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Michal Walicki

Monday 3 July, 2006

Abstract

The “possible world” semantics of modal logics has proven so powerful and successful,
that one has been willing to disregard some of its technical disadvantages and, not less im-
portantly, the problems with philosophical interpretation of the “possible worlds”. The main
such problem which is addressed here concerns the disappearance of the actual world, which
in any Kripke structure can be chosen arbitrarily. Even then, it is not the common world
which is, in one way or another, shared by all the agents, but only one of the possibilities
which may even be inaccessible to some of the involved parties. This may, certainly, offer
various advantages when modelling specific problems and we do not contest this matter. But
we would consider it a drawback when seen in a more philosophical perspective.

We review the relations between the classical, intuitionistic and modal propositional logics
and show that S4 not only admits embedding of the other two logics, but can be seen as
their natural and minimal union. We reformulate topological algebras interpreting S4 as
boolean algebras equipped with intuitionistic negation. The intuitionistic substructure of
such an algebra can be then seen as an “epistemic subuniverse”, and modalities arise from
the interaction between the intuitionistic and classical negations or, we might perhaps say,
between the epistemic and the ontological aspects. They emerge thus not from the interactions
between arbitrary alternatives, but from the interactions between one common (classical)
world and its specific (epistemic) substructures. As an example of the generality of the
obtained formalization, we apply it also to S5.

We give a sound and complete sequent calculus, extending LK with the rules for handling
the intuitionistic negation, in which one can prove all classical, intuitionistic and S4 valid
sequents.

As our semantics, underlying the above view of modalities, is based on the boolean algebras
with operators, it should not be considered in an opposition to the “possible worlds” semantics:
the latter can be obtained by the well known transformation of the former. Thus, apparent
incompatibility of the interpretations notwithstanding, we would view them as complementary
rather than as contrary.

This report extends the earlier results which are repeated here — it threfore repalces the
earlier version, report no. 325.

1 Introduction

We begin by recalling the algebraic semantics of the three propositional logics and some of
the standard results on their interconnections. In addition to the obvious functor from the
category of topological algebras to that of Heyting algebras, I : TA — H.A, we also give
a functor C in the opposite direction and show that the two are adjoint (with the unit of
adjunction being identity). This allows us than, in section 2, to state the embedding of
intuitionistic logic into S4 in a compact way, which shows also a stronger character of this
embedding than the mere preservation and reflection of the semantic consequence. Various
classical theorems follow as corollaries and so sections 1-2 present only a compact view of the
known results (except for the functor C which we have not encountered in the literature).
The involved constructions give rise to a new formulation of topological algebras (providing
the semantics for S4), as ZC-algebras, which are presented in section 3. The main novelty
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consists in making explicit and transparent the relationships between the intuitionistic and
classical logics which, together, yield S4. An advantage of this formulation exemplified in
section 3 is that proofs of embeddings and dependencies between these three logics, performed
traditionally at the metalevel and typically by analysis of the respective proof systems, become
internalized in the common language of ZC-algebras. We give a couple of simple examples.
Section 4 shows how the new formulation adapts to extensions of S4 exemplified by S5. In
section 5, we augment the sequent calculus for classical logic with two rules for handling the
intuitionistic negation, and prove its soundness and completeness with respect to the class
of all ZC-algebras. A simple argument for the decidability of this calculus is given, which
yields in one stroke decidability for all three logics involved. Section 6 gives a proposal for an
informal reading of the operations of ZC-algebras together with some examples and discusses
the emerging view of modalities as combinations of classical and intuitionistic negations.
xkk

To make the paper entirely self-contained and to introduce the notation to be used, we state
a few usual definitions.
A lattice is a triple (L; N, U) where L is a set and the binary operations satisfy the following

equalities:
comm. anNb = bNa aUb = bUa
assoc. (anb)ne = an(nc) (aUb)Uc = aU(Uc)
absorp. anN(aUb) = a aU(and) = a

Idempotency follows. Given a lattice, we write C for the partial order: t Cy< Uy =y.
Lattice is distributive iff also

aU((®Nec)=(aUb)N(aUc) (1.1)
(the dual is equivalent). It is bounded iff it has least and greatest elements, 0,1, i.e.,
xUl=1 and 2U0==z. (1.2)

Definition 1.8 Heyting algebra is a tuple H = (H; M, U, <, 0) such that:
1. (H;M,U) is a lattice
2. H is (relatively) pseudo-complemented: Yo,y 3z — y = max{z |z Nz C y}
(onehaszxCa—b < alzCbh)
3. 0 s the least element.

The greatest element 1 = z < z exists in any pseudo-complemented lattice. Pseudo-
complement is defined as +x = x < 0. Heyting algebra is also a distributive lattice and
meet distributes over infinite joins (when these exist): z M [_|er y= uyey(a) ny).

The class of Heyting algebras with homomorphisms gives the category H.A.

To easily distingush whether an operator of a Heyting or a boolean lattice is meant, we
will use the symbols from the above definition for the operations in Heyting algebras, and the
general lattice symbols introduced before it for boolean algebras.

Definition 1.4 Boolean algebra is a tuple B = (B;N,U, —) where
1. (B;N,VU) is a distributive lattice

2. which is complemented, i.e., tN—x =0 andxzU —z=—-0=1.
A toplogical algebra T = (T;N, U, —, ¢) is a boolean algebra with a closure operator ¢ : T — T
(or, dually, interior operator i(x) = —c(—1)), satisfying the equations:
cl. z C c(x) il. z Di(z)
c2. c(c(z)) = c(x) i2. i(i(z)) = i(z)
c3. c(zUy) =c(z)Uc(y) i3. i(z Ny) =i(z) Ni(y)
cd. ¢(0) =0 i4. i(1) =1

An element x € T is open/closed iff x = i(x)/xz = c(x).

(Unit 1 exists in every pseudo-complemented lattice; for boolean algebras it is —z U x; and so
we also obtain the zero element 0 = —1)

The class of topological algebras, i.e., boolean algebras with closure operator, with the
respective homomorphisms, gives the category T.A.



Monday 379 July, 2006 @ 15:22

Theorem 1.5 I: TA — HA, restricting the objects and morphisms to the open elements, is
a functor.

PrROOF. We map T = (T';N, U, —, ¢) onto H = (H; M, U, <, 0) where

e H={zeT|xz=i(z)}

e by il, i(0) C 0, i.e., i(0) = 0 and hence 0 € H

e rMy=zNyandzUy=xUy

o r > y=i(—zUy).
The fact that H is Heyting algebra is well known, e.g., theorem 1.14 from [9], or IV.1.4 from
[11]. Homomorphism condition for the reduced mapping follows for the operations inherited
from the source T, and is easily verified for — (IV.2.1 in [11]). m|
The standard, though involved, part of the proof of the following theorem concerns the em-
bedding of a Heyting algebra into a boolean one. Functoriality is more involved and we show
it explicitly.
Theorem 1.6 There is a functor C : HA — TA, such that C;I = ID3 4.

PrOOF. The fact that every Heyting algebra can be obtained as algebra of open elements of
a toplogical algebra is the theorem 1.15 from [9] (for the dual formulation in terms of closed
elements), or IV.3.1 from [11]. To establish the result, we have to find “the right” topological
algebra for every Heyting algebra. We repeat here the construction given in [9] which will be
needed to verify functoriality.
Given H = (H; M, U, <, 0), we consider it first as a bounded distributive lattice (H, M, 1,0, 1).

By [7] or [11] 3.1, H can be extended uniquely to a boolean algebra T = (T';N, U, —) where

1. H is a sublattice of T (i.e., Ve, y € H:zUy=zUyand zNy =z MNy)

2. every element b € T is of the form (] —a; U b; for some finite set of a;,b; € H!

Using the fact that
a—=b C —aUb, (1.7)

one shows that the choice of representatives in 2 is inessential for the definition of the inte-
rior /closure operator, namely, Va;,b;,a;,b; € H :

ﬂ—aiUbiZH—ajUbj = ﬂai%bizmaj‘—)bj (1.8)
1 1 1 1
Interior is defined for every b (of the form 2):
l(ﬂ —a; Ub;) = ﬂai — b;. (1.9)
1 1

Letting C(H) = T gives I(C(H)) = H.

Given a homomorphism A : H1 — H2, let V), denote the filter in H1 given by V, = {x €
H1 | h(x) = 1™}, which determines the congruence on H1, the kernel of h, given by
T~y e (2o y) € Vi A (y =™ 2) € V. Given a filter V in a (pseudo-complemtend)
algebra H, we write H/y for the quotient algebra by the congruence ~v. It is the standard
fact that the mapping ¢ : H — H/y sending each & € H onto its equivalence class [z]V is a
homomorphism satisfying also the condition:

Y CEY ez yeV. (1.10)

Let Ti = C(Hi) be as described above. Let Vi) be the filter in T1 generated by Vi,
and ~¢(p) the respective congruence on T1 (relative pseudo-complement & — y becoming
relative complement, i.e.,  ~cp) ¥ & (—zxUy) € Vom) N (—yUx) € Vom)). We let
q:T1— Tl/y,, = T1' be the quotient mapping.

1. Assume first that h is onto. For the moment, consider only the boolean part of all involved
algebras T1,C(H1/y, ), etc.

IThere are more specific conditions for the canonical elements to which we will return shortly.
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Let Vg(n) be the filter in T1 generated by Vi, i.e., one conisting of all elements b for which
there exist some y1,...,yn € Vi, with y1 N ... Ny, Cb. We have that Vz € T1:

i(2) eV & 2 € Vew- (1.11)

= is obvious since Vi, C Vg(i) and i(z) C z, while < follows since z € Vg (p) implies that
N7 yi C z for some y1,..., yn € Vi, but then also (' y; C i(z), and hence i(z) € Vs,
In particular, this gives Va,b € H1 :i(—aUb) =a — b € Vi & (—aUb) € Vg, so
VYa,b € H1:
a~pb & a ~c(h) b. (1.12)

This will be used to show the commutativity of the following diagram, where we view Cs
simply as inclusions (¢: T1 — T1/y,,, is the quotient morphism):

C

H1C T1
q
n (1.13)
T1 = Tl/,,
H1' = Hl/y, —% > C(HT)

To show the claimed isomorphism, we also need the more specific conditions on the canonical
elements in the boolean extension T of Heyting algebra H, given in [7] and mentioned in
footnote 1, and some of their consequences:
rl. every b € T has the form ﬂ? —a;Ub; where for all 1 <i<m:biy1 Caiy1 Eb; Eay
r2. equivalently, each b € T can be written as [J] a; N —b; with the restriction as above;
r3. given b as in r2, its complement —b = U"+1 bi—1 N —a; where bp = 1 and an4+1 = 0;
rd. Jlain—-b; CU"c;N—d;iffa;Ndj_1 ChilUcjforall <i<nandl1<j<m+1
(where we complete the representation of the rhs with the element 1 N —1 for index 0
and 0 N —0 for index m + 1, i.e., so that do = 1 and ¢ypt1 = 0)
Let = U7 [ai]V» N —[b:]¥* and y = UT"[c;]V* N —[d;]V* be arbitrary elements in C(H1'),
with a;, b;,c;,d; € H1.

o COH) 8 ([g,]V [d;—1]" C [b:]¥» U [c-]Vh)HI' for respective i, j
(1.19) (ai Mdj—1 < b; U c])Hl € Vi for the same 1, j
Y (—(aindi-) U (b Ue)™ € Ve for the same i, j
PR (las Nd;_1]Ye™ C [b; U ¢;]Vem) TV for the same 4, j
g fomo ([a:]Ve® N [d;_1]¥e® C [b:]Ve® Ue;]Ye®™ )TV for the same i, j
— U?[ai]vc(h) n [bl]vc(h) CTI U ¢ ]Vc(h) n— [dj]Vc(h)

The last equivalence follows, assuming the restriction from r2, for any boolean algebra.

