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I. Configuring different edge states
Figure S1 is the extended version of Fig. 2, where more examples of the chain distributions and
the corresponding edge states are shown. It is clearly seen that the edge states appear as long
as the edge potential wells are the most or lest separated ones in the double waves, even if the
phase shift θ is an arbitary value [see Fig. S1(j)].

Figure S1: Edge states in differently structured double-wave chains. (a) Dependence of the
eigenenergies of the linear modes on the phase shift of the chains θ. Here a = 3 µm, A = 2
µm, and d = 0.5 µm. Red lines indicate the right edge states, green lines indicate the left edge
states, and black lines are the bulk states. (b) Enlarged view of the selected area in (a). (c-k)
Profiles of the chain (upper) and the corresponding density of the selected edge states (lower) at
different phase shifts: (c) θ = 0.1π, (d) θ = 0.25π, (e) θ = 0.45π, (f) θ = 0.5π, (g) θ = 0.75π,
(h) θ = π, (i) θ = 1.25π, (j) θ = 1.525π, and (k) θ = 1.9π.

2



II. Edge states in double-wave chains with different lengths
To realize different edge states, one can also cut or add some potential wells in the chain. Here
we consider the chain in Fig. 1(a) as the standard one. By cutting four potential wells at the
right edge as shown in Fig. S2(a), similar edge states like the one shown in Fig. S1(h) form
[see Fig. S2(d,g)]. If two potential wells at the left edge is removed [Fig. S2(b)], two types
of edge states appear in the same chain with one at the left edge, where the potential wells are
the least separated, and the other one at the right edge, where the potential wells are the most
separated [Fig. S2(e,h)]. With adding two more potential wells to the left side of the chain to
make it symmetric along x direction [Fig. S2(c)], both edges are allowed to be occupied by the
condensates with the same profile as shown in [Fig. S2(f,i)].

Figure S2: Potential chains with different lengths and the corresponding edge states. (a-c)
Profiles of the double-wave chains with the same lattice parameters, a = 3 µm, A = 2 µm,
and d = 0.5 µm, but different lengths along the horizontal (x) direction. (d-f) Eigenfrequencies
of the linear eigenstates versus the eigenstate numbers. (g-i) Selected edge states of the chains
(a-c), corresponding to the symbols in (d-f), respectively.
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III. Eigenstates at the inter-wave separation A = 2.5 µm
When the inter-wave separation A = 2.5 µm, the density of the condensate of the edge states
in the four potential wells at the right edge are almost identical [Fig. S3(b,c)]. Figure S3(d-g)
shows the eigenstates (bulk states) with the energies below the two edge states. The conden-
sates in such bulk states can be suppressed and consequently the condensate at the left edge
is enhanced, forming new edge states, i.e., nonlinearity-induced edge states (see Fig. 4 in the
main text).

Figure S3: Linear eigenstates. (a) Dependence of the eigenenergies of the linear eigenstates in
the double-wave chain on the inter-wave separationA, calculated based on the chain in Fig. 1(a)
with a = 3 µm, d = 0.5 µm, and θ = 0. Red lines indicate the edge states and black lines are
the bulk states. (b-g) Density (left) and phase (right) distributions of the selected eigenstates,
corresponding to the symbols in (a), respectively.
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IV. Multistable edge states
From Fig. 1(b) or Fig. S3(a), one can see that when a/A = 1.5, the edge states are more
isolated from the bulk states, so that in this case, the edge state [Fig. S4(c,f)] can be solely
excited without the excitation of the left edge state [c.f. Fig. 4(b)]. The left edge can still be
excited when the pump intensity is stronger as shown in Fig. S4(a,e). When the pump intensity
is stronger, the 0-π edge state at the right edge is still slightly influenced by the π-π state [see
the density distribution in Fig. S4(d)], even there is a significant energy gap between them. It
is clear that under some specific pump intensity range, the bistability remains in this case as
shown in Fig. S4(a).

