A Scalable Architecture for Reprioritizing Ordered Parallelism

Gilead Posluns Yan Zhu
University of Toronto University of Toronto
Canada Canada

gil.posluns@mail.utoronto.ca

ABSTRACT

Many algorithms schedule their work, or tasks, according to a pri-
ority order for correctness or faster convergence. While priority
schedulers commonly implement task enqueue and dequeueMin
operations, some algorithms need a priority update operation that
alters the scheduling metadata for a task. Prior software and hard-
ware systems that support scheduling with priority updates com-
promise on either parallelism, work-efficiency, or both, leading to
missed performance opportunities. Moreover, incorrectly navigat-
ing these compromises violates correctness in those algorithms that
are not resilient to relaxing priority order.

We present Hive, a task-based execution model and multicore
architecture that extracts abundant fine-grain parallelism from
algorithms with priority updates, while retaining their strict priority
schedules. Like prior hardware systems for ordered parallelism,
Hive uses data- and control-dependence speculation and a large
speculative window to execute tasks in parallel and out of order.
Hive improves on prior work by (i) directly supporting updates in
the interface, (ii) identifying the novel scheduler-carried dependence,
and (iii) speculating on such dependences with task versioning,
distinct from data versioning. Hive enables safe speculative updates
to the schedule and avoids spurious conflicts among tasks to better
utilize speculation tracking resources and efficiently uncover more
parallelism. Across a suite of nine benchmarks, Hive improves
performance at 256 cores by up to 2.8% over the next best hardware
solution, and even more over software-only parallel schedulers.

CCS CONCEPTS

« Computer systems organization — Multicore architectures.

KEYWORDS

priority scheduling, priority updates, task-level parallelism, ordered
irregular parallelism, speculative execution

ACM Reference Format:

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey. 2022. A
Scalable Architecture for Reprioritizing Ordered Parallelism. In The 49th
Annual International Symposium on Computer Architecture (ISCA °22), June
18-22, 2022, New York, NY, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3470496.3527387

ISCA °22, June 18-22, 2022, New York City, NY

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 49th Annual
International Symposium on Computer Architecture (ISCA '22), June 18-22, 2022, New
York, NY, USA, https://doi.org/10.1145/3470496.3527387.

Guowei Zhang Mark C. Jeftrey
Huawei University of Toronto
China Canada

zhangguowei9@hisilicon.com mcj@ece.utoronto.ca

1 INTRODUCTION

The optimal or fast-converging algorithms for many problems re-
quire their work items, or tasks, to execute according to some
priority order. Sequential implementations use a priority queue
to schedule the tasks. In particular, we focus on those algorithms
that dynamically alter the task schedule with priority update opera-
tions [28, 76] that associate an object ID with a priority. For example,
some graph algorithms will assign an initial priority to every vertex
(ID). Their executions consist of processing the highest-priority
vertex, updating the priorities of its neighbors, and then repeating
the process in a loop with the next highest priority vertex.

Ideally, these algorithms should have abundant task-level par-
allelism, as true data dependences among tasks (loop iterations)
are rare for sparse data structures like graphs. However, practically
extracting this parallelism is challenging as it requires (i) ensuring
irregular data dependences flow in the required order and (ii) cir-
cumventing the false data dependences on the global scheduling
structure, which every task would otherwise read and write. Soft-
ware and hardware systems exploit this ordered irregular paral-
lelism [58] using one or more of three techniques: bulk-synchronous
parallelism, speculative parallelism, or relaxing the order.

Current software parallel frameworks strive to drive down sched-
uling overheads. Bucketing [23, 88] is a bulk-synchronous approach
that executes groups of equal-priority tasks (buckets) in parallel.
Bucketing can retain a strict priority order, giving work-efficient
implementations, but the barriers between buckets limit parallelism
when there is little work per bucket. Moreover, priority updates
on the schedule can create even more buckets, further constrain-
ing parallelism. Speculative techniques [14, 33, 34, 44] uncover
parallelism across priorities, speculating that tasks will access inde-
pendent data, circumventing barriers. However, speculation over-
heads in software overwhelm the benefits of inter-priority paral-
lelism for small tasks [33, 34]. Schedulers that relax the priority
order [6, 7, 46, 56, 60, 64, 66, 80, 85, 89] present a middle ground
between these techniques, providing a best effort to dispatch tasks
in order, but with only probabilistic guarantees, if any. Approximat-
ing the desired task order avoids barriers and enables distributing
software queues to reduce contention due to scheduling. However,
relaxation is only amenable to those algorithms where task ordering
is not required for correctness, but instead reduces redundant work
to improve convergence time [4, 5, 51, 56]. Moreover, the higher
the core count, the greater the deviation from the desired priority
order, worsening work efficiency and convergence time [8, 66].

Prior order-aware hardware systems are subject to the same par-
allelism vs. relaxation trade-off, or do not support priority update
operations. PolyGraph [21] provides relaxed priority semantics or
accelerated bulk-synchronous execution, but does not provide a
scalable strict priority schedule with update semantics. Thread-
level speculation [30, 42, 62, 63, 70, 71, 75] targets the automatic

https://doi.org/10.1145/3470496.3527387
https://doi.org/10.1145/3470496.3527387
https://doi.org/10.1145/3470496.3527387

ISCA 22, June 18-22, 2022, New York City, NY

1PriorityQueue pgq;
2 for (int v : G.V)

3 pqg.enqueue(v, G.degreelv]);

4while (!pg.empty()) {

5 int v, int prio = pq.dequeueMin();

6 coreness[v] = prio;
7 for (int nbr :

8
Figure 1: Graph labeled with the
coreness of each vertex. 10 }

Listing 1: Sequential code for kcore.

parallelization of sequential code, so couples loop iteration order
to execution order. Consequently, to schedule new work to execute
at a future time, a scheduling structure in software is still required,
serializing all tasks with dependences through the scheduler. In
contrast, hardware for speculative ordered parallelism, such as
Swarm [37, 38], Fractal [72], and Chronos [3], can implement a dy-
namic strict priority schedule. However, the sequential queue these
systems abstract supports only enqueue and dequeueMin operations,
notably not a priority update. Instead, a programmer wishing to im-
plement an algorithm needing priority updates must add software
scheduling structures that shadow the hardware ones, tracking
much of the same state redundantly, and they must write early
exiting tasks to emulate the sequential behavior. Such programs
clog the speculative task-tracking data structures of the hardware,
resulting in stalls and reduced throughput.

This paper presents Hive, the first execution model and specula-
tive multicore architecture to express and extract parallelism from
ordered algorithms with priority updates. We characterize the impli-
cations of a strict priority schedule with updates, and the complex
scheduler-carried dependences created between successive tasks in
the schedule (Sec. 2, Sec. 4). The Hive execution model enables the
programmer to convey the desired priority schedule (and updates)
directly to hardware, abstracting a strict priority queue (Sec. 3). We
present a taxonomy of the ways in which several algorithms use
priority updates (Sec. 3.3). Our Hive implementation (Sec. 5) adds
modest area to the Swarm architecture, extracting parallelism from
the abstract queue by speculatively executing tasks out of priority
order. Importantly, Hive introduces task versioning, a method of
speculating on scheduler dependences, similarly to how memory
versioning enables data dependence speculation (Sec. 4).

This work makes three key contributions:

o A description of the unique class of dependence between opera-
tions on a priority queue supporting priority updates.

e A new technique to enable safe speculation on the state of a pri-
ority scheduler that is supporting speculative parallelism, while
being speculatively updated.

e An execution model and hardware system supporting repriori-
tizable ordered parallelism, which achieves up to 2.8x speedup
(gmean 52%) over hardware supporting ordered parallelism with-
out priority updates, and more over software-only approaches.

2 MOTIVATION

The optimal algorithm for the k-core decomposition problem [50,
65] (kcore) requires a strict priority schedule supporting priority
updates, and illustrates the challenges and opportunities in this
work. The maximum core, or coreness, of a vertex is an important

G.edges[v])
if (pg.getPrio(nbr) > prio)
pg.decrementPrio(nbr);

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

El E
[3 |
El H
El 3 EX

El El 3 3
[4 W 4]
E B
[4 W 4]

Time

Figure 2: kcore priority queue contents. A ver-
tex is dequeued from the top at each time step.

property in a variety of domains, including graph mining [67],
graph visualization [10], statistical mechanics [53], ecosystem anal-
ysis [54], and bioinformatics [81]. The coreness can represent the
importance of a vertex [49] or its position in a hierarchical de-
scription of the graph [10]. A k-core of an undirected graph is a
maximal set of vertices where every vertex has at least k edges to
other vertices in the k-core. For example, the graph in Fig. 1 has
a 3-core consisting of the green and orange vertices in a square.
The coreness of a vertex is the highest k for which it is part of a
k-core. The yellow vertex has degree 4, but it only has a coreness of
1 because 3 of its edges are to vertices that are not part of a 2-core.
The red vertex has a coreness of 2, because it has 2 edges to vertices
that are part of a k-core for k > 2.

Listing 1 shows the sequential algorithm for kcore, which de-
termines the coreness of each vertex in the graph. In essence, for
each increasing value of k, the algorithm recursively removes all
vertices with degree k, then repeats with the next value of k, until
no vertices remain. The k value at which a vertex is removed is its
coreness. This implementation enqueues each vertex into a queue
with priority initially equal to its degree (line 3). It then runs a loop
that dequeues one vertex from the queue each iteration (line 5).
Each vertex is dequeued exactly once, at which point it decrements
the priority (which is tracking the remaining degree) of all of its
neighbors that are still in the queue (lines 7-9). When a vertex is
dequeued there exist no remaining vertices in the queue with lower
degree, so its current degree (and priority) is its coreness.

This algorithm depends on three priority queue operations. In ad-
dition to the enqueue and dequeueMin operations typical of any pri-
ority queue [79] (e.g., the C++ std: :priority_queue), it also uses
decrementPrio [28,76] (e.g., in the boost fibonacci_heap).! The
latter operation indexes into the queue by vertex (ID) and updates
its priority to dynamically alter the vertex’s position in the schedule.

The priority schedule of kcore is required for correctness. For
example, Fig. 2 shows the contents of the priority queue over time
for the graph in Fig. 1. The yellow vertex is initially scheduled last,
but the blue vertex iterations each decrement its priority one after
the other until yellow runs immediately after them. The yellow
iteration then decrements the priority of the red vertex, rather than
vice versa. Vertices with equal priority, such as the blue and green/o-
range sets, get an arbitrary order in the queue. If the algorithm were
instead to process the red vertex before the yellow, then it would
incorrectly assign red a coreness of 3 instead of 2.

There is ample parallelism available in kcore, once the false data
dependences on the scheduling structure [37] are abstracted away.
In the running example, iterations that operate on the blue and

!This code adds a fourth getPrio command for readability.

A Scalable Architecture for Reprioritizing Ordered Parallelism

-
= o
= o]

Update to Dequeue Ratio

o
-

kcore setcover astar bfs sssp msf mis mm rbp
Benchmark

Figure 3: Ratio of scheduler updates to dequeues at 1 core.

orange vertices are independent and could therefore be processed
in parallel. However, current software and hardware struggles to
efficiently unlock this parallelism for the following reasons.
Priority updates often outnumber dequeues: Since vertices
on average have more than one neighbor, then kcore will at least
consider calling decrementPrio more than it calls dequeueMin.
Fig. 3 shows the high ratio of conditional updates vs. dequeues on
large inputs for our benchmark suite of nine algorithms, including
kcore (see Sec. 6.1 for methodology). The ratio is greater than 1 for
all benchmarks except astar, which terminates before exploring
the entire graph, and mm, where priority updates can only eliminate
two thirds of the fine-grain tasks [36], capping the ratio at 1. This
typically high ratio is significant because for most algorithms in
our suite, including kcore, each loop iteration is short with little
additional processing beyond the priority updates (Table 4), and
the final priorities of the vertices are the output of the algorithm.
Since priority updates can comprise the majority of an algorithm’s
work, they must be performed in a scalable and efficient way.
Priority updates cause poor performance in software: Like
dequeueMin and enqueue, priority updates are read-modify-write
operations on the scheduling structure, so they contend when per-
formed on shared global state. Software schedulers with privatiza-
tion [46, 56, 66, 85] mitigate some contention, but they consequently
do not update the global scheduler immediately. Therefore, to main-
tain kcore’s strict priority schedule, systems such as Julienne [23]
and Ordered Graphlt [88] use bulk-synchronous parallelism among
equal-priority tasks and apply reductions to the privatized queues
into a consistent state at barriers. These systems can only extract
parallelism from the potentially limited work between barriers, and
are unable to extract parallelism across priorities.

