pr ; T aϕ = {a} v ∀P`.∃inv(Pr).{a}

(where inv(Pr) denotes the role representing the inverse of path Pr)

Lemma

Let Γ be a set of prefix-empty constraints, ϕ a prefix-empty constraint, and a
an individual. Then:

Γ, a |=(fin) ϕ iff (
∧
γ∈Γ

T aγ) ∧ ¬̇T aϕ is not (finitely) satisfiable

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (14/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Complexity of path-constraint implication

Satisfiability of ZOI is ExpTime-complete. From this we get:

Theorem ([C., Ortiz, and Simkus 2016])

Implication of prefix-empty path constraints under pointed semantics is
decidable in ExpTime

Previous known bound: N2ExpTime

What about finite implication?

Finite model reasoning for ZOI has not been considered so far.

However, it turns out that ZOI has the finite model property.
Proof needs ideas from PDL and from 2-variable fragment.

Theorem ([C., Ortiz, and Simkus 2016])

Finite implication of prefix-empty path constraints under pointed semantics
is decidable in ExpTime

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (15/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Other classes of path constraints

For empty prefixes under pointed semantics, we have used a nominal to encode
the inclusion of the left-tail in the right-tail. This does not work

under global semantic, or

in the presence of a prefix.

To express other path constraints, we need to extend the logic:

We can capture all forms of path constraints in ZOI extended with role
difference for arbitrary (non-simple) roles:

ϕ = [Pp](P` ⊆ Pr) ; Cϕ = ∀Pp.(∀(P` \ Pr).⊥)

Lemma

Let Γ be a set of constraints, ϕ a constraint, and a an individual. Then:

Γ, a |=(fin) ϕ iff
(d

γ∈Γ Cγ u ¬Cϕ
)
(a) is not (finitely) satisfiable,

Γ |=(fin) ϕ iff ¬̇
(d

γ∈Γ Cγ v Cϕ
)

is not (finitely) satisfiable

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (16/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Outline

1 Description Logics for Graph-structured Data

2 Reasoning in Dynamic Systems

3 Description Logics for Evolving Graph Structured Data

4 Planning

5 Conclusions

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (17/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Dynamic systems taking into account data

Traditional approach to model dynamic systems: divide et impera of

static, data-related aspects

dynamic, process/interaction-related aspects

These two aspects traditionally treated separately by different communities:

Data management community:
data modeling, constraints, analysis deal mostly with static aspects

(Business) process management and verification community:
data is abstracted away

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (17/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning about evolving data and knowledge

However, the knowledge representation community traditionally has paid
attention to the combination of static and dynamic aspects:

The combination in a single logical theory is well-known to be difficult
[Wolter and Zakharyaschev 1999; Gabbay et al. 2003]

Reasoning about actions in the Situation Calculus, cf. [Reiter 2001]

Automated planning, cf. [Ghallab, Nau, and Traverso 2004]

DL-based action languages [Baader, Lutz, et al. 2005; Baader and Zarriess

2013]

Knowledge and Action Bases [Bagheri Hariri, C., Montali, et al. 2013]

Bounded Situation Calculus [De Giacomo, Lesperance, and Patrizi 2012; C.,

De Giacomo, Montali, et al. 2016]

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (18/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning about evolving data

Actually, there is quite some work also coming from the database community:

Dynamic relational model [Vianu 1983, 1984]

Transactional database schemas [Abiteboul and Vianu 1985, 1986, 1987, 1988]

Temporal deductive databases [Snodgrass 1984; Chomicki and Imielinski 1988]

Relational and ASM transducers [Abiteboul, Vianu, et al. 1998; Spielmann

2000]

Data-driven web systems [Deutsch, Sui, and Vianu 2004]

Business Artifacts [Nigam and Caswell 2003; Bhattacharya et al. 2007]

Active XML [Abiteboul, Benjelloun, and Milo 2004]

Artifact systems with arithmetic [Damaggio, Deutsch, and Vianu 2012]

Data Centric Dynamic Systems [Bagheri Hariri, C., De Giacomo, et al. 2013]

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (19/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Relevant assumptions about the system behaviour

In the dynamic setting, there is a huge variety of different assumptions made,
that deeply affect the inference services of interest and their computational
properties:

1 System dynamics specified procedurally (e.g., through a finite state
machine) vs. declaratively (e.g., through a set of condition-action rules).

2 Simple vs. complex actions.

3 Actions operate on the single instances (i.e., models), as opposed to
adopting the functional approach [Levesque 1984].

