Python | Numpy ndarray.__array__() Last Updated : 29 Mar, 2019 Comments Improve Suggest changes Like Article Like Report With the help of ndarray.__array__() method, we can create a new array as we want by giving a parameter as dtype and we can get a copy of an array that doesn't change the data element of original array if we change any element in the new one. Syntax : ndarray.__array__() Return : Returns either a new reference to self if dtype is not given New array of provided data type if dtype is different from the current dtype of the array. Example #1 : In this example we can see that we change the dtype of a new array by just using ndarray.__array__() method. Python3 1== # import the important module in python import numpy as np # make an array with numpy gfg = np.array([1, 2, 3, 4, 5]) # applying ndarray.__array__() method geeks = gfg.__array__(float) print(geeks) Output: [ 1. 2. 3. 4. 5.] Example #2 : Python3 1== # import the important module in python import numpy as np # make an array with numpy gfg = np.array([[1.1, 2, 3.3, 4, 5], [6, 5.2, 4, 3, 2.2]]) # applying ndarray.__array__() method geeks = gfg.__array__(int) print(geeks) Output: [[1 2 3 4 5] [6 5 4 3 2]] Comment More infoAdvertise with us Next Article Python | Numpy ndarray.__array__() J Jitender_1998 Follow Improve Article Tags : Python Python-numpy Python numpy-ndarray Practice Tags : python Similar Reads Python | Numpy ndarray.__iand__() With the help of Numpy ndarray.__iand__() method, we can get the elements that is anded by the value that is provided as a parameter in numpy.ndarray.__iand__() method. Syntax: ndarray.__iand__($self, value, /) Return: self&=value Example #1 : In this example we can see that every element is and 1 min read Python | Numpy ndarray.__copy__() With the help of Numpy ndarray.__copy__() method, we can make a copy of all the data elements that is present in numpy array. If you change any data element in the copy, it will not affect the original numpy array. Syntax : numpy.__copy__() Return : Copy of all the data elements Example #1 : In this 1 min read NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read numpy.asarray() in Python numpy.asarray()function is used when we want to convert input to an array. Input can be lists, lists of tuples, tuples, tuples of tuples, tuples of lists and arrays. Syntax : numpy.asarray(arr, dtype=None, order=None) Parameters : arr : [array_like] Input data, in any form that can be converted to a 2 min read Python | Numpy ndarray.item() With the help of numpy.ndarray.item() method, we can fetch the data elements that is found at the given index on numpy array. Remember we can give index as one dimensional parameter or can be two dimensional. Parameters: *args : Arguments (variable number and type) -> none: This argument only works 2 min read numpy.asanyarray() in Python numpy.asanyarray()function is used when we want to convert input to an array but it pass ndarray subclasses through. Input can be scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asanyarray(arr, dtype=None, order=None) Parameters : arr : [array_ 2 min read numpy.ndarray.flat() in Python The numpy.ndarray.flat() function is used as a 1_D iterator over N-dimensional arrays. It is not a subclass of, Pythonâs built-in iterator object, otherwise it a numpy.flatiter instance. Syntax : numpy.ndarray.flat() Parameters : index : [tuple(int)] index of the values to iterate Return :  1-D i 3 min read numpy.asfarray() in Python numpy.asfarray()function is used when we want to convert input to a float type array. Input includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.asfarray(arr, dtype=type 'numpy.float64') Parameters : arr : [array_like] Input data, in any for 2 min read Python | Numpy numpy.ndarray.__add__() With the help of Numpy numpy.ndarray.__add__(), we can add a particular value that is provided as a parameter in the ndarray.__add__() method. Value will be added to each and every element in a numpy array. Syntax: ndarray.__add__($self, value, /) Return: self+value Example #1 : In this example we c 1 min read numpy.ndarray.fill() in Python numpy.ndarray.fill() method is used to fill the numpy array with a scalar value. If we have to initialize a numpy array with an identical value then we use numpy.ndarray.fill(). Suppose we have to create a NumPy array a of length n, each element of which is v. Then we use this function as a.fill(v). 2 min read Like