In C#, data types define the kind of values a variable can hold. Since C# is strongly typed, every variable or constant must be declared with a specific data type, such as int, char or float.
Data Types in C# is Mainly Divided into 3 Categories:
- Value Data Types
- Reference Data Types
- Pointer Data Type
1. Value Data Types
In C#, the Value Data Types will directly store the variable value in memory and it will also accept both signed and unsigned literals. The derived class for these data types are System.ValueType.
Following are different Value Data Types in C# programming language
1.1 Signed & Unsigned Integral Types
There are 8 integral types which provide support for 8-bit, 16-bit, 32-bit and 64-bit values in signed or unsigned form.
Alias | .NET Type | Type | Size(bits) | Range | Default Value |
---|
sbyte | System.SByte | signed integer | 8 | -128 to 127 | 0 |
short | System.Int16 | signed integer | 16 | -32768 to 32767 | 0 |
int | System.Int32 | signed integer | 32 | -231 to 231-1 | 0 |
long | System.Int64 | signed integer | 64 | -263 to 263-1 | 0L |
byte | System.Byte | unsigned integer | 8 | 0 to 255 | 0 |
ushort | System.UInt16 | unsigned integer | 16 | 0 to 65535 | 0 |
uint | System.UInt32 | unsigned integer | 32 | 0 to 232 | 0 |
ulong | System.UInt64 | unsigned integer | 64 | 0 to 263 | 0UL |
1.2 Floating Point Types
There are 2 floating point data types which contain the decimal point.
Alias | .NET Type | Size(bits) | Range (aprox) | Default Value |
---|
float | System.Single | 32 | ±1.5 × 10-45 to ±3.4 × 1038 | 0.0F |
double | System.Double | 64 | ±5.0 × 10-324 to ±1.7 × 10308 | 0.0D |
- Float: It is 32-bit single-precision floating point type. It has 7 digit Precision. To initialize a float variable, use the suffix f or F. Like, float x = 3.5F. If the suffix F or f will not use then it is treated as double.
- Double: It is 64-bit double-precision floating point type. It has 14 - 15 digit Precision. To initialize a double variable, use the suffix d or D. But it is not mandatory to use suffix because by default floating data types are the double type.
1.3 Decimal Types
The decimal type is a 128-bit data type suitable for financial and monetary calculations. It has 28-29 digit Precision. To initialize a decimal variable, use the suffix m or M. Like as, decimal x = 300.5m. If the suffix m or M will not use then it is treated as double.
Alias | Type name | Size(bits) | Range (aprox) | Default value |
---|
decimal | System.Decimal | 128 | ±1.0 × 10-28 to ±7.9228 × 1028 | 0.0M |
1.4 Character Types
The character types represents a UTF-16 code unit or represents the 16-bit Unicode character.