4 Completely specified initial state vs. incomplete initial state.

5 Deterministic vs. non-deterministic effects of actions.

6 During system execution, new objects may enter the system or not.

7 The intensional knowledge about the system is fixed vs. changes.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (20/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

The setting we adopt here

In our setting, we specialize the above options as follows:

1 We assume to have available a finite set of parametric actions.

2 Actions might be complex, and allow for checking conditions.

3 Actions operate on the single instances.

4 We assume incomplete information in the initial state, i.e., we are
interested in reasoning over all possible initial states compliant with the
incomplete specification.

5 Our actions are deterministic.

6 Our actions do not incorporate new objects in the system . . . but (when
relevant) we allow for arbitrarily extending the domain in the initial state.

7 The intensional knowledge might change, since it is affected in complex
ways by the extensional knowledge.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (21/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning services of interest

We consider several classical reasoning services that are of relevance in this
setting:

Verification.

Variants of planning:

Existence of a plan.
Existence of a plan from a given precondition.
Conformant planning.

Variants of bounded planning, i.e., we impose a priori finites bounds on the
length or domain of the plan.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (22/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning services – Verification

Applying an action to a finite DB instance

Let K be a KB, I a finite DB instance for K, and α a (possibly complex) action.

Then α(I) denotes the DB instance obtained by applying α to I.

Verification (V) problem

Given KB K and action α, is α K-preserving?

I.e., is it the case that, for every finite DB instance I, if I |= K then α(I) |= K?

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (23/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Outline

1 Description Logics for Graph-structured Data

2 Reasoning in Dynamic Systems

3 Description Logics for Evolving Graph Structured Data

4 Planning

5 Conclusions

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (24/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Update language for GSD

To make the framework concrete, we consider an update language for GSD that
allows for various types of actions:

Adding the result of a concept to an atomic concept.

Adding the result of a role to an atomic role.

Removing the result of a concept from an atomic concept.

Removing the result of a role from an atomic role.

Conditional execution / composition / parameters.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (24/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Update Language for GSD – Example

Example

A complex action with input parameters x, y, z that transfers an employee x
from a project y to the project z:

α =

Condition︷ ︸︸ ︷
(Employee(x) ∧ Project(y) ∧ Project(z) ∧ worksFor(x, y)) ?

worksFor 	 {(x, y)} · worksFor ⊕ {(x, z)} : ε

α checks if x is an Employee,
y and z are Projects, and
x worksFor y.

If yes, it removes the worksFor link between x and y, and
creates a worksFor link between x and z.

If no (i.e., any of the checks in the conjunction fails), it does nothing.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (25/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Result of conditional action – Example

Before being executed, the action in grounded.

Example of execution of a grounded action:

Given:

α = (Employee(e) ∧ Project(p1) ∧ Project(p2) ∧ worksFor(e, p1)) ?
worksFor 	 {(e, p1)} · worksFor ⊕ {(e, p2)} : ε

I = { Employee(e), worksFor(e, p1),
Project(p1), Project(p2) }

Result:
α(I) = { Employee(e), worksFor(e, p2),

Project(p1), Project(p2) }

Recall: We use α(I) to denote the result of applying α to I.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (26/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Solving the verification problem

The verification problem can be reduced to finite (un)satisfiability of a ZOI
KB using a form of regression.

Let KL←L′ be the KB obtained from K by replacing each occurrence of L by L′.

Transformation TR(K, α) of a KB K via an action α is defined inductively:

TR(K, ε) = K
TR(K, (A⊕ C) · α) = (TR(K, α))A←AtC

TR(K, (A	 C) · α) = (TR(K, α))A←Au¬C

TR(K, (r ⊕ P) · α) = (TR(K, α))r←r∪P

TR(K, (r 	 P) · α) = (TR(K, α))r←r\P

TR(K, (K1?α1 : α2)) = (¬̇K1 ∨ TR(K, α1)) ∧ (K1 ∨ TR(K, α2))

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (27/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Transforming a KB via an action – Example

Example

K1 = (Project v ActiveProject t ConcludedProject) ∧
(Employee v ProjectEmployee t PermanentEmployee) ∧

(∃worksFor.Project v ProjectEmployee)

α1 = ActiveProject	 {optique} ·
ConcludedProject⊕ {optique} ·
ProjectEmployee	 ∃worksFor.{optique}

TR(K1, α1) =
(Project v (ActiveProject u ¬{optique})

t (ConcludedProject t {optique})) ∧
(Employee v (ProjectEmployee u ¬∃worksFor.{optique})

t PermanentEmployee) ∧
(∃worksFor.Project v (ProjectEmployee u ¬∃worksFor.{optique}))

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (28/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reducing verification to unsatisfiability

For a ground action α and a KB K, the transformation TR(K, α) correctly
captures the meaning of α.

