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Data management in information systems

Pre-DBMS architecture:
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Ideal architecture based on a DBMS:
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Data management today

In many cases, we are back at the pre-DBMS situation:

Data 
Source

Application

Data 
Source

Data 
Source

Application Application

Data is:

heterogeneous

distributed

redundant or even duplicated

incoherent
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How to find the “right” data?

Simple case

Complex case

Challenges:

Effort spent on actually finding and extracting the data.
; Creativity and ability to explore are hampered.

Adding new data sources is painful.
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Example: Statoil Exploration

Experts in geology and geophysics develop stratigraphic
models of unexplored areas on the basis of data
acquired from previous operations at nearby
geographical locations.

Facts:

1,000 TB of relational data

using diverse schemata

spread over 2,000 tables, over multiple individual data bases

Data Access for Exploration:

900 experts in Statoil Exploration.

up to 4 days for new data access queries, requiring assistance from
IT-experts.

30–70% of time spent on data gathering.
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Example 2: Siemens Energy Services

Runs service centers for power plants, each responsible
for remote monitoring and diagnostics of many
thousands of gas/steam turbines and associated
components. When informed about potential problems,
diagnosis engineers access a variety of raw and
processed data.

Facts:

several TB of time-stamped sensor data

several GB of event data (“alarm triggered at time T”)

data grows at 30GB per day (sensor data rate 1Hz–1kHz)

Service Requests:

over 50 service centers worldwide

1,000 service requests per center per year

80% of time per request used on data gathering
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Proposed solution: Ontology-based Data Access

Solution proposed in the Optique project

Manage data by adopting principles and techniques studied in Knowledge
Representation.

Provide a conceptual, high level representation of the domain of interest in
terms of an ontology.
Do not migrate the data but leave it in the sources.
Map the ontology to the data sources.
Specify all information requests to the data in terms of the ontology.
Use the inference services of the OBDA system to translate the requests
into queries to the data sources.

The OBDA approach is based on formalisms grounded in logic, with well
understood semantics and computational properties.
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Ontology-based data access: Architecture

 Ontology-based
 Data Access

Source Source
Source

 Ontology

Mapping

Queries

An OBDA architecture is based on three main components:

Ontology: provides a unified, conceptual view of the managed information.

Data source(s): are external and independent (possibly multiple and
heterogeneous).

Mappings: semantically link data at the sources with the ontology.
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Ontology-based data access: Formalization

An OBDA specification is a triple P = 〈T ,S,M〉, where:

T is the intensional level of an ontology.
We consider ontologies formalized in description logics (DLs), hence the
intensional level is a DL TBox.

S is a (federated) relational database schema for the data sources, possibly
with constraints;

M is a set of mapping assertions, each one of the form

Φ(~x) ; Ψ(~x)
where

Φ(~x) is a FOL query over S, returning tuples of values for ~x
Ψ(~x) is a FOL query over T whose free variables are from ~x.

An OBDA system is a pair O = 〈P,D〉, where

P = 〈T ,S,M〉 is an OBDA specification, and

D is a relational database compliant with S.
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Ontology-based data access: Semantics

Let I = (∆I , ·I) be an interpretation of the TBox T .

Semantics of an OBDA system

I is a model of O = 〈P,D〉, with P = 〈T ,S,M〉 if:

I is a FOL model of T , and

I satisfies M w.r.t. D, i.e., it satisfies every assertion in M w.r.t. D.

Semantics of mappings

We say that I satisfies Φ(~x) ; Ψ(~x) w.r.t. a database D, if the FOL sentence

∀~x. Φ(~x)→ Ψ(~x)

is true in I ∪ D.

Note: the semantics of mappings is captured through material implication, i.e.,
data sources are considered sound, but not necessarily complete.
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Challenges in OBDA

How to instantiate the abstract framework?

How to execute queries over the ontology by accessing data in the sources?

How to deploy such systems using state-of-the-art technology?

How to optimize the performance of the system?

How to assess the quality of the constructed system?

How to provide automated support for key tasks during design and
deployment?

constructing the ontology;
constructing the mappings;
formulating queries;
characterizing the evolution of the system components;
verifying properties over the evolving system.
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Instantiating the framework

1 Which is the “right” ontology language?

2 Which is the “right” query language?

3 Which is the “right” mapping language?

 Ontology-based
 Data Access

Source Source
Source

 Ontology

Mapping

Queries
?