Since all elements of C(H1’) have the form as just considered, while all elements of T1’
the form as either side of CT" in the last line, this shows that YV € H1 : [€]Vr = [x]Vew
and so the correspondence

ey s Jal™ n-pg™ o el n-pieo et (1)

is an isomorphism between the two boolean algebras. (Preservation of complements follows
by r3, while of unions by the very representation of elements in r2 as unions; these two
conditions are sufficient.) By this isomorphism, we can identify the boolean parts of both
algebras, C(H1') = T1', which yields also that Vo € H1 : h(z) = q(z) = C(h)(z).

So far, we have not addressed the interior operator in T1'. By (1.11), Vg(s) is an i-filter
(Vz : 2 € Vigny = i(2) € Vo)), and hence q is a toplogical algebraic homomorphism, i.e.,
also g(i(z))™* = i(g(z))™" (e.g., theorem III.12.1 in [11]).
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By the above identification, showing that i([x])Tl’ = i([x])C(Hll), will complete the proof
of the isomorphism. But this follows easily, since the above correspondence can be written
equivalently, using representation from rl, as

CHL) > (—[a:]™ U™ © [)—[a:] V™ Ubi]Ye™ € T1'.
1 1

(N7 —fai] ™ U] ™) HY = §(NO] —[ai] Ve U b]Yem) T [g]Vr = [z]Vem

i(q(N] —a; U b)) ™

2. Consider now a diagram like (1.13) with injective homomorphism 4, : H1' — H2.
The respective congruences are now identities, and extending ¢x to ¢ by (] —a; U b;) =
N} —ir(aj) U in(b;) yields an injective boolean homomorphism. The image in(H1') is a
subalgebra of H2; hence also C(i5,(H1')) is a subalgebra of C(H2). Applying the previ-
ous argument to H1' and ¢, (H1'), gives an injective (since Vi = {1} so Vo) = 1) top-
logical algebra homomorphism T1' — C(i,(H1')), and inclusion into C(H2) the desired
C(in) : C(HY') - C(H2). Again, Vx € H1' : ip(z) = C(in)(z).

3. Given an arbitrary homomorphism A : H1 — H2, we have a factorization h = qx;in

H1 4%» H]-/V;f#) H2

Then C(h) = C(qn);C(in) : C(H1) — C(H2) is a toplogical algebra homomorphism which
coincides with h for all (opens) x € H1.
4. C preserves compositions of morphisms. For, given h : H — H1 and g : H1 — H2,
with the respective filters V4, V,; in H, H1, the composite h; g is obtained from the filter in
H: Vi = Upivney, [z]Y» D V. So
C(h);C(9(NT —ai V)T = Clg)(N] —[ai] ™ U [b:]™)™*
(N7 =[la:]¥* 1% U [[b:] ¥ ] Vo)™

= (N —[ai] Ve U [0;]Vrie) T2

= C(hg)(N} —a:i Ub:)™.
One verifies easily that C(idu) = idg () and so C : HA — TA is a functor.

Inspecting the construction of C'(h) for a given h : H — H1, one observes that restricting

C(h) to H gives h (i.e., for every (open) z € H : C(h)(z) = h(z)). That is, also for homo-
morphisms we have that I(C(h)) = h. |

Remark 1.15 Observe that the proof entails a stronger claim than stated in the theorem.
Namely,
obsl. Not only is C strongly persistent (i.e., C;I = ID3 a(ry), but also the morphism C(h) :
C(H) — C(H1) is unique such that it coincides with h on the sublattice H of C(H),
i.e., unique such that I(C(h)) = h.
obs2. C: HA — TA is full and faithful.
obs3. When h is surjective/injective then C(h) is surjective/injective.
obs4. I:TA — HA is surjective on objects (and full).

This tight correspondence is strengthened even further by the following result.

Theorem 1.16 The functors C : HA — TA and I : TA — HA are adjoint, C - I, with unit
being identity.

PrOOF. Given an H € HA and T1 € TA, and a morphism A : H — I(T1), we have to
show existence of a unique morphism g : C(H) — T1 such that I(g) = h (this simplification
obtains since we have C;I = ID4 41, i.e., the unit of adjunction will be identity.)

Denote H1 = I(T1) and T = C(H). Since H1 is a sublattice of T1 so there exists an
element |JT a; N —b; € T'1 for every (finite) combination of a;,b; € H1. Define the mapping
g: T — T1by

g((Jai n =) = ((Jh(ai) N —=h(b:))™". (1.17)
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In particular, Vx € H : g(z) = h(z). To verify that it is indeed a homomorphism, we show
first that it preserves the ordering, Va;, b;,a;,b; € H :

Urain=b:)T =2z C y= (U N—d)T =
(UT hlas) N =h(b:))™" = g(z) € g(y) = (U7 h(e;) N —h(d;))™"
The proof of this fact uses the restricted representation r2 of T-elements and is based on the

characterisation of CT in terms of C™ given in r4 on page 4. (It is essentially the same as
the one following that characterisation.)

(1.18)

zCTy PLEN a; Ndj_1 CHo U cj for respective i, j
b hgmeo h(a;) M h(dj—1) ™ h(b;) U h(c;) for the same ¢, j
HL suiatfice TL b a) N h(dj—1) €T h(bi) U h(c;) for the same i, j
E4 U7 h(ai) N —=h(b;) €T U7 h(c;) N —h(d;) for the same i, j
“ @™ )

The equivalence marked B.A holds for all boolean algebras, assuming the restriction r2.

Homomorphism condition follows now easily. For preservation of complements, we use
again the restricted representation r2 of T-elements and the characterisation r3 of comple-
ment from page 4:

g(—Utain—=6)" = (Ut biin—a)T bo=1, ant1 =0

UL Abio) N —h(a)™

= (=Ufh(a) n—h@)™

= (=Ui g(ai) N —g(b:)) Vo € H: g(z) = h(z)
where the equation marked B.A holds for all boolean algebras, when the respective inclusions,
required by r2; hold. But as they hold for a;,b; € T, they also hold for g(a;/b;) = h(ai/b;)
in T1 by (1.18). Preservation of unions follows by the representation of elements in T (as
unions).

To complete the proof that g is a homomorphism of toplogical algebras, we show that it
also preserves the interior operator. Now, (1.9) holds for any toplogical algebra T1 and the
lattice of its open sets H1 = I(T1), i.e., Va,b € H1 :i(—aUb) = a — b (e.g., theorem 1V.1.4
n [11]). We therefore obtain, Va;,b; € H :

AR (1.9) n
9G(Ny —a:s Vb)) = 9((Ny ai = bi)i)
= h((N7ai=b:)7)
(N has) < h(b))!

(N h(as) = h(bi))
i(N7 —h(ai) Uhb:))™)
i(9((N); —a: UB)™))
Restriction of (1.17) to elements of H makes it obvious that I(g) = h. To complete the proof
of adjointness, we show uniqueness of g. But this follows trivially, since g is induced by h.

Any other homomorphism g’ which coincides with g on all elements of H will also coincide
there with h, and hence will have to satisfy (1.17). |

(L.9)

(1.17)

To appreciate the meaning of this adjunction, and in particular of its unit being the identity,
compare this to the possibility of a similar relation between (classical) boolean algebras B.A
and TA. There is the obvious forgetful functor U : TA — BA, which simply forgets the
existence of i. There is, however, a multiplicity of possible definitions of a functor 7' : BA —
TA, since there are many ways of adding the interior operator i to a boolean algebra (e.g.,
i(z) = =z, i(z) = 1 for z # 0 and i(0) = 0, etc.). None of such definitions will yield an
adjunction T 4 U if we, at the same time, want to obtain the identity on objects U(T'(B)) = B.
To obtain an adjunction, we have to let T(B) be a free extension of B, i.e., an algebra
with freely added elements i(x) for all z € B, then freely closed under all operations of T.A
and, finally, quotiented by the congruence induced by the equations axiomatizing toplogical
algebras. This will not be a (strongly) persistent extension, but should still yield a conservative
extension, in the sense that we should obtain, as the unit of adjunction, an inclusion g : B —
U(T(B)) for every B € BA.
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2 Embedding IL into S4

We consider the syntax of intuitionistic propositional logic IL and modal logic S4 over a fixed
alphabet X of propositional variables. McKinsey-Tarski embedding of the sytax is given by:

IL —» 5S4
a€X:tr(a) = Oa
tr(¢r Ada) = tr(d1) Air(e2) (2.1)

tr(¢r V) = tr(¢1)Vir(p2)
t’l“(¢1 — ¢2) = D(tr(dn) — t?"(d)z))

Models of IL are Heyting algebras and of S4 toplogical algebras. Satisfaction relation is given
by the obvious extension of an assignment v : X — M to formulae and by the standard
condition M |=, ¢ <= v(¢) = 1. Explicitly:

HASH I, ¢iff: TAST =y ¢ iff :
a < wv)=1 a & w)=1
AP & v(d1)No(d2) =1 d1Ap2 & wp)Nw(g2) =1
P Vo2 & v(d1)Uov(s)=1 $1Veor & w(pr)Uw(g:)=1
$1—>¢2 & v(d1) Su(d)=1 | ¢1 ¢ & —w(d)Uw(p2)=1

O¢1 & i(w($1)) =1

The classical result concerning this embedding states that I’ |miL ¢ <= tr(T') =74 tr(d).
However, a stronger relation obtains from which also this result follows.

Following the suggestions from [1], one introduced the concept of institution, [3], as a
general semantic concept of a logical system. We could expand our definitions to view both IL
and S4 as institutions, but this would only require a lot of bureaucracy. We therfore restrict
our attention to the essential aspect which can be presented as if the two logics (for a given
alphabet X)) belonged to the same institution. The essential aspect of the definition is the so
called satisfaction condition (translation condition in [1]) which amounts to the requirement
that satisfaction relation remains invariant under translation of the syntax. In our particular
situation, the condition reads as follows:

Vo €ILVT € TA: I(T) £ ¢ <= T = tr(¢) (2.2)

Intuitively, an embedding of IL into S4 consists of a pair E = (¢r, I), where tr is the translation
(inclusion) of IL-formulae into S4-formulae, while I is a functor which from any 7.A-algebra
recovers the part corresponding to the IL-syntax, namely, a Heyting algebra. We have the
following diagram, and the satisfaction condition connects a formula ¢ € IL and a toplogical

algebra T :
IL r sS4
d:) tr t’l"(qﬁ)
=1§-£A |=’iI'A
1(5?) ! T
I(T) ¢ = T = tr(¢) (2.2)

Verification of the condition presents no serious difficulties.

