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ABSTRACT

We present Coup, a technique to lower the cost of up-
dates to shared data in cache-coherent systems. Coup

exploits the insight that many update operations, such
as additions and bitwise logical operations, are commu-
tative: they produce the same final result regardless of
the order they are performed in. Coup allows multi-
ple private caches to simultaneously hold update-only
permission to the same cache line. Caches with update-
only permission can locally buffer and coalesce updates
to the line, but cannot satisfy read requests. Upon a
read request, Coup reduces the partial updates buffered
in private caches to produce the final value. Coup in-
tegrates seamlessly into existing coherence protocols,
requires inexpensive hardware, and does not affect the
memory consistency model.
We apply Coup to speed up single-word updates to

shared data. On a simulated 128-core, 8-socket system,
Coup accelerates state-of-the-art implementations of
update-heavy algorithms by up to 2.4×.

Categories and Subject Descriptors

B.3.2 [Memory structures]: Shared memory; C.1.4
[Processor architectures]: Parallel architectures

Keywords

Cache coherence, coherence protocol, commutativity

1. INTRODUCTION

Cache coherence is pervasive in shared-memory sys-
tems. However, current coherence protocols cause sig-
nificantly more traffic and serialization than needed,
especially with frequent updates to shared data. For ex-
ample, consider a shared counter that is updated by
multiple cores. On each update, the updating core first
fetches an exclusive copy of the counter’s cache line
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into its private cache, invalidating all other copies, and
modifies it locally using an atomic operation such as
fetch-and-add, as shown in Fig. 1a. Each update incurs
significant traffic and serialization: traffic to fetch the
line and invalidate other copies, causing the line to ping-
pong among updating cores; and serialization because
only one core can perform an update at a time.

Prior work has proposed hardware and software tech-
niques to reduce traffic and serialization of updates in
parallel systems. In hardware, prior work has mainly
focused on remote memory operations (RMOs) [29,30,
57, 68]. RMO schemes send updates to a single memory
controller or shared cache bank instead of having the
line ping-pong among multiple private caches, as shown
in Fig. 1b. Although RMOs reduce the cost of updates,
they still cause significant global traffic and serialization,
and often make reads slower, as remote reads may be
needed to preserve consistency [39,57].

In this work we leverage two key insights to reduce the
cost of updates further. First, many update operations
need not read the data they update. Second, update op-
erations are often commutative, and can be performed in
any order before the data is read. In our shared counter
example, multiple additions from different cores can be
buffered, coalesced, and delayed until the counter’s line
is next read. Commutative updates are common in other
contexts beyond this simple example.

Two obstacles prevent these optimizations in current
protocols. First, conventional coherence protocols sup-
port only two primitive operations, reads and writes,
so commutative updates must be expressed as a read-
modify-write sequence. Second, these protocols do not
decouple read and write permissions. Instead, they en-
force the single-writer, multiple-reader invariant : at a
given point in time, a cache line may either have at most
one sharer with read-and-write permission, or multiple
sharers with read-only permission [3, 59].
We propose Coup (Sec. 3), a general technique that

extends coherence protocols to allow local and concur-
rent commutative updates. Coup decouples read and
write permissions, and introduces commutative-update
primitive operations, in addition to reads and writes.
With Coup, multiple caches can acquire a line with
update-only permission, and satisfy commutative-update
requests locally, buffering and coalescing updates. On a
read request, the coherence protocol gathers all the local
updates and reduces them to produce the correct value
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Figure 1: Example comparing the cost of commutative updates under
three schemes. Two cores add values to a single memory location, A. (a)
With conventional coherence protocols, A’s fetches and invalidations
dominate the cost of updates. (b) With remote memory operations,
cores send updates to a fixed location, the shared cache in this case.
(c) With Coup, caches buffer and coalesce updates locally, and reads
trigger a reduction of all local updates to produce the actual value.
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Figure 2: Performance of
parallel histogram imple-
mentations using atomics,
software privatization, and
Coup. More bins reduce
contention and increase pri-
vatization overheads, favor-
ing atomics. Coup does not
suffer these overheads, so it
outperforms both software
implementations.

before granting read permission. For example, multiple
cores can concurrently add values to the same counter.
Updates are held in their private caches as long as no
core reads the current value of the counter. When a core
reads the counter, all updates are added to produce the
final value, as shown in Fig. 1c.
Coup confers significant benefits over RMOs, espe-

cially when data receives several consecutive updates
before being read. Moreover, Coup maintains full cache
coherence and does not affect the memory consistency
model. This makes Coup easy to apply to current sys-
tems and applications. We demonstrate Coup’s utility
by applying it to improve the performance of single-word
update operations, which are currently performed with
expensive atomic read-modify-write instructions.
Coup also completes a symmetry between hardware

and software schemes to reduce the cost of updates.
Broadly, software techniques use either delegation or
privatization. Delegation schemes send updates to a
single thread [11, 12]. Privatization schemes lower the
cost of commutative updates by using thread-local vari-
ables [8, 18,46]: each thread updates its local variable,
and reads require reducing the per-thread variables. Just
as remote memory operations are the hardware counter-
part to delegation, Coup is the hardware counterpart
to privatization. Coup has two benefits over software
privatization. First, transitions between read-only and
update-only modes are much faster, so Coup remains
practical in many scenarios where software privatization
requires excessive synchronization. Second, privatiza-
tion’s thread-local copies increase memory footprint and
add pressure to shared caches, while Coup does not.

In this work, we make the following contributions:
• We present Coup, a technique that extends coherence
protocols to support concurrent commutative updates
(Sec. 3). We show that Coup preserves coherence and
consistency, and imposes small verification costs.

• We identify several update-heavy parallel applica-
tions where current techniques have clear shortcomings
(Sec. 4), and discuss how Coup addresses them.

• We evaluate Coup under simulation, using single- and
multi-socket systems (Sec. 5). At 128 cores, Coup im-
proves the performance of update-heavy benchmarks
by 4%–2.4×, and reduces traffic by up to 20×.
In summary, Coup shows that extending coherence

protocols to leverage the semantics of commutative up-
dates can substantially improve performance without
sacrificing the simplicity of cache coherence.

