

Propositional Logic Intro

Note 1

Proposition: A statement with a truth value; it is either true or false.

Propositions can be combined to form more complicated expressions, using the following operations:

Operators	Quantifiers	Implication operations
\wedge and	\forall for all	Implication $P \Rightarrow Q$
\vee or	\exists there exists	Inverse $\neg P \Rightarrow \neg Q$
\neg not		Converse $Q \Rightarrow P$
\Rightarrow implies		Contrapositive $\neg Q \Rightarrow \neg P$
\equiv equivalent to		

Further, for an implication $P \Rightarrow Q$ where P is the *hypothesis* and Q is the *conclusion*, it is useful to know that $P \Rightarrow Q \equiv \neg P \vee Q$. Additionally, observe that any implication is logically equivalent to its contrapositive.

DeMorgan's Laws: The following identities can be helpful when simplifying expressions and distributing negations.

- $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$
- $\neg(P \vee Q) \equiv \neg P \wedge \neg Q$
- $\neg(\forall x P(x)) \equiv \exists x(\neg P(x))$
- $\neg(\exists x P(x)) \equiv \forall x(\neg P(x))$

1 Propositional Practice

Note 1 Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

Recall that \mathbb{R} is the set of reals, \mathbb{Q} is the set of rationals, \mathbb{Z} is the set of integers, and \mathbb{N} is the set of natural numbers. The notation " $a \mid b$ ", read as " a divides b ", means that a is a divisor of b .

- There is a real number which is not rational.
- All integers are natural numbers or are negative, but not both.
- If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.

(d) $\neg(\forall x \in \mathbb{Q})(x \in \mathbb{Z})$
 (e) $(\forall x \in \mathbb{Z})(((2 \mid x) \vee (3 \mid x)) \implies (6 \mid x))$
 (f) $(\forall x \in \mathbb{N})((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

Solution:

(a) $(\exists x \in \mathbb{R}) (x \notin \mathbb{Q})$, or equivalently $(\exists x \in \mathbb{R}) \neg(x \in \mathbb{Q})$. This is true, and we can use π as an example to prove it.

(b) $(\forall x \in \mathbb{Z}) (((x \in \mathbb{N}) \vee (x < 0)) \wedge \neg((x \in \mathbb{N}) \wedge (x < 0)))$. This is true, since we define the naturals to contain all integers which are not negative.

(c) $(\forall x \in \mathbb{N}) ((6 \mid x) \implies ((2 \mid x) \vee (3 \mid x)))$. This is true, since any number divisible by 6 can be written as $6k = (2 \cdot 3)k = 2(3k)$, meaning it must also be divisible by 2.

(d) It is not the case that all rational numbers are integers. This is true, since we have rational numbers like $\frac{1}{2}$ that are not integers.

(e) Any integer that is divisible by 2 or 3 is also divisible by 6. This is false: 2 provides the easiest counterexample. Note that this statement is false even though its converse (part c) is true.

(f) If a natural number is larger than 7, it can be written as the sum of two other natural numbers. This is trivially true, since if $x = a + b$ we can take $a = x$ and $b = 0$.

(Aside: this is a reference to the very weak Goldbach Conjecture (<https://xkcd.com/1310/>)).

2 Truth Tables

Note 1 Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

(a) $P \wedge (Q \vee P) \equiv P \wedge Q$
 (b) $(P \vee Q) \wedge R \equiv (P \wedge R) \vee (Q \wedge R)$
 (c) $(P \wedge Q) \vee R \equiv (P \vee R) \wedge (Q \vee R)$

Solution:

(a) Not equivalent.

P	Q	$P \wedge (Q \vee P)$	$P \wedge Q$
T	T	T	T
T	F	T	F
F	T	F	F
F	F	F	F

(b) Equivalent.

P	Q	R	$(P \vee Q) \wedge R$	$(P \wedge R) \vee (Q \wedge R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(c) Equivalent.

P	Q	R	$(P \wedge Q) \vee R$	$(P \vee R) \wedge (Q \vee R)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	F	F
F	F	T	T	T
F	F	F	F	F

3 Implication

Note 0
Note 1

Which of the following implications are always true, regardless of P ? Give a counterexample for each false assertion (i.e. come up with a statement $P(x,y)$ that would make the implication false).

- (a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$.
- (b) $\forall x \exists y P(x,y) \implies \exists y \forall x P(x,y)$.
- (c) $\exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$.

Solution:

- (a) True. For all can be switched if they are adjacent; since $\forall x, \forall y$ and $\forall y, \forall x$ means for all x and y in our universe.
- (b) False. Let $P(x,y)$ be $x < y$, and the universe for x and y be the integers. Or let $P(x,y)$ be $x = y$ and the universe be any set with at least two elements. In both cases, the antecedent is true and the consequence is false, thus the entire implication statement is false.
- (c) True. The antecedent says that there is an x , say x' , where for every y , $P(x,y)$ is true. If the antecedent is true, then for every y one can choose $x = x'$, which will make the consequent true.