PrOOF. We show a stronger statement. Given an assignment w : X — T, we define w: X —
I(T) as w(z) = i(w(z)) for all x € X. We show that V¢ € IL VT € TA Yw : w(tr(d)) =
w(¢), by induction on ¢. (This is (5) in the proof of theorem XI.8.6 from [11], which states
equivalence of validity of IL-formualae in H.A and their translations in 7.4. (2.2) is a more
general condition with wider consequences.)
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Let w : X — T be arbitrary. For atomic ¢ = a : w(tr(a)) = i(w(a)) = wW(a). Induction
passes trivially through A, V, and for — we get w(tr(¢1 — ¢2)) = w(O(tr(é1) — tr(é2))) =
i(—w(tr(gn) Un(tr($2)) £ i(—@(¢1) UT(92)) = T(n) = B(g2) = B(1 — 2).

The main claim follows. Assume T |= tr(¢) and let v : X — I(T) be arbitrary. But
since I(T') C T, so v can be obtained as a w for some w : X — T, so the claim follows by
assumption and w(tr($)) = w(¢). For the converse, assume I(T) = ¢ and let w : X — T be
arbitrary. The claim follows now by assumption since w(¢) = w(tr(¢)) for any w. O

Putting a requirement on each particular model, this establishes a tighter relation between
the logics than the classical embedding which merely ensures preservation and reflection of
validity, [10].

For any (class of) IL-formulae I' and the class HA(T') of Heyting algebras which are
its models, on the one hand and, on the other hand, the translation ¢r(I') and the class
TA(tr(I")) of its toplogical algebraic models, we obtain the restriction of our functors I,C
with the following specialization of the adjunction from theorem 1.16 to the respective model
classes (which is standard property of an institution, following from (2.2) whenever the functor
corresponding to our C is persistent.)

Theorem 2.3 For every (class of ) IL-formulae T', the functors C : HA(T') = TA(tr(I")) and
I:TA@#r(T)) = HA(T) are adjoint, C - I, with unit being identity.

PrOOF. By (2.2), if H |= ¢ then C(H) |= tr(¢) (since C is persistent, i.e., I(C(H)) = H).
On the other hand, again by (2.2), when T |= tr(¢) then I(T) = ¢. That is, the functors can
be considered as mapping the respective model classes into each other. The rest is proven as
for 1.16. m|

One sees easily that also the observations from remark 1.15 still hold, when the formu-
lations are restricted to the model classes HA(T'), TA(tr(I')). In particular, the functor
I:TA(@r(T)) — HA(T) is surjective on objects, obs4.

As a simple corollary we obtain then the classical result about the translation tr(_) pre-
serving and reflecting validity of [L-formulae, e.g., [10], theorem 5.1 (with provability replaced
by validity). But we also obtain a stronger consequence, namely, preservation and reflection
of semantic consequence. The latter is defined by:

Iex ¢ <= K(I) Ex o (2.4)

where we instantiate K either to HA or TA, and K(I') = {M € K| M |=x T'}.
Corollary 2.5 The following equivalences hold:

1. Fua ¢ & Fratr(e) (5.1, [10])
2. T ':?{A ¢ & t?"(r) 'ZTA t?“(d)) (XI.8.6, [11])

PrROOF. As 1 is a special case of 2, we verify the latter. Assume HA(T') = ¢ and let
T € TA(tr(I")) be arbitrary. Then I(T) € HA(T') by 2.3 and so T |= tr(¢) by the assumption
I(T) E ¢ and (2.2).

Conversely, assume TA(tr(I")) = tr(¢) and let H € HA(T') be arbitrary. By obs4, there
is a T € TA(tr(T")) such that H = I(T). But then the assumption T [ tr(¢) and (2.2) imply
that H |= ¢. m

In other words, the extension of an IL-theory I' to its S4-image ¢r(I") is conservative. Notice,
however, that this relation holds pointwise for every model, i.e., we can strengthen the above
to the following:

Corollary 2.6 For every HE€ HA and ¢ € IL: H |E=ya ¢ <= C(H) =74 tr(d).
PrROOF. C(H) |=74 tr(¢) & I(C(H)) Ewna ¢, but by persistency of C, I(C(H)) = H. O

As another corollary, of theorem 1.16 and obs3, we obtain for instance theorems 1.17 and
1.18 from [9].

Corollary 2.7 (1.17) For any H € HA, T1 € TA, if H is a subalgebra of I(T1) then C(H)
is a subalgebra of T1.

(1.18) IfH ~ H', then C(H) ~ C(H') (and the latter isomorphism is uniquely determined
by the former).
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The adjunction from theorem 2.3 establishes a kind of canonicity, or freeness, of the extension
from IL to S4. The functor C from theorem 1.6 yields not only some boolean algebra related
vaguely to the source Heyting algebra, but a free such algebra. (MacNeille observed that
all relations of the extension are “required” by the extended algebra, while Tarski/McKinsey
showed that the extension is “minimal”. Both these observations are captured by the ad-
junction result.) This adjunction finds its real use in the semantic considerations. Thus, for
instance, as left adjoints preserve colimits and the right ones limits, we can obtain coproducts
in TA as C-images of coproducts in ‘H.A and, on the other hand, products in H.A as I-images
of products in T.A. As such issues are not in our current focus, we leave them aside.

3 I(C-algebras as models of S4

For every Heyting algebra H and x € H, we obtain in the extension T = C(H) :
c(zx) = —i(—z) = —-i(—2zU0) = —(x — 0) = — + x, (3.1)

i.e., the introduced operator of closure/interior is just a combination of the intuitionistic
and classical negation. Thus the intuitionistic negation survives the embedding, albeit in a
disguised and hidden form.

Seen from the opposite direction: the closure/interior operator of any topological algebra T
contains an aspect of intuitionistic negation which, in fact, is what makes the straightforward
reduction of such algebras to Heyting algebras possible when defininig the functor I in theorem
1.5. (3.1) gives also the dual fact:

i(z)=+—x (3.2)

The apparent “problem” is that -+ is defined only over H, while we want to use this, or (3.1),
for arbitrary elements of our algebra. This is only apparent, since in any T.A-algebra, we can
define the = operation by:

+r =i(—z) (3.3)

Also, in any 7.A-algebra we can define Heyting arrow:
zoy=i—zUy)=+—(—zUy). (3.4)

This suggests the possibility of combining in one structure the classical and intuitionistic
elements according to the following definition.

Definition 3.5 Consider ZC-algebras (“intuitionistic-classical”) (C;U, N, —, <) where (C;U, N, —)
s a boolean algebra, and a unary operation + (intuitionistic negation) satisfies the following

azioms:

sl. -2 C —x

s2. sr=+—+z¢

s3. +(zUy)=+zN+y
s4. +0=1

Trivially, we can convert every T.A-algebra into such an ZC-algebra using (3.3), while an ZC-
algebra can be converted into a 7.4-algebra using (3.2). This last claim follows by the choice
of the axioms s, since the formulations of s1, s2 are equivalent to those in il and i2 (see 11,
12 below). s4 is trivially equivalent to i4, and s3 to i3.

3.1 Some tautologies

11. sl iljie, vz C—x < +—zCuzx

12. s2 & i2)ie,sx =+ —52 <= T+ —r=+—+—=T
13. 1 =0

MK z2Cy=+2 Dty

15, +—(szUxy) =z U+y

6. +—(szN+y)=+zN+y

17. +x = z — 0 using (3.4) as definition of <»:
I8 zN+z =0
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19. xg+—xé>x=+—x
110. (z1 = y)N(z2 > y)=(T1Ux2) >y

1. anzCb<aCrx—=ab=+—(—zUb)=+(zN-d)

112. aNz Cb=a Cx <> bwhen (*) a =+a’ (in particular, when a = + — a)
118. C+ +zwhen (*)z==2" (forallz:2 C — +x)

114, +—2C++2

115. +zU+y C+(zNy)

116. ++ox=++++z

n7. —++—-xzC—+u=.

ng. —+(—+znN—-+y)=—+2zN—+y

119. sz =1=2z=0
120. sz =04z =1.

We prove these statements below:

sl
pll. +(—z) C —(—z) =z — and conversely: + —zCz =+ —(—z) C —z, ie, T2 C —z
pl2. s2 & i2 (wherei2is + —z =+ — + —z):
s2 = i2 is obvious; for the opposite simplify + — (—z) 2. .. (—z) to s2.

pl3. +1 = 0 since: +ls§1—1=0=>+1=0
P4 zCy= -z 2D +y
rCy <= zUy=y= +(zUy) =+y Ey srnay =1y, e, 2Dty
pl5. C follows from 11, and the opposite inclusion is shown as follows:
+—(+rzU+y)N(+-zU+y) =

+—(rzUxy)N+z U +—(+zUxy)N=+y
Z s—(szUsyYN+—5z U +—(szUty)N+—+y
£ +—((+zUsy)N+r) U +—((+zUsy) N+y)
= +—((kzn+x)U(+yNn=+z)) U +=—((s+zn+y)U(+-yN-=y))
= +—(+zU(+yNn=2) U +—((zn+y)Un-=y)
= +—(z) U +—-(+p)
2 = U +y
pl6. +—(+mﬁ+y):+(—+mU—+y)s=3+—+mﬂ+—+ys:2+mﬁ+y
pl7. x<—)0(3i4)+—(—xu0)=+—(—x)=+m
pl8. tN-z=0=52zN+z=0
plo. x§+—xé>x:+—m
pl10. lhs e —r1Uy) N+ —(—z2Uvy)

==
2 +—((-mUy)n(-z2Uy)

+—((—z1N—22)Uy) = +—(—(x1Uz2)Uy) = rhs
plll. aC+—(—zUb) <= an(=(zN-db)=a
=L an(-(zn-b) =a
<~ aN(zN-b)=0 <= anNzCh

pl12. anzCb <= aC—(xN-b) — is N-complement
< —aDd——(zN-b)
— —(+d)D(xNn-b)
4 14 Cx(zn-b)
& 2y Cx(zn-b) & a C +(zN-b)
sl * S,
pli3. 2D tr==+—gzC+=zx &y Crag & 20/ Cra 2
The inclusion typically fails when z is not open. E.g., for the usual topology on the real
line, [01 1] Z (07 1) = +((—OO, 0) u (17 +OO)) =+ [07 1]

sl 14
pli4. —xD+r—=+ -z C+ +r.
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pl15. (+zU+y)N(zNy) CO0 (by distributivity and 18)
1248 (szU+y)C(zNy) =0
PN (zzU+y) C=(zNy)
The inclusion may be strict, e.g., let 1 = R with the usual topology, + = Q,y = R—Q;

then +(zNy)=1#0=+z U +y.
113 13

pli6. -+ +z C ++ + +z, while -z C +++$é++$2++++$
pli7. +—rxCorx=— —++—2 C —+uz. Le, ci C ¢, and the inclusion may be strict: z = Q,

then i(Q) = @, and so c(i(Q)) = @ # Q = ¢(Q).
pl18. C follows since — <+ z D z by s1. The opposite is verified as follows:

115
—+(—+zNn—-=y) C —(+—-+2zU+-—+y)
= —+—-—TzN—-—+—=y
2 —+TrzN—+y
pl19. -2 =1— —+2=0=2=0,sincex C — +x.

p120. the dual of the above fails, of course, since dense elements, ~z = 0, need not be 1...;
we have some standard things about them, e.g., each such element has the form a U +a
(only if follows by taking a = z, while if using s3)...