2. BACKGROUND

We now discuss prior hardware and software tech-
niques that reduce the cost of updates to shared data.

2.1 Hardware Techniques

Remote memory operations (RMOs) are the most
closely related scheme to Coup. Rather than caching
lines to be updated, update operations are sent to a
fixed location. The NYU Ultracomputer [29] proposed
implementing atomic fetch-and-add using adders in net-
work switches, which could coalesce multiple requests
on their way to memory. The Cray T3D [34], T3E [57],
and SGI Origin [42] implemented RMOs at the memory
controllers, while TilePro64 [30] and recent GPUs [63]
implement RMOs in shared caches. Prior work has
also proposed adding caches to memory controllers to
accelerate RMOs [68] and data-parallel RMOs [5].

Coup has two key advantages over RMOs. First, while
RMOs avoid ping-ponging cache lines, they still require
sending every update to a shared, fixed location, causing
global traffic. RMOs are also limited by the throughput
of the single updater. For example, in Fig. 1b, frequent
remote-add requests drive the shared cache’s ALU near
saturation. By contrast, Coup buffers and coalesces up-
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dates in local caches, avoiding hotspots. Second, strong
consistency models are challenging to implement with
RMOs, as it is harder to constrain memory operation
order. For example, TSO requires making stores glob-
ally visible in program order, which is feasible with local
store buffers, but much more complicated when stores
are also performed by remote updaters. As a result,
most implementations provide weakly-consistent RMOs.
Timestamp-based order validation [39, §5] allows strong
consistency with RMOs, but it is involved. By contrast,
Coup performs all memory operations locally, making
consistency easy to maintain.
Note that Coup’s advantages come at the cost of a

more restricted set of operations: Coup is limited to
commutative updates, while RMOs support non-com-
mutative operations such as fetch-and-add and compare-
and-swap. Also, Coup significantly outperforms RMOs
only if data is reused (i.e., updated or read multiple times
before switching between read- and update-only modes).
This is often the case in real applications (Sec. 4).

2.2 Software Techniques

Conventional shared-memory programs update shared
data using atomic operations for single-word updates, or
normal reads and writes with synchronization (e.g., locks
or transactions) for multi-word updates. Many software
optimizations seek to reduce the cost of updates. Though
often presented in the context of specific algorithms, we
observe they are instances of two general techniques:
delegation and privatization. We discuss these techniques
here, and present specific instances in Sec. 4.

Delegation schemes divide shared data among threads
and send updates to the corresponding thread, using
shared-memory queues [11] or active messages [55,61].
Delegation is common in architectures that combine
shared memory and message passing [55, 64] and in
NUMA-aware data structures [11, 12]. Delegation is the
software counterpart to RMOs, and is subject to the
same tradeoffs: it reduces data movement and synchro-
nization, but incurs global traffic and serialization.
Privatization schemes exploit commutative updates.

These schemes buffer updates in thread-private stor-
age, and require reads to reduce these thread-private
updates to produce the correct value. Privatization is
most commonly used to implement reduction variables
efficiently, often with language support (e.g., reducers
in MapReduce [22], OpenMP pragmas, and Cilk Plus
hyperobjects [28]). Privatization is generally used when
updates are frequent and reads are rare.

Privatization is the software counterpart to Coup, and
is subject to similar tradeoffs: it is limited to commuta-
tive updates, and works best when data goes through
long update-only phases without intervening reads. Un-
like Coup, privatization has two major sources of over-
head. First, while Coup is about as fast as a conven-
tional protocol if a line is updated only once before be-
ing read (Fig. 1c), software reductions are much slower,
making finely-interleaved reads and updates inefficient.
Second, with N threads, privatized variables increase
memory footprint by a factor of N . This makes naive pri-
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Figure 3: Summary of additions and modifica-
tions needed to support Coup.

vatization impractical in many contexts (e.g., reference
counting). Dynamic privatization schemes [18, 46, 65]
can lessen space overheads, but add time overheads.
These overheads often make privatization underper-

form conventional updates. For instance, Jung et al. [32]
propose parallel histogram implementations using both
atomic operations and privatization. These codes pro-
cess a set of input values, and produce a histogram with
a given number of bins. Jung et al. note that privatiza-
tion is desirable with a few output bins, but works poorly
with many bins, as the reduction phase dominates and
hurts locality. Fig. 2 shows this tradeoff. It compares the
performance of histogram implementations using atomic
fetch-and-add, privatization, and Coup, when running
on 64 cores (see Sec. 5 for methodology details). In this
experiment, all schemes process a large, fixed number of
input elements. Each line shows the performance of a
given implementation as the number of output bins (x -
axis) changes from 32 to 32K. Performance is reported
relative to Coup’s at 32 bins (higher numbers are bet-
ter). While the costs of privatization impose a delicate
tradeoff between both software implementations, Coup

robustly outperforms both.

3. EXTENDING CACHE COHERENCE TO

SUPPORT COMMUTATIVE UPDATES

3.1 Coup Example: Extending MSI

We first present the main concepts and operation of
Coup through a concrete, simplified example. Con-
sider a system with a single level of private caches, kept
coherent with the MSI protocol. This system has a
single shared last-level cache with an in-cache directory.
It implements a single commutative-update operation,
addition. Finally, we restrict this system to use single-
word cache blocks. We will generalize Coup to other
protocols, operations, and cache hierarchies in Sec. 3.2.

3.1.1 Structural changes

Coup requires modest changes to hardware structures,
summarized in Fig. 3 and described below.
Commutative-update instructions: In most ISAs,
Coup needs additional instructions that let programs
convey commutative updates, as conventional atomic in-
structions (e.g., fetch-and-add) return the latest value of
the data they update. In this case, we add a commutative-
addition instruction, which takes an address and a single
input value, and does not write to any register.