?
?

The choices that we make have to take into account the tradeoff between
expressive power and efficiency of inference/query answering.

We are in a setting where we want to access big data, so efficiency w.r.t. the
data plays an important role.

Diego Calvanese (FUB) Scalable End-User Access to Big Data AIMSA 2014, Varna – 11/9/2014 (11/48)



OBDA framework Query answering Ontology languages Optimizing OBDA in Ontop Conclusions

Ontologies vs. conceptual models

We leverage on an extensive amount of work on the tight relationship between
conceptual modeling formalisms and ontology languages [Lenzerini and Nobili,

1990; Bergamaschi and Sartori, 1992; Borgida, 1995; C. et al., 1999; Borgida and

Brachman, 2003; Berardi et al., 2005; Queralt et al., 2012].

name: String
salary: Integer

Researcher

 

 
 
Manager

 
 
PrincInv

 

Coordinator

1..1

1..*

supvsdBy

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Researcher
PrincInv v Manager

Coordinator v Manager
PrincInv v ¬Coordinator

Researcher v ∃salary
∃salary− v xsd:int

(funct salary)

∃manages v Coordinator
∃manages− v Project
Coordinator v ∃manages

Project v ∃manages−

manages v worksFor
(funct manages)
(funct manages−)

· · ·
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Mapping the data to the ontology

In an OBDA system O = 〈〈T ,M,S〉,D〉, the mapping M encodes how the
data D in the source(s) S should be used to populate the elements of T .

Virtual data layer

The data D and the mapping M define a
virtual data layer V =M(D)

Queries are answered w.r.t. T and V.

We do not really materialize the data of V
(it is virtual!).

Instead, the intensional information in T
and M is used to translate queries over T
into queries formulated over S.

 Ontology-based
 Data Access

Virtual data layer

Source Source
Source

 Ontology

Mapping

Queries

Diego Calvanese (FUB) Scalable End-User Access to Big Data AIMSA 2014, Varna – 11/9/2014 (13/48)



OBDA framework Query answering Ontology languages Optimizing OBDA in Ontop Conclusions

Concrete mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:

They assume that the ontology is populated in terms of RDF triples.

Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ1, SML2, Ontop3

R2RML

Most popular RDB to RDF mapping language

W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/

R2RML mappings are themselves expressed as RDF graphs and written in
Turtle syntax.

In the following, we abstract from mappings, i.e., we assume that each
concept/relation of the ontology directly corresponds to a database table.

1http://d2rq.org/d2rq-language
2http://sparqlify.org/wiki/Sparqlification_mapping_language
3https://github.com/ontop/ontop/wiki/ObdalibObdaTurtlesyntax
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Outline

1 Ontology-based data access framework

2 Query answering in OBDA

3 Ontology languages for OBDA

4 Optimizing OBDA in Ontop
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Incomplete information

We are in a setting of incomplete information!!!

Incompleteness introduced:

by data source(s), in general assumed to be incomplete;

by domain constraints encoded in the ontology.

 Ontology-based
 Data Access

Source Source
Source

 Ontology

Mapping

Queries

Plus: Ontologies are logical theories, and hence perfectly suited to deal with
incomplete information!

m7
m6

m5
m3

m4
m2

m1

=

Ontology

Minus: Query answering amounts to logical inference, and hence is
significantly more challenging.
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Incomplete information – Example 1

 
 
Coordinator

ProjectworksFor

 

Researcher
We assume that each
concept/relationship of the
ontology is mapped directly to a
database table.

But the database tables may be incompletely specified, or even missing for
some concepts/relationships.