As one would expect from topological spaces, every open element is a complement of a closed

one and vice versa: open means to be of the form +z, then — + z is closed, while +z is exactly
complement of the latter. On the other hand, to be closed means to be of the form — + x,
which is —(+z), i.e., complement of an open +.

Notice that for every closed element £ = — + ¢, we have +x = — — +2 = —=x.

3.2 Relating tautologies

Lemmata 1 give only a few direct proofs of a vast variety of tautologies. We can easily conclude
that the following hold in Z(C-algebras (the respective restriction of the language is given to
the right):

B) any classical (boolean) tautology Bu=z|BNB|BUB|-B]|0
1) any topological/S4 tautology pru=c|pNp|lpUp|—p|+—p|0
¢) any intuitionistic tautology tuo=+—x|eNe|eUe|+—(—U) |0

(In B8 and p, we added 0 merely to ease comparison.) For each of these grammars, its language
is a proper subset of the whole language. However, for each formula of the whole language,
there exists an equivalent L(u) formula, since +¢ is expressible in it, for instance, as +—(—¢).

The restriction on the variables in ¢ simply makes sure that all intuitionistic formulae
address only the constructive/open elements of the algebras. (Equivalently, we might only
require +z.) For instance, 116 would be formulated intuitionistically with one + less. In our
case, it acquires this additional +, because the intuitionistic tautology +x = + + <+, holds
in our case for the open, but not necessarily for other elements. Similarly, the intuitionistic
tautology 113 may fail when z is not open. On the other hand, some intuitionistic tautologies
survive in the unchanged form and can be applied to all elements, not only the open ones,
e.g., 111, 115.

Validity of all (instances of) classical tautologies follows since ZC-algebras are boolean
algebras, and validity of all topological tautologies since they also are topological algebras,
with interior written as +—. Finally, validity of all intuitionistic tautologies follows since,
by the restriction on the variables which must be preceded by +—, they address only open
elements of an ZC-algebra, that is, only and all elements of its substructure which is Heyting
algebra. (In the proofs, we may mark some transitions by ¢, p if we merely refer to a tautology
from the respective logic.) McKinsey-Tarski embedding (2.1) turns out to be simply an
inclusion of the sublanguage L(:) C L(u).

In addition, we also have tautologies which do not belong to any of the above sublan-
guages, for instance, s1 or s2. We can view these as tautologies “connecting” the different
sublanguages. In particular, they will allow us to recover some of the classical results relating
the different logics involved and express them in the internal language of ZC.

11
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3.2.1

One such result was given in corollary 2.5 based on the translation (2.1) ¢r(_) : L(¢t) = L(p).
In the present case, there is actually no translation and tr(¢) = ¢: IL is simply a syntactically
identifiable fragment of S4. (Of course, so is CL, and this is the simplest possible proof of
soundness of the rule including among S4-provable formulae all instances of propositional
tautologies. This rule, present in all modal logics, reflects the fact that such logics relate to
boolean algebras — with appropriate operators.)

3.2.2

Intuitionistic logic emerges now as a syntactic subset of ZC-logic, inluding the intuitionistic
negation. The specificity of this logic appears thus to be the consequence of restricting the
domain of interpretation (assignments to variables), which is reflected in the basic case of its
grammar. It follows trivially (by s2, s3 and 15) that all elements interpreting expressions of
¢ in an ZC-algebra are open.

As an example illustrating that we obtain “intuitionistic” connectives by restricting at-
tention to the “intuitionistic” elements, we show the disjunction property:

Lemma 3.6 The following equivalences hold (x may be a sequence of variables):
1. IC = — + ¢1(z) N — + ¢a2(x) = O iff either ZC |= ¢p1(x) =0 or ZC |= ¢2(x) = 0.
2. IC = +¢1(x) U +¢a(z) = 1 iff either IC |E +¢1(x) =1 or IC = +d2(z) = 1.

PROOF. 1. <« is obvious, while = is theorem 4.12 from [8] (— + z = c¢(z)). It holds here
because each ZC-algebra can be seen as a toplogical algebra (used in that theorem) and vice
versa. In particular, any derived ZC-operator ¢; is expressible as a derived 7.A-operator and
vice versa.

2. <= is obvious, while the disjunction property = follows from 1. The assumption is equiv-
alent to ZC = (— +é1(x))N(—+¢2(x)) = 0. Then either ZC |= ¢1(z) = 0 or ZC |= ¢2(x) = 0,
by 1. In either case, +¢;(z) = 1 by s4. |

3.2.3

Since + is in our case the “switch” which brings an element over into the “intuitionistic
subuniverse”, some classical results, in any case those involving double intuitionistic negation,
should obtain a natural — and internal — expression. For instance, we have:

—a=1 <<= +a=1 (3.7)

ie, —a =1 = a = 0 = +a = 1, and the opposite holds since +a C —a. This gives
immediately the corollary:

ICE —¢(z) =1 < IC = +¢(z) = 1. (3.8)

But it is not exactly the classical theorem saying that, ZC | —¢(x) = 1 (where ¢ is a
boolean derived operator) iff ZC = +¢'(x) = 1 (where ¢’ is an appropriate translation into
intuitionistic connectives).

Likewise
a=1£>+a=0ié>++a=1, (3.9)
gives the general statement:
ICE¢(z)=1=IC =+ +¢(z)=1. (3.10)

In a sense, this is stronger than the classical result, since ¢ can now contain richer combinations
of classical and intuitionistic connectives. But it is weaker when the relation between the

respective logics is concerned, because + + ¢(z) need not be an intuitionistic formula.
The opposite of (3.9) does not hold! (Take 1 = R? and z = R? — (0,0); then +z = & = 0,
and so + +x = 1. But ¢ # 1.) This counter-example works actually for open elements like

z =+ —y =+ —(0,0). The impossibility is related to the failure of 120.

12
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3.2.4 Glivenko’s theorem

Just like +— “switches” an element into its intuitionistic version, so +—+ switches a tautol-
ogy into a quasi-intuitionistic one (3.10). It is only quasi-intuitionistic because ¢ remains
unchanged and may involve non-intuitionistic expressions. The translation is obtained by
restricting somewhat the form of the considered expressions. In the view of definition (3.4)
and lemma 3.6, one direction of Glivenko’s theorem will have the following form.? Let ¢(z)
be a classical derived operator (i.e., with no +, cf. grammar g on p. 11), then:

ICE¢x)=1=ICE++¢(+—z)=1 (3.11)

where ¢ is assumed to be in conjunctive normal form (to simplify the presentation) and ¢’
is ¢ with all — replaced by +. Notice that this yields formulae which still contain classical
complement but only at the very variables and preceded by +. Hence they conform to the
grammar ¢ (the “ungrammatical” occurences of +_ can be repalced by - < 0). This is the only
difference from the classical formulation which is due to the fact that we are now interpreting
both CL- and IL-formulae in the same algebras, and intuitionistic satisfaction concerns only
open elements.

So let ¢ be in conjunctive normal form, i.e., ();,(U; Zi;) where each T is z or —z. IC |
¢ = 1 means that every ZC-algebra T |= ¢ = 1, and we conduct the proof for an arbitrary
such algebra:

ﬂZ(UJEU) =1 <= U]‘fij =1 for all ¢

<~ +—Ujfij:1 iz)Cz&i(l)=1
= - - (Uijm —Zijm U Uijp Tijp) =1

= F(ijm @igm NNijp —Tijp) =1

(subst) | .. .. ..
— T(nijmTTxijmﬁnijp_TTmijp):1 T -+
116 . e . .
<~ T(nijmTTTTxijmﬂnijp_TTxijp) =1
51714 - - . . - . -
—— T(nijmTTTTxijmmmijp Txijp) =1 xg — =X

3

& 3 (Ui + + F2iim UUy, wijp) = 1

(subst) . e . . .

— _T(UijmTTTT_wiijUijpT_xijp):1 Tr——-—
116 . . . . .
<~ TT(UijmTT_miijUijpT_mjjp):1
. . . ! !

= - (Uz’jm TZijm U Uq;jp xijp) =1

= ++ Uy T =1 for all ¢
= ++U;T;=1

s3 . . —
<~ - U'L - UJ -’17;] =
115, L. _
42; - - nz Uj J};j =1
The resulting Z;; have the form + — x;; (second substitution) and those which were preceded

by — are now preceded by =+ instead (line -5/-4). Note that this is an internal proof (not a
metaproof) as all transitions rely exclusively on the formulae valid in every ZC-algebra.
To complete the proof for arbitrary tautologies, not only in CNF, we only observe that

any IL-formula + <+ ¢(x) is (intuitionistically) equivalent to + + ¢'(x) where ¢’ is obtained
from ¢ by boolean transformations (e.g., + + (+91(z) U +¢2(z)) = + + +(¢1(z) N 2(z)),
+ = (+Y1(x) Upa(z)) = + + (P1(xz) <= 2(x)), etc. Also, x — y C —z Uy. Hence, if our

classical tautology is not, initially, in CNF, we transform it into CNF, apply the above result,
and then transform the final intuitionistic formula into the corresponding intuitionistic form
using these equivalences. This transformation is valid by the observations at the beginning of
3.2.

2We do not show the opposite implication which is a trivial consequence of the completeness results for IL and
CL, and the observation that IL-provability is contained in CL-provability.
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3.25 CL—IL
Godel’s embedding is the following:

CL — IL
a€eX:tr(a) = ++a
tr(prAg2) = tr(g1) Atr(2) (3.12)
tr(p1V2) = (+tr(di) A +tr(d2)) '
tr(gr = ¢2) = tr(g1) = tr(g2)
tr(—¢) = +tr(¢)

To show that BA | ¢ <= HA | tr(¢), we first utilize the observation that for any
formula tr(¢) € L(¢) : IL = tr(¢) <= TA = tr(¢). Again, we can assume that classical
tautology is in CNF. Translation of V is motivated by the analysis of provability. We have
+(+xN+y) = ++(xUy), so we can use this latter formulation. (As in 3.2.4, the implication
tr(¢) = 1 = ¢ = 1 follows trivially by inspecting the respective proof systems, so we address
only the opposite implication.)