Alias | Type name | Size In(Bits) | Range | Default value |
---|
char | System.Char | 16 | U +0000 to U +ffff | '\0' |
Example 1: Program to demonstrate the above data types
C#
using System;
namespace ValueTypeTest {
class GeeksforGeeks {
static void Main()
{
// declaring character
char a = 'G';
// Integer data type is generally used for numeric values
int i = 89;
short s = 56;
// long uses Integer values which may signed or unsingned
long l = 4564;
// UInt data type is generally used for unsingned integer values
uint ui = 95;
ushort us = 76;
// ulong data type is generally for unsingned integer values
ulong ul = 3624573;
// by default fraction value is double in C#
double d = 8.358674532;
// for float use 'f' as suffix
float f = 3.7330645f;
// for float use 'm' as suffix
decimal dec = 389.5m;
Console.WriteLine("char: " + a);
Console.WriteLine("integer: " + i);
Console.WriteLine("short: " + s);
Console.WriteLine("long: " + l);
Console.WriteLine("float: " + f);
Console.WriteLine("double: " + d);
Console.WriteLine("decimal: " + dec);
Console.WriteLine("Unsingned integer: " + ui);
Console.WriteLine("Unsingned short: " + us);
Console.WriteLine("Unsingned long: " + ul);
}
}
}
Outputchar: G
integer: 89
short: 56
long: 4564
float: 3.733064
double: 8.358674532
decimal: 389.5
Unsinged integer: 95
Unsinged short: 76
Unsinged long: 3624573
Example 2: Sbyte signed integral data type
C#
using System;
namespace ValueTypeTest {
class GeeksforGeeks {
static void Main()
{
sbyte a = 126;
// sbyte is 8 bit singned value
Console.WriteLine(a);
a++;
Console.WriteLine(a);
// It overflows here because byte can hold values from -128 to 127
a++;
Console.WriteLine(a);
// Looping back within the range
a++;
Console.WriteLine(a);
}
}
}
Example 3: Program to demonstrate the byte data type
C#
using System;
namespace ValueTypeTest {
class GeeksforGeeks {
static void Main()
{
byte a = 0;
// byte is 8 bit unsigned value
Console.WriteLine(a);
a++;
Console.WriteLine(a);
a = 254;
// It overflows here because byte can hold values from 0 to 255
a++;
Console.WriteLine(a);
// Looping back within the range
a++;
Console.WriteLine(a);
}
}
}
1.5 Boolean Types
It has to be assigned either true or false value. Values of type bool are not converted implicitly or explicitly (with casts) to any other type. But the programmer can easily write conversion code.
Alias | Type Name | Possible Values |
---|
bool | System.Boolean | true / false |
---|
Example:
Using Boolean data type
C#
using System;
namespace ValueTypeTest {
class GeeksforGeeks {
static void Main()
{
// boolean data type
bool b = true;
if (b == true)
Console.WriteLine("Hi Geek");
}
}
}
2. Reference Data Types
Reference data types in C# store the memory address (reference) of the actual data, not the data itself. They are used for complex types like string, arrays, classes, interfaces and delegates.
2.1 String
It represents a sequence of Unicode characters and its type name is System.String. So, string and String are equivalent.
Example:
string s1 = "hello"; // creating through string keyword
String s2 = "welcome"; // creating through String class
2.2 Object
In C#, object is the base type from which all other types (value types and reference types) are derived. Converting a value type to an object is called boxing and converting it back is called unboxing.
Example:
C#
using System;
namespace ValueTypeTest {
class Geeks {
static void Main()
{
// declaring string
string a = "Geeks";
// append in a
a += "for";
a = a + "Geeks";
Console.WriteLine(a);
// declare object obj
object obj;
obj = 20;
Console.WriteLine(obj);
// to show type of object using GetType()
Console.WriteLine(obj.GetType());
}
}
}
OutputGeeksforGeeks
20
System.Int32
3. Pointer Data Type
The Pointer Data Types will contain a memory address of the variable value. To get the pointer details we have a two symbols ampersand (&) and asterisk (*).
- ampersand (&): It is known as Address Operator. It is used to determine the address of a variable.
- asterisk (*): It also known as Indirection Operator. It is used to access the value of an address.
Syntax:
type* identifier;
// Valid syntax
int* p1, p;
// Invalid
int *p1, *p;
Example:
C#
using System;
namespace Pointerprogram {
class GFG {
static void Main()
{
unsafe
{
// declare variable
int n = 10;
// store variable n address location in pointer variable p
int* p = &n;
Console.WriteLine("Value :{0}", n);
Console.WriteLine("Address :{0}", (int)p);
}
}
}
}
Output:
Value :10
Address :1988374520
Note:
This program will not work on online compiler.
Error: Unsafe code requires the `unsafe' command line option to be specified.
For its solution: Go to your project properties page and check under Build the checkbox Allow unsafe code.
Explore
Introduction
Fundamentals
Control Statements
OOP Concepts
Methods
Arrays
ArrayList
String
Tuple
Indexers