DB: Coordinator ⊇ { serge, marie }
Project ⊇ { webdam, diadem }
worksFor ⊇ { (serge,webdam), (georg,diadem) }

Query: q(x) ← Researcher(x)

Answer: { serge, marie, georg }

{
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Incomplete information – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries:
q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA over ontologies – Andrea’s Example 4

 
Researcher

 

  
Manager

  
PrincInv

  
Coordinator

supervisedBy 

{disjoint, complete}

officeMate Manager ≡ PrincInv t Coordinator

Researcher ⊇ { andrea, paul, mary, john }
Manager ⊇ { andrea, paul, mary }
PrincInv ⊇ { paul }

Coordinator ⊇ { mary }
supervisedBy ⊇ { (john,andrea), (john,mary) }

officeMate ⊇ { (mary,andrea), (andrea,paul) }

john

andrea: Manager mary: Coordinator
officeMate

supervisedBy supervisedBy

paul: PrincInv

officeMate

4By Andrea Schaerf [PhD Thesis 1994].
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QA over ontologies – Andrea’s Example (cont’d)

 
Researcher

 

  
Manager

  
PrincInv

  
Coordinator

supervisedBy 

{disjoint, complete}

officeMate john

andrea: Manager mary: Coordinator
officeMate

supervisedBy supervisedBy

paul: PrincInv

officeMate

q(x) ← ∃y, z. supervisedBy(x, y) ∧ Coordinator(y) ∧
officeMate(y, z) ∧ PrincInv(z)

Answer: { john }

To obtain this answer, we need to reason by cases, i.e., model by model.
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Query answering – Which query language to use

Certain answers, i.e., answers that are logically implied

Query answering amounts to finding the certain answers cert(q,O) to a query
q(~x), i.e., those answers that hold in all models of the OBDA system O.

Two borderline cases for the language to use for querying ontologies:

1 Use the ontology language as query language.

Ontology languages are tailored for capturing intensional relationships.
They are quite poor as query languages.

2 Full SQL (or equivalently, first-order logic).

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Conjunctive queries

A good tradeoff is to use conjunctive queries (CQs) or unions of CQs (UCQs),
corresponding to SQL/relational algebra (union) select-project-join queries.
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Complexity of conjunctive query answering in DLs

Studied extensively for various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in AC0 (1)

Expressive DLs ≥ 2ExpTime (2) coNP-hard (3)

(1) This is what we need to scale with the data.
(2) Hardness by [Lutz, 2008; Eiter et al., 2009].

Tight upper bounds obtained for a variety of expressive DLs [C. et al., 1998;

Levy and Rousset, 1998; C. et al., 2007c; C. et al., 2008c; Glimm et al., 2008b;

Glimm et al., 2008a; Lutz, 2008; Eiter et al., 2008; C. et al., 2014].
(3) Already for an ontology with a single axiom involving disjunction.

However, the complexity does not increase even for very expressive DLs
[Ortiz et al., 2006; Ortiz et al., 2008; Glimm et al., 2008a].
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Challenges for query answering in OBDA with big data

Challenges

Can we find interesting ontology languages for which query answering in
OBDA in theory can be done efficiently (i.e., in AC0)?

If yes, can we answer queries in OBDA by exploiting a relational engine?

If yes, can we obtain acceptable performance in practical scenarios
involving large ontologies and big data?
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Logical inference for query answering

cert(q, 〈T ,M,S〉,D)

Logical inference

q

M(D)

T

To be able to deal with data efficiently, we need to separate the contribution of
the data D (accessed via the mapping M) from the contribution of q and O.

; Query answering by query rewriting.
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Query answering by rewriting

rq,TPerfect

(under OWA)
Query

(under CWA)

evaluation

rewriting
q

T

M(D) cert(q, 〈T ,M,S〉,D)

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the ontology TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over M(D) seen as a complete database
(and without considering T ).
; Produces cert(q, 〈T ,M,S〉,D).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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FOL-rewritability

Let:

LQ be a class of queries (i.e., a query language), and

LT be an ontology TBox language.

LQ-rewritability of conjunctive query answering

Conjunctive query answering is LQ-rewritable for LT , if for every TBox T of
LT and for every conjunctive query q, the perfect rewriting rq,T of q w.r.t. T
can be expressed in LQ.

We are especially interested in FOL-rewritability:

The rewriting can be expressed in FOL, i.e., in SQL.

Query evaluation can be delegated to a relational DBMS.

This notion was initially proposed in [C. et al., 2005b; 2006; 2007a] and further
intensively investigated in the KR and DB community.
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Description Logics

Description Logics (DLs) stem from early days (70’) KR formalisms, and
assumed their current form in the late 80’s & 90’s.

Are logics specifically designed to represent and reason on structured
knowledge.

Technically they can be considered as well-behaved (i.e., decidable)
fragments of first-order logic.