Fig. 4 shows two views of kcore’s work distribution over bucket
sizes. The right side of the blue CDF shows that a few barriers have
massive available work (parallelism). However, the left side of the
orange PDF reveals an Amdahl bottleneck: 10% of all work happens
between barriers with 2000 or fewer vertices per barrier, and nearly

1.00
0.754{ —— CDF of all vertices processed
os0d — PDF of all barriers
0.25 4N\
\\\
0.00 T T T T T
10° 10! 10? 10° 10* 10°

Number of vertices between barriers

Figure 4: kcore work distribution for Julienne [23]. Blue
shows the CDF of all vertices processed (y-axis) with increas-
ing vertices per barrier (x-axis). Orange shows the PDF of all
barriers (y-axis) with a given number of vertices (x-axis).

ISCA 22, June 18-22, 2022, New York City, NY

one third of all barriers process a single vertex. Julienne and Graphlt
are entirely sequential for this large number of iterations.

To extract parallelism across priorities, the alternatives to syn-

chronous execution are relaxation, speculation, and task depen-
dence graphs. Relaxed priority queues are ineligible for kcore be-
cause relaxed scheduling can lead to incorrect outputs. kcore’s
tiny tasks and abundant updates would lead to high overheads
in scheduler-aware speculation [33, 44], and kinetic dependence
graphs [34], as observed in similar algorithms.
Priority updates have poor performance in hardware: To
reduce the scheduling overheads of software, hardware systems
have been proposed for extracting parallelism from applications
with priority-ordered tasks. However, they do not support explicit
priority update operations without either relaxing the schedule, or
requiring schedule tracking metadata in software.

PolyGraph [21] is a graph accelerator that offers a choice between
synchronous execution—hardware acceleration of the Julienne and
Ordered Graphlt approach—and asynchronous execution that re-
moves barriers by providing a relaxed priority schedule. PolyGraph
supports priority updates through task coalescing, but only when a
relaxed schedule is allowed and tasks will not spill to memory.

Swarm [37] and Chronos [3] provide strict priority scheduling,
using hardware speculation to extract parallelism across priorities,
but lack builtin support for priority updates. A programmer wishing
to write a program with priority updates must (i) implement a
scheduling metadata structure in software to track the current
priority of each object, and (ii) restructure task code to check this
metadata and exit early if the task’s object priority has been updated,
making the task moot. This is similar to writing Listing 1 with
a priority queue that only supports enqueue and dequeueMin, as
shown in Listing 2. This code is largely similar to Listing 1, with
the exceptions of lines 10 and 12-14. Line 10 checks the priority-
tracking metadata structure to ensure that vertex v was not already
processed at an earlier priority. If it was, the loop exits that task early
and moves on to the next vertex. Because the queue does not support
priority updates, lines 12-14 instead conditionally decrement the
priority of v’s neighbors in the scheduling metadata and enqueue
a new task for each vertex nbr at its new priority. When the old
later-ordered task dequeues, it will exit early at line 10.

Having tasks check a condition and potentially do nothing is
similar to predication of instructions as an alternative to conditional

1 PriorityQueue pq;

2int prios[G.n]; // Scheduling metadata
3 for (int v : G.V) {

4 prios[v] = G.degreel[v];

5 pg.enqueue(v, prios[v]);

63}

7while (!pqg.empty()) {

8 int v, int prio = pqg.dequeueMin();

9 // Skip if this iteration/task is moot
10 if (prio > prios[v]) continue;

n for (int nbr : G.edges[v])

12 if (prios[nbr] > prio) {

13 prios[nbrl--;

14 pqg.enqueue(nbr, prios[nbrl);
15 }

16 }

17 coreness = prios

Listing 2: Sequential kcore without priority updates.

ISCA 22, June 18-22, 2022, New York City, NY

branches [9]. Like instruction-level predication, when overused [59],
early exiting tasks fill the speculation state-tracking structures with
tasks that are practically NOPs. Since the ratio of priority updates
to dequeues is so high, this is exactly what happens when imple-
menting priority updates in these systems. Although task-level
predication is a valid approach, we advocate for a more expressive
execution model and hardware support to better utilize on-chip
resources for extracting reprioritizable ordered parallelism.

3 HIVE EXECUTION MODEL

A Hive program consists of priority-ordered tasks which can be
logically bound to objects to enable updates to the schedule. Hive
hardware (Sec. 4, Sec. 5), extracts speculative parallelism across
hundreds of cores by finding independent tasks to run out of order.
However, Hive guarantees the program output will always match
that of a sequential thread scheduling the tasks in a priority queue
supporting updates [28, 76]. Every task can read and write arbitrary
shared memory, can dynamically update tasks bound to objects, and
can enqueue new tasks unbounded from any object. The update and
enqueue operations assign each task an integer timestamp which
encodes its priority order in the modeled queue. Hive objects are
the program’s core data type for scheduling, and each object is
identifiable with a unique number, such as a memory address or ID.
The programmer defines objects as needed in application memory.
Hive records the binding for every object ID to one or no queued
task in an object table residing in a protected region of memory,
inaccessible to the tasks except through an API (Sec. 3.1). When no
queued task is bound to an object, the object table instead records
the timestamp of the object’s last queued task (or infinity if none).

Hive ensures that tasks appear to execute in increasing timestamp
order, as if a sequential loop repeatedly dequeues the lowest-time-
stamp task from the modeled queue, runs it, then dequeues the
next task, until the queue is empty. Tasks with equal timestamp are
atomic, being serialized arbitrarily among each other. This execu-
tion model has two key consequences: (i) a task’s enqueued children
appear to execute only after the parent finishes—children are or-
dered after the parent—and (ii) a task’s accesses to shared memory
and its updates to object-task binding appear to happen atomically
and before the next task in priority order would be dequeued.

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

1void removeV(Vertexx v, Timestamp ts) { // Task
2 for (Vertex* nbr : v->neighbors())

3 hive::decrTS(&removeV, nbr, 1);

43}

s5void main(int argc, charxx argv) {

6 hive::init(G.n);

7 for (Vertex* v : G.V)

8 hive::update (&removeV, v, v->degree);

9 hive::run();

10 hive::extract(coreness);

Listing 3: Hive implementation of kcore

3.1 Programming interface

Table 1 shows the Hive API, which programs use to enqueue
tasks and manipulate the object-task bindings. Listing 3 shows the
APl in action with a Hive implementation of kcore.

A Hive task is an instance of a function with timestamp and
arguments received through registers. Listing 3 defines one task
function, removeV, which logically removes a vertex v (a Hive ob-
Jject) from the graph, performing the work of lines 6-9 of Listing 1.

Any task can set, update, or cancel tasks bound to objects,
by calling the given (inlined) Hive functions with a task function
pointer, timestamp, and arguments. These are passed to hardware
through registers with one new instruction (Sec. 5). While these
basic operations provide sufficient schedule manipulation for some
programs, others require timestamp-relative task updates that de-
pend on the timestamp of the task currently bound to an object.
One could implement such relative updates with hive: :getTS and
hive: :update, but (i) this complicates programming, and (ii) it
hurts performance with remote accesses to the object table in mem-
ory. The Hive interface improves expressiveness by adding min,
increment, and decrement updates, similar to those in DSLs [88].

Listing 3 uses both basic and relative task updates. The main
function binds an initial removeV task to every vertex by calling
hive: :update with timestamp equal to v’s original degree. The
removeV task itself decrements the task timestamp (degree) for all
neighbors of its vertex v. Since kcore tasks are ordered by their
current degree, removeV implicitly sets v’s coreness in the object
table as the last (and only) timestamp for a task that executed on v.

Table 1: Hive programming interface

Signature

Description

void hive::init<flags>(nobjs)

Reserve object table capacity for nobjs objects with no initially queued tasks. Empty (null) tasks

implicitly have timestamp infinity.

void hive::extract(Timestampx dest)

Extract the timestamp of the last task that executed for every object ID.

void hive::update(taskFn, oid, ts, args...)

Replace or set the queued task bound to object oid.

.2 void hive::cancel(oid) Remove the queued task bound to object oid. This is either an update with timestamp infinity, or an
7
= updateMin with timestamp 0 and an empty task.
Timestamp hive::getTS(oid) Return the timestamp of the task currently or last executed bound to oid.
void hive::enqueue(taskFn, ts, args...) Queue a task unbounded from any object
void hive::updateMin(taskFn, oid, ts, args...) Replace the queued task bound to object oid only if ts < hive::getTS(oid).
@ void hive::incrTS(taskFn, oid, delta, args...) Replace the queued task bound to object 0id, adding a signed delta to the previous timestamp. NOP
= if there is no task bound to the object.
3
& void hive::decrTS(taskFn, oid, delta, args...) Replace the queued task bound to object oid, where the new timestamp is equal to the max of the
& previous timestamp minus an unsigned delta and the caller’s timestamp, only if doing so would

decrease the timestamp. NOP otherwise, or if there is no task bound to the object.

A Scalable Architecture for Reprioritizing Ordered Parallelism

ISCA 22, June 18-22, 2022, New York City, NY

A program invokes Hive by initializing the object table (hive: :init), 3.3 Programming Hive with patterns

enqueuing or updating some initial task(s), then calling hive: : run,
which returns control to the main thread when there are no more
tasks to run. Listing 3 initializes the object table with one entry for
every vertex in the graph. In many algorithms, the program output
is in fact the priority at which every task ran, so Hive provides
the hive: :extract function to copy the last timestamp for every
object to a buffer in application memory.

3.2 Example modeled execution

Fig. 5 illustrates how Hive appears to serially execute the kcore
implementation in Listing 3 on the graph in Fig. 1. Task execution is
shown as a circle and a priority update to an object’s task is shown
as a rounded box. Every vertex (object on the y-axis) has initial
timestamp equal to its degree. At each logical time step (x-axis)
Hive hardware dequeues and executes the queued task with lowest
current timestamp. The three blue vertices have equal initial time-
stamp of 1, so are dequeued in arbitrary order among themselves,
but execute atomically. Importantly, the priority update performed
by each task takes effect atomically with the task, even before the
next apparent dequeue. Timestamp decrements do not commute
with dequeue, just as counter decrements do not commute with a
read [87]. The three blue tasks decrement the yellow vertex task
timestamp down to 1. Despite initializing with a large timestamp,
the yellow task is next to execute due to the priority updates of
this algorithm. The yellow task decrements the red vertex prior-
ity to 2, but notably does not set a new task for its blue vertex
neighbors (dashed rounded box). This is because its neighbors have
already executed with equal or lower timestamp, so the semantics
of decrTS state that no new task is created in this case. The red
vertex then dequeues with the lowest timestamp, updates its green
neighbor timestamps, but does not update the yellow neighbor. The
execution proceeds until no queued tasks remain.

EBe

Vertex B

Dec(1)

@ Task execution with timestamp
[Priority update

"Dec(1) Dec(1)
i I Priority update not performed

s 6

Vertex E

Vertex F

Vertex G

S

Time

Figure 5: Serial Hive kcore execution, showing one task ex-
ecution per logical time step, corresponding to a dequeue
from the modeled priority queue. Tasks execute in priority
order, but each task may update the priorities of future tasks,
influencing the order in which they are dequeued.

We find that porting a sequential program to the Hive API is straight-
forward. The bodies of the Hive tasks closely resemble the bodies of
the sequential loop iterations. The main challenge of writing a Hive
program is recognizing which scheduling pattern(s) the algorithm
uses, which consequently implies the Hive API calls to use. We
observe five patterns across our nine benchmarks.

The UPDATE pattern arises when the main loop of the sequential
program unconditionally updates the priority of objects to new
values. For example, residual belief propagation [25] (rbp) priori-
tizes each task based on the output of a many-input function and
updates the task on every change to any input. Listing 4 shows the
sequential loop and Hive task for rbp. When the algorithm exhibits
the UPDATE pattern, then a call to update (line 19) replaces the
priority queue’s version (line 9).

The CANCEL pattern arises in a surprising context: algorithms that
do not need a priority queue for scheduling, but the sequential im-
plementation uses a for loop with known trip count, and iterations
may be skipped. For example, greedy maximal independent set
(mis) finds a subset of vertices in a graph such that no two vertices
included in the set are adjacent, and every vertex excluded from the
set is adjacent to an included vertex. Listing 5 shows the sequential
implementation of mis, and how we break it into Hive tasks. Unlike
kcore and rbp, all work, and the order of that work, is known at
the start. However, the irregular data dependences between tasks
are only known at runtime, making software parallelization more
challenging. With the cANCEL pattern, loop iterations will set a flag
(line 8) to signal future iterations to exit early (line 5). Hive will
instead use cancel to remove the equivalent task for such itera-
tions (line 13). Hive is able to implicitly exclude vertices by simply
canceling their inclusion, obviating an equivalent to line 8 which
explicitly sets n’s state to EXCLUDED.