Lemma

For every ground action α and DB instance I:

α(I) |= K iff I |= TR(K, α).

Theorem

For every action α and KB K

α is K-preserving
iff

K ∧ ¬̇TR(K, αg) is finitely unsatisfiable

where αg is obtained from α by replacing each variable with a fresh individual
name not occurring in α and K.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (29/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Deciding verification

In order to obtain from the previous result decidability of verification, we need
to ensure that TR(K, αg) is expressible in ZOI.

Key issue: form of basic actions: (A⊕ C), (A	 C), (r ⊕ P), (r 	 P)

We can allow for arbitrary concepts C to be added and removed via
(A⊕ C) and (A	 C).

Instead, in (r ⊕ P) and (r 	 P), the role P must be simple: i.e.,
a role name, inverse role name, {(a, b)}, and their boolean combination,
but no concatenation or transitive closure.

Complex actions containing these restricted basic actions are called role-simple.

Examples of role-simple actions:

friendOf 	 (hasAunt ∩ sendsCandyCrushInvitation−)

friendOf 	 (supports�{Berlusconi})

preferredAICollaborators⊕ ∃
(
collaboratesWith�¬∃projWith.{Darpa}

)∗
.ExpertAI

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (30/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Complexity of verification

Theorem

For ZOI KBs and role-simple actions, verification is ExpTime-complete.

The lower bound follows from the fact that a KB K is finitely satisfiable iff
(A′ ⊕ {o}) is not (K∧ (Av¬A′)∧ (A(o)))-preserving, where A, A′, and o
are fresh.

For the upper bound:

Observe that the KB TR(K, α) might be exponential in α, since conditional
actions lead to duplication of K.
However, the resulting KB can be put in disjunctive normal form, with
exponentially many conjunctions of atoms, each of polynomial size.
Hence, once can run an exponential number of checks on polynomial-size
KBs, each of which takes at most exponential time.
The resulting algorithm runs in single exponential time.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (31/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Complexity of verification

When actions are not role-simple, i.e., contain role concatenation, or transitive
closure, verification becomes undecidable.

Theorem

Deciding whether α is K-preserving is undecidable, even when

K consists of a single fact r(a, b), and

α is just a sequence of basic actions of the form

(r ⊕ P) (r 	 P)

with P a sequence of one or two symbols.

The results relies on the undecidability of implication of path constraints of the
simple form seen before.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (32/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Lightweight DLs

To simplify verification, we consider a restricted setting based on lightweight
DLs of the DL-Lite family.

DL-Lite is a family of DLs introduced for the purpose of accessing data
through ontologies.

This family provides a good foundation for ontology-based data access.

Standard DL-LiteR KBs

Roles P are names r or inverse roles r−.

Concepts B are: names A, or
the projection ∃P of role P on the first component, or
the projection ∃P− of role P on the second component.

In a KB, we can state: inclusions between concepts and roles,
disjointness between concepts and roles
ABox assertions B(a) and P (a, b).

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (33/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

A restricted setting based on DL-Lite

We consider a generalization of DL-LiteR KBs:

A DL-Lite+
R KB is a KB satisfying the following conditions:

Concept and role inclusions and disjointness are as in standard DL-LiteR.

In concept assertions C(a), the concept C might be a boolean
combination of concept names A, projections ∃P , and nominals {a′}.
¬̇ may occur only in front of ABox assertions (while ∧ and ∨ may be
applied freely on KBs).

We need to restrict also the form of actions:

Localized actions

A localized action is one where in a conditional action K?α1:α2, the KB K is
a boolean combination of ABox assertions (hence, it may not contain concept
or role inclusions or disjointness).

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (34/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Verification for DL-Lite+
R KBs and localized actions

Theorem

Verification for DL-Lite+
R KBs and localized actions can be reduced in linear

time to finite unsatisfiability of DL-Lite+
R KBs.

Intuition:

1 Construct as before K′ = K ∧ ¬̇TR(K, αg).

2 Push ¬̇ inside so that it occurs in front of inclusions and assertions only.

3 Replace each ¬̇(B1 vB2) by (B1 u ¬B2)(o), where o is fresh,
and each ¬̇(r1 v r2) by (r1 \ r2)(o, o′), where o, o′ are fresh.

