Pandas DataFrame.isnull() and notnull() Function

  1. Syntax of pandas.DataFrame.isnull() and pandas.DataFrame.notnull():
  2. Example Codes: DataFrame.isnull() Method to Check for Null Values
  3. Example Codes: DataFrame.notnull() Method to Check for Not Null Values
Pandas DataFrame.isnull() and notnull() Function

Python Pandas DataFrame.isnull() function detects the missing value of an object and the DataFrame.notnull() function detects the non-missing value of an object.

ADVERTISEMENT

Syntax of pandas.DataFrame.isnull() and pandas.DataFrame.notnull():

Python
 pythonCopyDataFrame.isnull()
DataFrame.notnull()

Return

Both the functions return scalar boolean for scalar input. For array input, both return an array of boolean indicating whether each corresponding element is valid.

Example Codes: DataFrame.isnull() Method to Check for Null Values

Python
 pythonCopyimport pandas as pd
import numpy as np

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: np.nan, 2: 80,3: 78,4: 95},
                        'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
                        'Obtained Marks': {0: np.nan, 1: 75, 2: 82, 3: np.nan, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)

dataframe1 = dataframe.isnull()
print("The output is: \n")
print(dataframe1)

Output:

 textCopyThe Original Data frame is: 

   Attendance    Name  Obtained Marks
0        60.0  Olivia             NaN
1         NaN    John            75.0
2        80.0   Laura            82.0
3        78.0     Ben             NaN
4        95.0   Kevin            45.0
The output is: 

   Attendance   Name  Obtained Marks
0       False  False            True
1        True  False           False
2       False  False           False
3       False  False            True
4       False  False           False

For null values, the function has returned True.

Example Codes: DataFrame.notnull() Method to Check for Not Null Values

Python
 pythonCopyimport pandas as pd
import numpy as np

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: np.nan, 2: 80,3: 78,4: 95},
                        'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
                        'Obtained Marks': {0: np.nan, 1: 75, 2: 82, 3: np.nan, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)

dataframe1 = dataframe.notnull()
print("The output is: \n")
print(dataframe1)

Output:

 textCopyThe Original Data frame is: 

   Attendance    Name  Obtained Marks
0        60.0  Olivia             NaN
1         NaN    John            75.0
2        80.0   Laura            82.0
3        78.0     Ben             NaN
4        95.0   Kevin            45.0
The output is: 

   Attendance  Name  Obtained Marks
0        True  True           False
1       False  True            True
2        True  True            True
3        True  True           False
4        True  True            True

The function has returned True for not null values.

Enjoying our tutorials? Subscribe to DelftStack on YouTube to support us in creating more high-quality video guides. Subscribe

Related Article - Pandas DataFrame