The UPDATEMIN pattern manifests in algorithms where task prior-
ity represents a cost to be minimized, such as in Dijkstra’s algorithm
for the single-source shortest path (sssp) problem [24, 28]. In this
pattern, the sequential code updates the schedule only if doing so

1void sequentialMain() {
2 PriorityQueue pgq;
3 for (Messagex m : messages)

4 pg.enqueue(m, getNewPrio(m));

5 while (!pg.empty()) {

6 Message* m = pq.dequeueMax();

7 m->val = getNewVal(m);

8 for (Messagex n: m->neighbors())

9 pg.update(n, getNewPrio(n));

10 3}

11 void updateMessage(Message* m, Timestamp ts) { // Task
12 m->val = getNewVal(m);

13 for (Messagex n: m->neighbors())

14 hive::update (&updateMessage, n, getNewTimestamp(n));
15 }

16 void hiveMain() {

17 hive::init(messages.size());

18 for (Message* m : messages)

19 hive::update (&updateMessage, m, getNewTimestamp(m));
20 hive::run();

21 }

Listing 4: Hive UPDATE pattern used to implement rbp

ISCA 22, June 18-22, 2022, New York City, NY

1void sequentialMain() {
2 for (Vertex* v : G.V)
3 v->state = UNKNOWN;
4+ for (Vertex* v G.V) {

5 if (v->state == EXCLUDED) continue;

6 v->state = INCLUDED;

7 for (Vertex* n v->neighbors())

8 n->state = EXCLUDED;

93}

10 void include(Vertexx v, Timestamp ts) { // Task
11 v->state = INCLUDED;

12 for (Vertexx n v->neighbors ())

13 hive::cancel(n);

14 }

15 void hiveMain() {

16 hive::init(G.n);

17 for (Vertexx v G.V) {

18 v->state = EXCLUDED;

19 hive::update(&include, v, v->id);
20 }

21 hive::run();

22 }

Listing 5: Hive CANCEL pattern used to implement mis

1void sequentialMain() {
2 PriorityQueue pq = {source, 0};

3 while(!pg.empty ()) {

4 Vertex* v = pq.dequeueMin();

5 for (Vertex* n: v->neighbors())

6 if (v->dist + dist(v, n) < n->dist) {
7 n->dist = v->dist + dist(v, n);

8 pg.update(n, n->dist);

933}

10 void visitVertex(Vertex* v, Timestamp ts) { // Task

11 for (Vertexx n v->neighbors ())

12 hive::updateMin(&visitVertex, n, ts + dist(v, n));
13 }

14 void hiveMain() {

15 hive::init(G.n);

16 hive::updateMin(&visitVertex, source, @);

17 hive::run();

18 hive::extract(distances);

19 }

Listing 6: Hive UPDATEMIN pattern used to implement sssp

lowers the priority value of an object. Conversely, sequential algo-
rithms using dequeueMax and monotonically increasing objectives
use the same API by inverting priority: subtracting it from a large
number. Listing 6 shows in sssp that a Hive call to updateMin (line
12) replaces both distance tracking and a conditional update in the
sequential version (lines 6-8).

The INCREMENTAL pattern is illustrated by kcore. Listing 1 and
Listing 3 show the sequential and Hive code, respectively. To use
the INCREMENTAL pattern, the programmer initially calls update to
bind a set of tasks to objects, then uses incrTS or decrTS to adjust
their timestamps.

The PoSTPONE pattern is a special case of the INCREMENTAL pattern
when increments use strictly positive deltas: tasks are rescheduled
only further in the future, never earlier. When this constraint is met,
an algorithm could functionally use either pattern. The POSTPONE
pattern trades programming complexity for better performance on
applications with a high update-to-dequeue ratio. Listing 7 shows
the sequential and Hive implementations of the greedy approximate
algorithm for unit-cost set cover [40] (setcover). Its objective is to

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

1void sequentialMain() {

2 PriorityQueue pq;

3 for (Setx s : sets)

4 pg.enqueue(s, s->cardinality);

5 while (!pqg.empty()) {

6 Set*x s = pqg.dequeueMax();

7 if (s->cardinality == @) break;

8 addToCover(s); // Not shown for brevity
9 for (Elemx e s->elements) {

10 if (e->state == COVERED) continue;
11 e->state = COVERED;

12 for (Setx si e->sets)

13 pg.decrementPrio(s1);

14 333

15int prios[sets.size()];

16 void coverElem(Elemx e, Timestamp ts) { // Task

17 if (e->state == COVERED) return;

18 e->state = COVERED;

19 for (Set* si e->sets)

20 prios[s1->id]++; // Decrement effective cardinality
21 }

22 void addSet(Timestamp ts, Set*x s) { // Task

23 if (prios[s->id] > ts) {

24 hive::enqueue (&addSet, prios[s->id], s);
25 return;

26}

27 addToCover(s);

28 for (Elemx e s->elems)

29 hive::updateMin (&coverElem, e, ts);

30 }
31 void hiveMain() {
32 hive::init(elems.size());

33 for (Setx s sets) {

34 prios[s->id] = MAX - s->cardinality;

35 hive::enqueue (&addSet, prios[s->id], s);
36 }

37 hive::run();

38 }

Listing 7: Combining the POSTPONE pattern and UPDATEMIN
pattern to implement setcover

find the minimum number of sets whose union covers all elements
in a universe. Its priority heuristic processes sets in decreasing
order of (remaining) cardinality. setcover exhibits both the rosT-
PONE pattern and the UPDATEMIN pattern. The POSTPONE pattern
uses enqueue instead of update or incrTS (line 35), and a counter
array to accumulate increments (line 20). When a POSTPONE pattern
task dequeues, it checks its object’s counter and may re-enqueue
itself for a later timestamp (lines 23-25). When the algorithm runs
many increments per dequeue, the POSTPONE pattern minimizes
the number of calls into the Hive API by accumulating updates.
This is safe because the strictly positive deltas guarantee that a task
will dequeue before any task that semantically replaces it, so it is
safe to postpone the enqueues.

3.4 Comparison with other models

Hive generalizes upon the Swarm [37] execution model. Swarm
tasks enqueue timestamp-ordered tasks that have no binding to any
object, and therefore must run at their originally assigned time-
stamps. Hive extends Swarm to also support object-task binding
and priority updates. Any Swarm-only program can run on Hive,
avoiding object table initialization.

Fractal [72] extends Swarm to enable composition of nested spec-
ulative parallelism. One implication is that Fractal can implement a

A Scalable Architecture for Reprioritizing Ordered Parallelism

modeled unrestricted [74] priority queue, whereas Swarm models a
monotone [74] priority queue: a child’s timestamp must be greater
than or equal to its parent’s. Hive is orthogonal to Fractal. While we
do not explore the implications of priority updates in the context
of nested speculative parallelism in this paper, Hive requires no
special handling for Fractal domains and can be implemented on a
Fractal system similarly to a Swarm one.

Likewise, it is unlikely that any special handling is required to
adapt the hardware mechanisms of Espresso [39] to Hive to coordi-
nate speculative and non-speculative ordered tasks with updates,
though we leave verifying this for future work.

4 SPECULATIVE PARALLELISM AMID
PRIORITY UPDATES

Hive software directly conveys its dynamic scheduling needs to
hardware, expressing implicit parallelism through task enqueues
and updates. Our goal with the Hive implementation (Sec. 5) is
to extract abundant parallelism among the queued tasks. Since
safe parallel executions for these irregular algorithms cannot be
statically determined at compile time, Hive executes queued tasks
in parallel and out of order, speculating that they are independent.
Specifically, Hive speculates that for every executing task:

o its data-dependent predecessors have performed their stores,

e its parent did not misspeculate, and

o it will not become MooT: replaced or canceled.

The Swarm architecture [37] similarly speculates on the first two
conditions (data and control dependences, respectively), making it
a natural baseline upon which to build Hive. This section gives an
overview of Hive’s approach to parallelism, identifying similarities
between Swarm and Hive, then highlighting the key insights that
enable Hive to speculate efficiently amid priority updates.

4.1 Similarities and differences with Swarm

Both Swarm and Hive detect data misspeculation by tracking the
memory read and write sets of all tasks and piggy-backing on cache
coherence requests. When two tasks access the same data with at
least one writing, both systems identify a dependence order violation
based on task timestamps and access types, and abort and restart
the later-ordered task if necessary.

Both systems handle control misspeculation by tracking children
tasks. A parent task may have created its children based on incorrect
control flow due to misspeculating on data. If the parent aborts, both
systems abort all its control-misspeculated descendents, recursively.

The key distinction of Hive hardware from Swarm is its builtin
support for updates to the schedule, or how it speculates on scheduler-
carried dependences. While Swarm can only rely on its support for
data and control misspeculation, Hive maintains multiple versions
of scheduler-dependent tasks, with all but one per object being in
a Moo state. This reduces Moot task overheads, while retaining
the ability to recover from priority update misspeculation.

4.2 Scheduler dependences and Moor tasks

We identify the scheduler-carried dependence as a new class which
resembles both data and control dependences, but is neither. A
task t is scheduler-dependent on task s if, when s appears to begin
executing, t is scheduled after s, and either

ISCA 22, June 18-22, 2022, New York City, NY

1 Timestamp prios[G.n]; // Scheduling metadata
2void removeV(Timestamp ts, Vertexx v) { // Task
3 if (prios[v->id] < ts) return;

4 for (Vertexx ngh : v->neighbors()) {

5 if (prios[ngh->id] <= ts) continue;

6 prios[ngh->id]--;

7 swarm::enqueue (&removeV, prios[ngh->id], ngh);
5 3

93}

10 void main(int argc, char** argv) {

11 for (Vertexx v : G.V) {

12 prios[v->id] = v->degree;

13 swarm::enqueue (&removeV, prios[v->id], v);

14 }

15 swarm::run();

16 coreness = prios;
17 }

Listing 8: The Swarm implementation of kcore transforms
scheduler-carried dependences into data and control depen-
dences, as did Listing 2 for sequential code.

e s mutates scheduler state corresponding to ¢, or
o tis scheduler-dependent on u, and u is scheduler-dependent on s.

Scheduler-carried dependences arise in systems where scheduler
state of future tasks is accessible and mutable. One example is when
a Hive task s cancels the task ¢t bound to some object. The execution
or existence of t is scheduler-dependent on s. Another example
is in processors with self-modifying code [78], if we view each
instruction as an individual task. To exit a loop, a store instruction
would overwrite the jump target address in the memory location of
a later PC [29]. The jump instruction is scheduler-dependent on the
store. Swarm tasks are never scheduler-dependent, because Swarm
has no mutable scheduler state.

Like how predication can transform control dependences into
data dependences [9], one can transform scheduler-carried depen-
dences into a combination of control and data dependences. Con-
sequently, Swarm can implement the Hive execution model using
only its data- and control-dependence speculation. For example,
Listing 8 shows a Swarm implementation of kcore. We replace
each Hive operation with reads and writes of scheduling metadata
in memory (prios) and task enqueue (line 7). Now, every update
operation produces a new task, and each task first checks memory
to see if it is still scheduled to run, exiting early if not (line 3).

Priority update operations often outnumber dequeues in algo-
rithms with updatable priority queues (Sec. 2). Therefore, the ma-
jority of tasks in Swarm implementations will dequeue, perform a
single memory read, and exit early with no effect on program state.
For example, the early exit path of Listing 8 will trigger more than
36X more often than not (Fig. 3). We call these early exiting tasks
Moor because they might as well have not run at all.

In a Swarm system, every MooT task consumes cycles on a core
while waiting on its memory access, and its speculative state with
non-empty read set consumes precious hardware resources until it
commits in order. Wasting core and speculation resources on MooT
tasks can cause stalls, hurting program performance.

In contrast, Hive speculates on a lack of scheduler-carried de-
pendences among tasks, but it recovers from misspeculation by
holding multiple speculative task versions for the same object. Un-
like Swarm, Hive does not treat these versions as separate tasks:
only one will appear to dequeue and run, matching the sequential

ISCA 22, June 18-22, 2022, New York City, NY

Eno o

64-tile, 256-core chip

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

Tile organization Task unit structures

Vertex H
@ Task execution

Vertex | [Priority update

Figure 7: Swarm and Hive system configuration.

Mem /10 ‘ ,/ r
] 4 L3 & Dir Bank !
D B 8o 7 | / Commi
,’ Task send queue
Eie o080 : - T s
. P | om
£ e ,
ENo@ o m] ;
s s |wyo |[wyo || yp |[wyp |
- . ° \ ! Task queue
Vertex E 1 !
\ ‘ Core ‘ Core ‘ Core ‘ Core II
2 \
FIo 6 ae - | - -
Mem /10 | Task unit Object map
\ L__.
o Swarm hardware additions Hive hardware additions

Committed State Speculative State Time
Figure 6: Speculative parallel Hive execution of kcore.

semantics (Sec. 3). Hive temporarily holds the others in an explicit
Moor state. Hive does not execute MooT task versions and aborts a
task if it becomes MooT after dequeue. Hive clears MoOT versions
out of its hardware resources when their fate becomes non-spec-
ulative. This is always earlier than they would be committed as
normal tasks in Swarm. We provide more detail in Sec. 5.

