How mformat-3.9.10 and above calculates
needed FAT size

Alain Knaff
November 13, 2010

This small document explains the formula used by mformat . c to figure out fat
size and number of clusters. Due to the way that filesystem parameters are stored
in the boot sector, we can afford to have a FAT that is larger than need to be to
accomodate the clusters present on disk, but under no circumstances can we have
one that is too small.

In this discussion, we use the following variable names:

fatNybls | Number of nubbles (4 bit unit per FAT). This is 3 for FAT12, 4 for
FAT16, and 8 for FAT16

numClus | Number of clusters on the disk

clusSiz | Size of a cluster, expressed in sectors

secSiz | Size of a sector, in bytes. Size of a sector in nybbles is secSiz * 2

nfats | Number of FAT copies, usually two

remSects | “Remaining sectors”, after number of boot sectors and root directory
have been accounted for

fatLen | Length of the FAT, in sectors

Taking into account both data and fat, each cluster takes up the following
number of nybbles (units of 4 bytes):

clusSiz x (2 secSiz) +nfats* fatNybls

This accounts for the data of the cluster (c/usSiz * secSiz), as well as for the
space taken up by its descriptor.

The space taken up by all clusters together, plus the space taken by descriptors
for clusters 0 and 1 (2xnfats* fatNybls) should be less than what is available.

Additional sectors may be lost due to slack (you have to use a full FAT sector,
you also have to use a full cluster in the data area). Thus, an upper bound for the
number of clusters is as follows:

2 xremSect x secSiz —2xnfats* fatNybls
2 xclusSiz * secSiz+nfats* fatNybls

numClus <

Clus < (remSect + 2 * clusSiz) % 2 x secSiz
numClus -
~ 2xclusSizxsecSiz+nfats fatNybls

These will take up at most the following space in one copy of the FAT (we
have to round up, because even a half-full fat sector must be taken in its entirety)

FatLen < (numClus +2) * fatNybls
atLen
a secSiz*2
2«(remSect+2xclusSiz)*secSiz
fatLen < (2*clusSiz*secSinrnfats*fatNybls) * fatNybls
atLen <

2 % secSiz

FatLen < [(remSect 4 2 * clusSiz) * fatNybls —‘
atLen <

2 x clusSiz * secSiz+nfats* fatNybls

The space left after FAT sector has been deduced is now less than or equal
to what would be needed for the data area of the clusters (including fractional
clusters), which is good, as we may have under no circumstances more clusters
in the data area than in the FAT. An important point in this calculation is that
we based the needed FAT size on a fractional number of clusters, rather than a
rounded down amount of clusters. Indeed, using a rounded down number could
have exposed us to a situation where we had an almost enough space for one more
cluster (i.e. not enough space for data + FAT, but enough for data alone). This
situation, combined with a situation where the last FAT sector was flush full could
have lead to a situation where numClus would become too large for the FAT to
accomodate. I think this is clearer with an example:

o remSect = 4127, clusSiz=1,nfats =1

(Non rounded down) numClus = % —2 =4094.992

Rounded down: 4094 clusters

These fit into 16 FAT sectors, exactly

e ... leaving us 4095 clusters, which is one to many (because these 4095
clusters would now need 17 FAT clusters)

Keeping the fractional part (0.992) allows us to round up the needed number
of FAT sectors to 17, nicely solving this problem.

The downside of counting the fractional part however is that we quite often
waste a sector in the really common situation where both nfats and clusSiz are
even, while remSect is odd. An easy way to address this is to substract one from
remSect before application of the formula, if this case is detected. Such operation
carries no risk, as the odd final sector cannot be used to make a full cluster.

There is still a case however, where fatLen must be grown manually after
application of the formula: If numClus exceeds the maximum number of clusters
allowable for FAT12 or FAT16), we need to shrink numClus after application of
the formula, and manually make the FAT larger in order to take up any excess
space.

Also note that as we used upper bounds, we may waste a certain number of
sectors, which an exact calculation may not have wasted. However, normally, we
should not lose more than one sector per FAT copy.

N.B.Inits document at http://www.microsoft.com/hwdev/download/hardware/
fatgenl03.pdf, Microsoft proposes a much simpler formula. However, this for-
mula is both wrong (i.e. occasionally it produces a smaller FAT than is needed for
the clusters on disk), less generic (only works for sector sizes equal to 512), and
less efficient (in case of FAT32, it may waste up to 8 sectors!)

The formula is the following (for FAT16):

remSect
256 % clusSiz+nfats

fatLen < {

Note that it doesn’t account for the dummy clusters O and 1. Thus, if we
have 258 sectors remaining, with a cluster size of 1, and two FAT copies, the
Microsoft formula mistakenly assumes fatLen = 1. This leaves 258 - 2 = 256
sectors for clusters, which yields 256 clusters. However, those clusters do not fit
into the FAT, as two clusters are lost (0 and 1). However, to Micro$ofts’ credit,
this is not actually the formula they’re using (tested with remsect = 160056 and
clusSize = 4), so this seems to be a documentation issue rather than a genuine
bug.

In case of FAT32, Microsoft just halves the denominator. This is wasteful, as
only the 256 x clusSiz part would need to be halved.

If we assume 16777000, and a cluster size of 8, our formula would give us:

16777000 + 16) « 8
2%8%x512+16
This would leave 16777000 — 2 x 16352 = 16744296 sectors for the clusters, i.e.

2093037 clusters. The FAT descriptors for those 2093037 clusters do indeed fit
into our 16352 fat sectors.

fatLen = W —‘ = 16352

http://www.microsoft.com/hwdev/download/hardware/fatgen103.pdf
http://www.microsoft.com/hwdev/download/hardware/fatgen103.pdf

Microsoft, on the other hand, would get:

16777000
(256 %8 +2)/2

fatLen = [—‘ = 16368

This would only leave 16777000 — 2 x 16368 = 16744264, i.e. 2093033 clusters,
thus wasting 4 clusters. The FAT would be 28 sectors too big, i.e. more than
the mere 8 sectors announced by Microsoft! Unfortunately, I currently don’t have
access to any sufficiently recent Windows to check out whether this really happens
in the code, or whether it is only a documentation issue as well.

Oh, and before somebody points it out: the formula in this document occas-
sionnally wastes sectors too, although not as much (Example: With remsect =
685, clusSiz = 1 and nfats = 2 our formula gives fatLen = 3, which leaves 679
clusters. However, we could use fatLen = 2, leaving 681 clusters.