Some ISAs may not need additional instructions. For
instance, the recent Heterogeneous System Architecture
(HSA) includes atomic-no-return instructions that do not
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return the updated value [2]. While these instructions
were likely introduced to reduce the cost of RMOs, Coup

could use them directly.
Update-only permission: Coup extends MSI with
an additional state, update-only (U), and a third type of
request, commutative update (C), in addition to conven-
tional reads (R) and writes (W). We call the resulting
protocol MUSI. Fig. 4 shows MUSI’s state-transition di-
agram for private caches. MUSI allows multiple private
caches to hold read-only permission to a line and satisfy
read requests locally (S state); multiple private caches
to hold update-only permission to a line and satisfy

commutative-update requests locally (U state); or at
most a single private cache to hold exclusive permission
to a line and satisfy all types of requests locally (M
state). By allowing M to satisfy commutative-update
requests, interleaved updates and reads to private data
are as cheap as in MSI.
MUSI’s state-transition diagram shows a clear sym-

metry between S and U: all transitions caused by R/C
requests in and out of S match those caused by C/R
requests in and out of U. We will exploit this symmetry
in Sec. 3.4 to simplify our implementation.
Directory state: Conventional directories must track
both the sharers of each line (using a bit-vector or other
techniques [13, 53, 66]), and, if there is a single sharer,
whether it has exclusive or read-only permission. In
Coup, the directory must track whether sharers have
exclusive, read-only, or update-only permission. The
sharers bit-vector can be used to track both multiple
readers or multiple updaters, so MUSI requires only one
extra bit per directory tag.
Reduction unit: Though cores can perform local up-
dates, the memory system must be able to perform
reductions. Thus, Coup adds a reduction unit to the
shared cache, consisting of an adder in this case.

3.1.2 Protocol operation

Performing commutative updates: Both the M and
U states provide enough permissions for private caches to
satisfy update-only requests. In M, the private cache has
the actual data value; in U, the cache has a partial up-
date. In either case, the core can perform the update by
atomically reading the data from the cache, modifying it
(by adding the value specified by the commutative-add
instruction) and storing the result in the cache. The
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cache cannot allow any intervening operations to the
same address between the read and the write. This
scheme can reuse the existing core logic for atomic oper-
ations. We assume this scheme in our implementation,
but note that alternative implementations could treat
commutative updates like stores to improve performance
(e.g., using update buffers similar to store buffers and
performing updates with an ALU at the L1).
Entering the U state: When a cache has insufficient
permissions to satisfy an update request (I or S states), it
requests update-only permission from the directory. The
directory invalidates any copies in S, or downgrades the
single copy in M to U, and grants update-only permission
to the requesting cache, which transitions to U. Thus,
there are two ways a line can transition into the U
state: by requesting update-only permission to satisfy
a request from its own core, as shown in Fig. 5a; or by
being downgraded from M, as shown in Fig. 5b.

When a line transitions into U, its contents are always
initialized to the identity element, 0 for commutative
addition. This is done even if the line had valid data.
This avoids having to track which cache holds the original
data when doing reductions. However, reductions require
reading the original data from the shared cache.
Leaving the U state: Lines can transition out of U
due to either evictions or read requests.

Evictions initiated by a private cache (to make space
for a different line) trigger a partial reduction, shown
in Fig. 5c: the evicting cache sends its partial update
to the shared cache, which uses its reduction unit to
aggregate it with its local copy.
The shared cache may also need to evict a line that

private caches hold in U. This triggers a full reduction:
all caches with update-only permission are sent invalida-
tions, reply with their partial updates, and the shared
cache uses its reduction unit to aggregate all partial
updates and its local copy, producing the final value.

Finally, read requests from any core also trigger a full
reduction, as shown in Fig. 5d. Depending on the latency
and throughput of the reduction unit, satisfying a read
request can take somewhat longer than in conventional
protocols. Hierarchical reductions can rein in reduction
overheads with large core counts (Sec. 3.2). In our
evaluation, we observe that reduction overheads are
small compared to communication latencies.

3.2 Generalizing Coup

We now show how to generalize Coup to support
multiple operations, larger cache blocks, other protocols,
and deeper cache hierarchies.
Multiple operations: Formally, Coup can be applied
to any commutative semigroup (G, ◦).1 For example, G
can be the set of 32-bit integers, and ◦ can be addition,
multiplication, and, or, xor, min, or max.

Supporting multiple operations in the system requires
minor changes. First, additional instructions are needed
to convey each type of update. Second, reduction units

1(G, ◦) is a commutative semigroup iff ◦ : G ×G → G is a
binary, associative, commutative operation over elements of
set G, and G is closed under ◦.
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Figure 6: State-transition diagram of MEUSI.
Just as MESI grants E to a read request if a
line is unshared, MEUSI grants M to an update
request if a line is unshared. For clarity, the
diagram omits actions that do not cause a state
transition (e.g., C requests in U).

must implement all supported operations. Third, the
directory and private caches must track, for each line
in U state, what type of operation is being performed.
Fourth, Coup must serialize commutative updates of
different types, because they do not commute in general
(e.g., + and ∗ do not commute with each other). This
can be accomplished by performing a full reduction every
time the private cache or directory receives an update
request of a type different from the current one.
Larger cache blocks: Supporting multi-word blocks
is trivial if (G, ◦) has an identity element (formally, this
means (G, ◦) is a commutative monoid). The identity
element produces the same value when applied to any
element in G. For example, the identity elements for
addition, multiplication, and, and min are 0, 1, all-ones,
and the maximum representable integer, respectively.

All the operations we implement in this work have an
identity element. In this case, it is sufficient to initialize
every word of the cache block to the identity element
when transitioning to U. Reductions perform element-
wise operations even on words that have received no
updates. Note this holds even if those words do not hold
data of the same type, because applying ◦ on the identity
element produces the same output, so it does not change
the word’s bit pattern. Alternatively, reduction units
could skip operating on words with the identity element.
In general, not all operations may have an identity

element. In such cases, the protocol would require an
extra bit per word to track uninitialized elements.

Finally, note we assume that data is properly aligned.
Supporting commutative updates to unaligned data
would require more involved mechanisms to buffer par-
tial updates. If the ISA allows unaligned accesses, they
can be performed as normal read-modify-writes.
Other protocols: Coup can extend protocols beyond
MSI. Fig. 6 shows how MESI [48] is extended to MEUSI,
which we use in our evaluation. Note that update re-
quests enjoy the same optimization that E introduces
for read-only requests: if a cache requests update-only
permission for a line and no other cache has a valid copy,
the directory grants the line directly in M.
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Deeper cache hierarchies: Coup can operate with
multiple intermediate levels of caches and directories.
Coup simply requires a reduction unit at each intermedi-
ate level that has multiple children that can issue update
requests. For instance, a system with private per-core
L1s and L2s and a fully shared L3 needs reduction units
only at L3 banks. However, if each L2 was shared by
two or more L1Ds, a reduction unit would be required
in the L2s as well.