We obtain a DL-Lite+
R KB that we can check for unsatisfiability.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (35/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Complexity of verification in the DL-Lite setting

Theorem

Finite satisfiability of DL-Lite+
R KBs is NP-complete.

NP-hardness is immediate.

Membership in NP: we define a non-deterministic polynomial time
rewriting procedure that transforms a DL-Lite+

R KB K into a DL-LiteR KB
K′, s.t., K is satisfiable iff there exists a K′ that is satisfiable.

Theorem

Verification for DL-Lite+
R KBs and localized actions is coNP-complete.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (36/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Intractability in a very restricted setting

coNP-hardness does not depend on intractability of DL-Lite+
R!

Theorem

Verification is coNP-hard already when:

KBs consist of a conjunction of concept disjointness assertions:
(A0 v ¬A′0) ∧ · · · ∧ (An v ¬A′n), and

actions are localized ground sequences of basic actions of the forms
(A⊕ C) and (A	 C).

The proof is by a reduction of non-3-colorability.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (37/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Outline

1 Description Logics for Graph-structured Data

2 Reasoning in Dynamic Systems

3 Description Logics for Evolving Graph Structured Data

4 Planning

5 Conclusions

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (38/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning services – Planning

We are given:
a KB K,
a finite DB instance I for K, and
a finite set Act of actions.

Plan

A finite sequence α1 ◦ · · · ◦ αn of actions in Act is a plan (of length n) for K
from I, if there exists a finite set ∆ of objects such that

(α1 ◦ · · · ◦ αn)(I ′) |= K,
where I ′ is identical to I, except that the domain is extended by ∆.

Note: extending the DB domain, account for new objects that might be needed
in the plan to satisfy the goal constraints in K.

Planning (P) problem and Domain Bounded Planning (PDb) problem

Given K, Act, and I, does there exist a plan for K from I.

Given K,, Act, I, and a bound k, does there exist a plan for K from I
where |∆| is at most k.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (38/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Reasoning services – Planning under incompleteness

In this variant of planning, we are not given the initial DB instance, but want to
check plan existence from some DB instance satisfying a given precondition.

Planning Under Incompleteness (PI) and
Length Bounded Planning Under Incompleteness (PILb)

Given Act, I, K, and Kpre, does there exist a plan for K from I, for some
finite DB instance I such that I |= Kpre.
Given Act, I, K, Kpre, and a bound `, does there exist a plan for K from
I of length at most `, for some finite DB instance I such that I |= Kpre.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (39/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Undecidability of unbounded planning

Without bounds, planning is undecidable already for the restricted DL-Lite+
R

setting.

Theorem (Undecidability of Planning)

Planning (P) and Planning Under Incompleteness (PI) are undecidable already
for DL-Lite+

R KBs and simple actions.

Intuition: we do not have a bound on the number of objects to be added to the
domain to satisfy the goal KB.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (40/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Decidability of bounded planning

Planning under complete information becomes decidable if we bound the
domain.

Theorem (Decidability of Domain Bounded Planning)

Domain Bounded Planning (PDb) is PSpace-complete for ZOI KBs

Interestingly Planning Under Incompleteness stays undecidable even if we bound
the domain.

However, it becomes decidable by bounding the plan length.

Theorem

Length Bounded Planning Under Incompleteness (PILb) is

ExpTime-complete for ZOI KBs, and

NP-complete for DL-Lite+
R KBs and with simple actions.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (41/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Outline

1 Description Logics for Graph-structured Data

2 Reasoning in Dynamic Systems

3 Description Logics for Evolving Graph Structured Data

4 Planning

5 Conclusions

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (42/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Summing up

By exploiting techniques and tools coming from work in DLs, we obtain
strong decidability and complexity results for reasoning about evolving
GSD under constraints.

This indicates that DLs are well suited not only to manage the structure of
data, but also its dynamics.

This calls for more interaction between the data management and
knowledge representation communities.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (42/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Further work

Investigate further useful fragments with lower complexity.

Can we extend the update language while preserving decidability?

while loops
richer queries than concepts and roles

Can we consider other forms of constraints?

keys
identification constraints

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (43/43)

DLs for GSD Reasoning in Dynamic Systems DLs for Evolving GSD Planning Conclusions

Thank you for your attention!

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (44/43)

References References

References I

[1] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple
Paths in Graph Databases”. In: SIAM J. on Computing 24.6 (1995),
pp. 1235–1258.