Semantics given in terms of first-order interpretations.

Come in hundreds of variations, with different semantic and computational
properties.

Strongly influenced the W3C standard Web Ontology Language OWL.
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The DL-Lite family

A family of DLs optimized according to the tradeoff between expressive
power and complexity of query answering, with emphasis on data.

The same complexity as relational databases.
In fact, query answering is FOL-rewritable and hence can be delegated to
a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally expressive DLs
enjoying these nice computational properties.

Nevertheless they have the “right” expressive power: capture the essential
features of conceptual modeling formalisms.

DL-Lite provides robust foundations for Ontology-Based Data Access.

Note:

The DL-Lite family is at the basis of the OWL 2 QL profile of the W3C
standard Web Ontology Language OWL.

More recently, the DL-Lite family has been extended towards n-ary
relations and with additional features (see, e.g., [Cal̀ı et al., 2009; Baget et

al., 2011; Gottlob and Schwentick, 2012; C. et al., 2013]).
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DL-Lite ontologies (essential features)

Concept and role language:

Roles R: either atomic: P
or an inverse role: P−

Concepts C: either atomic: A
or the projection of a role on one component: ∃P , ∃P−

TBox assertions: encode terminological knowledge about the domain

Role inclusion: R1 v R2

Role disjointness: R1 v ¬R2

Role functionality: (funct R)

Concept inclusion: C1 v C2

Concept disjointness: C1 v ¬C2

ABox assertions: encode knowledge about individuals
A(c), P (c1, c2), with c1, c2 constants

Note: DL-Lite distinguishes also between abstract objects and data values
(ignored here).
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DL-Lite captures conceptual modeling formalisms

Modeling construct DL-Lite FOL formalization

ISA on classes A1 v A2 ∀x(A1(x)→ A2(x))

. . . and on relations R1 v R2 ∀x, y(R1(x, y)→ R2(x, y))

Disjointness of classes A1 v ¬A2 ∀x(A1(x)→ ¬A2(x))

. . . and of relations R1 v ¬R2 ∀x, y(R1(x, y)→ ¬R2(x, y))

Domain of relations ∃P v A1 ∀x(∃y(P (x, y))→ A1(x))

Range of relations ∃P− v A2 ∀x(∃y(P (y, x))→ A2(x))

Mandatory participation
(min card = 1)

A1 v ∃P
A2 v ∃P−

∀x(A1(x)→ ∃y(P (x, y)))

∀x(A2(x)→ ∃y(P (y, x)))

Functionality
(max card = 1)

(funct P )

(funct P−)

∀x, y, y′(P (x, y) ∧ P (x, y′)→ y = y′)

∀x, x′, y(P (x, y) ∧ P (x′, y)→ x = x′)

· · · · · · · · ·
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Capturing UML class diagrams/ER schemas in DL-Lite

name: String
salary: Integer

Researcher

 

 
 
Manager

 
 
PrincInv

 

Coordinator

1..1

1..*

supvsdBy

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Researcher
PrincInv v Manager

Coordinator v Manager
PrincInv v ¬Coordinator

Researcher v ∃salary
∃salary− v xsd:int

(funct salary)

∃worksFor v Researcher
∃worksFor− v Project

Researcher v ∃worksFor
Project v ∃worksFor−

∃manages v Coordinator
∃manages− v Project
Coordinator v ∃manages

Project v ∃manages−

manages v worksFor
(funct manages)
(funct manages−)

· · ·
Note: DL-Lite cannot capture completeness of a

hierarchy. This would require disjunction (i.e., OR).
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Query answering in DL-Lite

Query answering via query rewriting

Given a (U)CQ q and an ontology O = 〈T ,A〉:
1 Compute the perfect rewriting of q w.r.t. T , which is a FOL query.

2 Evaluate the perfect rewriting over A. (We have ignored the mapping.)

I briefly describe PerfectRef , a simple algorithm for Step 1 that requires to
iterate over:

rewriting steps that involve inclusion assertions, and

unification steps.

Note: disjointness assertions and functionalities play a role in ontology
satisfiability, but can be ignored during query rewriting (i.e., we have
separability).
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Query rewriting step: Basic idea

Intuition: an inclusion assertion corresponds to a logic programming rule.

