Shay Gal-On
Director of Software Engineering
EEMBC

www.eembc.org

e What is EEMBC

* Multicore benchmarking framework

* Multicore sample results

* Industry standard benchmarks since
1997

 New: Evaluating current and future
development of MP platforms

 Uncovering MP bottlenecks
e Analysis of multicore systems

| ‘_I :, F

e Multicore is everywhere

 Hence our focus on benchmarking embedded
multicore solutions.

e Initial implementation targets SMP

e Easiest model to work with
e Current metrics misleading (rate, DMIPS, etc)
e Workloads and work items

e Develop workloads closer to real life
Individual kernels are work items within a workload

e Easy to run
e Only 13 calls to implement means quick porting to
any platform/OS/toolchain
* Wide range of applications
e Sufficient functionality with minimum porting

effort for most embedded applications.

 Most EEMBC benchmarks ported

e Thread safety
e New datasets
e Common API

e Multiple algorithms
e Multiple data
e Decomposition

yo [/ 0000

Work Item Work Item

Work Item

Workload

Multiple Work Items
Note: Algorithm same, different datasets

Work Item 1 Work Item 2 Work Item 1 Work Item 2

s : by :

Workload & < Workload !
Work Item 4

Work Item 3 Work Item 3 Work Item 4

Can be run one item at a time Or concurrently, depending
on processing resources and
scheduling

Example with two contexts doing four repeats

NOTE:

Alternatively, the

OS may schedule

Core 1 and Core 2 ik “ >

S e . Idle Time

hamburgers and
cucumbers, Start next iteration here

respectively. Other
combinations are
possible.

e Carefully selected subset
* Only 30 workloads over a few kernels

 Benchmark efficiency of various multi-
processing system related effects

e Computation / Synchronization
e Memory / Cache
 Work items from multiple segments

 Networking
e Consumer

Quad Core

2 4

Number of concurrent streams

—e— 64M-check-reassembly —k— 64M-cmykw2 —— 64M-rotatew2 —— 64M-tcp-mixed

Speedup

Dual Core 1

2
15
1 J
05 — 28 Dual Core 2
\ 2
0
1 2
Number of concurrent streams 15
o
—e&— 64M-check-reassembly —k— 64M-cmykw 2 —— 64M-rotatew 2 —=— 64M-t § 1]
a
n

Number of concurrent streams

—&— 64M-check-reassembly —¥— 64M-cmykw 2 —+— 64M-rotatew 2 —=— 64M-tcp-mixed

e Simple algorithm, very little computation

e Easy to slice to workers, since each pixel is
independent.

* Depending on slicing and image size, can
exercise the system in interesting ways.

 Many other applications use similar data
movement patterns.

I ‘__I 1 »

Performance (1,time)

2.3

1.5

0.3

Performance Scaling

_—— Peak performance with 16

active threads (~11x speedup)

Worth noting that for less then 8

workers, peak performance is
— achieved with utilization of 1/2
/ \ | total cores or less

/A\ _

1 z 4 G 10 1z 16 20
Humber of concurrent items

—— rotate-16x4h=1 w1 rotate-1Bxdhz1 w? —e— rotate-1 Gxdhis1 wed rotate-16xd4hs1ws

Peak performance at 2.14.
gr4 = 32 active threads
~11x over base

Also interesting to note that peak

performance
workers is achieve
being handled

for any number of
d with 4 images
concurrently

—&— rotate-16
-16x4Ms4wl
rotate-
ate-16x4Ms4w2 —e— rotate-16x4Ms4w4
rotate-16x4Ms4
w8

e
With larger slices, pe_rform:‘i\c
actually drops: with p;a
performance at1.27.

~7x over base

Worth noting
performance drops
even with 1 worker

items
\&\

-

o~

/\

—#— rotate-16x4Ms32w1l rotate-16x4Ms32w2 —— rotate-16x4Ms32w4 rotate-16x4Ms32w8

e Results show low overhead for sync

 Take advantage of data decomposition.

e Use medium to small granularity.

e Results show throughput max with small
number of concurrent data streams

 Pay more attention to the lower level concurrency.

e Results show bottlenecks

e Make sure system resources are not
oversubscribed by testing with lower load.

Significant drop in performance on the
dual core machine when using more then
one worker.

This is mostly due to cache coherency
when writing the rotated image.

The 16 core machine OTOH scales
nicely.

16 core wins on
absolute performance

01 B2 08 016 W20 Odual-x1 BMdual-x2 Odual-x8

0 2Ghz x2 @500Mhz x16

File Help

Filter Ttems Workload Name Iterations Min Contexts
: Visualize I [
|J|:I | |ne'.f\'_'n'orldoad {10 | |1 |

Workload Description

Available Items Workload Definition

Ttem Index Data Work Item | Index | Data Connections
cjpeg-datal datal aifftr 3 32M1worker 1:data,
cipeg-dataZ data2 bitmnp data32Mm

3
Cjpeg-data3 data3 Cjpeg-datal 0 datal Hidata, S:ctrl,
i)

cjpeg-data4 datz4 dipeg-datal datal
cjpeg-datas datas
cjpeg-dataé datag
cjpeg-data? data?
dipeg-datal datal
dipeg-data2 data2
dipeg-data3 data3
dipea-datad 3 datad
dipeg-datas datas
dipeg-dataé datad
djpeg-data? data7?

File: new_workload. xml

* Analysis of complex systems
 Take advantage of in-house expertise
e Quickly pick the right processor

e Targeted benchmarking

* Creation of relevant benchmarks

e Creation of automated benchmark systems
e Quick benchmark results

e Utilize expertise with multiple embedded environments

e Utilize experience with EEMBC suites and other
benchmarks

e Guidance for optimizing your applications

 EEMBC has a new suite for burning
multicore issue.

* Use EEMBC benchmarks to guide

software development as well as analyze
platforms.

e EEMBC launched new service to assist
with benchmarking and analysis.
I ‘—_I 1 >