ﬂi tT(UJ‘ fijn) =1
tT(ﬂ@' Uj Tijn) =1

As before, translation of implication is compatible with the above proof schema. We would

ni U]‘ Ti; =1 < Uj Ti; =1 for all ¢

= Ujn—2ijn UUj 2ijp =1

= <= (U]n —Zijn U Ujp Tijp) =1

= T3 Ujp—F3Tiin U, Faip) =1 o+ +a

= HNj T —F F@iia N, T+ Fwip) =1

= Ny, T FTiin N, T+ FTijp) =1

= (N T FFF TN, +3Tip) =1

= (U= Fzign) VU, + i) =1 foralld
= ++ (Uj, +(tr(zin)) UU;, trzip)) =1 for all ¢
= - = Uj t’l‘(fij) =1 for all ¢
= tr(U; @) =1 for all ¢

=

=

obtain
tr(p =) = tr(-¢Uvy)
= ++(tr(=9)Uir(y))
= =+ (+tr(op) Utr(y))
= =+ (tr(g) = tr(y))
L s str(g) = = = tr(y)
which is equivalent with the formula obtained by pushing the double ++ inside and, eventu-
ally, reducing + + + + x = + + z, i.e., with tr(4) — tr(y)) which results from (3.12)

4 7ZC-models for S5

The development in section 3 is not limited to S4. What is specific about S4 is only that
it contains the intuitionistic logic in an unmodified form. Further extensions will, typically,
affect this aspect and we illustrate it by an extension to S5.

To the ZC-axioms s1-s4, we add the S5-axiom:

sbh. —+zrxC++¢

which is just — +x C + — — + z, i.e.,, Or — OOz, Combined with axiom s1, this entails
— +x = + + z. That is, in ZC-algebras for S5, the negation of open elements equals the
interior of their negation. That means that the complement of an open is open, i.e., each
open is closed. But for closed elements +~x = —uz, i.e., the subalgebra of (cl)opens becomes
boolean.

An equivalent definition of S5-algebras, e.g., [4], requires that complement of every closed
element is closed, i.e.,

(*¥) Vzdy: —(—+2)=—+y.

14
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(sb = (*) follows since —+z =+ + 2 = —(— +z) = — + (+z), so we can take y = +z. For
the opposite implication, let z be arbitrary, then — + z is closed, and so —(— + z) ©_ v,
ie,+x=—+y. Butthen -+ (s2)=—+—+y=—+y=3zrx=>++r=—+2z)

Hence also complement of every open is open. (Le., —(+z) = — + = and by the above its
complement is closed, i.e., — — +z = — +y = — + x = +y, which is open.) Since in every

Z(C-algebra, opens are complements of the closed elements (and vice versa), this means that
in S5-algebras all opens are closed and vice versa, i.e., we have only elements wich are either
clopen or neither closed nor open. (Or else, just see the verification of s5 = (*) above, which
shows that +z = — + (+=x), i.e., every open is closed.) Le., as is well known, a topological
algebra is an S5-algebra iff the topology is almost discrete (open = closed).

Yet another equivalent formualtion of the s5 axiom is given in [4]:

(#%) VaVy:y=—+y=>—+(zNy)=—+zNy.
Some properties of such algebras:
sb-Il. —++—zr=+—z(ass —++—zc=——+—z=+—1x)
s5-12. +++zx ==z (as: +(++2)=+(—+2) =+2)

The essential difference between ZC-algebras for S4 and for S5 is that the former contain
genuine Heyting substructures. In the latter, where complement of an open is open, the
subalgebra of opens is actually a boolean algebra. This can be now seen as the crucial
collapse enforced by S5: its modalities, still present, express no longer a relation between
intuitionistic and classical worlds, but between one classical world and its substructure which
is itself classical. The remaining section is devoted to a discussion of a possible interpretation
of the relations between the studied logics and modalities from the perspective of ZC-algebras.

5 Reasoning

Since ZC-algebras are boolean algebras with the additional operation of +, the reasoning
system is obtained by augmenting the system LK for classical logic with the two rules for
handling this connective. The following rules form a sound and complete reasoning system,
LIC, for ZC-algebras. Having established some auxiliary results in 5.1, we prove completeness
in 5.2. In 5.3 we give a simple decidability argument.

Az : pkp for atomicp
L+ FR
TFAA IAFA
T I,-AFA TFA —A
R 'FAA ; T"BFA IA+-AB
I''A—- BFA 'FAJA—> B
v I'A+A ; T,BFA '-A A B
T, AVBF A TFA,AVB
A A B TFA '-AA ; THBA
AANB,TFA I'FAAB,A
. I+AFAA +IAF
- I,~AFA “TH=A
kA kA
(W) ATFA '+-A,B

In the rule (R+), =T denotes a sequence of formulae each starting with +.

Each side of a sequent is a set of formulae. A sequent I' - A is valid iff for every ZC-algebra
M and every valuation of the variables occurring in the sequent, v : X — M, (v(T") C Jv(A),
where valuations are extended to (sets of) formulae in the obvious way.

30One might expect this definition to require: (*) Nv(I') = 1 = Jv(A) = 1. This, however, would give, for
instance, x - Oz or Oz,z — y + Oy, which aren’t sound for S4. (Note that Oz,z — y + Oy does hold — it is
actually the K axiom: Oz,0(z — y) F Oy.) Our definition implies (*), so any valid sequent/tautology is also valid
according to (*). Finally, it squares well with the empty rhs of I & which becomes (I" = 0 rather than (T # 1:
the rule (R+) is both sound and invertible. All rules are sound also with respect to (*), if only we interepret I' - &
in (R+) as Nv(T") = 0.
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A

Lemma 5.1 All rules are sound, i.e., for every rule , for every ZC-algebra M and

every valuation v, if N v(Ts) C Jv(A;) then No() C Yv(A). The opposite implication
[invertibility] holds for all rules except (W).

PRrROOF. The proof for all classical rules is standard and applies since M is, in particular, a
boolean algebra. We only show the claim for (L+) and (R+).

(R+) N=TNACO0 < N+ € —A<= [+ C +A - the last equivalence holds since

N =T is open.*
(L+) TN+ACAUA <= I'nN+AN-ACA < I'n+A C A - the last equivalence holds
since +A C —A. m]

Example 5.2 The formula AV +A is not provable, since the proof cannot proceed past the
step = A, +A. Below, we show a proof of + + (AV +A):

A F A
A F A-A (RW)
A F AVv+A (RV)
A+(AV+A) + (L'+)
+(Av=+4A) F A (R+)
+(AV+A) F +AA (RW)
+(Av=+A4) F +AVA (RV)
+(AV+A) F (L=+)
F ++(AVv+A) (R
The “intuitionistic” tautology A — + + A is not provable. As observed at the beginning of
section 8.2, this is due to the fact that A need not be interepreted as an open element of an
ZC-algebra. Imposing such a requirement, gives the provable formula +A — + + +A.

Lemma 5.3 The following rules are admissible:
TFAA 5 THARA

1. (cut) TTFAA
¢ 0 £
(58) Srror () T e

ProOF. 1. The proof is given in the appendix.
2. (I's) 'AA

D,+AFAA (LW)

I,+-AFA (L)

3. Admissibility of these rules follows by expansion of O.

(T) IAEFA (54" ' A
'F—-AA (R-) I —AF (L-)
r+—AFA (L'+) “TH+-A (R%)
(S4) is just a special case of (S4’). m|

Remark 5.4 Notice that, given the rule (L'+), the rule (L) becomes admissible, simply as
its special case. However, the latter is invertible while the former is not. (Invertibility may
fail whenever, semantically, +A # —A. It obtains whenever this equality holds, e.g., when
A is closed, in particular, has the form — + A'.) Non-invertibility of (L'<) is suggested by
the mere fact that the proof of its admissibility uses (W). (Analysis showing that such a use
18 required might even establish non-invertibility.) Since all rules of LIC, except for (W), are

4We do not have the distinction between the bound and free variables, and hence, between the open and closed
formulae in the usual sense. Therefore, it should not be confusing if we call a formula “open”/“closed” when it
denotes an open/closed element for all possible valuations. Sometimes, as in the present case, “open” refers to a
formulae starting with +.
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invertible, the proofs identify explicitly the “non-invertible transitions” needed, typically, in
the intuitionistic logic.

(W) is necessary because of (R+). Given only the classical rules, (W) can be made ad-
missible by generalizing the form of the azioms to T' = A where T N A # @. However, in the
presence of (R-=), this is no longer possible. Without (W) no sequent of the form - +A, +B
would be provable. This strengthenes the conjecture that no sound and complete set of invert-
ible Tules can be designed for the intuitionistic logic.

Note, furthermore, that the rule (L+) involves implict contraction, as the principal formula
+A is retained in the premiss.” Replacing this rule with (L'<) would require us to view each
side of the sequents as a multiset, and not a set, of formulae, and would demand explicit
contraction rule. For instance, the bottom part of the proof from example 5.2, would have to
be modified as follows:

+(AvV+A) + +AVA
+(AV+A),+(AVv+A) F (L'+)
+(AV+A) F (LC)
F ++AV+4) (R+)
5.1 Some lemmata
Lemma 5.5 Each of the follwing formulae is provable:
. FA— A
. F(A=>B)—=> (B—>C)—=(A—=0))
7. FA—> AVB
w. FA-C)=(B—>C)—=(AVB—=(0))
v.FAAB - A
vi. F(C -+ A) = ((C— B) = (C— (AAB)))

vil.
vE4s.
iT.
z.
Tt.

all the above with X —'Y replaced by X = Y, i.e., by + — (X = Y)
FA->(B—-C)« (ANB—-C)

the above with A repalced by +A and — by —

FAAN-A—> B

FA—-(AN-A)>-A

the two above with —, — replaced by +,—

FAV-A

PROOF. i—vi, viii, x, xi and xiii follow trivially since our calculus includes LK.
vii. We skip the easiest cases, and stop the proofs arriving at a purely propositional form.
—fori: AFA ax

FA— A (R—)
Fr—(A—>A) (S4)

— for ii: A—)BB—>C|-A—>C

—(A—>B),+—(B—=>C)FA>C (T)

—(A—=B),+—-(B—>C)F+—(A—>0C) (S4)
——(A—)B)I———(B—)C)—)——(A—)C) (R—)
+—(A->B)F+—(+-B2C)»+—-(A4—-0)) (54)
F+—(A2B)»+—(+—-B-20C)—-+—-(A—0)) (R—)

Fr—(+-A—>B)»+—-(+-(B=20C)»+-(A—=>0)) (59

—foriv:i A—-C,B—>CFAVB-—C

——(A—)C)——(B—>C)I—AVB—>C (7
—(A->0),+—(B—->C)F+—(AVB—>C) (S4)
——(A—)C)I———(B—)C)—)——(AVB—)C) (R—)
+—A-0)F+—(+—-(B—=2C)=+—-(AVB—=(0)) (54)
Fr—A-=2C)»+—(+-B—=C)»+—(AVB =) (R—)

Fr—(+—-(A=2C)»+—(+—B—=20C)—>+—-(AVB—=0))) (59

5Following the standard terminology, e.g., [12], we call a formula appearing explicitly in the conclusion of a rule
its “principal formula”.
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—forvii C—>AC—->BFC— (AAB)

——(C—>A), —(C—-B)FC— (AAB) (T)
—(C—=A4),+—(C—->B)F+—-(C—(AAB)) (S4)

——(C—)A)I———(C—)B)—)——(C—)(A/\B)) (R—)

+—(C—-2A)F+—(+—-(C—=>B)—+—-(C— (AAB))) (S4)

F+—(C—24)=-+—(+—(C—=B)=+—-(C—(AAB))) (R—)