Basic rewriting step:

When an atom in the query unifies with the head of the rule, generate a new
query by substituting the atom with the body of the rule.

We say that the inclusion assertion applies to the atom.

Example

The inclusion assertion Coordinator v Researcher
corresponds to the logic programming rule Researcher(z) ← Coordinator(z).

Consider the query q(x) ← Researcher(x).

By applying the inclusion assertion to the atom Researcher(x), we generate:
q(x) ← Coordinator(x)
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Query rewriting

To compute the perfect rewriting of a query q, start from q, iteratively get a
CQ q′ to be processed, and do one of the following:

Apply to some atom of q′ an inclusion assertion in T as follows:

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x, ), . . .
∃P− v A . . . , A(x), . . . ; . . . , P ( , x), . . .

A v ∃P . . . , P (x, ), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P ( , x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x, ), . . . ; . . . , P1(x, ), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

(’ ’ denotes a variable that appears only once)

Choose two atoms of q′ that unify, and apply the unifier to q′.

Each time, the result of the above step is added to the queries to be processed.

Note: Unifying atoms can make rules applicable that were not so before, and is
required for completeness of the method [C. et al., 2007a].

The UCQ resulting from this process is the perfect rewriting rq,T .
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Query answering in DL-Lite – Example

TBox: Corresponding rules:
Coordinator v Researcher
Researcher v ∃worksFor
∃worksFor− v Project

Coordinator(x) → Researcher(x)
Researcher(x) → ∃y(worksFor(x, y))
worksFor(y, x) → Project(x)

Query: q(x)← worksFor(x, y),Project(y)

Perfect rewriting: q(x)← worksFor(x, y),Project(y)
q(x)← worksFor(x, y),worksFor( , y)
q(x)← worksFor(x, )
q(x)← Researcher(x)
q(x)← Coordinator(x)

ABox: worksFor(serge, webdam) Coordinator(serge)
worksFor(georg, diadem) Coordinator(marie)

Evaluating the perfect rewriting over the ABox (seen as a DB) produces as
answer {serge, georg, marie}.
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Complexity of query answering in DL-Lite

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of the TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., AC0).

In fact, reasoning can be done by constructing suitable FOL/SQL queries and
evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of the TBox.

AC0 in the size of the ABox.

Exponential in the size of the query, more precisely NP-complete.

In theory this is not bad, since this is precisely the complexity of evaluating
CQs in plain relational DBs.
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Tracing the expressivity boundary

Lhs concept Rhs concept funct.
Relation

incl.
Data complexity

of query answering

0 DL-Lite
√

*
√

* in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

From [C. et al., 2006; Artale et al., 2009; C. et al., 2013].

Notes:

Data complexity beyond AC0 means that query answering is not FOL
rewritable, hence cannot be delegated to a relational DBMS.

These results pose strict bounds on the expressive power of the ontology
language that can be used in OBDA.
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Experimentations and experiences

Several experimentations:

Monte dei Paschi di Siena (led by Sapienza Univ. of Rome)

Selex: world leading radar producer

National Accessibility Portal of South Africa

Horizontal Gene Transfer data and ontology

Stanford’s “Resource Index” comprising 200 ontologies from BioPortal

Experiments on artificial data ongoing

Observations:

Approach highly effective for bridging impedance mismatch between data
sources and ontology.

Rewriting technique effective against incompleteness in the data.

However, performance is a major issue that still prevents large-scale
deployment of this technology.
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Query processing in a traditional OBDA system

SPARQL q

Ontology T

UCQ q′

Mapping M

SQL q′′

Data DVirtual ABox V

+

Rewriting

+

Unfolding

+

ABox virtualisation
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What makes the resulting SQL query grow exponentially?

Three main factors affect the size of the resulting query q′′:

Existentials: Sub-queries of q with existentially quantified variables might
lead in general to exponentially large rewritings.

Hierarchies: Concepts / roles occurring in the query q can have many
subconcepts / subroles according to T , which all have to be
included in the rewriting q′.

