numpy.arccosh() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.arccosh() : This mathematical function helps user to calculate inverse hyperbolic cosine, element-wise for all arr. Syntax : numpy.arccosh(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'arccosh') Parameters : arr : array_like Input array. out : [ndarray, optional] A location into which the result is stored. -> If provided, it must have a shape that the inputs broadcast to. -> If not provided or None, a freshly-allocated array is returned. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs :Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function. Return : An array with inverse hyperbolic cosine of arr for all arr i.e. array elements. Note : 2pi Radians = 360 degrees The convention is to return the angle of arr whose imaginary part lies in [-pi, pi] and the real part in [0, inf]. Code #1 : Working Python # Python program explaining # arccosh() function import numpy as np in_array = [2, 1, 10, 100] print ("Input array : \n", in_array) arccosh_Values = np.arccosh(in_array) print ("\nInverse hyperbolic Cosine values : \n", arccosh_Values) Output : Input array : [2, 1, 10, 100] Inverse hyperbolic Cosine values : [ 1.3169579 0. 2.99322285 5.29829237] Code #2 : Graphical representation Python # Python program showing # Graphical representation # of arccosh() function %matplotlib inline import numpy as np import matplotlib.pyplot as plt in_array = np.linspace(1, np.pi, 18) out_array1 = np.cos(in_array) out_array2 = np.arccosh(in_array) print("in_array : ", in_array) print("\nout_array with cos : ", out_array1) print("\nout_array with arccosh : ", out_array2) #blue for numpy.cosh() # red for numpy.arccosh() plt.plot(in_array, out_array1, color = 'blue', marker = ".") plt.plot(in_array, out_array2, color = 'red', marker = "+") plt.title("blue : numpy.cos() \nred : numpy.arccosh()") plt.xlabel("X") plt.ylabel("Y") Output : in_array : [ 1. 1.12597604 1.25195208 1.37792812 1.50390415 1.62988019 1.75585623 1.88183227 2.00780831 2.13378435 2.25976038 2.38573642 2.51171246 2.6376885 2.76366454 2.88964058 3.01561662 3.14159265] out_array with cos : [ 0.54030231 0.43029566 0.31346927 0.19167471 0.0668423 -0.0590495 -0.18400541 -0.30604504 -0.42323415 -0.53371544 -0.63573787 -0.72768451 -0.80809809 -0.87570413 -0.92943115 -0.96842762 -0.99207551 -1. ] out_array with arccosh : [ 0. 0.49682282 0.69574433 0.84411504 0.96590748 1.07053332 1.16287802 1.24587516 1.32145434 1.39096696 1.45540398 1.51551804 1.57189678 1.62500948 1.67523791 1.7228975 1.76825238 1.81152627] ) Comment More infoAdvertise with us Next Article numpy.arccosh() in Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Mathematical Function Practice Tags : python Similar Reads numpy.arccos() in Python numpy.arccos(x[, out]) = ufunc 'arccos') : This mathematical function helps user to calculate inverse cos for all x(being the array elements). Parameters : array : [array_like]elements are in radians. out : [array_like]array of same shape as x. Note : 2pi Radians = 360 degrees The convention is to r 2 min read numpy.cosh() in Python The numpy.cosh() is a mathematical function that helps user to calculate hyperbolic cosine for all x(being the array elements). Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) and np.cos(1j*x). Syntax : numpy.cosh(x[, out]) = ufunc 'cos') Parameters : array : [array_like] elements are in radians. 2pi R 2 min read numpy.arcsinh() in Python numpy.arcsinh() : This mathematical function helps user to calculate inverse hyperbolic sine, element-wise for all arr. Syntax : numpy.arcsinh(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'arcsinh') Parameters : arr : array_like Input array. out : [ndarray, opti 2 min read numpy.cos() in Python numpy.cos(x[, out]) = ufunc 'cos') : This mathematical function helps user to calculate trigonometric cosine for all x(being the array elements). Parameters : array : [array_like]elements are in radians. 2pi Radians = 360 degrees Return : An array with trigonometric cosine of x for all x i.e. array 2 min read numpy.arcsin() in Python numpy.arcsin(x[, out]) = ufunc 'arcsin') : This mathematical function helps user to calculate inverse sine for all x(being the array elements). Parameters : array : [array_like]elements are in radians. out : [array_like]array of same shape as x. Return : An array with inverse sine of x for all x i.e 2 min read numpy.arctanh in Python() numpy.arctanh() : This mathematical function helps user to calculate inverse hyperbolic tangent, element-wise for all arr. Syntax : numpy.arctanh(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'arctanh') Parameters : arr : array_like Input array. out : [ndarray, o 3 min read numpy.arctan() in Python numpy.arctan(x[, out]) = ufunc 'arctan') : This mathematical function helps user to calculate inverse tangent for all x(being the array elements). Parameters : array : [array_like]elements are in radians. out : [array_like]array of same shape as x. Note : 2pi Radians = 360 degrees The convention is 2 min read numpy.arctan2() in Python The numpy.arctan2() method computes element-wise arc tangent of arr1/arr2 choosing the quadrant correctly. The quadrant is chosen so that arctan2(x1, x2) is the signed angle in radians between the ray ending at the origin and passing through the point (1, 0), and the ray ending at the origin and pas 2 min read NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read numpy.alen() in Python numpy.alen() function is used to return the length of the first dimension of the input array. Syntax : numpy.alen(arr) Parameters : arr : [array_like] Input array. Return : [int]Length of the first dimension of arr. Code #1 : Python3 # Python program explaining # alen() function import numpy as geek 1 min read Like