Figure S4: Bistable edge states. (a) Dependence of the peak density of the nonlinear edge states
on the amplitudes of the pump with photon energy ~ω =-3.5982 meV [the chain parameters are
a = 3 µm, A = 2 µm, d = 0.5 µm, and θ = 0, the same with the one shown in Fig. 1(a)]. (b-g)
Density (left) and phase (right) profiles of the states marked in (a), respectively.
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V. Corner states
It can be seen from Fig. S5(a) that the four corner states share two different energies. This is
because there is a very small number of condensate being loaded into the chains next to the
left and right edges [Fig. S5(b)]. The coupling of the condensates in the edge potentials and
the potentials next to them induces the energy difference. The lower energy represents that the
condensates in the adjacent vertical chains have the same phase [see Fig. S5(c,d)], while the
higher energy indicates that their phase difference is π, see Fig. S5(e,f).

If a 2D lattice has the structure shown in Fig. S5(g), in the two SSH chains at the left and
right edges, the intra-cell coupling is apparently stronger than the inter-cell coupling. Con-
sequently, the left and right edges prevent the formation of the edge states along the vertical
direction, so that there is no corner states in the corresponding band gap as can be seen in Fig.
S5(h).

Figure S5: Corner states. (a) Selected linear eigenstates (energy vs. number) of the lattice in
Fig. 5(b). (b) Density distribution of the corner state 109 in (a). (c-f) Phase profiles of the four
corner states highlighted in (a). (g) A 2D multi-wave lattice pattern with a = 2.8 µm, A = 2
µm, and d = 0.2 µm. (h) Selected linear eigenstates (energy vs. number) of the lattice in (g).
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In the 2D lattice presented in Fig. 5(f), there exist also 1D edge states as illustrated in
Fig. S6. The 1D edge states at left and right edges [Fig. S6(b,c)] reside in the energy bands,
inseparable from the bulk states, while the edge states appeared at upper and lower edges [Fig.
S6(d,e)] are gapped. From the modulation amplitude d dependent spectrum [Fig. S6(f)] one
can see the transition of the edge and corner states from topologically trivial to nontrivial as d
increases.

Figure S6: Edge states in the 2D lattice. (a) Selected linear eigenstates (energy vs. number) of
the 2D lattice in Fig. 5(f). Here, 0D corner states and 1D edge states are marked. (b-e) Density
distributuions of the 1D edge states highlighted in (a). (f) Dependence of the eigenenergies on
the modulation amplitude d in the 2D lattice with A = 2µm and a = 2.8µm fixed. Red lines
indicate the 0D corner states, green lines indicate the 1D edge states, and black lines indicate
the bulk states.
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VI. Robustness of edge and corner states
To demonstrate the robustness of the topological edge and corner states in the nonlinear regime,
potential defects are applied to the original lattices. Figure S7(a) shows the 1D DW chain
studied in the main text, but a potential well is removed from the lower wave chain. When we
use the same excitation manner introduced in Fig. 4, one can see from Fig. S7(b) that the edge
state, corresponding to the one shown in Fig. 4(b), can still be excited and is stable. This holds
also for the 2D case as can be seen from Fig. S7(c,d) which correspond to the excitation studied
in Fig. 6. These results are stable states obtained from the time evolution and evidence that the
topological states studied in our work are very robust against strong defects. These topological
states are also robust against significant white noise. An example is shown in Fig. S7(e,f),
starting from an initial condition that despite the addition of white noise leads to stable time
evolution into the state in Fig. S7(f).