Fr—(+-(C—=24)>+—-(+—(C—=B)—-+—-(C—=(AAB)))) (59

ix. —: B—C,ABFC
ABFC,A +—(B=C),ABFC (T)

A—-+—-(B—=>0C),ABF-C (

A +—-(B—=>C)FAANB—=C (

+—(A=>+—-B-2C)FAANB—=C (

+—(A=>+—-B-2C)F+—(AANB—>C) (S4)

Fr—(A—=>+—-B—-20C)—>+—-(AAB—>C) (

Fr—(+—-(A—>+—-(B->C)>+—-—(AAB->0)) (
+—: *AANB—->C,+AFB—>C

—(+AANB—-C),*AFB—C (T)
—(+AAB—-(C),+AF+—-(B—0) (54"
—(+AANB—->C)F+A—>+—-(B—C0C) (R—)
—(+AANB->QO)F+—(+A—>+—-(B—0)) (54)
F+—(+AAB—=(C)=+—(+A—=+—(B—=0)) (R—)

Fr= (= (FAAB=CO) i+~ (A +—(B—0)) (59

—forx: AR AB

A, +A+B (')
AN+-AFB (LA
F(AAN+A)—> B (R—)
F+—((AN+A)—> B) (54

— for xi: AFA

A+AF

AF A AN+AF
A— (AN+A),AF (L—)
+— (A= (AN+A) A (T)
+— (A2 (ANTA)F+A (R+)
Fr—(A—>(AN+A) - +A (R—)

Fr—(+—(A—=>(ANTA) > A (S4) a
The statements i-vi, together with x, xi and xiii imply that the Lindebaum algebra L is boolean
and we will use this in the proof of completeness below. The statements vii, ix and xii, apply
to all elements except for the one direction of ix, where the restriction to open elements,
+A, is needed. As the statements vii, ix, xii apply, in particular, to all open elements, this
means that the Lindenbaum algebra actually contains a Heyting algebra of open elements
with < being the relative pseudo-complement and + pseudo-complement. This fact will not
enter directly into the completeness proof, but it is related to the following lemma, which will
ensure that L is actually an ZC-algebra.

Lemma 5.6 The following are provable:
i. +AF—-A
. +AF+—+Aand + —+AF A
1. ~(AVB)F +AA+B and +AN+BF +(AV B)
w. F+(AN—-A)

PROOF. i is trivial and ii follow immediately by (S4’) and (T).

ili. A-A,B +B,AF A
AFAVB (LV) +A,+B, Al (L'+)
+(AVB), At (L'+) +A,+B,AV B}k (LV)
+(AVB)F +A (R+) +A,+BF+(AVB) (R%)
+(AVB)F+AA+B (RA) +AAN+BF+(AVB) (LA)

18
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The branches for B in both proofs are entirely symmetrical.

iv. AFA O
A —-AF (L-)
AN—-AF (LA)
F+-(AAN—-A) (R+)

Lemma 5.7 The following rules are admissible:

; FA—B

"F+B— A
THVAA and AT, T A
LA A L T"EA

PROOF. i. The last step in the proof of H A — B must apply (R—) to A F B, so we get

AFB .

+B,AF (L'+)

+BF+A (R+)
ii. Consider the first of the rules. We proceed by induction on the number n of disjuncts in
\/ A. The basis n = 1 is obvious, so assume IH for \/ A and a proof of I' - \/ AV D, A’. If the
disjunction \/ A V D is never processed in the proof, then I' - A’ and the conclusion follows
by (W). Otherwise, consider the first place . in the bottom-up proof (i.e., the lowest place
when viewed top-down) where this disjunction is the principal formula. It may be introduced
by (RV) or by (W). In the first case we have the following situation:

I-1. T'+VA,DA
1. " +-\VAVD,A" RV

z. T'tVAVDA

By IH, we have a proof I'. T” - A, D, A”. (The situation is entirely analogous if \/ AV D is
split in any other way as \/ A’,\/ A”.) Since the disjunction is not processed between ! and
z, the rule (R+) could not be applied anywhere between ! and z. But then, since all the other
rules are context insensitive, we can reuse the derivation [...z starting from !’ instead. This
will yield a proof z'. T, A, D, A’.

If \/ AV D is introduced at ! by (W), we simply introduce A, D instead and copy the rest
of the derivation which is possible by the same argument as above.

The proof of the other rule proceeds analogously by induction on the number n of conjuncts
in AT, with the trivial basis case n = 1. Otherwise, we have the same situation as for the
previous rule and we consider the lowest place ! where the conjunction is the principal formula:

I-1. ALGTI'EFA"
l. ATAGT"EA" LA

z. ATAG T FA
By IH, we obtain a proof I'. T',G,I”  A”. Since AT A G is not of the form <X, and since

it remains unchanged between [ and z, no application of (R+) occurs there. Hence we can
reuse the derivation [...z, starting with !’ instead, and obtain a proof z’. T',G,T" I A. O

o . r'-A—B . I
Note that the empty lhs in i. is essential — the rule ———————— is not admissible!. For

instance, A > B+ A - B,but A » Bl +B — +AT WhiChTWO'llld be unsound. E.g.,
—AUBYZ —+BU=+A ifwetake —+B=BC+AC-A=—(+—A).

5.2 The completeness proof

5.2.1. The construction of the Lindenbaum algebra L for LIC, over a given alphabet X, follows
[11] (numbers in square parantheses refer to the results given there). Let F(X) denote the set

19
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of all formulae over the alphabet X where, for convenience, we use the symbols U, N instead
of V, A. We define:

1. VAABeEF(X):A<B < F+A—B
2. VAABeF(X):A~B < A<Band B<A.
3. the carrier of L is L = F(X)/x, and for op € {—,+,U,N, =} : op™([4:]) = [op(4;)]

5.2.2. 5.5.i-ii ensure that < is a quasi-ordering over F(X) and hence ~ is an equivalence. It
induces an ordering (reflexive, transitive, antisymmetric) over F(X)/~ with [4] C [B] & A <
B. Thus [A]C[B]< + A — B.

Now, 5.5.iii-vi (iii and v yield for both arguments, only one of which was mentioned) ensure
that L is a lattice and ~ a congruence wrt. U,N [VI.10.3]. When also viii, x, xi, xiii of 5.5
hold, L is a boolean algebra and ~ is a congruence also wrt. to —, [VI1.10.6].

5.2.3. That ~ is a congruence also wrt. + follows by lemma 5.7.i which implies that if A < B
and B < A, then also +B < +A and +A < +B. So L is well-defined.

5.2.4. Thus L is a boolean algebra, and we verify that it is also ZC, i.e., satisfies the axioms
sl-s4. By lemma 5.6.i-iii (and (R —)), for each of the axioms s1-s3, | = r, the respective
implications - I — r and F r — [ are provable. Hence L satisfies these axioms. By 5.5.x,
0 =[A A —A], and by 5.6.iv we have that L = +0 =1, i.e., also s4 holds in L.

5.2.5. We consider only the canonical valuation of formulae in L, i.e., one given by c(p) = [p]
for p € 3, which extends to ¢(A) = [A4] for all formulae A. L |=. A means thus that [A] =1
under the canonical valuation, where 1 = [AV —A] =[A — A].

5.2.5.i. F Ao L = A, [VL.104]. If F A, then also (by (LW) and (R—)) F (A — A) = A,
so 1 = [A — A] C [A]. Conversely, if [A] = 1, then [A — A] C [A] and by 5.2.1-5.2.2
F(A— A) - A. Hence also A -+ AF A. Since F A — A by 5.5.i so, by admissibility of
(cut), we conclude - A.

5.2.5.ii. LIC is consistent (does not prove some formula) iff L is not degenerate, i.e., contains
at least two elements, [VI.10.7]. For by 5.2.5.i i A & [A] # 1, which means that L has at
least two distinct elements.

(p = —p, for p € 3, gives an example of an unprovable A. ILe., L is non-degenerate.)

5.2.6. If for some formula tf A then, by 5.2.5.i, [A] # 1, i.e.,, L [~c A. That is, L £ A and,
since L € ZC by 5.2.4, ZC [~ A.
Thus, combined with lemma 5.1, we have for any A: F A < | A.

5.2.7. The general statement follows: ' = A & NI' CUA & —NTUUJA =1, which by
the above obtains iff F AT' — \/ A. But any proof of the latter must begin (bottom-up) with
AT FV A. Lemma 5.7.ii gives then I - A.

5.3 Decidability

A tree of all possible (and attempted) derivations of a given sequent S is constructed bottom-
up starting with S in the root node. From each node, we split the tree into n branches where
n is the number of all possible applications of all rules to the sequents contained in the current
node. The subsequent node in each branch contains all the the premisses of the respective
rules’ application. When no rule is applicable to the (set of sequents in a) node, the branch
terminates. It terminates with success when the final node contains only instances of axioms,
and with failure otherwise.

All rules have the subformula property. Applied bottom-up they also reduce the complexity
of the sequent (measured by the number of connectives), with the only exception of (L-+) which
preserves the principal formula in the premiss. Hence, some branches may be infinite, namely,
those whose nodes contain sequents with +~A on the left of F. Such branches contain also
infinitely many applications of (L+). But due to the subformula property, in any such branch
there will be (infinitely many) nodes with identical (sets of) sequents. We terminate a branch
once such a repetition occurs.

Hence all branches terminate and a proof tree is a proof iff at least one branch terminates
with success. Putting the possible worries about the branching and complexity aside, we see
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that LIC is decidable. Recalling the grammars (3, ¢, from page 11, we thus obtain in one
stroke decidability of classical, intuitionistic and S4 logics.

6 A note on a possible reading

Triviality of the equivalence between the 7.A and the ZC algebras notwithstanding, the re-
formulation seems nevertheless to throw a new light on the relations between classical, in-
tuitionistic and modal logics. We are not attempting here to draw any deep philosophical
conclusions (which should never be drawn from any formal or scientific results). But we think
it is legitimate to attempt a more “intuitive” reading which might enhance the understanding
of the pure formalism.

First, + is not a modality! Well, this depends on a definition, but given the algebraic
tradition, it is more or less standard to consider a modality to be an operator on a boolean
algebra. An operator is, [5, 6], a strict additive function, i.e., (for a unary one) satisfying
op(0) = 0 and op(z Uy) = op(z) U op(y). Our + does not satisfy either of these two (s4 and
115).5

6.1 One world — many epistemolgies

Each ZC-algebra T contains a subset of elements constituting a Heyting algebra H, as given
in theorem 1.5. We can think of the latter as a universe of “intuitionistic elements” contained
in the universe of all (“classical”) elements of T. Given an arbitrary element z € T, we

“switch” it to an intuitionistic element by + — z. Since every y € T can be written as —z,
we see that +— does the “actual switching”, i.e., every element of H can be written as +z for
some ¢ € T. (Precisely: every +z is open by s2, while every open is defined by y = + — v,

i.e, has the form +z.)

6.1.1. The first question concerns the reading of these two universes H C T. Following
Heyting’s interpretation of classical logic as the logic of ontology and the intuitionistic logic
as the logic of epistemology, we would propose to read the universe of all classical elements as
the universe of all truths. The elements of the intuitionistic subuniverse might then be read
as:

actually provable truths

potentially provable truths

actually accessible/epistemic truths

W=

potentially accessible/epistemic truths
5. ..