[2] Serge Abiteboul and Victor Vianu. “Regular Path Queries with
Constraints”. In: J. of Computer and System Sciences 58.3 (1999),
pp. 428–452.

[3] Peter Buneman, Wenfei Fan, and Scott Weinstein. “Path Constraints in
Semistructured Databases”. In: J. of Computer and System Sciences
61.2 (2000), pp. 146–193. issn: 0022-0000. doi:
10.1006/jcss.2000.1710. url: http://www.sciencedirect.com/
science/article/pii/S0022000000917100.

[4] Gösta Grahne and Alex Thomo. “Query Containment and Rewriting using
Views for Regular Path Queries under Constraints”. In: Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS). 2003, pp. 111–122.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (45/43)

http://dx.doi.org/10.1006/jcss.2000.1710
http://www.sciencedirect.com/science/article/pii/S0022000000917100
http://www.sciencedirect.com/science/article/pii/S0022000000917100

References References

References II

[5] Diego C., Magdalena Ortiz, and Mantas Simkus. “Verification of Evolving
Graph-structured Data under Expressive Path Constraints”. In: Proc. of
the 19th Int. Conf. on Database Theory (ICDT). Vol. 48. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, 15:1–15:19.

[6] Balder ten Cate and Luc Segoufin. “XPath, Transitive Closure Logic, and
Nested Tree Walking Automata”. In: Proc. of the 27th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS).
2008, pp. 251–260.

[7] Diego C., Giuseppe De Giacomo, Maurizio Lenzerini, et al. “An
Automata-Theoretic Approach to Regular XPath”. In: Proc. of the 12th
Int. Symp. on Database Programming Languages (DBPL). Vol. 5708.
Lecture Notes in Computer Science. Springer, 2009, pp. 18–35.

[8] Michael J. Fischer and Richard E. Ladner. “Propositional Dynamic Logic
of Regular Programs”. In: J. of Computer and System Sciences 18
(1979), pp. 194–211.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (46/43)

References References

References III

[9] Frank Wolter and Michael Zakharyaschev. “Temporalizing Description
Logic”. In: Frontiers of Combining Systems. Ed. by D. Gabbay and
M. de Rijke. Studies Press/Wiley, 1999, pp. 379–402.

[10] Dov Gabbay et al. Many-dimensional Modal Logics: Theory and
Applications. Elsevier Science Publishers, 2003.

[11] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. The MIT Press, 2001.

[12] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning –
Theory and Practice. Elsevier, 2004. isbn: 9781558608566.

[13] Franz Baader, Carsten Lutz, et al. “Integrating Description Logics and
Action Formalisms: First Results”. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI). 2005, pp. 572–577.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (47/43)

References References

References IV

[14] Franz Baader and Benjamin Zarriess. “Verification of Golog Programs
over Description Logic Actions”. In: Proc. of the 9th Int. Symp. on
Frontiers of Combining Systems (FroCoS). Vol. 8152. Lecture Notes in
Computer Science. Springer, 2013, pp. 181–196. isbn: 9783642408847.
doi: 10.1007/978-3-642-40885-4_12. url:
http://dx.doi.org/10.1007/978-3-642-40885-4_12.

[15] Babak Bagheri Hariri, Diego C., Marco Montali, et al. “Description Logic
Knowledge and Action Bases”. In: J. of Artificial Intelligence Research
46 (2013), pp. 651–686. issn: 1076-9757. doi: 10.1613/jair.3826.

[16] Giuseppe De Giacomo, Yves Lesperance, and Fabio Patrizi. “Bounded
Situation Calculus Action Theories and Decidable Verification”. In: Proc.
of the 13th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR). 2012, pp. 467–477.

[17] Diego C., Giuseppe De Giacomo, Marco Montali, et al. “On First-Order
µ-Calculus over Situation Calculus Action Theories”. In: Proc. of the
15th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR). AAAI Press, 2016, pp. 411–420.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (48/43)

http://dx.doi.org/10.1007/978-3-642-40885-4_12
http://dx.doi.org/10.1007/978-3-642-40885-4_12
http://dx.doi.org/10.1613/jair.3826

References References

References V

[18] Victor Vianu. “Dynamic Constraints and Database Evolution”. In: Proc.
of the 2nd ACM SIGACT SIGMOD Symp. on Principles of Database
Systems (PODS). 1983, pp. 389–399. doi: 10.1145/588058.588105.