4.3 Example speculative execution

Fig. 6 shows a snapshot of the committed and speculative state of a
Hive system running kcore on our example graph using speculative
parallelism. At this moment, the blue vertex tasks have committed,
so there exists only one version of the yellow vertex task, which is
still speculative. The red vertex has received the speculative update
from the yellow vertex task, which has caused its original task at
timestamp 3 to become MooT. This MooT task had already begun
executing at that time, a misspeculation which has been aborted.
The valid version of this task, with timestamp 2, has already begun
speculatively executing, and will become the only version when
the yellow vertex task commits. This will destroy the version of the
red task with timestamp 3 when the yellow task with timestamp
1 commits, freeing speculative resources earlier, and obviating a
Swarm-style re-execution of an early exiting Moot task.

5 HIVE IMPLEMENTATION

Given the overview of Hive’s approach to speculative parallelism,
we now present an implementation of Hive as an extension to the
Swarm microarchitecture [36, 37, 39], visualized in Fig. 7. With re-
strictions, Hive could also be adapted to the Chronos [3] accelerator
for speculative ordered parallelism, which we leave to future work.
We first describe Swarm’s main features for task-level data and con-
trol speculation. We then turn to Hive’s modifications that enable
detection and recovery from scheduler-dependence misspeculation.

5.1 Baseline Swarm microarchitecture

Swarm makes modest changes to a tiled, cache-coherent multicore.
Each tile has a cluster of cores, each with its own private L1 cache.
Cores in the same tile share an L2 cache, and each tile has a slice of

a fully-shared L3 cache. Every tile is augmented with a task unit
that queues, dispatches, and commits tasks.

Swarm extracts parallelism among queued timestamped tasks by
executing tasks speculatively and out of order. To uncover enough
parallelism, Swarm can speculate thousands of tasks ahead of the
earliest active task. Swarm efficiently supports fine-grain tasks and
a large speculation window through five techniques: hardware task
management, large task queues, scalable speculation, high-through-
put ordered commits, and locality-aware execution. Hive adapts
each of these in support of speculating on scheduler dependences.
Hardware task management: Each task unit queues runnable
tasks and stores the speculative state of finished tasks until they
commit. A task is represented by a task descriptor that contains its
function pointer, 64-bit timestamp, arguments, and other metadata.

swarm: :enqueue creates a task with a create_task instruction
with arguments passed through registers. The local task unit asyn-
chronously sends the task descriptor to a remote tile. The parent’s
speculative state tracks where each child is enqueued, so that the
task unit can send parent commit or abort notifications. Receipt of
a parent abort notification aborts and discards the child, while a
parent commit notification permits queue virtualization (see below).

To aggressively extract parallelism, a task unit can dispatch any
idle task to a core, even if its parent remains speculative. Cores
dequeue tasks for execution in increasing timestamp order from
the local task unit. A successful dequeue initiates speculative execu-
tion at the task’s function pointer and makes the task’s arguments
available in registers. A core stalls if there is no task to dequeue.
Large task queues: Each task unit has three main structures: (i) the
task send buffer (TSB) holds newly created task descriptors to be
asynchronously sent to their destination tile, (ii) the task queue (TQ)
holds descriptors for every task received at the tile, and (iii) the
commit queue (CQ) holds the speculative state of tasks that have
finished executing but cannot yet commit.

These structures support tens of speculative tasks per core (e.g.,
64 TQ entries and 16 CQ entries per core) to implement a large
window of speculation (e.g., 16K tasks in the 256-core chip of Fig. 7).
Nevertheless, the queues can fill up, requiring some simple actions
to ensure forward progress. Specifically, tasks that receive parent-
commit notifications can be spilled to memory to free TQ entries,
virtualizing this structure. If no tasks can be spilled, queue resource
exhaustion is handled by either stalling task creation or aborting
higher-timestamp tasks to free space.

A Scalable Architecture for Reprioritizing Ordered Parallelism

Scalable data and control speculation: Swarm enhances prior
data-dependence speculation mechanisms to support the large num-
ber of speculative tasks. Swarm uses eager version management
and eager conflict detection using Bloom filters, like LogTM-SE [84].
Swarm forwards still-speculative data to later readers. Swarm de-
tects conflicts at cache-line granularity and leverages the cache
hierarchy to substantially reduce the number of conflict checks and
their cost. When a task aborts, Swarm sends its children abort notifi-
cations and rolls back its memory writes, recursively and selectively
aborting only the descendants and data-dependent tasks.

To perform speculative data forwarding and ordered commits,
Swarm dynamically produces a total order among tasks. The task
unit assigns each task a unique virtual time (VT) when it is dis-
patched. VTs are 128-bit integers that extend each 64-bit program-
mer-assigned timestamp with a unique 64-bit tiebreaker. Swarm
only allows tasks to access speculative data written by lower-VT
tasks, and commits tasks in VT order to preserve correctness.
Exception model: Espresso [39] defines and implements an ex-
ception model for Swarm. Any attempt by a speculative task to
perform an irrevocable action (e.g., segmentation fault or system
call) triggers a speculative exception. The task aborts, releases its
core, and is queued in a not runnable, exceptioned state. The task
transitions to idle and runnable if a conflict is later found on its
read set (suggesting it may have misspeculatively triggered the
exception), or when it becomes the earliest active task.

Tracked and untracked memory: Swarm tasks typically read
and write memory with accesses tracked by hardware-managed
speculation. Capsules [39] introduces regions of untracked memory
for select task code to issue accesses that bypass hardware-managed
speculation. Akin to virtual memory protections, speculative task
accesses to untracked memory trigger a speculative exception, pro-
tecting these regions from misspeculating tasks that lose integrity.
Ordered commits: Swarm adapts the virtual time algorithm [35]
to achieve high commit throughput. Tiles periodically communicate
with an arbiter (e.g., every 200 cycles) to determine the VT of the
earliest (lowest-VT) active (unfinished) task in the system. All tasks
with lower VTs can then commit. This scheme uses a hierarchical
min reduction and can commit many tasks per cycle, scaling to
hundreds of cores with tasks as short as a few instructions.
Locality-aware execution: Swarm is flexible in where to send a
task to be queued. To exploit data locality on fine-grain tasks, it
leverages a technique called spatial hints [36]. A hint is an optional
integer that abstractly denotes the data a new task is likely to access
(e.g., a vertex ID). When a core creates a task, the task unit hashes
its 64-bit hint to determine the destination tile ID. The hint is stored
in the task descriptor. The task unit sends tasks without hints to
random tiles. Thus, Swarm runs same-hint tasks at the same tile.

5.2 Hive microarchitecture

Hive generalizes the Swarm microarchitecture to support (i) log-
ically binding ordered tasks and objects, and (ii) speculating on
the outcome of scheduler-carried dependences. To implement the
former, Hive introduces the object table in memory. To achieve the
latter, Hive adapts Swarm task unit structures, shown in Fig. 7, to en-
able task versioning. We first describe Hive hardware assuming only
support for the hive: :update operation, along with hive::init.

ISCA 22, June 18-22, 2022, New York City, NY

We then describe support for getTS, updateMin, incrTS, decrTS,
and cancel. As it is object-agnostic, hive: : enqueue uses identical
hardware features as swarm: : enqueue.

Object table entries represent non-speculative object-task bindings.
The object table has an entry for every Hive object o, holding a
unique identifier (UID) for the task version currently (or last) bound
to 0. This task UID is opaque to software and can be cheaply derived
from a mechanism similar to the Swarm VT tiebreaker.

Misspeculating tasks must never corrupt the object table, so we
allocate it in untracked memory (Sec. 5.1). Tasks never read or write
the object table directly. Instead, task units non-speculatively read
and write UIDs in the object table to facilitate TQ virtualization.
They update object-task bindings when the creation of a new task
version becomes non-speculative (see below).

The programmer specifies the number of object table entries
to allocate with hive::init. We implement the object table as
an array and leave dynamic creation and destruction of objects to
future work (e.g., via hash table or tree). The Hive software runtime
initializes all entries to a task UID signifying no task (e.g., 0).
Speculative task versioning: Hive buffers task descriptors in the
TQs for all task versions for all objects, alongside any enqueued
tasks unbounded from objects. A task calling update creates a
task with a similar asynchronous send scheme as enqueue. Like
enqueue, the parent tracks the location of its child. Unlike enqueue,
the child may be speculatively replacing (or replaced by) another
task for the same object, making it a speculative task version.

Hive sends new task versions for the same object to the same

tile. Like Swarm’s spatial hints insight, tasks bound to the same
object are likely to access the same data, leveraging locality. Unlike
(optional) spatial hints, co-locating same-object tasks is required to
avoid races on the object table and simplify detection of scheduler-
dependence misspeculation.
Mootness detection and recovery: Hive must detect and recover
from two cases of scheduler-dependence misspeculation. First, a
task version that is idle, running, or finished could be replaced by
an update operation, making it speculatively MooT. Second, a task
version previously found to be MooT may have been replaced by a
misspeculating task calling update, and should be restored.

Fig. 8 shows how Hive expands the Swarm task descriptor to
facilitate mootness detection. Update operations add the VT of the
task responsible for creating the task version. This is usually the
parent that directly called update, but read-only spawner trees [86]
propagate the parentVT from their root task to increase parallelism.
Hive replaces a 16-bit spatial hint hash with a 64-bit full object ID.
enqueued tasks omit the parentVT and object ID, as in Swarm. Hive
adds three flag bits to encode the type of operation that created this
task version (e.g. update, enqueue, etc.)

A task unit detects which task versions are newly made Moot
when it receives a new task descriptor for a priority update to object
o. The task unit inserts the incoming task version t; to a free slot
in the TQ and compares two VT fields of t; with those of all task

Arguments
Arguments

Figure 8: Task descriptor for Swarm (top) and Hive (bottom).

ISCA °22, June 18-22, 2022, New York City, NY

versions for o in the TQ. For every queued task version, t4:
parentVT(tq) < parentVT(t;) < VT(ty) = tq is Moot
parentVT(tg) < VI(tg) < parentVT(t;) = neither is Moot
parentVT(t;) < parentVT(ty) < VT(t;) = t; is Moot
parentVT(t;) < VI(t;) < parentVT(tq) = neither is Moot

If task ¢t is idle, VT(t) is its timestamp appended with all 1s. The
first case implies ¢; replaces t4. The second implies that both tasks
will appear to run (unless another priority update for o intervenes).
In an equivalent sequential execution, tq Tuns, o is then taskless, t;
then binds to o, and finally #; runs. The third and fourth cases swap
tq and t;. When Hive detects that a task version is newly Moor,
it aborts the task (if running or finished) and queues it in a not
runnable, MooT state. MoOT versions are not considered active.
A task unit detects which tasks in Moot state should have been
runnable when it receives a parent abort notification for a local
child task version, t4, of object 0. As in Swarm, the task unit aborts
tq. Unlike Swarm, it also performs the same mooting comparisons
as above, replacing t; with t,, to reconsider the previously Moot
tasks. All versions that were made Moot due to t, repeat the VT
test as if they were newly received, possibly concluding that they
should be idle instead of MooT. No task version ever becomes
newly MooT due to receipt of an abort notification.
Object map: Hive adds an object map to every task unit to acceler-
ate task-version queries. This associative array maps an object ID
to the set of TQ entries that hold task versions for the given object.
We move the object ID field out of the TQ and into the object map.
Fig. 9 illustrates an object map and TQ being queried for an
incoming update. This task unit is holding a mix of ENQUEUE- and
UPDATE-flagged tasks and task versions. Every color represents a
distinct task, with gray showing tasks unbounded from objects.
Several speculative task versions are entries with the same color.
Arrows are illustrative only, but connect a task version to the others
it renders MooT. There are two unbounded tasks and three tasks
speculatively bound to two objects. Green and blue share one object,
being distinct tasks instead of versions of the same task. Both will
appear to run sequentially (see above). In a sequential priority
queue, green and blue would not occupy the queue at the same time,
but task versioning enables Hive to uncover speculative parallelism.
Clearing Moor task versions: When a task commits, its children
are no longer control-speculative but they may remain data-depen-
dent or scheduler-dependent on other speculative tasks. Swarm and
Hive virtualize the TQ by making idle control-non-speculative tasks

Object Map Task Queue
Timestamp ParentVT Moot? Flag
0xe552 UPDATE
oxe253 Mapg UPDATE
New Task - ENQUEUE

oxe552 UPDATE '
0xe552 UPDATE

- ENQUEUE
0xe552 UPDATE
0xe253 UPDATE ’
oxe552 UPDATE

Ob'!ect ID_>

Figure 9: Querying the object map and task queue to find the
task versions of an object. ENQUEUE-flagged tasks have a null
entry in the object map.