We certainly do not want to enter all too detailed discussions of the differences between such
interpretations. But observing the tension between the actually and potentially accessible, we
should at least settle for one of them. Now, admitting the possibility of an omniscient agent
who knows all ontological truths, one might risk the accusations of some form of idealism, if
not theologism. On the other extreme, one can meet dedicated scientism which preaches the
ultimate rationality and comprehensibility of the whole world. The opposition between these
two extremes notwithstanding, they seem to defend the same point as far as the potentiality of
an epistemic access to the whole ontology (whether by us or by others) is concerned. Both will
presumably grant also that, at present, we are not in such a position, and this will be granted
by all who fall inbetween these two extremes. We therefore prefer to view the intuitionistic
subuniverse as the totality of actually accepted truths, whether of the kind 1 or 3. The
former can be plausibly seen as a subset of the latter (not everything we know is provable),
so let us choose the reading 3: the intuitionistic subset of the classical universe represents
finitary combinations of pieces of knowledge (the open elements). The number of such pieces
and their combinations will be probably extended in the futre (but this temporal aspect falls
entirely outside the scope of the present discussion). And so IL is the logic of (constructible)
epistemology, while CL of the whole ontology. The combination of these two universes in a one
framework illustrates also why S4 is a more adequate logic of knowledge than IL: the latter is

6115 gives a weaker statement, but consult the proof to see that it can not be strengthened.
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only the logic of solipsistic knowledge unrelated to any world outside its finite constructions,
while the former (and its refinement presented here) allows one to consider both dimensions.

Thus, ‘opens’ can be viewed as the objects knowledge is actually using, while all other
elements as objects which knowledge can be about. (Of course, knowledge can also concern
the epistemic elements.) We will therefore refer to all the classical elements as “ontological”,
while to their intuitionistic subset as “epistemic” (or “constructive”).

All the involved vagueness notwithstanding, it has already some implications for the read-
ing of the more specific elements which we will address shortly. But first let us return to the
point marked in the abstract.

6.1.2. Working with the possible world semantics (of modal logic), one has repeatedly em-
phasized that the “possible worlds” are not to be interpreted as some strange other-worldly
entities but simply as possible variations of the states of affairs obtainning in the world in
which we are actually living. Unfortunately, this intuitive point does not find any natural
expression in the semantic model where, indeed, different possible worlds can have nothing
ontological in common. If one points at one world claiming that this is the actual one, there is
still nothing in the framework ensuring that all agents actually share in this particular world;
there may even be agents to whom this world remains inaccessible. (A residual trace of the
“common world” can be found, for instance, in the concept of rigid designators whose role
(apart from the attempt to give an interpretation of proper names) is exactly to establish a
common ontology shared by all possible worlds.)

The present setting can be viewed as addressing exactly this problem by introducing a
distinction between the classical world of ontology, on the one hand, and its “epistemic sub-
structure” of epistemic elements which approximate all elements, on the other hand. The
“approximation” can be best thought of in terms of the epistemic elements (of a Heyting
algebra) as corresponding to the open sets of a topological space which, indeed, approximate
(better or worse) all elements. A variety of possibilities is then simply a potential multiplicity
of such “epistemic worlds” (Heyting algebras) which all are substructures of the same (clas-
sical) world. Formally, one would simply consider a multiplicity of +;, one for each agents

i.7

6.2 Two examples

To give an impression of the relations and interactions between the epistemic (constructive),
the ontological (boolean) and the modal elements implied by the presented formalization, we
give two simple examples for, respectively, S4 and S5, algebras. (We should emphasize the
simplicity of these examples which, being finite and small, are not fully representative. They
should, nevertheless, give the impression of the involved relations.)

6.2.1. S4. Consider a simple classical world B = P({a,b,c}) and two possible epistemic
substructures, Heyting algebras H1, H2. (We denote joins by concatenation, e.g., a U b is
written ab.)

H1 abc abc abc H2

| I\, |
VN <X N,
N, NS N,

We have, for instance:

"To the dedicated adherents of Kripke semantics, we could say that our proposal can be taken as a comple-
mentary, and not as a contrary, view of modalities. Simply, a boolean algebra with operators can be represented
according to the theorem 3.10 from [5], as an algebra of complexes (multialgebra), namely a boolean algebra with
the operator/modality being a set-valued function from which one can recover the reachability relation (see also
chap. 5 of [2]).
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| H1 | H2 | H1 | H2 | H1 | H2
1. —c=| ab | ab —b=| ac | ac —bc=| a a
2. ~c=| a b b= | ac c bc=| a 0
3. +~—c= c c ~—b=1| 0 b +—bc=| ¢ be
4. —<+c=| bc | ac —=b=| b ab —<+bc=| bc | abc
5. ++c= c c ~=+b=| 0 b ~+bc=| ¢ abc

The first table concerns the element ¢ present in both H1 and H2. The differences in rows
2. and 4. reflect the differences between the respective epistemologies. Reading +c as
“recognized impossibility of ¢”, for H1 it can be only a while for H2 only b. This is then
reflected in what appears as ¢’s possibility in row 4. In either case it can be c itself, but for
H1, possibly also b — as it does not belong to its epistemic world, the possibilities it harbours
are not recognizable by H1.

The second and third table concern elements which are in the epistemic world H2 but not
H1. Thus, either a or ¢ of H1 amount to impossibility of b, while for H2, it is only ¢. Dualy,
the necessity of b, row 3., does not obtain in H1, while it is present in H2 as the element
b itself. (Note in the third table that, although bc ¢ H1, its necessity still obtains as the
element b — the greatest open included in this epistemically absent element.) The possibility
of b, row 4., is not however absent for H1, although it does not meet any elements of his
world — it is an “external” possibility, which obtains only due to the ontological structure of
the whole world. For H2, this possibility is further extended by the element a which is not
part of his epistemic world (and hence might, potentially for H2, harbour the possibility of
b, even if it actually does not).

6.2.2. S5. Consider the same classical world as in the previous example and two possible
epistemic substructures H1, H2. Since s5 axiom makes complements of opens open, the
Heyting substructure will here be a boolean algebra in which all opens are also closed.

abc abe H2

Hl/abC\ be C’ll;/ a‘b\bc GC/
T I |
\0/ \(\]/ \0/

We have, for instance:

| H1 | H2 | H1 | H2 | H1 | H2
1. —c=| ab | ab —-b=| ac | ac —bc=| a a
2. ~c=| a b =b=| a ac bc=| a 0
3. +—c=1| 0 0 +~—b=| 0 b +—bc=| bc b
4. —+¢c=| bc | ac —=b=| b ab —<+bc=| be | abe
5. +<+c=| bc | ac ++b=1| b ab +~+bc=| bc | abc

Note that although the epistemic substructures are now boolean algebras, the epistemic nega-
tion + does not coincide with the ontological one —. The difference concerns the epistemically
absent elements. Thus, for instance, in the first table, ¢ is epistemically absent from H1, but
its impossibility, +c, amounts only to the epistemically available contraries, namely, a, and
not to its ontological negation ab. Likewise, in the third table, bc ¢ H2, but its epistemic
impossibility amounts to contraditiction 0, although ontologically it can be also obtained as
a.

6.3 Three logics

Before addressing some more specific aspects of the proposed interpretation, let us first com-
ment on the obtained relations between IL and CL with S4 as their “union”.

6.3.1. On the one hand, IL is a real extension of expressivity of CL, requiring additional
operator +. Yet, this amounts really to IL restricting CL, namely, by addressing only some
specific kinds of elements: the “constructive” elements of the form + —x and, in fact, already
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of the form +z. That is, conceptually, IL extends the classical logic by the concept of +, but
its specificity (and the specificity of its associates, like <) arises only from the consideration
of a subset of all (classical) objects. Namely, each ZC-algebra contains a substructure of the
epistemic elements, a Heyting algebra, and every such Heyting algebra is contained in some
(in fact, in may different) ZC-alegbras.

This seems entirely plausible given the basic tenets of intuitionism: it throws away a lot
of mathematics, restricting its attention to constructible objects. Perhaps, we could thus give
<z the intended interpretation: not as a negation of x but as its absence: while —z means
not-z, so +x means a counter-proof of z or, perhaps, the impossibility of x.

6.3.2. Although <, U are the fundamental operators of Heyting algebras, when viewed in
the context of ZC-algebras, intuitionistic negation seems to acquire much more central status:
other intuitionistic operators are definable: < by (3.4) and disjunction by xUy = +—zU+—y
(lemma 3.6). Strictly speaking, they are not any new connectives (just abbreviations), but
their specificity comes from the fact that they work on “constructive” elements only. And
clearly, they are interdefinable, so one can still use <, instead of +, as the primitive (though
this would require axiomatization of —.)

6.3.3. Modal logic S4 arises now as a natural combination or union of the classical and
intuitionistic logics and not merely as some logic which only happens to admit embedding of
the other two. S4-modalities arise as combinations of the classical and intuitionistic negation,
Ox = + — x, respectively, Ox = — + z (with their “duality” simply as the associativity of

operations: —Oz = —(+ —z) = (—+) —z = 0—=z).

6.4 The epistemic impossibility

The epistemic aspect of constructivism is well expressed in the common interpretation of
negation as possession of a counter-proof. In our context, a series of readings of +z — of
various strength and flavour — might be acceptable, e.g.:
1. possession of a counter-proof of x
existence of a counter-proof of x
lack of proof of =
non-existence of a proof of x
possession of a counter-example to x
ontological impossibility of x

N oo AN

epistemic impossibility (inadmissibility, unimaginability, counter-proof) of x
8. ...

Our decision expressed at the end of 6.1.1 leads to an epistemic turn in the interpretation
of impossibility and other modalities, which speaks against the readings 2, 4 and 6. Being
an epistemic element, +z is not metaphysical (or ontological) impossibility of z. But we
should be clear here. Given the epistemic reading of opens, we do not have any ontological
impossibility in our framework: we only have ontological absence, non-actuality: —z does not
say that x is ontologically impossible; it only says that it simply does not obtain.

Reading <z as epistemic impossibly of z admits, of course, various specializations. For a
constructivist, it would amount to the possession of a counter-proof, for a sceptic to the lack of
proof, for the common-sense to unimaginability.® We will not inquire into such specializations.
Whatever more precise meaning one might attach to epistemic impossibility in 7, axiom
s1 becomes the statement that (such) impossibility of z entails the actual negation of z.
One should emphasize here the finitary/constructive flavor of epistemic impossibility. For,
certainly, we can have a directly available negative knowledge! Seeing that Per is not in the
room, we know that he is not there. But do we really? Seeing that he is not here, is only
not seeing him to be here (not seeing him wherever we are actually looking). Although the
latter, which corresponds to <+, is all we have, we actually act as if he was not here, as if

24

8Speaking stricly and intuitionistically, such an impossibility amounts to the reading 1 — possession of a counter-

proof — namely, of the proof +I'; A + &, from which +TI' F +A follows by (R-+).