Hierarchical organizations lower the latency of reduc-
tions in Coup, just as they lower the latency of sending
and processing invalidations in conventional protocols:
on a full reduction, each intermediate level aggregates
all partial updates from its children before replying to
its parent. For example, consider a 128-core system
with a fully-shared L4 and 8 per-socket L3s, each shared
by 16 cores. In this system, a full reduction of a line
shared in U state by all cores has 8+16 = 24 operations
in the critical path—far fewer than the 128 operations
that a flat organization would have, and not enough to
dominate the cost of invalidations.
Other contexts: We focus on single-word atomic op-
erations and hardware cache coherence, but note that
Coup could apply to other contexts. For example, Coup

could be used in software coherence protocols (e.g., in
distributed shared memory), and can support more so-
phisticated operations such as insertion and deletion
into sets. We leave such extensions to future work.

3.3 Coherence and Consistency

Coup maintains cache coherence and does not change
the consistency model.
Coherence: A memory system is coherent if, for each
memory location, it is possible to construct a hypothet-
ical serial order of all operations to the location that
is consistent with the results of the execution and that
obeys two invariants [20, §5.1.1]:2

1. Operations issued by each core occur in the order in
which they were issued to the memory system by that
core.

2. The value returned by each read operation is the
value written to that location in the serial order.

In Coup, a location can be in exclusive, read-only, or
update-only modes. The baseline protocol that Coup

extends already enforces coherence in and between ex-
clusive and read-only modes. In update-only mode,
multiple cores can concurrently update the location, but
because updates are commutative, any serial order we
choose produces the same execution result. Thus, the
first invariant is trivially satisfied. Moreover, transitions
from update-only to read-only or exclusive modes prop-
agate all partial updates and make them visible to the
next reader. Thus, the next reader always observes the
last value written to that location, satisfying the second
property. Therefore, Coup maintains coherence.
Consistency: As long as the system restricts the or-

2Others reason about coherence using the single-writer,
multiple-reader and the data-value invariants [59], which
are sufficient but not necessary. Coup does not maintain the
single-writer, multiple-reader invariant.

der of memory operations as strictly for commutative
updates as it does for stores, Coup does not affect the
consistency model. In other words, it is sufficient for
the memory system to consider commutative updates
as being equivalent to stores. For instance, by having
store-load, load-store, and store-store fences apply to
commutative updates as well, systems with relaxed mem-
ory models need not introduce new fence instructions.

3.4 Implementation and Verification Costs

While we have presented Coup in terms of stable
states, realistic protocols implement coherence transac-
tions with additional transient states and are subject to
races, which add complexity and hinder verification. By
studying full implementations of MESI and MEUSI, we
show that Coup requires a minimal number of transient
states and adds modest verification costs.

We first implement MESI protocols for two- and three-
level cache hierarchies. Our implementations work on
networks with unordered point-to-point communication,
and use two virtual networks without any message buffer-
ing at the endpoints. In the two-level protocol, the L1
coherence controller has 12 states (4 stable, 8 transient),
and the L2 has 6 states (3 stable, 3 transient). Fig. 7a
shows the state-transition diagram of the more complex
L1 cache. In the three-level protocol, the L1 has 14
states (4 stable, 10 transient), the L2 has 38 (9 stable,
29 transient), and the L3 has 6 (3 stable, 3 transient).
Generalized non-exclusive state: While we have
introduced U as an additional state separate from S,
both have a strong symmetry and many similarities.
In fact, reads are just another type of commutative
operation. We leverage this insight to simplify Coup’s
implementation by integrating S and U under a single,
generalized non-exclusive state, N. This state requires
minor extensions over the machinery already described
in Sec. 3.2 to support multiple commutative updates.

Multiple caches can have a copy of the line in N, but
all copies must be under the same operation type, which
can be read-only or one of the possible commutative
updates. An additional field per line tracks its operation
type when in N. Non-exclusive and downgrade requests
are tagged with the desired operation type. E and M
can satisfy all types of requests; commutative updates
cause an E→M transition. N can satisfy non-exclusive
requests of the same type, but requests of a different type
trigger an invalidation (if starting from read-only) or a
reduction (if starting from a commutative-update type)
and cause a type switch. Invalidations and reductions
involve the same request-reply sequence, so they can use
the same transient states.
Implementing two-level MEUSI this way requires 13

states in the L1 and 6 states in the L2. Compared to
two-level MESI, MEUSI introduces only one extra L1
transient state. Fig. 7b shows the L1’s state-transition
diagram, which is almost identical to MESI’s. The new
transient state, NN, is used when moving between oper-
ation types (e.g., from read-only to commutative-add or
from commutative-and to commutative-or). Our three-
level MEUSI protocol is also similar to three-level MESI:
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two- and three-level protocols. Costs grow much
more quickly with the number of cores and levels
than the number of commutative updates.

the L1 has 15 states (one more transient than MESI,
NN ), the L2 has 43 (five more transient states than
MESI, which, similarly to NN, implement transitions
between operation types), and the L3 has 6.
Verification costs: We use Murphi [24] to verify MESI
and MEUSI. We adopt common simplifications to limit
the state space, modeling caches with a single 1-bit line;
self-eviction rules model a limited capacity. In three-
level protocols, we model systems with a single L2 and
a single L3, and simulate traffic from other L2s with
L3-issued invalidation and downgrade rules. Even then,
Murphi can only verify systems of up to 4-8 cores, a
well-known limitation of this approach [69,70].