10

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

spillable to memory (Sec. 5.1). Hive also clears Moot tasks from
the TQ and object map by exploiting scheduler-non-speculative
object-task bindings. Given a parent commit notification for local
child task ¢, a task unit (i) discards all task versions rendered MooT
by t, given the mooting comparisons seen earlier, and (ii) writes
’s UID to the object table. A task unit also discards a task version,
t, when it is restored from a spill to memory and the UID in the
object table no longer matches its own, i.e., t was non-speculatively
replaced while spilled. Whereas MooT Swarm tasks execute and
wait in the commit queues, Hive clears MooT task versions as soon
as possible.

Supporting other operations: Unconditional hive: :update eas-
ily leverages Hive’s scheduler-dependence speculation described
so far. The other Hive operations require some additions.

getTS, incrTS, and decrTS: Timestamp-relative Hive operations
incur data dependences among tasks on the timestamps of tasks
bound to objects. Hive optionally augments the object table with an
array of timestamps in tracked memory to enable data-dependence
speculation, only if these operations are needed. Each call to update,
inerTS, or decrTS speculatively writes an entry of this timestamp
array (with remote tasks to exploit locality). getTS reads it. Together,
they enable speculative forwarding of object timestamps.
updateMin: Although updateMin could naively call getTS, its se-
mantics match an ordered put [55, 68] operation, which is a qualified
write and not a read. Hive leverages updateMin semantics to elim-
inate the speculative timestamp array for its objects. updateMin
flags its child task with UPDATEMIN in the task descriptor, and Hive
uses a different mooting comparison for these tasks:

VT(t;) < VT(tg) = tq is Moot

To clear Moor versions for UPDATEMIN-flagged tasks, Hive re-
places the UID written to the non-speculative object table with the
timestamp of a child receiving a parent commit notification. When
a task unit receives a new UPDATEMIN task version, the task unit
reads the non-speculative object table timestamp, and discards the
incoming task if its timestamp is higher. This enables an updateMin
task to keep mooting later task versions long after commits.
init is a variant of malloc that allocates from untracked memory
(and optionally regular tracked memory). It also accepts flag pa-
rameters that indicate whether the programmer will use update or
updateMin on the objects, and whether they require getTS. update
and updateMin cannot be used on the same objects because they
use the object table differently. Supporting getTS allocates another
array and incurs additional data dependences through tracked mem-
ory. Most of our benchmarks do not use getTS, incrTS, nor decrTS.
None of our benchmarks need both update and updateMin for the
same object. The program may call init multiple times to initialize
different sets of objects with different flags.
cancel is syntactic sugar around update or updateMin (Table 1).
A cancel’s child task version is empty and has timestamp zero or
infinity, depending on the object’s init configuration. When this
NOP task version receives a parent commit notification, the task
unit discards the child along with all versions it caused to be MooT.

All cancel child task versions obey the mooting comparison for
their object configuration. Therefore, calling cancel on an object
initialized for updateMin can be cheaper than on an object initial-
ized for update. This is because earlier calls to cancel will cause

A Scalable Architecture for Reprioritizing Ordered Parallelism

Object Map Task Queue

1, RUNNING

Object Map Task Queue

1, RUNNING

Object Map Task Queue
1, FINISHED
2, IDLE

2, IDLE 2, RUNNING

0x1755 3, IDLE 0x1755 3, IDLE

¢) t; finishes;
starts running

a) Initially, task #; is
running

b) t; updates object
0x1755 with task t3

t2

ISCA 22, June 18-22, 2022, New York City, NY

Object Map Task Queue Object Map Task Queue

1, FINISHED

Object Map Task Queue
1, FINISHED

2, RUNNING 2, FINISHED

0x1755 3, MOOT 0x1755 3, MOOT

”
~

C
\

0x1755 ~ 0x1755

e) ty finishes;
starts running

4,IDLE 4, RUNNING 0x1755 4, RUNNING

d) t2 updates object
0x1755to ty

f) t; and t, commit;
Moor t3 is discarded

21

Figure 10: Lifetime of a priority update in the object map and task queue. Task t; has timestamp i.

Table 2: Sizes and estimated areas of task unit storage ele-
ments for Swarm (in gray) and Hive (in black).

Task Task Commit Queue Order Object
Queue Send filters other Queue Map
Buffer (2-port) (TCAM) (CAM)
Entries 256 96 64 64 256 256
Entry Size S 51 45 16X32 36 2X8 N/A
(bytes) H 65 67 16X32 36 2X8 8
Size S 12.75 4.22 32 2.25 4 0
(KB) H 16.25 6.28 32 2.25 4 2
Est.area S 0.032 0.016 0.149 0.009 0.175 0
(mm?) H 0.043 0.028 0.149 0.009 0.175 0.011

later calls to be Moot for UPDATEMIN-flagged cancel, but not for
UPDATE-flagged cancel. Consequently, programs with the cANCEL
pattern should initialize their objects for updateMin if application
semantics allow it. We use this approach in our benchmarks.
extract is a memcpy from the object table. Because it may access
untracked memory it may not be called by speculative tasks.

5.3 Priority updates example

Fig. 10 illustrates the lifetime of priority updates on an object in
a 1-core Hive system. We use a total order of timestamps to hide
VT details. Initially, the TQ holds two tasks with timestamps 1 and
2. Each task makes an update on object 0x1755 with timestamps
3 and 4, respectively. The update with timestamp 4 replaces the
update with timestamp 3, so when the tasks with timestamps 1 and
2 are finished, the task starts running with timestamp 4, because the
version with timestamp 3 is MooT. When the task with timestamp
2 commits, this discards the version with timestamp 3.

5.4 Hive overheads

Swarm adds modest overheads [37] to a multicore and Hive adds
more, with the key addition of a 2KB CAM for the object map per
task unit. Table 2 breaks down the hardware storage overhead for
both systems. We use CACTI 7.0 [13] to estimate the area of Bloom
filters, SRAMs, and CAMs for a 32nm process. We estimate the
order queue area by scaling a commercial 28nm TCAM [11]. The
total storage area of a Hive task unit is less than 3% of a 45nm
Nehalem processor [26] when scaled up to a 45nm process.

Hive increases the memory footprint by adding a 64-bit word
in untracked memory for every object, and possibly another in
tracked memory when getTS/incrTS/decrTS are enabled. How-
ever, this increase can be offset by replacing an identical array the
program would have allocated anyway. For instance, in sssp and
bf's, the object table replaces the programmer-allocated array of
vertex distances, producing no net change in memory requirements.

11

Table 3: Configuration of the 256-core system.

256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA;

Cores single-issue in-order, scoreboarded (stall-on-use) [36, 39]

L1caches 32KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 1MB, per-tile, 8-way, inclusive, 9-cycle latency
256 MB, shared, static NUCA [41] (4 MB bank/tile),

L3 cache) .
16-way, inclusive, 12-cycle bank latency
Coherence MESI, 64 B lines, in-cache directories
NoC Four 8x8 meshes, 192-bit links, X-Y routing, 1 cycle/hop when

going straight, 2 cycles on turns (like Tile64 [77])

Main mem 4 controllers at chip edges, 120-cycle latency

64 task queue (and object map) entries/core (16384 total),

Queues 24 task send buffer entries/core (6144 total),
16 commit queue entries/core (4096 total)
2 Kbit 8-way Bloom filters, H3 hash functions [17]
Conflicts Tile checks take 5 cycles (Bloom filters) + 1 cycle per

timestamp compared in the commit queue
128-bit virtual times, tiles send updates to
virtual time arbiter every 200 cycles

Spill 15 tasks when the task queue is 85% full

Virtual time

Spills

Task mapper Statically hash object IDs and spatial hints to tiles [36]

6 EVALUATION

We evaluate Hive across nine benchmarks that require, or benefit
from, priority scheduling with updates. We find that Hive consis-
tently outperforms Swarm and software-only parallel implementa-
tions, with speedups of up to 2.8X over Swarm at 256 cores (gmean
52%) and more over software. We then characterize Hive and Swarm
performance sensitivity to graph structure, and finally tease apart
the performance impact of restricting scheduling features.

6.1 Methodology

Modeled system: We adapt an open-source,? cycle-level, execu-
tion-driven simulator based on Pin [47, 57] to model Hive, Swarm,
and multicore systems of up to 256 cores, shown in Fig. 7, with
parameters in Table 3. Swarm parameters are consistent with prior
work [36, 37, 39, 72, 86]. We use detailed core, cache, network, and
main memory models, and simulate all task and speculation over-
heads (e.g., task traffic, running misspeculating tasks until they
abort, simulating conflict and mootness check and rollback delays
and traffic, etc.). We also simulate smaller systems with square
meshes (K x K tiles for K < 8), keeping per-core cache sizes and
queue capacities constant. Since aggregate cache and queue capac-
ity grows, we see superlinear speedup on several benchmarks.

Benchmarks: Table 4 details the benchmarks we use to evaluate
Hive. It includes their provenance, inputs, and characteristics at
1 core: total run time for tuned Swarm, average task length, and
performance vs. tuned serial implementations. It also summarizes

Zhttps://github.com/SwarmArch/sim

ISCA 22, June 18-22, 2022, New York City, NY

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

Table 4: Benchmarks: sources and inputs; run time, task length, and tuned serial-relative performance on a single-core system.

SW parallel Hive programming 1-core cycles Avg. task length 1-core vs. serial
Benchmark Input strategy pattern(s) (Sec. 3.3) Swarm Hive Swarm Hive
kcore [23] com-Orkut [82] Bulk-Synchronous Incremental 219B 364 241 0.42X 1.09%
setcover [23] com-Orkut [82] Relaxed PQ UpdateMin and Postpone 14.6B 137 140 247X 1.53%
astar [37] Germany roads [2] Relaxed PQ [51,56] UpdateMin 1.4B 848 1056 1.22x 1.36X
bfs [45] hugetric-00020 [12, 22] Bulk-Synchronous UpdateMin 3.2B 117 150 0.76X 0.96X
sssp [58] East USA roads [1] Relaxed PQ [51,56] UpdateMin 2.0B 246 258 1.65%X 2.24%
msf [69] kronecker_log16n[12, 22] Speculation [14] UpdateMin and Cancel 0.50B 137 257 2.24% 3.08%
mis [69] R-MAT [19] Speculation [14, 15] Cancel 2.0B 119 81 0.68%X 0.98%X
mm [69] com-Orkut [82] Speculation [14, 15] Cancel 22.5B 147 147 0.53%X 0.51X
rbp [4] 200x200 Ising [20] Relaxed PQ [64] Update 18.4B 1128 1697 0.90x 1.23X
the strategies of the software-only parallel implementations, and Hive Swarm == == Parallel SW
the Hive programming pattern(s) we leveraged (Sec. 3.3). kcore 256 setcover 256 astar
We ported four graph benchmarks to Hive (astar, bf's, sssp, and
mis) from prior Swarm work [37, 39, 72]. We exclude those Swarm |
benchmarks that do not use object-based priority updates, such as 512 128 128
discrete-event circuit and architectural simulation, as Swarm and
Hive are equivalent. mis (Sec. 3.3) does not use dynamic scheduling
but benefits from the Hive cANCEL pattern. We leave investigation |fmEm == G femmmmmmmy (e
. . L 128 256 128 256 1 128 256
of more algorithms with the cANCEL pattern to future work. astar bfs sss msf
(A* pathfinding [31]), bf's (breadth-first search), and sssp (Sec. 3.3) 1024 1024 P 256 >
can be expressed with priority updates. Software-parallel astar
. . . o .
uses the same relaxed implementation as in Chronos [3]. 2
We also ported one statistical inference (rbp), one optimization o 512 512 128
(setcover), and three graph (kcore, msf, mm) algorithms to Hive &
and Swarm. kcore (Sec. 2) and setcover (Sec. 3.3) use the same
graph data structures as the software-parallel Julienne [23], but ob- 1 138 3% L 1767356 4 T TE T ose
viate its bucket-based scheduler. Similarly, msf (minimum spanning i
X ' 256 mis mm rbp
forest) and mm (greedy maximal matching) use the graph structures : 512 512
of PBBS [69]. We use the bipartite double cover of our input graph
as input to setcover, like Julienne. Hive, Swarm, and serial msf im- |
plement Prim’s algorithm [61], while the software-parallel version 128y 256 256
implements Kruskal’s algorithm [43]. We ported serial and parallel I e —
} -
rbp (Sec. 3.3) from Java [4] to C++, then ported to Hive and Swarm. VAP bl p e
All Swarm versions, except mis and mm, add a software-managed L 128 7256 W T8 T Ts6 4 iz2e 256

scheduling metadata array and early exiting conditions at the top of
each task. In some cases, (kcore, astar, bf's, sssp) this scheduling
metadata is the actual output of the algorithm.