Observe that this rule implies

that only other “epistemic” elements, +I', can contribute to establishing the “epistemic” impossibility +~A of A.
However, allowing for some laxity, one might interpret such an impossibility as some of the other alternatives listed

above.
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—z. In epistemic terms, this seems to be the only way of constructing the knowledge of not-z.
We sense how the finitarism of intuitionistic logic approaches pure phenomenalism, where
even the most immediate negation must be constructed from the epistemic evidence to the
impossibility.

To avoid torturous arguments, while aiming at most possible generality compatible with
the formalism, we adopt the reading 7.

6.5 Knowledge and necessity

Since O has been treated as ‘knowledge’ or ‘necessity’ operator, let us consider briefly such
interpretations.

Oz arises as ‘the (epistemic) impossibility of the negation of z’, 6.3.3. Thus, O read
as knowledge, becomes an epistemic impossibility (unimaginability) of the contrary. As im-
possibility entails the actual negation, knowledge, i.e., epistemic necessity of z, entails the
(ontological) actuality of z : + — x C .

6.5.1. This reading squares very well with reading of O as necessity, provided that we grant
its epistemic interpretation. According to Ockham’s arguments (commonly associated with
Hume), necessity is an epistemic modality, we might say, the impossibility of alternatives.’
Now, alternatives are, in the ‘possible worlds’ parlance, other possibilities, which to a large
extent are very mental entities. “To a large extent” because there may always be possibilities
which are not taken into account. This ontological aspect of possibility — something more can
be the case than what we are able to imagine — comes equally nicely forth in our formulation:
Or = —+x D ++x. Le., xis possible not only when its impossibility is (appears) impossible,
-+ + z, but also when it actually — ontologically — does not obtain, — + z. So, perhaps a bit
unexpectedly, possibility has a stronger ontological flavour than has necessity. Also, further
consideration of possibilities does not distinguish between the ontological and epistemic as-
pect: impossibility of a possibility of = is the same as actual absence of its possibility and
equals simply its impossibility, +(— + z) = +z = —(— + ).

Such a view of necessity seems to reflect well at least its common-sense understanding
for which it is simply impossibility of accepting other alternatives, as when we say: “This
is unavoidable!” Of course, few things are ever unavoidable/necessary in the strict sense of
logical impossibility. In the more mundane situations, logical impossibility is replaced by
milder, that is, more epistemic predicates: irrelevancy, implausibility or incapacity, and x
appears unavoidable just when its contrary falls under some such predicate.

6.5.2. The appealing feature of this formulation, Ox = + — z, is that it does not commit us
to any such specific choices of what we want to consider as epistemic and what as ontological.
It only acknowledges the distinction between the two, and obtains necessity out of their
combination. Necessity and knowledge arise thus as ... synonyms. Of course, knowledge
understood not merely as an acceptance of a fact, but as inadmissibility of a contrary, we
might say, as a justified belief.

The strength of ZC-algebras is the combination of these two aspects. The fact that from the
knowledge of x (or, from the unimaginability of the contrary) we can conclude z, + — z C z,
is the connection between our limited (‘open’) knowledge of x and z itself. Allowing such
weaker readings of + (as implausible, unimaginable, etc.) marks a strong underlying current
of ‘default’ thinking which, so it appears, need no new logics or rules, since it is inherent in
this very basic view of knowledge as essentially an event of double negation: the epistemic
applied to the ontological one.

6.5.3. The universe-subuniverse view finds also a natural application to the interpretation of
S5. We have seen that the s5 axiom amounts to equating the epistemic and the ontological
negation when applied to epistemic elements. The epistemic subuniverse can still be distinct
from the ontological one, but it is itself a classical universe. This is the counterpart of the
specific property of S5, namely, that any chain of modalities is equivalent (“collapses”) to
the rightmost one. In our formulation, having once entered the epistemic subuniverse (by
means of <), the + becomes —, and so no more properly modal operations are available. This

9Metaphysical necessity is, perhaps, something accessible to God but not to humans. Ockham’s empirical
reductionism with the associated denial of necessity in the world as we know it, is just an elaboration of the theme
of God’s omnipotence.
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seems to express well the traditional reading of S5 as the logic of metaphysical necessity: it
comprises a subset of the actual universe (all necessary truths) which, itself, is governed by
the same (classical) laws.

6.6 Knowledge of distinctions

Let us observe an entirely different aspect of epistemic modelling. Knowledge concerns the
ability to draw and relate various distinctions. The topological interpretation faciliates pre-
cisely such a view without any need of adding it on the top of the view of modalities we have
developed.

Consider as an example a classical world P({a,b, c,d}) and a Heyting substructure con-
taining (the opens) {&, a,b, ab,abcd} with @ = 0 and abed = 1. Following the topological
view, this amounts to (the agent being capable of) distinguishing a from b (having distinc
opens covering them). However, ¢ and d fall outisde the epistemic world and, consequently,
they and (their join) are indistinguishable by the available epistemic means, as shown on the
left. Also, no interaction of these elements with the available a, b will uncover any difference
between them, as exemplified on the right:

| c | d | cd | ac | ad | acd
— | abd | abc | ab — | bd | be b
=~ | ab | ab | ab = b b b
+— 0 0 0 +— a a a
—+ | ed | ed | cd —+ | acd | acd | acd

Expanding the epistemic base with, say, recognition of the element ¢ will, of course, lead to
new distinctions, e.g., +c¢ = ab # abc = +d.

Viewing the epistemic elements as the distinctions one is capable of recognizing, the modal-
ities arise now from the interaction between such distinctions and the ontological ones which,
epistemically, remain indistinct. One might even be tempted to read now +z as the impossi-
bility to recognize x, with the consequences for:

- ‘necessity’ of £ = + — ¢ = impossibility to recognize negation of z and

— ‘possibility’ of x = — + © = the absence of impossibility of recognition of x.

6.7 Knowing versus knowing at most

In the study of epistemic logic, one is sometimes interested in stating not only that an agent
knows something, but also that he does not know more than something. Propositional S4
gives a view of knowledge where it is difficult to address the issue of knowledge’s limitations.
One can state claims like ‘the agent does not know a’, —Oa. But if we wanted to say that
agent knows at most a,b, ¢,d, we would have to write infinitely many negations (in general,
when the alphabet is infinite). A variety of logics of “only knowing” (as this aspect is termed
in the literature) addresses this issue.
We write: + —z »>aUbUcUd,ie., —+—zxUaUbUcUd.
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7 Appendix: (cut) is admissible in LIC

In an application:
I"AFA" ; TFAA

(cut) T.TFA A
we call A the cut formula; L-premiss refers to the premiss which has the cut formula on the
left of F (and is written on the left); R-premiss refers to the other one.

In any rule, the formula appearing explicitly in the conclusion is called principal, while
the formulae in the premisses from which the principal formula emerges are active.

We proceed by induction on {¢, hL + hR) where

¢ — the complexity of the cut formula (the cut rank) — the main induction parameter
hL — the height of the derivation of the L-premiss
hR — the height of the derivation of the R-premiss
the sum of hL + hR — the cut level — is the secondary induction parameter.

If at least one of the premisses is an axiom, the result of (cut) is identical to the second
premiss. Otherwise, neither premiss is an axiom, and we consider two cases:

7.1 — the cut formula is principal in both premisses.

7.2 — the cut formula is not principal in one of the premisses

7.3 — the cut formula is not principal in any of the premisses
All the classical rules, as well as (L), are independent from the context (I', A mentioned in
the rule), and so they can be applied in the same way any place in the derivation.

7.1 Cut formula principal in both premisses
The classical connectives are treated in the standard way and we give only one example.

7.1.1. The cut formula is of the form A — B.

hi hr hs hr hs h
I'FAA T,BFA I, AF B,A’' I,BFA ' A-B,A' TFAA
T,A>BFA I'FA>5B,A _ T,I,BFAA T, FB,A,A
T FAAN T, FA,AN

In the transformed derivation, the first (cut) is admissible by IH since it has lower rank,
¢(A) < ¢(A — B). hg is extended by (W), and the second (cut) is admissible by IH, since it
has lower rank, ¢(B) < ¢(A — B).

7.1.2. The cut formula is of the form =A.
7.1.24. (L+) — (R+)

hr hr hr
IL+AFAA I'AF hr I, AF
T,-AFA I'F=A hr I+AFAA TF=A
T'TFA ~ AR T'TFAA
T',TFA

In the transformed proof, the first (cut) is admissible since it has the same rank but lower
level. The second (cut) has lower rank.

7.1.2.ii. One of the rules is (W). E.g.:

hr hr
TFA ' AF hr
W) T =4ara Trza wy LA
I'TFA ~ LIEA

The case when (W) gives the R-premiss (or both premisses) is entirely analogous.
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7.2 Cut formula principal in one premiss
Again, the classical cases are treated in the standard way and we give only one example.

7.2.1. The cut formula is of the form A — B.

hr hr hr
TFAA; LBFEA TiEALASB o IFAA ; T,BFEA hr
T, A>BFA I'FA,A> B -~ ILA->BFA MEALA—B
I, TFAN T, F A A

T,I'F A, A (X)

The (cut) in the transformed derivation has lower level and is admissible by IH. (X) cannot
be context sensitive (R=), due to the presence of A — B on the right of . Hence, it can be
applied in the same way in the transformed derivation.

For the same reason, no interference with (R+) occurs in any of the classical cases: as the
(cut) formula is not of the form +A, its appearance on the right or on the left of - implies
that the last applied rule could not have been (R+) and so it can be permuted down as (X)
above.

7.2.2. The cut formula has the form < A.
7.2.2.i. (L=)

hy b hi
(L;)F+AI—A,A P’II—+A,A’1( ) T+ AFAA b
"~ T,ZAFA T'F <A, A T,-AFA T) kA A
T,T' F A, A ~ T,T, F A, A

W)

The (X) rule is not (R+) since +A is not its principal formula, so it can be permuted down
in the transformed derivation. The (cut) is admissible by IH since it has lower level.

7.2.2.ii. (R+)

hr hr hr
(X) i, +AF A, T Ak (R=) hr IV Ak
L+AFA “I"kF <A ) N~ TITLTAFA T'F=A
I,=T'FA T, =0 F Ay )
="k A

The (cut) in the transformed derivation is admissible by IH since it has lower level. All context
insensitive cases of (X) can be permuted down. The special case — when (X) is (R+) but
with inactive +A — follows by the same argument as the general case, since I" must have the

form =TI
hr hr hr
(R=) +I,B,+A}+ T AR (R+) hL </ AF
4TI, +AF =B =I'EF A ) ., 0B, +AF “T"F <A
=, ="+ +B = =17
R I'B,~T" (R=)
I, =TI+ +B

7.3 Cut formula not principal in any premiss

The only problematic case is when the rule giving L-premiss is context sensitive, though its
principal formula is not the cut formula...

7.3.1.
hi hr hr
(R=) T, +A,BF Iy A=A (X) +T',+A,BF hr
DT Ar=B  TFA A . ETL3AF:B DiF A=A
F7+FI F Aa +B P1,+P’ [ A1,+B

I,+I"+FA,+B (X)
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The (cut) in the transformed derivation is admissible by IH since it has lower level. The rule
(X) cannot be (R+) since +A is not its principal formula. But then it can be applied in the
same way in the transformed derivation.
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