Figure S7: Edge and corner states with potential defects. (a) Profile of a DW chain with the
same parameters of the one shown in Fig. 1(a) but a missing potential well at the right edge of
the lower chain. (b) The corresponding density profile created by the same pump used in Fig.
4. (c) Profile of a 2D structure with the same parameters of the one shown in Fig. 5(f) but a
missing potential well at the right bottom corner. (d) The corresponding density profile created
by the same pump used in Fig. 6. (e) Time evolution of the peak density of the corner state
shown in Fig. 6(b) with random white noise being added during the time evolution. (f) Density
profile of the corner state at t = 5000 ps.
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VII. Chern index of the even and odd subspaces
In this section, the Chern index relation between the even and odd subspaces is derived. Follow-
ing the formula used in the main text, the vertical couplings are t + λ cos(2πp/(N + 1)j + θ)
and the horizontal couplings are 1 . We know that the total Hamiltonian of two uncoupled AAH

models reads: ĤBD =

(
h+ 0
0 h−

)
. It is beneficial to write the position informed momentum

space Hamiltonian of the odd subspace:

h−(kx) = t+



Λ1 eikx/N 0 . . . 0 e−ikx/N

e−ikx/N Λ2

0
. . .

... . . . . . . eikx/N

0
eikx/N 0 . . . 0 e−ikx/N ΛN


. (1)

In this equation, we have Λj = λ cos(2πp/(N + 1)j + θ). Furthermore for the even subspace
we have, h+ : h−|Λj → −Λj, t → −t, meaning the modulations are π in phase between two
subspaces. Next, eigenstates of the odd subspace satisfy h−|Ψ−,j〉 = E−,j|Ψ−,j〉. It is apparent
we have the following equivalence relation: h−(kx)|Ψ−,j(kx)〉 = −h+(kx + Nπ)|Ψ−,j(kx)〉 =
E−,j(kx)|Ψ−,j(kx)〉, which leads us to equivalence:

E+,j(kx) = −E−,N−j+1(kx +Nπ) ,

|Ψ+,j(kx)〉 = |Ψ−,N−j+1(kx +Nπ)〉 .
(2)

This relation allows us to conclude C+,j = C−,N−j+1.
The Chern index can be calculated separately for the h+ and h− sectors since they are

decoupled by mirror symmetry. The Chern index for the j-th band is expressed as

C±,j =
1

2π

∫ π

−π
dkx

∫ 2π

0

dθ Im(〈∂kxΨ±,j|∂θΨ±,j〉 − 〈∂θΨ±,j|∂kxΨ±,j〉). (3)

In practice, we numerically evaluated the Chern index for each mirror-symmetric sector, in the
tight-binding approximation, according to the well established numerical method [T. Fukui et
al., Journal of the Physical Society of Japan, 74, 1674-1677 (2005).]. The result is consistent
with the appearance of edge states, hence the bulk-edge correpondance [Y. Hatsugai et al.,
Physical Review Letters, 71, 3697 (1993).]. The Chern index is the preferred topological index,
since in the 2D parameter space (kx, θ), the time-reversal symmetry links (kx, θ) to (−kx,−θ).
Despite the actual physical structure is time-reversal invariant under fixed θ. This allows us to
define the 2D Chern index for such AAH-like models. Previous studies have shown that the
AAH model allows the observation of topological pumping, which is determined by the Chern
index [Y. Ke et al., Laser & Photonics Reviews, 10, 995-1001 (2016).].
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VIII. Bulk-edge correspondence
The Chern numbers of each band gap can be calculated through the bulk-edge correspondence
as illustrated in Fig. S8. For each energy band, there is a Chern number which has been
calculated and given in the main text, and they have been labeled to the corresponding energy
bands in Fig. S8. The Chern numbers of a band gap can be calculated by accumulating the
corresponding numbers of all the energy bands below it. For example, the top gap’s Chern
numbers [0, -1] is obtained by applying C+ = 1 + 1− 3 + 1 and C− = −3 + 1 + 1. Note that
the edge states, denoted by solid red lines, seems absent in the top gap, despite the nontrivial
Chern index. This is due to the fact that these edge states appear at θ ≈ 0.75π (Fig.S1), while
Fig. S8 is calculated with θ = 0.

Figure S8: Bulk-edge correspondence and the corresponding Chern numbers of the band
gaps. The energy bands are the same with that in Fig. 1(b), while the two dashed lines below and
above represent the other two energy bands at much smaller and larger energies, respectively.
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