Unless stated otherwise, we report speedups relative to tuned
1-core Swarm implementations. Due to hardware task management,
1-core Swarm versions are competitive with (and often faster than)
tuned software-only serial implementations, as shown in Table 4.
Notable exceptions are mis and mm, whose serial versions avoid
overheads of dynamic scheduling, and bf's, which uses a constant-
time FIFO queue. The setcover Julienne bucket queue at 1 thread
is our serial baseline, as it is faster than a Fibonacci heap.

We fast-forward each benchmark to the start of its parallel region
and run the entire parallel region. We perform enough runs to
achieve 95% confidence intervals < 1%.

6.2 Hive performance

Fig. 11 compares the performance of Hive, Swarm, and software-
only parallel versions of our benchmarks, as the system scales from
1-256 cores. Hive always outperforms both, with speedups over
parallel software of 3.3x (rbp) to 124X (sssp) at 256 cores (gmean
23X). Software-only versions struggle to scale to hundreds of cores

12

System Size (cores)

Figure 11: Speedup of Hive, Swarm, and software-only ver-
sions on 1-256 cores, normalized to tuned 1c Swarm.

on these inputs, so we do not consider them further. The benefits
of Hive over Swarm vary with algorithm and input. At 256 cores,
Hive yields between modest speedups of 11-22% (astar, mm, rbp)
to large speedups of 1.9 (sssp) and 2.8x (kcore) (gmean 52%).

Fig. 12 gives more insight into these results by showing execution
time breakdowns for Swarm and Hive versions at 256 cores. Each
pair of bars shows a benchmark, with the height of a bar giving the
execution time relative to Swarm. Each bar breaks down how cores
spend their cycles, executing (i) tasks that eventually commit or
(ii) later abort; and cycles spent (iii) spilling tasks to/from memory;
(iv) stalled on a full TSB or CQ; or (v) idle because there are no
(non-Moort in Hive) tasks available to run. The figure overlays the
update-to-dequeue ratio of Fig. 3 on the right y-axis. We analyze
overall trends first, then focus on outliers kcore and mm.

Hive reduces total committed task cycles across all benchmarks,
but to varying degrees. This typically corresponds to Hive’s ability

A Scalable Architecture for Reprioritizing Ordered Parallelism

B Commit Abort Spill B Stall Empty

® 100

ET0N ‘B "B | 2
< NENMEERENE S -
08 A B o
E HIINENAIRIEE
806 - g
: HIBIATRINININ' I
B 0.4 H L, e
IBIRIRINIRINININI I
© ©
§0.2 A 3
S oLk 5
00" H—SH SH SH SH SH SH SH sH 0

Figure 12: Breakdown of total core cycles at 256 cores, com-
paring Swarm and Hive. Lower is better.

to avoid useless work: Hive does not execute and commit MooT
task versions, whereas Swarm executes MooT tasks with early exits.
When tasks are short (Table 4) early exiters can increase commit-
ted cycles by over 38% (bfs, sssp, mis). However, when Moot
tasks are less common (setcover, astar) and/or tasks are longer
(astar, rbp), Swarm’s increase in committed cycles is meager: less
than 6%. Both Hive and Swarm versions of setcover benefit from
the POSTPONE pattern on the Set objects, as it is independent of
Hive hardware. This eliminates many Moot tasks in both systems.
astar’s targeted and directed search of the road graph rarely revis-
its a vertex, leading to few MooT tasks in either system.

Hive reduces the cycles stalled on resource exhaustion for all
benchmarks except mm. Hive Moot task versions do not waste pre-
cious CQ space, but Swarm Moot tasks do. Moreover, Hive clears
many Moot tasks from the TQs at parent commit time, whereas
Swarm waits to commit MooT tasks in order. CQ exhaustion is
solved both by stalls and aborts, so these gains also translate to
some reduced aborts. Hive cuts over 68% (up to 99%) of stall cycles
in benchmarks with many Moor tasks (bfs, sssp, msf, mis). Simi-
lar to committed cycles, Hive cuts fewer stall cycles when Moot
tasks are rare and/or tasks are long (setcover, astar, rbp). Hive’s
setcover speedup comes solely from more efficient CQ utilization
on its Element objects, using the UPDATEMIN pattern.

Hive reduces aborted task cycles not only by curtailing resource
exhaustion, but also through early mootness detection. Tasks in
setcover, sssp, msf, and mis can have several children (and re-
cursively, descendants) spanning many distinct timestamps. Hive
aborts MoOT versions as soon as a new task version arrives at a tile,
whereas Swarm aborts Moot tasks later when the new task runs.
Hive is able to clear the tree of descendants earlier, so fewer cycles
are spend misspeculating that these tasks will run.

kcore stands out for its significant cycles (two thirds in Swarm)
spent spilling/filling tasks due to task queue exhaustion. It exhibits
an adversarial pattern for Swarm TQs. kcore decrements every
vertex’s effective degree (timestamp), which requires a newly en-
queued task each time in Swarm. Since a vertex tasks’ timestamps
monotonically decrease, they are enqueued in reverse order of de-
queue. Swarm TQs fill up with later-ordered Moot tasks, which
spill to memory, then refill and execute with an early exit. In con-
trast, Hive clears most of the Moot task versions before they spill
to memory and clears the rest when they are restored. Hive consid-
erably reduces cycles wasted on spills.

13

ISCA 22, June 18-22, 2022, New York City, NY

mm is an outlier for its task structure. mm is related to mis [15]:
it finds a subset of edges such that no two edges included in the
set share an endpoint, and every edge excluded from the set shares
an endpoint with an included edge. To process an edge, each loop
iteration reads and writes two vertices. We expected a fine-grain
(FG) [36] mm Swarm version that accesses the two vertices in two tiny
locality-exploiting tasks to outperform a coarse-grain (CG) version
with one task per iteration. However, FG tasks increase queue
pressure, and unlike mis, CG mm tasks are almost as short as FG.
Queue pressure overwhelms the benefits of locality for FG Swarm,
so we report results for CG Swarm mm. In contrast, Hive eliminates
Moor tasks, so it both reduces queue pressure and exploits the
locality of FG tasks, outperforming Swarm by 22%.

6.3 Sensitivity to input graph structure

The performance benefits of Hive depend not only on algorithm
semantics but also input graph structure. Fig. 13 shows the cycle
breakdowns for kcore across three graphs with characteristics
summarized in Table 5. Hive and Swarm exhibit similar trends to
those in Sec. 6.2 but the profiles differ with graph structure. Hive
significantly reduces the cycles spent spilling tasks to memory. This
yields over 2x speedup on the social graphs because spills dominate
execution time (orkut, 1J), but only 33% speedup on road.

Tasks tend to be spilled to memory when they are scheduled for
far in the future. In kcore, this happens when a low-coreness ver-
tex neighbors a high-coreness vertex. road vertices have coreness
(nearly) equal to their degree, so their priority is rarely decremented,
if at all, as shown by its low update-to-dequeue ratio. The social
graphs have high ratios, implying abundant priority decrements.
However, orkut’s spill cycles do not increase proportionally to
the ratio: we observe that its spread of coreness among vertices
and fraction of low-degree vertices are lower than in 1j. Although
the ratio of updates to dequeues is one signal that influences the
performance benefit of Hive over Swarm, the interaction between
graph structure and algorithm ultimately dominates, making the
actual speedup hard to predict.

Table 5: kcore input graph characteristics.

Input graph 4l |E| |E|/|IV| Max core
com-Orkut (orkut) [82] 3.1M 117M 38 253
LiveJournal (1j) [48] 48M 69M 14 512
East USA roads (road) [1] 3.6M 88M 24 6
® 100
€ 1.00 °
‘é‘ . A I . g Empty
5078 A W Lo gm st
. = S
8 0.50 u g Spill
3 [o
2 — £1 5 S Abort
< 0.2 =] ©
g 025 ‘(é’_ Commit
g 0.00 ‘ ‘ 0.1 >
' S H S H S H :
orkut lj road

Figure 13: Breakdown of total core cycles at 256 cores for
kcore on different graphs, comparing Swarm and Hive.

ISCA 22, June 18-22, 2022, New York City, NY

B Swarm bulk-sync Swarm BN Hive
5 Ml Swarm relaxed Il Hive basic
. X
g
c 15
©
E 1
o
5os
a
0
wcor® e&co\‘é aste ofS o5 st @S 0P q_ﬂ\ea“
of

Figure 14: Performance of alternate designs vs. Swarm.

6.4 Contribution of architectural features

Hive and Swarm model strict sequential priority queues and extract
parallelism by speculating within and across timestamps. Fig. 14
teases apart the contribution of prioritization features, by com-
paring performance normalized to Swarm at 256 cores. Bulk-syn-
chronous Swarm executes equal-timestamp tasks speculatively in
parallel, but one timestamp at a time. Relaxed Swarm dequeues tasks
in tile-local order, but commits them in any order (atomicity only).
We omit Relaxed Swarm for algorithms that need a strict schedule
(kcore, msf, mis, mm). Basic Hive supports the UPDATE flag (update,
incrTS, decrTS, getTS do not change) but not the UPDATEMIN flag
(updateMin instead calls getTS and possibly update). Bulk-sync
Swarm underperforms Swarm slightly (kcore, bfs) or significantly
(all others) due to limited parallelism per timestamp (gmean 0.089X).
Relaxed Swarm has abundant parallelism but cores do more overall
work, which hurts performance except for rbp (gmean 0.51x). Ba-
sic Hive is identical to Hive for benchmarks that are implemented
without the UPDATEMIN flag (kcore, rbp), and is identical to Swarm
for benchmarks that do call getTS, but will only call update once
(setcover, mis, mm). For the remaining benchmarks (astar, bf's,
sssp, msf), Basic Hive performs slightly worse than Swarm (gmean
0.90x), which suggests that poor use of the Hive API is worse
than a well-written Swarm program. Using the wrong Hive pattern
destroys data locality and imposes additional data dependences
among tasks, outweighing Hive’s advantages.

7 ADDITIONAL RELATED WORK

Priority scheduling has a long history in sequential algorithms [24,
28, 31, 40, 61, 76, 79]. Recent work has developed software tech-
niques to scale priority schedulers across cores, and hardware to
accelerate the overheads.
Ordered software: Strict parallel scheduling is supported with
synchronous bucketing in Julienne [23] and Graphlt [88], specu-
lation in Galois [33, 44] and deterministic reservations [14], and
kinetic dependence graphs [34]. These systems perform well when
there are ample tasks per priority, or when tasks are large enough
to amortize overheads. Hive hardware eliminates these restrictions,
unlocking fine-grain ordered parallelism to hundreds of cores.
Relaxing the scheduler’s task dispatch order exposes more par-
allelism and can reduce overheads. Relaxed priority schedulers in-
clude OBIM [46, 56], Spraylist [7], Multiqueue [6, 60, 64], PMOD [85],
and others [66, 80, 89]. Alternatively, some parallel algorithms
coarsen priority values to expose more parallelism for bulk-synchro-
nous schedulers [16, 32, 51]. Relaxation trades off priority drift [66]

14

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

(and sometimes work efficiency) in exchange for greater scalabil-
ity. Because they drop strict semantics, these techniques are only
applied for algorithms that are resilient to priority inversion.

Hive’s updateMin has similar semantics to the write-with-min
operation [68]. However, the latter is implemented with a read and
a CAS, suffering data movement under contention, whereas the
former sends a task to the object’s hosting tile, exploiting locality.
Ordered hardware: Swarm [37] and Chronos [3] abstract a sequen-
tial priority queue, targeting multicore and accelerator architec-
tures, respectively. Both speculate on data and control dependences
to extract task-level parallelism within and across priorities. How-
ever, Swarm detects data misspeculation through coherence and
task read and write sets, whereas Chronos associates each task with
an abstract object, similarly to Hive, and treats same-object tasks as
dependent. Unlike Chronos, Hive allows tasks to read and write any
tracked memory. Unlike Hive, Chronos can queue multiple tasks
per object simultaneously, but like Swarm, Chronos only supports
priority updates with early exiting tasks.

PolyGraph [21] is a graph accelerator that either provides bulk-
synchronous strict priority scheduling or relaxed priority sched-
uling with priority updates. Like Hive’s updateMin, PolyGraph
coalesces updates for the same vertex by keeping the higher prior-
ity update. Polygraph accelerates overheads of its software analogs,
but similarly requires abundant tasks per priority or algorithms that
tolerate priority inversion; it does not speculate across priorities.

Task-based dataflow architectures such as Task Superscalar [27],
Picos [73, 83], TDM [18], and Phentos [52] accelerate inter-task
dependence analysis and scheduling to find non-trivial parallel
schedules without speculation overheads. However, their program-
ming models cannot convey priority-ordered scheduling among
tasks, such as enqueuing a task to be executed far in the future.