Mappings: The mapping M can provide multiple definitions of the
concepts and roles in the ontology, which may result in a
further exponential blowup in the unfolding step of q′ to q′′.
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Impact of hierarchies – Example

Example

TBox T : A

B C

D E F G H I

q(x)← A(x), P (x, y), A(y), P (y, z), A(z)

UCQ rewriting of q w.r.t. T contains 729 CQs
i.e., a UNION of 729 SPJ SQL queries

The size of UCQ rewritings may become very large

In the worst case, it may be O((|T | · |q|)|q|), i.e., exponential in |q|.
Unfortunately, this blowup occurs also in practice.
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Taming the size of the rewriting

Note: It is not possible to avoid rewriting altogether, since this would require in
general to materialize an infinite database [C. et al., 2007a].

Several techniques have been proposed recently to limit the size of the rewriting:

Alternative rewriting techniques [Pérez-Urbina et al., 2010]: more efficient
algorithm based on resolution, but produces still an exponential UCQ.

Combined approach [Kontchakov et al., 2010]: combines partial
materialization with rewriting:

When T contains no role inclusions rewriting is polynomial.
But in general rewriting is exponential.
Materialization requires control over the data sources and might not be
applicable in an OBDA setting.

Rewriting into non-recursive Datalog:

Presto system [Rosati and Almatelli, 2010]: still worst-case exponential.
Polynomial rewriting for Datalog± [Gottlob and Schwentick, 2012]:
rewriting uses polynomially many new existential variables and “guesses” a
relevant portion of the canonical model for the TBox.

See [Kikot et al., 2012; Gottlob et al., 2014] for discussion and further results.
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A holistic approach to optimization

Recall our main objective

Given an OBDA specification P = 〈T ,M,S〉, a database D, and a set of
queries, compute the certain answers of such queries w.r.t. O = 〈P,D〉
as efficiently as possible.

Observe:

The size of the rewriting is only one coordinate in the problem space.
Optimizing rewriting is necessary but not sufficient, since the more
compact rewritings are in general much more difficult to evaluate.
In fact, the efficiency of the query evaluation by the DBMS is the
crucial factor.

Hence, a holistic approach is required, that considers all components of an
OBDA system, i.e.:

the TBox T ,
the mappings M,
the data sources D with their dependencies in S, and
the query load.
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Optimizations in Ontop [Rodriguez-Muro et al., 2013]

1 Tree-witness rewriting over H-complete ABoxes.

2 T -mappings incorporating T into M.

3 Simplification of T -mappings using Semantic Query Optimisation (SQO).

4 Optimized unfolding.
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The Ontop OBDA framework

Developed at the Free Univ. of Bozen-Bolzano: http://ontop.inf.unibz.it/

“Stay on top of your data with semantics”

Features of Ontop

Query language: support for SPARQL 1.0 (and part of 1.1)

Mapping languages:

Intuitive Ontop mapping language
Support for R2RML W3C standard

Database: Support for free and commercial DBMSs

PostgreSQL, MySQL, H2, DB2, ORACLE, MS SQL SERVER, TEIID, ADP

Java library/providers for Sesame and OWLAPI

Sesame: a de-facto standard framework for processing RDF data
OWLAPI: Java API and reference implementation for OWL Ontologies

Integrated with Protege 4.x

Provides a SPARQL end-point (via Sesame Workbench)

Apache open source license
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Conclusions

Ontology-based data access provides challenging problems with great
practical relevance.

In this setting, the size of the data is a critical parameter that must guide
technological choices.

Theoretical foundations provide a solid basis for system development.

Practical deployment of this technology in real world scenarios with big
data is ongoing, but requires further work.

Adoption of a holistic approach, considering all components of OBDA
systems seems the only way to cope with real-world challenges.
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Further research directions

Extensions of the ontology languages, e.g., towards n-ary relations [Cal̀ı et

al., 2009; Baget et al., 2011; Gottlob and Schwentick, 2012].

Dealing with inconsistency in the ontology.

Ontology-based update.

Coping with evolution of data in the presence of ontological constraints.

Dealing with different kinds of data, besides relational sources: XML,
graph-structured data, RDF and linked data.

Close connection to work carried out in the Semantic Web on Triple Stores.

Management of mappings and ontology axioms.

User-friendly ontology querying modalities (graphical query languages,
natural language querying).

Diego Calvanese (FUB) Scalable End-User Access to Big Data AIMSA 2014, Varna – 11/9/2014 (47/48)



OBDA framework Query answering Ontology languages Optimizing OBDA in Ontop Conclusions

Thanks

Thank you for your attention!
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