[19] Victor Vianu. “Object Projection Views in the Dynamic Relational
Model”. In: Proc. of the 3rd ACM SIGACT SIGMOD Symp. on
Principles of Database Systems (PODS). 1984, pp. 214–220. doi:
10.1145/588011.588042.

[20] Serge Abiteboul and Victor Vianu. “Transactions and Integrity
Constraints”. In: Proc. of the 4th ACM SIGACT SIGMOD Symp. on
Principles of Database Systems (PODS). 1985, pp. 193–204. doi:
10.1145/325405.325439.

[21] Serge Abiteboul and Victor Vianu. “Deciding Properties of Transactional
Schemas”. In: Proc. of the 5th ACM SIGACT SIGMOD Symp. on
Principles of Database Systems (PODS). 1986, pp. 235–239. doi:
10.1145/6012.15417.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (49/43)

http://dx.doi.org/10.1145/588058.588105
http://dx.doi.org/10.1145/588011.588042
http://dx.doi.org/10.1145/325405.325439
http://dx.doi.org/10.1145/6012.15417

References References

References VI

[22] Serge Abiteboul and Victor Vianu. “A Transcation Language Complete
for Database Update and Specification”. In: Proc. of the 6th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS). 1987, pp. 260–268. doi: 10.1145/28659.28688.

[23] Serge Abiteboul and Victor Vianu. “Procedural and Declarative Database
Update Languages”. In: Proc. of the 7th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS). 1988,
pp. 240–250. doi: 10.1145/308386.308448.

[24] Richard T. Snodgrass. “The Temporal Query Language TQuel”. In:
Proc. of the 3rd ACM SIGACT SIGMOD Symp. on Principles of Database
Systems (PODS). 1984, pp. 204–213. doi: 10.1145/588011.588041.

[25] Jan Chomicki and Tomasz Imielinski. “Temporal Deductive Databases
and Infinite Objects”. In: Proc. of the 7th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS). 1988,
pp. 61–73. doi: 10.1145/308386.308416.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (50/43)

http://dx.doi.org/10.1145/28659.28688
http://dx.doi.org/10.1145/308386.308448
http://dx.doi.org/10.1145/588011.588041
http://dx.doi.org/10.1145/308386.308416

References References

References VII

[26] Serge Abiteboul, Victor Vianu, et al. “Relational Transducers for
Electronic Commerce”. In: Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS). 1998,
pp. 179–187.

[27] Marc Spielmann. “Verification of Relational Transducers for Electronic
Commerce”. In: Proc. of the 19th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS). 2000, pp. 92–103.

[28] Alin Deutsch, Liying Sui, and Victor Vianu. “Specification and
Verification of Data-driven Web Services”. In: Proc. of the 23rd ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS). 2004, pp. 71–82.

[29] A. Nigam and N. S. Caswell. “Business Artifacts: An approach to
Operational Specification”. In: IBM Systems J. 42.3 (2003),
pp. 428–445.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (51/43)

References References

References VIII

[30] K. Bhattacharya et al. “Towards Formal Analysis of Artifact-Centric
Business Process Models”. In: Proc. of the 5th Int. Conf. on Business
Process Management (BPM). Vol. 4714. Lecture Notes in Computer
Science. Springer, 2007, pp. 288–234.

[31] Serge Abiteboul, Omar Benjelloun, and Tova Milo. “Positive Active
XML”. In: Proc. of the 23rd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS). 2004, pp. 35–45. doi:
10.1145/1055558.1055564.

[32] Elio Damaggio, Alin Deutsch, and Victor Vianu. “Artifact Systems with
Data Dependencies and Arithmetic”. In: ACM Trans. on Database
Systems 37.3 (2012), p. 22. doi: 10.1145/2338626.2338628.

[33] Babak Bagheri Hariri, Diego C., Giuseppe De Giacomo, et al.
“Verification of Relational Data-Centric Dynamic Systems with External
Services”. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGAI Symp. on
Principles of Database Systems (PODS). 2013, pp. 163–174.

[34] Hector J. Levesque. “Foundations of a Functional Approach to Knowledge
Representation”. In: Artificial Intelligence 23 (1984), pp. 155–212.

Diego Calvanese (FUB) Evolving GSD Under Constraints AWM 2016, Panama – 8/6/2016 (52/43)

http://dx.doi.org/10.1145/1055558.1055564
http://dx.doi.org/10.1145/2338626.2338628

	Description Logics for Graph-structured Data
	Reasoning in Dynamic Systems
	Description Logics for Evolving Graph Structured Data
	Planning
	Conclusions
	Appendix
	References