MEUSI’s verification costs grow more quickly with the
number of cores and levels than the number of commu-
tative operations. Fig. 8 reports the verification times
for two- and three-level MESI and MEUSI protocols
supporting 2–20 commutative-update types. We run
Murphi on a Xeon E5-2670, and limit it to 16GB of
memory. Murphi can exhaustively verify MESI up to
7-9 cores and MEUSI up to 3-7 cores depending on the
number of levels and commutative updates. This shows
that MEUSI can be effectively verified up to a large
number of commutative updates. Moreover, just as pro-
tocol designers assume that modeling a few cores provide
reasonable coverage, verifying up to a few commutative
operations should be equally reasonable.

4. MOTIVATING APPLICATIONS

In this work, we apply Coup to accelerate single-word
updates to shared data. To guide our design, we first
study under what circumstances Coup is beneficial over
state-of-the-art software techniques, and illustrate these
circumstances with specific algorithms and applications.
As discussed in Sec. 2, Coup is the hardware coun-

terpart to privatization. Privatization schemes create
several replicas of variables to be updated. Each thread
updates one of these replicas, and threads synchronize
to reduce all partial updates into a single location before
the variable is read.
In general, Coup outperforms prior software tech-

niques if either of the following two conditions holds:
• Reads and updates to shared data are finely inter-
leaved. In this case, software privatization has large
overheads due to frequent reductions, while Coup can
move a line from update-only mode to read-only mode
at about the same cost as a conventional invalida-
tion. Thus, privatization needs many updates per core
and data value to amortize reduction overheads, while
Coup yields benefits with as little as two updates per
update-only epoch.

• A large amount of shared data is updated. In this case,
privatization significantly increases memory footprint
and puts more pressure on shared caches.
We now discuss several parallel patterns and applica-

tions that have these properties.

4.1 Separate Update- and Read-Only Phases

Several parallel algorithms feature long phases where
shared data is either only updated or only read. Privati-
zation techniques naturally apply to these algorithms.
Reduction variables: Reduction variables are objects
that are updated by multiple iterations of a loop us-
ing a binary, commutative operator (a reduction oper-
ator) [49, 50], and their intermediate state is not read.
Reduction variables are natively supported in parallel
programming languages and libraries such as HPF [37],
MapReduce [22], OpenMP [25], TBB [51], and Cilk
Plus [28]. Prior work in parallelizing compilers has de-
veloped a wide array of techniques to detect and exploit
reduction variables [31,49,50]. Reductions are commonly
implemented using parallel reduction trees, a form of
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privatization. Each thread executes a subset of loop
iterations independently, and updates a local copy of the
object. Then, in the reduction phase, threads aggregate
these copies to produce a single output variable.
Reduction variables can be small, for example when

computing the mean or maximum value of an array. In
these cases, the reduction variable is a single scalar, the
reduction phase takes negligible time, and Coup would
not improve performance much over software reductions.
Reduction variables are often larger structures, such

as arrays or matrices. For example, consider a loop
that processes a set of input values (e.g., image pixels)
and produces a histogram of these values with a given
number of bins. In this case, the reduction variable is
the whole histogram array, and the reduction phase can
dominate execution time [32], as shown in Fig. 2. Yu and
Rauchwerger [65] propose several adaptive techniques
to lower the cost of reductions, such as using per-thread
hash tables to buffer updates, avoiding full copies of the
reduction variable. However, these techniques add time
overheads and must be applied selectively [65]. Instead,
Coup achieves significant speedups by maintaining a
single copy of the reduction variable in memory, and
overlapping the loop and reduction phases.

Reduction variables and other update-only operations
often use floating-point data. For example, depending
on the format of the sparse matrix, sparse matrix-vector
multiplication can require multiple threads to update
overlapping elements of the output vector [5]. How-
ever, floating-point operations are not associative or
commutative, and the order of operations can affect
the final result in some cases [60]. Common parallel
reduction implementations are non-deterministic, so we
choose to support floating-point addition in Coup. Im-
plementations desiring reproducibility can use slower
deterministic reductions in software [23].
Ghost cells: In iterative algorithms that operate on
regular data, such as structured grids, threads often work
on disjoint chunks of data and only need to communicate
updates to threads working on neighboring chunks. A
common technique is to buffer updates to boundary cells
using ghost or halo cells [35], private copies of boundary
cells updated by each thread during the iteration and
read by neighboring threads in the next iteration. Ghost
cells are another form of privatization, different from
reductions in that they capture point-to-point commu-
nication. Coup avoids the overheads of ghost cells by
letting multiple threads update boundary cells directly.

The ghost cell pattern is harder to apply to iterative
algorithms that operate on irregular data, such as PageR-
ank [47, 56]. In these cases, partitioning work among
threads to minimize communication can be expensive,
and is rarely done on shared-memory machines [56]. By
reducing the cost of concurrent updates to shared data,
Coup helps irregular iterative algorithms as well.

4.2 Interleaved Updates and Reads

Several parallel algorithms read and update shared
data within the same phase. Unlike the applications in
Sec. 4.1, software privatization is rarely used in these

cases, as software would need to detect data in update-
only mode and perform a reduction before each read.
By contrast, Coup transparently switches cache lines
between read-only and update-only modes in response
to accesses, improving performance even with a few
consecutive updates or reads.
Graph traversals: High-performance implementations
of graph traversal algorithms such as breadth-first search
(BFS) encode the set of visited nodes in a bitmap that
fits in cache to reduce memory bandwidth [4,15]. The
first thread that visits a node sets its bit, and threads
visiting neighbors of the node read its bit to find whether
the node needs to be visited.

Existing implementations use atomic-or operations to
update the bitmap [4], or use non-atomic load-or-store
sequences, which reduce overheads but miss updates,
causing some nodes to be visited multiple times [15]. In
both cases, updates from multiple threads are serialized.
In contrast, Coup allows multiple concurrent updates
to bits in the same cache line.
Besides graph traversals, commutative updates to

bitmaps are common in other contexts, such as recently-
used bits in page replacement policies [19], buddy mem-
ory allocation [36], and other graph algorithms [40].
Reference counting: Reference counting is a common
automatic memory management technique. Each object
has a counter to track the number of active references.
Threads increment the object’s counter when they cre-
ate a reference, and decrement and read the counter
when they destroy a reference, When the reference count
reaches zero, the object is garbage-collected.