8 CONCLUSION

Foundational and emerging algorithms depend on a strict task or-
dering for correctness. However hardware systems that support
task order lack crucial update operations. We have examined the se-
mantics of the priority update operation, and in doing so, uncovered
a new class of dependence, the scheduler-carried dependence. We
have described how this new dependence occurs and the necessary
invariants required to avoid violating it, as well as implications of
these invariants. Using these insights, we designed Hive, an execu-
tion model and hardware architecture that implements a scalable
priority queue with priority update operations. Hive achieves up
to 2.8X speedup over Swarm at 256 cores, while software solutions
fail to scale to such large system sizes.

ACKNOWLEDGMENTS

We sincerely thank Milind Kulkarni (our shepherd), Javad Abdi,
Isidor R. Brki¢, Jerry X. He, Heng Liao, Jing Xia, Victor A. Ying, Xip-
ing Zhou, and the anonymous reviewers for their helpful feedback.
We thank Hyun Ryong (Ryan) Lee for his implementations of bulk-
synchronous and relaxed-order Swarm. This work was supported
in part by Compute Canada, the University of Toronto, NSERC, a
Queen Elizabeth II Graduate Scholarship in Science and Technology,
and the Engineering Science Research Opportunities Program.

https://www.computecanada.ca

A Scalable Architecture for Reprioritizing Ordered Parallelism

REFERENCES

(1]
[2
(3]

[10

[11

[12

[13]

[14]

(15

[16

[17]

(18]

[19]

[20

[21

[22

[23]

2006. 9th DIMACS Implementation Challenge: Shortest Paths.

2015. OpenStreetMap. https://www.openstreetmap.org

Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Speculative Par-
allelism for Accelerators. In Proc. of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXV). ACM,
1247-1262. https://doi.org/10.1145/3373376.3378454

Vitalii Aksenov, Dan Alistarh, and Janne H. Korhonen. 2020. Scalable Belief
Propagation via Relaxed Scheduling. In Proc. of the International Conference on
Neural Information Processing Systems (NeurIPS). MIT Press, 22361-22372.

Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. 2018. Re-
laxed Schedulers Can Efficiently Parallelize Iterative Algorithms. In Proc. of
the Symposium on Principles of Distributed Computing (PODC). ACM, 377-386.
https://doi.org/10.1145/3212734.3212756

Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. 2017. The Power
of Choice in Priority Scheduling. In Proc. of the Symposium on Principles of
Distributed Computing (PODC). ACM, 283-292. https://doi.org/10.1145/3087801.
3087810

Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The SprayList:
A scalable relaxed priority queue. In Proc. of the Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, 11-20. https://doi.org/10.1145/
2688500.2688523

Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. 2019. Efficiency Guarantees
for Parallel Incremental Algorithms under Relaxed Schedulers. In Proc. of the
Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, 145-154.
https://doi.org/10.1145/3323165.3323201

J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983. Conversion of
Control Dependence to Data Dependence. In Proc. of the Symposium on Principles
of Programming Languages (POPL). ACM, 177-189. https://doi.org/10.1145/
567067.567085

J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-
nani. 2005. Large Scale Networks Fingerprinting and Visualization Using the
K-Core Decomposition. In Proc. of the International Conference on Neural Infor-
mation Processing Systems (NeurIPS). MIT Press, 41-50.

Analog Bits 2011. 4096 x 128 ternary CAM datasheet (28nm). Analog Bits. http:
//mail.analogbits.com/pdf/28nm_TCAM_Product_Brief.pdf

David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner
(Eds.). 2012. 10th DIMACS Implementation Challenge Workshop.

Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Transactions on Computer Architecture
and Compiler Optimizations (TACO) 14, 2 (2017). https://doi.org/10.1145/3085572
Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.
Internally deterministic parallel algorithms can be fast. In Proc. of the Symposium
on Principles and Practice of Parallel Programming (PPoPP). ACM, 181-192. https:
//doi.org/10.1145/2145816.2145840

Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy Sequential
Maximal Independent Set and Matching are Parallel on Average. In Proc. of the
Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, 308-317.
https://doi.org/10.1145/2312005.2312058

Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. 2016. Parallel
Shortest Paths Using Radius Stepping. In Proc. of the Symposium on Parallelism
in Algorithms and Architectures (SPAA). ACM, 443-454. https://doi.org/10.1145/
2935764.2935765

J. Lawrence Carter and Mark Wegman. 1979. Universal classes of hash functions.
J. Comput. System Sci. 18, 2 (1979), 143-154. https://doi.org/10.1016/0022-0000(79)
90044-8

E. Castillo, L. Alvarez, M. Moreto, M. Casas, E. Vallejo, J. L. Bosque, R. Beivide,
and M. Valero. 2018. Architectural Support for Task Dependence Management
with Flexible Software Scheduling. In Proc. of the International Symposium on
High Performance Computer Architecture (HPCA-24). IEEE, 283-295. https://doi.
org/10.1109/HPCA.2018.00033

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proc. of the International Conference on Data
Mining (SDM). SIAM, 442-446. https://doi.org/10.1137/1.9781611972740.43
Barry A. Cipra. 1987. An Introduction to the Ising Model. The American Mathe-
matical Monthly 94, 10 (1987), 937-959. https://doi.org/10.1080/00029890.1987.
12000742

Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. PolyGraph: Exposing the
Value of Flexibility for Graph Processing Accelerators. In Proc. of the International
Symposium on Computer Architecture (ISCA-48). ACM/IEEE, 595-608. https:
//doi.org/10.1109/ISCA52012.2021.00053

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1-25. https://doi.org/10.1145/2049662.2049663

Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A Framework
for Parallel Graph Algorithms Using Work-efficient Bucketing. In Proc. of the

15

[24

[25

[26]

~
=

[28

[29

[30]

@
fla

[32

(33]

[34

[35

[36

[37

[39

[40

[41

[42

[43

(44

ISCA 22, June 18-22, 2022, New York City, NY

Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, 293-304.
https://doi.org/10.1145/3087556.3087580

Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs.
Numer. Math. 1, 1 (1959), 269-271. https://doi.org/10.1007/BF01386390

Gal Elidan, Jan McGraw, and Daphne Koller. 2006. Residual Belief Propagation:
Informed Scheduling for Asynchronous Message Passing. In Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI'06). AUAI
Press, 165-173. https://doi.org/10.48550/ARXIV.1206.6837

H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger. 2011.
Dark Silicon and The End of Multicore Scaling. In Proc. of the International
Symposium on Computer Architecture (ISCA-38). ACM/IEEE, 122-134. https:
//doi.org/10.1109/MM.2012.17

Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R M. Badia, E. Ayguade, J. Labarta, and
M. Valero. 2010. Task Superscalar: An Out-of-Order Task Pipeline. In Proc. of the
International Symposium on Microarchitecture (MICRO-43). IEEE/ACM, 89-100.
https://doi.org/10.1109/MICRO.2010.13

Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci Heaps and Their
Uses in Improved Network Optimization Algorithms. J. ACM 34, 3 (1987), 596-615.
https://doi.org/10.1145/28869.28874

Thomas Haigh, Mark Priestley, and Crispin Rope. 2014. Reconsidering the Stored-
Program Concept. IEEE Annals of the History of Computing 36, 1 (2014), 4-17.
https://doi.org/10.1109/MAHC.2013.56

Lance Hammond, Mark Willey, and Kunle Olukotun. 1998. Data speculation
support for a chip multiprocessor. In Proc. of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
VIII). ACM, 58-69. https://doi.org/10.1145/384265.291020

Peter Hart, Nils Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100-107. https://doi.org/10.1109/TSSC.1968.
300136

William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2014.
Ordering heuristics for parallel graph coloring. In Proc. of the Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 166-177. https://doi.
0rg/10.1145/2612669.2612697

Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali. 2011. Or-
dered vs. unordered: a comparison of parallelism and work-efficiency in irregular
algorithms. In Proc. of the Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP). ACM, 3-12. https://doi.org/10.1145/2038037.1941557
Muhammad Amber Hassaan, Donald Nguyen, and Keshav Pingali. 2015. Kinetic
Dependence Graphs. In Proc. of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XX). ACM,
457-471. https://doi.org/10.1145/2775054.2694363

David R. Jefferson. 1985. Virtual time. ACM Transactions on Programming
Languages and Systems (TOPLAS) 7, 3 (1985), 404-425. https://doi.org/10.1145/
3916.3988

Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel
Sanchez. 2016. Data-centric execution of speculative parallel programs. In Proc. of
the International Symposium on Microarchitecture (MICRO-49). IEEE/ACM, 1-13.
https://doi.org/10.1109/MICRO.2016.7783708

Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A scalable architecture for ordered parallelism. In Proc. of the International
Symposium on Microarchitecture (MICRO-48). IEEE/ACM, 228-241. https://doi.
org/10.1145/2830772.2830777

Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2016. Unlocking ordered parallelism with the Swarm architecture. IEEE Micro 36,
3(2016), 105-117. https://doi.org/10.1109/MM.2016.12

Mark C. Jeffrey, Victor A. Ying, Suvinay Subramanian, Hyun Ryong Lee, Joel
Emer, and Daniel Sanchez. 2018. Harmonizing speculative and non-speculative
execution in architectures for ordered parallelism. In Proc. of the International
Symposium on Microarchitecture (MICRO-51). IEEE/ACM, 217-230. https://doi.
org/10.1109/MICRO.2018.00026

David S. Johnson. 1974. Approximation algorithms for combinatorial problems. 7.
Comput. System Sci. 9, 3 (1974), 256-278. https://doi.org/10.1016/S0022-0000(74)
80044-9

Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip caches. In Proc. of the
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X). ACM, 211-222. https://doi.org/10.1145/605397.
605420

Venkata Krishnan and Josep Torrellas. 1999. A Chip-Multiprocessor Architecture
with Speculative Multithreading. IEEE Trans. Comput. 48, 9 (1999), 866—880.
https://doi.org/10.1109/12.795218

Joseph B. Kruskal. 1956. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48—-50. https:
//doi.org/10.2307/2033241

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. 2007. Optimistic parallelism requires abstractions. In
Proc. of the Conference on Programming Language Design and Implementation

https://www.openstreetmap.org
https://doi.org/10.1145/3373376.3378454
https://doi.org/10.1145/3212734.3212756
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1145/2688500.2688523
https://doi.org/10.1145/2688500.2688523
https://doi.org/10.1145/3323165.3323201
https://doi.org/10.1145/567067.567085
https://doi.org/10.1145/567067.567085
http://mail.analogbits.com/pdf/28nm_TCAM_Product_Brief.pdf
http://mail.analogbits.com/pdf/28nm_TCAM_Product_Brief.pdf
https://doi.org/10.1145/3085572
https://doi.org/10.1145/2145816.2145840
https://doi.org/10.1145/2145816.2145840
https://doi.org/10.1145/2312005.2312058
https://doi.org/10.1145/2935764.2935765
https://doi.org/10.1145/2935764.2935765
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1109/HPCA.2018.00033
https://doi.org/10.1109/HPCA.2018.00033
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1080/00029890.1987.12000742
https://doi.org/10.1080/00029890.1987.12000742
https://doi.org/10.1109/ISCA52012.2021.00053
https://doi.org/10.1109/ISCA52012.2021.00053
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1007/BF01386390
https://doi.org/10.48550/ARXIV.1206.6837
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1145/28869.28874
https://doi.org/10.1109/MAHC.2013.56
https://doi.org/10.1145/384265.291020
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/2612669.2612697
https://doi.org/10.1145/2612669.2612697
https://doi.org/10.1145/2038037.1941557
https://doi.org/10.1145/2775054.2694363
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/3916.3988
https://doi.org/10.1109/MICRO.2016.7783708
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/MM.2016.12
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/605397.605420
https://doi.org/10.1109/12.795218
https://doi.org/10.2307/2033241
https://doi.org/10.2307/2033241

ISCA 22, June 18-22, 2022, New York City, NY

(PLDI). ACM.

