numpy.bitwise_xor() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.bitwise_xor() function is used to Compute the bit-wise XOR of two array element-wise. This function computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_xor(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc ‘bitwise_xor’) Parameters : arr1 : [array_like] Input array. arr2 : [array_like] Input array. out : [ndarray, optional] A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional] True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone. Return : [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars. Code #1 : Working Python # Python program explaining # bitwise_xor() function import numpy as geek in_num1 = 10 in_num2 = 11 print ("Input number1 : ", in_num1) print ("Input number2 : ", in_num2) out_num = geek.bitwise_xor(in_num1, in_num2) print ("bitwise_xor of 10 and 11 : ", out_num) Output : Input number1 : 10 Input number2 : 11 bitwise_xor of 10 and 11 : 1 Code #2 : Python # Python program explaining # bitwise_xor() function import numpy as geek in_arr1 = [2, 8, 125] in_arr2 = [3, 3, 115] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.bitwise_xor(in_arr1, in_arr2) print ("Output array after bitwise_xor: ", out_arr) Output : Input array1 : [2, 8, 125] Input array2 : [3, 3, 115] Output array after bitwise_xor: [ 1 11 14] Code #3 : Python # Python program explaining # bitwise_xor() function import numpy as geek in_arr1 = [True, False, True, False] in_arr2 = [False, False, True, True] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.bitwise_xor(in_arr1, in_arr2) print ("Output array after bitwise_xor: ", out_arr) Output : Input array1 : [True, False, True, False] Input array2 : [False, False, True, True] Output array after bitwise_xor: [ True False False True] Comment More infoAdvertise with us Next Article numpy.bitwise_xor() in Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Binary Operation Practice Tags : python Similar Reads numpy.bitwise_or() in Python numpy.bitwise_or()function is used to Compute the bit-wise OR of two array element-wise. This function computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_or(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K 2 min read numpy.bitwise_and() in Python numpy.bitwise_and() function is used to Compute the bit-wise AND of two array element-wise. This function computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_and(arr1, arr2, /, out=None, *, where=True, casting='same_kind', ord 2 min read numpy.logical_xor() in Python numpy.logical_xor(arr1, arr2, out=None, where = True, casting = 'same_kind', order = 'K', dtype = None, ufunc 'logical_xor') : This is a logical function and it helps user to find out the truth value of arr1 XOR arr2 element-wise. Both the arrays must be of same shape. Parameters : arr1 : [array_lik 2 min read numpy.binary_repr() in Python numpy.binary_repr(number, width=None) function is used to represent binary form of the input number as a string. For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the twoâs complement of the number is returned, with respect to that width. In a twoâs- 3 min read numpy.setxor1d() function in Python numpy.setxor1d() function find the set exclusive-or of two arrays and return the sorted, unique values that are in only one (not both) of the input arrays. Syntax : numpy.setxor1d(arr1, arr2, assume_unique = False) Parameters : arr1, arr2 : [array_like] Input arrays. assume_unique : [bool] If True, 1 min read Python | Numpy numpy.ndarray.__xor__() With the help of Numpy numpy.ndarray.__xor__() method, we can get the elements that is XOR by the value that is provided as a parameter in numpy.ndarray.__xor__() method. Syntax: ndarray.__xor__($self, value, /) Return: self^value Example #1 : In this example we can see that every element is xor by 1 min read Python - Tensorflow bitwise.invert() method Tensorflow bitwise.invert() method performs the invert operation and the result will invert the bits, Like 0 to 1 and 1 to 0. The operation is done on the representation of a. This method belongs to bitwise module. Syntax: tf.bitwise.invert( a, name=None) Arguments a: This must be a Tensor.It should 2 min read numpy.signbit() in Python numpy.signbit(array, out = None, where = True, casting = âsame_kindâ, order = âKâ, dtype = None) : This mathematical function helps user to element - wise check whether the signbit is set or not. Parameters : array : [array_like]Input array or object whose elements, we need to check. out : [ndarray, 2 min read Boolean Array in NumPy - Python The goal here is to work with Boolean arrays in NumPy, which contain only True or False values. Boolean arrays are commonly used for conditional operations, masking and filtering elements based on specific criteria. For example, given a NumPy array [1, 0, 1, 0, 1], we can create a Boolean array wher 3 min read Python Bitwise Operators Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format.Note: Python bitwis 5 min read Like