Using software techniques to reduce reference-counting
overheads is a well-studied problem [17,18, 26, 45]. Scal-
able Non-Zero Indicators (SNZIs) [26] reduce the cost
of non-zero checks. SNZIs keep the global count using
a tree of counters. Threads increment and decrement
different nodes in the tree, and may propagate updates
to parent nodes. Readers just need to check the root
node to determine whether the count is zero. SNZIs
make non-zero checks fast and allow some concurrency
in increments and decrements, but add significant space
and time overheads, and need to be carefully tuned.
Refcache [17] delays and batches reads to reference

counts, which allows it to use privatization. Threads
maintain a software cache of reference counter deltas,
which are periodically flushed to the global counter.
When the global counter stays at zero for a sufficiently
long time, the true count is known to be zero and the
object is deallocated. This approach reduces reference-
counting overheads, but delayed deallocation hurts mem-
ory footprint and locality.

Coup enables shared reference counters with no space
overheads and less coherence traffic than shared coun-
ters. Coup also allows delayed reference counting as in
Refcache without a software cache (Sec. 5.4).

5. EVALUATION

5.1 Methodology

Modeled systems: We perform microarchitectural,
execution-driven simulation using zsim [54]. We eval-
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ip Cores

1–128 cores, 16 cores/processor chip, x86-64
ISA, 2.4GHz, Nehalem-like OOO [54]

L1
caches

32KB, 8-way set-associative, split D/I,
4-cycle latency

L2
caches

256KB private per-core, 8-way
set-associative, inclusive, 7-cycle latency

L3
caches

32MB, 8 banks, 16-way set-associative,
inclusive, 27-cycle latency, in-cache directory

Off-chip
network

Dancehall topology, 40-cycle point-to-point
links between each processor and L4 chip

L4 & dir
chip

128MB, 8 banks/chip, 16-way set-associative,
inclusive, 35-cycle latency, in-cache directory

Coherence MESI/MEUSI, 64B lines, no silent drops

Main
memory

4 DDR3-1600-CL10 channels per L4 chip,
64-bit bus, 2 ranks/channel

Table 1: Configuration of the simulated system.

uate single- and multi-socket systems with up to 128
cores and a four-level cache hierarchy, shown in Fig. 9.
Table 1 details the configuration of these systems. Each
processor chip has 16 cores. Each core has private L1s
and a private L2, and all cores in the chip share a banked
L3 cache with an in-cache directory. The system sup-
ports up to 8 processor chips, connected in a dancehall
topology to the same number of L4 chips. Each of these
chips contains a slice of the L4 cache and global in-cache
directory, and connects to a fraction of main memory.
This organization is similar to the IBM z13 [62].

We compare MESI and MEUSI (Fig. 6). With MEUSI,
each L3 and L4 bank has a reduction unit. We perform
hierarchical reductions as described in Sec. 3.2: on a
full reduction, each L3 bank invalidates all its children,
aggregates their partial updates, and sends a single
response to the L4 controller.
Coup operations and data types: We add support
for eight commutative-update types:
• Addition of 16, 32, and 64-bit integers, and 32 and
64-bit floating-point values.

• AND, OR, and XOR bitwise logical operations on
64-bit words.

We observe multiplication update-only operations are
rare, so we do not support multiplication. We also ob-
serve min and max are often used with scalar reduction
variables (e.g., to find the extreme values of an array).
Coup would provide a negligible benefit for scalar reduc-
tions, as discussed in Sec. 4.1. Thus, we do not support
min or max. Finally, we support a single word size
for bitwise operations, because this suffices to express

Input set Comm ops Seq run-time

hist GRiN [1], 512 bins 32b int add 2720 Mcycles
spmv rma10 [21] 64b FP add 94 Mcycles

fldanim simlarge [9] 32b FP add 5930 Mcycles
pgrank Wikipedia (2007) [21] 64b int add 2850 Mcycles

bfs cage15 [21,44] 64b OR 5764 Mcycles

Table 2: Benchmark characteristics.

updates to bitmaps of any size (smaller or larger).
Commutative-update instructions: We add an in-
struction for each supported operation and data type.
Each instruction takes two register inputs, with the ad-
dress to be updated and the value to apply, and produces
no register output. We encode these instructions using
x86-64 no-ops that are never emitted by the compiler.

The x86 (TSO) memory model specifies that atomic
instructions have an implicit store-load fence [58]; for con-
sistency, we also add an implicit fence to commutative-
update instructions. We implement conventional atomic
operations and commutative updates using a four-µop
sequence: load-linked, execute (in one of the appropriate
execution ports), store-conditional, and store-load fence.
Reduction unit organization: Since functional units
for the required operations are relatively simple, we
assume a 2-stage pipelined, 256-bit ALU (4× 64-bit
lanes). This ALU has a throughput of one full 64-byte
cache line per two clock cycles, and a latency of three
clock cycles per line. We explore the sensitivity to
reduction unit throughput in Sec. 5.5.
Hardware overheads: In summary, our Coup imple-
mentation introduces modest overheads:
1. Eight additional commutative-update instructions.
2. Four bits per line to encode the non-exclusive opera-
tion type, either read-only or one of eight commutative-
update types (Sec. 3.4).

3. One reduction unit per L3 and L4 bank.
Workloads: We use a set of five multithreaded bench-
marks that cover the cases described in Sec. 4:
• hist is the TBB-based OpenCV [10] histogramming
program (version 2.4.11).

• spmv is a sparse matrix-vector multiplication kernel,
where the matrix is encoded in compressed sparse
column (CSC) format. CSC requires multiple threads
to perform scattered additions to the output vector.
Other input formats, such as EBE, also cause scattered
adds in matrix-vector multiplication [5].

• fluidanimate, from the PARSEC suite [9], is a reg-
ular iterative algorithm (Sec. 4.1). We optimize the
default implementation, which uses locks to guard up-
dates to shared cells, to use atomic operations instead.

• pgrank is a PageRank implementation similar to the
shared-memory optimized version of Satish et al. [56].

• bfs is a parallel breadth-first search algorithm. Our
implementation extends PBFS [44] with a visited bit-
vector to reduce memory traffic (Sec. 4.2), similar to
state-of-the-art approaches [4, 15].