Charles Leiserson and Tao Schardl. 2010. A work-efficient parallel breadth-first
search algorithm. In Proc. of the Symposium on Parallelism in Algorithms and
Architectures (SPAA). ACM, 303-314. https://doi.org/10.1145/1810479.1810534
Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2015. Priority queues
are not good concurrent priority schedulers. In Proc. of the European Conference
on Parallel Processing (Euro-Par). Springer Berlin Heidelberg, 209-221. https:
//doi.org/10.1007/978-3-662-48096-0_17

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Proc. of the Conference on Programming Language Design and Implementation
(PLDI). ACM, 190-200. https://doi.org/10.1145/1064978.1065034

Michael W. Mahoney, Anirban Dasgupta, Jure Leskovec, and Kevin J. Lan. 2009.
Community Structure in Large Networks: Natural Cluster Sizes and the Absence
of Large Well-Defined Clusters. Internet Mathematics 6, 1 (2009). https://doi.org/
10.1080/15427951.2009.10129177

Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey

Mohsin Shan and Omer Khan. 2021. Accelerating Concurrent Priority Scheduling
Using Adaptive in-Hardware Task Distribution in Multicores. IEEE Computer
Architecture Letters (CAL) 20, 1 (2021), 17-21. https://doi.org/10.1109/LCA.2020.
3045670

Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. CoreScope: Graph
Mining Using k-Core Analysis — Patterns, Anomalies and Algorithms. In Proc
of the International Conference on Data Mining (ICDM). IEEE, 469-478. https:
//doi.org/10.1109/ICDM.2016.0058

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2013.
Reducing Contention through Priority Updates. In Proc. of the Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 152-163. https://doi.
org/10.1145/2486159.2486189

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Brief announcement:
The Problem Based Benchmark Suite. In Proc. of the Symposium on Parallelism
in Algorithms and Architectures (SPAA). ACM, 68-70. https://doi.org/10.1145/
2312005.2312018

[49

Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and [70
Michalis Vazirgiannis. 2020. The core decomposition of networks: theory,
algorithms and applications. The VLDB Journal 29 (2020), 61-92. https:
//doi.org/10.1007/s00778-019-00587-4 [71

Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. 1995. Multiscalar
processors. In Proc. of the International Symposium on Computer Architecture
(ISCA-22). ACM/IEEE, 414-425. https://doi.org/10.1145/223982.224451

J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry.

[50] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and Clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417-427. https://doi.org/
10.1145/2402.322385

U. Meyer and P. Sanders. 2003. Delta-stepping: A Parallelizable Shortest Path
Algorithm. Journal of Algorithms 49, 1 (2003), 114-152. https://doi.org/10.1016/
S0196-6774(03)00076-2

Lucas Morais, Vitor Silva, Alfredo Goldman, Carlos Alvarez, Jaume Bosch,
Michael Frank, and Guido Araujo. 2019. Adding Tightly-Integrated Task
Scheduling Acceleration to a RISC-V Multi-core Processor. In Proc. of the In-
ternational Symposium on Microarchitecture (MICRO-52). IEEE/ACM, 861-872.
https://doi.org/10.1145/3352460.3358271

Flaviano Morone, Kate Burleson-Lesser, H. A. Vinutha, Srikanth Sastry, and
Hernan A. Makse. 2019. The jamming transition is a k-core percolation transition.
Physica A: Statistical Mechanics and its Applications 516 (2019), 172-177. https:
//doi.org/10.1016/j.physa.2018.10.035

Flaviano Morone, Gino Del Ferraro, and Hernan A. Makse. 2019. The k-core as
a predictor of structural collapse in mutualistic ecosystems. Nature Physics 15
(2019), 95-102. https://doi.org/10.1038/s41567-018-0304-8

Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. 2014. Phase Recon-
ciliation for Contended In-Memory Transactions. In Proc. of the Symposium on
Operating Systems Design and Implementation (OSDI-11). USENIX, 511-524.
Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proc. of the Symposium on Operating Systems
Principles (SOSP-24). ACM, 456-471. https://doi.org/10.1145/2517349.2522739
Heidi Pan, Krste Asanovi¢, Robert Cohn, and Chi-Keung Luk. 2005. Controlling
program execution through binary instrumentation. SSIGARCH Comput. Archit.
News 33, 5 (2005), 45-50. https://doi.org/10.1145/1127577.1127587

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber
Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. The tao of parallelism
in algorithms. In Proc. of the Conference on Programming Language Design and
Implementation (PLDI). ACM, 12-25. https://doi.org/10.1145/1993498.1993501
D. N. Pnevmatikatos and G. S. Sohi. 1994. Guarded Execution and Branch Pre-
diction in Dynamic ILP Processors. In Proc. of the International Symposium on
Computer Architecture (ISCA-21). ACM/IEEE, 120-129. https://doi.org/10.1145/
191995.192022

Anastasiia Postnikova, Nikita Koval, Giorgi Nadiradze, and Dan Alistarh. 2022.
Multi-Queues Can Be State-of-the-Art Priority Schedulers. In Proc. of the Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP). ACM, 353-367.
https://doi.org/10.1145/3503221.3508432

R. C. Prim. 1957. Shortest connection networks and some generalizations. The Bell
System Technical Journal 36, 6 (1957), 1389-1401. https://doi.org/10.1002/j.1538-
7305.1957.tb01515.x

Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James Tuck, and
Josep Torrellas. 2005. Thread-level speculation on a CMP can be energy efficient.
In Proc. of the International Conference on Supercomputing (ICS’05). ACM, 219-228.
https://doi.org/10.1145/1088149.1088178

Jose Renau, James Tuck, Wei Liu, Luis Ceze, Karin Strauss, and Josep Torrellas.
2005. Tasking with out-of-order spawn in TLS chip multiprocessors: Microarchi-
tecture and compilation. In Proc. of the International Conference on Supercomputing
(ICS°05). ACM, 179-188. https://doi.org/10.1145/1088149.1088173

Hamza Rihani, Peter Sanders, and Roman Dementiev. 2015. Brief Announce-
ment: MultiQueues: Simple Relaxed Concurrent Priority Queues. In Proc. of the
Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, 80-82.
https://doi.org/10.1145/2755573.2755616

Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269-287. https://doi.org/10.1016/0378-8733(83)90028-X

2000. A scalable approach to thread-level speculation. In Proc. of the International
Symposium on Computer Architecture (ISCA-27). ACM/IEEE, 1-12. https://doi.
0rg/10.1145/339647.339650

Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee,
Victor A. Ying, Joel Emer, and Daniel Sanchez. 2017. Fractal: An execution
model for fine-grain nested speculative parallelism. In Proc. of the International
Symposium on Computer Architecture (ISCA-44). ACM/IEEE, 587-599. https:
//doi.org/10.1145/3079856.3080218

Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Alvarez, Daniel Jiménez-Gonzélez,
Eduard Ayguadé, and Mateo Valero. 2017. General Purpose Task-Dependence
Management Hardware for Task-Based Dataflow Programming Models. In Proc.
of the International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
244-253. https://doi.org/10.1109/IPDPS.2017.48

Mikkel Thorup. 2000. On RAM Priority Queues. SIAM J. Comput. 30, 1 (2000),
86-109. https://doi.org/10.1137/S0097539795288246

Jenn-Yuan Tsai, Jian Huang, Christoffer Amlo, David J. Lilja, and Pen-Chung
Yew. 1999. The Superthreaded Processor Architecture. IEEE Trans. Comput. 48, 9
(1999), 881-902. https://doi.org/10.1109/12.795219

[76] Jean Vuillemin. 1978. A Data Structure for Manipulating Priority Queues. Com-

mun. ACM 21, 4 (1978), 309-315. https://doi.org/10.1145/359460.359478

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. 2007. On-chip interconnection architecture of the Tile Processor. IEEE
Micro 27, 5 (2007), 15-31. https://doi.org/10.1109/MM.2007.4378780

Maurice V. Wilkes and William Renwick. 1949. The EDSAC - an Electronic
Calculating Machine. Journal of Scientific Instruments 26, 12 (1949), 385-391.
https://doi.org/10.1088/0950-7671/26/12/301

[79] J. W.J Williams. 1964. Algorithm 232 Heapsort. Commun. ACM 7, 6 (1964),

347-349. https://doi.org/10.1145/512274.512284

Martin Wimmer, Jakob Gruber, Jesper Larsson Traff, and Philippas Tsigas. 2015.
The Lock-Free k-LSM Relaxed Priority Queue. In Proc. of the Symposium on
Principles and Practice of Parallel Programming (PPoPP). ACM, 277-278. https:
//doi.org/10.1145/2688500.2688547

Stefan Wuchty and Eivind Almaas. 2005. Peeling the yeast protein network.
Proteomics 5 (2005), 444-449. Issue 2. https://doi.org/10.1002/pmic.200400962
Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Commu-
nities Based on Ground-Truth. In Proc. International Conference on Data Mining
(ICDM). IEEE, 745-754. https://doi.org/10.1109/ICDM.2012.138

Fahimeh Yazdanpanah, Carlos Alvarez, Daniel Jiménez-Gonzalez, Rosa M. Badia,
and Mateo Valero. 2015. Picos: A hardware runtime architecture support for
OmpSs. Future Generation Computer Systems 53 (December 2015), 130-139.
https://doi.org/10.1016/j.future.2014.12.010

Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D.
Hill, Michael M. Swift, and David A. Wood. 2007. LogTM-SE: Decoupling hard-
ware transactional memory from caches. In Proc. of the International Sympo-
sium on High Performance Computer Architecture (HPCA-13). IEEE, 261-272.
https://doi.org/10.1109/HPCA.2007.346204

Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. 2019. Under-
standing Priority-Based Scheduling of Graph Algorithms on a Shared-Memory
Platform. In Proc. of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC19). ACM, 1-14. https://doi.org/10.1145/
3295500.3356160

Victor A. Ying, Mark C. Jeffrey, and Daniel Sanchez. 2020. T4: Compiling se-
quential code for effective speculative parallelization in hardware. In Proc. of
the International Symposium on Computer Architecture (ISCA-47). ACM/IEEE,
159-172. https://doi.org/10.1109/ISCA45697.2020.00024

https://doi.org/10.1145/1810479.1810534
https://doi.org/10.1007/978-3-662-48096-0_17
https://doi.org/10.1007/978-3-662-48096-0_17
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/2402.322385
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1145/3352460.3358271
https://doi.org/10.1016/j.physa.2018.10.035
https://doi.org/10.1016/j.physa.2018.10.035
https://doi.org/10.1038/s41567-018-0304-8
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/1127577.1127587
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/191995.192022
https://doi.org/10.1145/191995.192022
https://doi.org/10.1145/3503221.3508432
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1145/1088149.1088178
https://doi.org/10.1145/1088149.1088173
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1109/LCA.2020.3045670
https://doi.org/10.1109/LCA.2020.3045670
https://doi.org/10.1109/ICDM.2016.0058
https://doi.org/10.1109/ICDM.2016.0058
https://doi.org/10.1145/2486159.2486189
https://doi.org/10.1145/2486159.2486189
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1145/223982.224451
https://doi.org/10.1145/339647.339650
https://doi.org/10.1145/339647.339650
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1109/IPDPS.2017.48
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1109/12.795219
https://doi.org/10.1145/359460.359478
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1088/0950-7671/26/12/301
https://doi.org/10.1145/512274.512284
https://doi.org/10.1145/2688500.2688547
https://doi.org/10.1145/2688500.2688547
https://doi.org/10.1002/pmic.200400962
https://doi.org/10.1109/ICDM.2012.138
https://doi.org/10.1016/j.future.2014.12.010
https://doi.org/10.1109/HPCA.2007.346204
https://doi.org/10.1145/3295500.3356160
https://doi.org/10.1145/3295500.3356160
https://doi.org/10.1109/ISCA45697.2020.00024

A Scalable Architecture for Reprioritizing Ordered Parallelism ISCA 22, June 18-22, 2022, New York City, NY

[87] Guowei Zhang, Webb Horn, and Daniel Sanchez. 2015. Exploiting Commutativity Algorithms with Graphlt. In Proc. of the International Symposium on Code Gener-
to Reduce the Cost of Updates to Shared Data in Cache-Coherent Systems. In ation and Optimization (CGO). IEEE. https://doi.org/10.48550/ARXIV.1911.07260
Proc. of the International Symposium on Microarchitecture (MICRO-48). IEEE/ACM, [89] Tingzhe Zhou, Maged Michael, and Michael Spear. 2019. A Practical, Scalable, Re-
13-25. https://doi.org/10.1145/2830772.2830774 laxed Priority Queue. In Proc. of the International Conference on Parallel Processing

[88] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib (ICPP). ACM, 1-10. https://doi.org/10.1145/3337821.3337911

Kamil, Saman Amarasinghe, and Julian Shun. 2020. Optimizing Ordered Graph

17

https://doi.org/10.1145/2830772.2830774
https://doi.org/10.48550/ARXIV.1911.07260
https://doi.org/10.1145/3337821.3337911

	Abstract
	1 Introduction
	2 Motivation
	3 Hive Execution Model
	3.1 Programming interface
	3.2 Example modeled execution
	3.3 Programming Hive with patterns
	3.4 Comparison with other models

	4 Speculative Parallelism amid Priority Updates
	4.1 Similarities and differences with Swarm
	4.2 Scheduler dependences and Moot tasks
	4.3 Example speculative execution

	5 Hive Implementation
	5.1 Baseline Swarm microarchitecture
	5.2 Hive microarchitecture
	5.3 Priority updates example
	5.4 Hive overheads

	6 Evaluation
	6.1 Methodology
	6.2 Hive performance
	6.3 Sensitivity to input graph structure
	6.4 Contribution of architectural features

	7 Additional Related Work
	8 Conclusion
	Acknowledgments
	References