Table 2 details the input sets, commutative-update oper-
ations used, and sequential run-time of each benchmark.

All the baseline benchmark implementations use atomic
operations. We also compare against a privatization-
based variant of hist (implemented using TBB reduc-
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Figure 10: Per-application speedups of Coup and MESI on 1–128 cores (higher is better).
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Figure 11: Breakdown of average memory access latency (AMAT) of Coup and MESI on 8, 32, and
128-core systems. AMAT is normalized to Coup’s at 8 cores (lower is better).

tions) in Sec. 5.3, and develop reference-counting mi-
crobenchmarks to compare Coup against SNZI and
Refcache in Sec. 5.4.
We report results on 1–128 cores. We scale the num-

ber of processor and L4 chips on runs with more cores
(e.g., 1-core runs use a single processor and L4 chip,
32-core runs use two of each, and so on), which also
scales the bandwidth of the memory system and L4 ca-
pacity. To achieve statistically significant results, we
introduce small amounts of non-determinism as proposed
by Alameldeen and Wood [6], and perform enough runs
to achieve 95% confidence intervals ≤1%.

5.2 Comparison Against Atomic Operations

Fig. 10 compares the performance and scalability of
Coup and a conventional MESI protocol. Each graph
shows results for a single application, and each line in
the graph shows how performance scales for a particular
scheme (MESI or Coup) as the number of cores grows
from 1 to 128 (x -axis). All speedup numbers are relative
to the run-time of the application on a single core under
MESI. Higher numbers are better.
Fig. 10 shows that Coup always outperforms MESI,

often substantially. At 128 cores, Coup outperforms
MESI by 2.4× on hist, 34% on spmv, 2.4× on pgrank,
20% on bfs, and 4.0% on fluidanimate. Moreover,
the gap between MESI and Coup often widens as the
number of cores grows, showing that Coup has better
scalability than MESI.
Coup is especially beneficial for applications where

shared data goes through long update-only phases. This
is the case with hist, spmv, and pgrank. In bfs, where
cache lines are constantly moving between U and S
states as cores update and check the visited bit-vector

(Sec. 4.2), Coup’s advantage is lower but still significant.
Finally, shared cells in fluidanimate experience long
read-only and update-only phases, but only a fraction
of cells are shared, and shared cells see few updates
from neighboring threads on each update-only phase, so
Coup provides a small speedup over MESI.

Fig. 11 gives more insight into these results by show-
ing the breakdown of average memory access latency
(AMAT). Each graph shows results for a single applica-
tion. Each set of two bars shows results for Coup and
MESI for a given system size (8, 32, or 128 cores). The
height of each bar is the average memory access latency
of all loads, stores, and instruction fetches issued from
the L1s, normalized to the AMAT that Coup achieves
at 8 cores. Each bar is broken down into time spent at
the L2, L3, off-chip network, L4, coherence invalidations
from the L4, and main memory. This breakdown shows
critical-path delays only (e.g., the time spent on invali-
dations is not the time spent on every invalidation, but
the critical-path delay that L4 requests suffer because
other sharers need to be invalidated or downgraded).

Fig. 11 shows that Coup substantially reduces AMAT
over MESI. At 128 cores, Coup’s AMAT is lower than
MESI’s by 12.6× on hist, 10% on spmv, 3.0× on pgrank,
24% on bfs, and 12% on fluidanimate. Coup mainly
does this by reducing invalidations and serialization.
The effect of this reduction on the overall AMAT de-
pends on how the application uses the memory system.
For instance, Coup nearly eliminates invalidation traffic
in hist, spmv, and pgrank. In hist and pgrank, in-
validations are the dominant contributor to AMAT, so
eliminating them has the largest impact. But AMAT in
spmv is dominated by L4 and main memory accesses, so
the overall impact of eliminating invalidations is smaller.
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Figure 12: Speedups of hist with Coup
and both core- and socket-level privatiza-
tion, using small (512) and large (16K)
numbers of bins.
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Figure 13: Performance of Coup on reference counting
microbenchmarks: (a, b) immediate deallocation and (c)
delayed deallocation.

Beyond reducing AMAT, Coup also lowers traffic: at
128 cores, Coup incurs lower off-chip traffic than MESI
by a factor of 20.2× on hist, 18% on spmv, 4.9× on
pgrank, 20% on bfs, and 18% on fluidanimate.
Finally, even though Coup’s benefits are significant,

these benchmarks execute a relatively small fraction of
commutative-update instructions: at 128 cores, com-
mutative-update instructions are 1.0% of all executed
instructions on hist, 2.4% on spmv, 4.9% on pgrank,
0.40% on bfs, and 0.96% on fluidanimate. Their im-
pact is significant because, at large core counts, each
atomic read-modify-write to a contended memory loca-
tion can take several hundred cycles.

5.3 Case Study: Reduction Variables

All baseline benchmarks use atomic operations instead
of privatization. To compare Coup with software pri-
vatization, we modify hist to make the histogram a
reduction variable, and vary the number of bins (ele-
ments) in the histogram. We evaluate both core-level
privatization, where each thread has its own variable,
and socket-level privatization, where each socket has
its own variable, shared and updated by all threads
running in that socket using atomic operations. Socket-
level privatization seeks to balance the overheads of the
fully-shared and fully-privatized implementations.
Fig. 12 compares the performance and scalability of

Coup with core-level and socket-level privatization on
hist. Fig. 12a shows that, with a small number of bins,
Coup outperforms core-level privatization by 3% and
socket-level privatization by 38%. Core-level privatiza-
tion works well in this case because each thread performs
many updates to each histogram bin (128 on average),
so reduction overheads are highly amortized.

In contrast, Fig. 12b shows that, with a large number
of bins, Coup outperforms core-level privatization by
2.5× and socket-level privatization by 51%. In this
case, core-level privatization is dominated by the cost of
reductions, as each thread performs a small number of
updates to each histogram bin (2 on average).

Finally, privatization also increases footprint and adds
pressure to shared caches. If we grow both the number of
bins and the image size (so the number of updates per bin
and thread, and thus reduction overheads, stay constant),
we see an additional performance degradation of 9% in

the core-level privatized version when the aggregate size
of all privatized histograms overflow the L3 caches, while
Coup does not suffer this degradation.

5.4 Case Study: Reference Counting

We use two microbenchmarks to compare Coup’s
performance on reference counting against the software
techniques described in Sec. 4.2. The first microbench-
mark models immediate-deallocation schemes, and we
use it to compare against a conventional atomic-based
implementation and SNZI [26]. The second microbench-
mark models delayed-deallocation schemes, and we use
it to compare against Refcache [17].
Immediate deallocation: In this microbenchmark,
each thread performs a fixed number of increment, decre-
ment, and read operations over a fixed number of shared
reference counters. We use 1 to 128 threads, 1 mil-
lion updates per thread, and 1024 shared counters. On
each iteration, a thread selects a random counter and
performs either an increment or a decrement and read.

SNZI uses binary trees with as many leaves as threads.
The performance of SNZI depends on the number of
references per object—a higher number of references
causes higher surpluses in leaves and intermediate nodes,
and less contention on updates. To capture this effect, we
run two variants of this benchmark. In the first variant
(low count), each thread keeps only 0 or 1 references
per object, while in the second mode (high count), each
thread keeps up to five references per object.
To achieve this, in low-count mode, when a thread

randomly selects an object, it will always increment its
counter if it holds no references to that object, and it will
always decrement its counter if it holds one reference. In
high-count mode, threads will increment with probability
1.0, 0.7, 0.5, 0.5, 0.3, and 0.0 if they hold 0, 1, 2, 3, 4,
and 5 local references to that counter, respectively.

For updates, Coup and XADD use commutative-add
and atomic fetch-and-add instructions, respectively.
Fig. 13a and Fig. 13b show the results for these ex-

periments. In the low-count variant (Fig. 13a), SNZI
incurs high overhead when counts drop to zero, so both
Coup and XADD outperform SNZI (by 50% and 17%
at 128 cores, respectively). By contrast, in the high-
count variant (Fig. 13b), SNZI enjoys lower contention
and outperforms Coup (by 35% at 128 cores). Coup
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outperforms XADD in both cases.
We conclude that, in high-contention scenarios, Coup

provides the highest performance, but in specific sce-
narios, software optimizations that exploit application-
specific knowledge to avoid contention among reads and
updates can outperform Coup. We also note that it
may be possible to modify SNZI to take advantage of
Coup and combine the advantages of both techniques.
Delayed deallocation: In the delayed-deallocation
microbenchmark, 128 threads perform increments and
decrements (but not reads) on 100,000 counters. We
divide the benchmark into epochs, each with a given
number of updates per thread. When they finish an
epoch, threads check whether counters are zero, simu-
lating delayed-deallocation periods as in Refcache [17].
Our Coup implementation updates counters with

commutative-add instructions and maintains a bitmap
with a “modified” bit for each counter. The bitmap is
updated with commutative-or instructions. Between
epochs, cores use ordinary loads to read the value of
marked counters and check whether the counters are
zero. Refcache uses a per-thread software cache (a hash
table) to maintain the deltas to each modified counter.
Threads flush this cache when they finish each epoch.

Fig. 13c shows the performance Coup and Refcache on
the delayed deallocation microbenchmark as the number
of updates per epoch (x -axis) grows from 1 to 1000 up-
dates per thread and epoch. Coup outperforms refcache
across the range, by up to 2.3×.

We conclude that Coup primarily helps delayed-deal-
location reference counting by allowing a simpler, lower-
overhead implementation to capture the low communi-
cation costs of prior software approaches (in this case,
using counters and bitmaps instead of hash tables).

5.5 Sensitivity to Reduction Unit Throughput

Coup is barely sensitive to reduction unit through-
put. We compare the default 256-bit ALU, which has a
throughput of one cache line per 2 cycles, with a sim-
pler, unpipelined 64-bit ALU, which has a throughput
of one line per 16 cycles. The maximum performance
degradation incurred with the slower ALU is 0.88% at
128 cores on bfs. Smaller systems incur somewhat lower
worst-case degradations (e.g., 0.76% at 64 cores).

6. ADDITIONAL RELATED WORK

Loosely consistent memory (LCM) [41] is a software-
controlled coherence protocol built on top of Tempest [52]
that allows multiple caches to hold writable copies of
the same line. These copies can become incoherent, and
software must explicitly reconcile them in a later merge
phase. Unlike LCM, Coup preserves cache coherence
and transparently merges partial updates, requiring no
software intervention.

Several cache-coherence optimizations reduce the cost
of updates, though that is not their primary purpose:
self-invalidations, done with either hardware predic-
tors [43] or software protocols [16, 33], remove invali-
dations from the critical path; adaptive-granularity co-
herence schemes [38, 67, 71] reduce both false sharing

and the amount of dirty data sent on invalidations; and
speculation and fast networks can reduce the cost of
atomic operations [27]. These schemes are orthogonal
to Coup, which could be used in conjunction with them
to improve performance.
While we have focused on shared-memory systems,

reductions are also common with message passing. The
BlueGene/L and BlueGene/Q supercomputers feature
specialized collective networks that perform these reduc-
tions completely in hardware, using ALUs embedded in
network routers [7, 14]. In contrast to Coup, their main
advantage is minimizing the latency of scalar or short
reductions across a very large number of nodes.

7. CONCLUSION

We have presented Coup, a technique that exploits
commutativity to reduce the cost of updates in cache-
coherent systems. Coup extends conventional coherence
protocols to allow multiple caches to simultaneously hold
update-only permission to data. We have introduced an
implementation of Coup that uses this support to accel-
erate single-word commutative updates. This implemen-
tation requires minor hardware changes and, in return,
substantially improves the performance of update-heavy
applications. Beyond this specific implementation, a
key contribution of our work is to recognize that it is
possible to allow multiple concurrent updates without
sacrificing cache coherence or relaxing the consistency
model. Thus, Coup attains performance gains without
complicating parallel programming. Finally, Coup can
apply to other contexts. For example, with limited pro-
grammability in the cache controller, it may be possible
to support multi-word commutative updates, such as
insertions and removals from sets and other unordered
data structures. We leave this and other applications of
Coup to future work.
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