
From Text to Data
Digitization, Text Analysis and Corpus Linguistics

Patrick Jentsch, Stephan Porada

1. Introduction

Working with sources like books, protocols and other documents is the basis
of most scientific work and research in the humanities. Unfortunately, most
of these sources are only available on paper or come in other analog forms
like parchments.

Within the field of Digital Humanities methods like data mining, text
analysis and corpus linguistics are widely spread and used. To apply these
methods to current historical research, historic text sources have to be dig
itized and turned into machine readable data by following the main steps
outlined below.

At first, sources must be scanned to create digital representations of
them. Following this, their images are used as input for our optical char
acter recognition (OCR) pipeline, which produces plain text data. This text
can then be further analyzed by means of the methods mentioned above. The
analysis involves several natural language processing methods (NLP) which
will also be discussed. Figure 1 shows the overall process from text to data,
namely the main steps of data collection, OCR processing, data analysis and
data interpretation.

The goal of this article is to explain the technologies and software used
by the INF team (Data Infrastructure and Digital Humanities) of the Collab
orative Research Center (SFB) 1288 “Practices of Comparing” to turn histor
ical documents into digitized text and thus create the data basis for further
research steps including text analysis and corpus linguistics.

In part two we present arguments advocating the use of free and open
source software (FOSS). Part three is an overview of the basic software and

Patrick Jentsch, Stephan Porada90

Fig. 1: Flow chart showing the entire process from text to data

From Text to Data 91

technologies used to implement and to deploy our pipelines to production.
The fourth part is a detailed description of the OCR pipeline, its software and
internal processes. The last part discusses the different natural language
processing (NLP) and computer linguistic methods which can be applied
to the output texts of the OCR pipeline. Most of these methods are imple
mented by using spaCy.

The source code of the pipelines described in part four and five can be
downloaded from the Bielefeld University’s GitLab page.1

Both repositories include detailed instructions for the installation and
usage of both pipelines.

2. Free and open-source software (FOSS)

One of the main goals besides turning text into data is to only use software
that meets specific criteria in terms of sustainability, longevity and open
ness. These selection criteria are based on the “Software Evaluation Crite
ria-based Assessment”2 guideline published by the Software Sustainability
Institute.3 The latter helped us decide on which software suited our needs
best. The following paragraphs show and explain some of our main selection
criteria.

1 The repository https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/tree/from_text_to_data
contains the OCR pipeline. The repository https://gitlab.ub.uni-bielefeld.de/sfb1288inf/
nlp/tree/from_text_to_data contains the NLP pipeline used for POS (part-of-speech) tag-
ging, NER (named entity recognition) tagging, etc. [accessed: 31.08.2019].

2 Jackson, Mike/Crouch, Steve/Baxter, Rob, Sof tware Evaluation: Criteria-Based Assessment
(Sof tware Sustainability Institute, November 2011), https://sof tware.ac.uk/sites/default/
files/SSI-Sof twareEvaluationCriteria.pdf [accessed: 31.08.2019].

3 This guideline again is based on the ISO/IEC 9126-1 standard. The standard has been re-
vised and was replaced in 2011 by the new ISO/IEC 25010:2011 standard. International Or-
ganization for Standardization, ISO/Iec 9126-1:2001: Sof tware Engineering – Product Qual-
ity – Part 1: Quality Model (International Organization for Standardization, June 2001),
https://www.iso.org/standard/22749.html [accessed: 31.08.2019] and International Or-
ganization for Standardization, ISO/Iec 25010:2011: Systems and Sof tware Engineering –
Systems and Sof tware Quality Requirements and Evaluation (SQuaRE) – System and
Sof tware Quality Models (International Organization for Standardization, March 2011),
https://www.iso.org/standard/35733.html [accessed: 31.08.2019].

https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/tree/from_text_to_data
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data
https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/35733.html

Patrick Jentsch, Stephan Porada92

Sustainability, maintainability and usability ensure that every step in
the process of turning text into data is documented and therefore reproduc
ible. The main selection criteria consist of different subcriteria. To assess
the sustainability and maintainability of software, for example, questions
regarding copyright and licensing have to be answered.4 Choosing free and
open-source software (FOSS) ensures that the source code of those tools
can always be traced. Processing steps conducted with FOSS are therefore
always documented and reproducible. Another example of a subcriterion is
interoperability.5 The main aim of this criterion is to ensure that the software
is easily interoperable with other software. In our case we mainly wanted
to ensure that every software produces data output in open standards like
XML or just plain text. This is crucial because output data created by one
application or one software has to be easily usable with other software. In
addition, open formats like XML are user-friendly and can easily be read for
first evaluations of the data. Therefore, it is best practice to publish data in
formats like XML because the scientific community can easily review, use
and alter the data.

Conducting a criteria based software assessment using the main and
subcriteria mentioned above naturally leads to only or mainly choosing and
using FOSS.

In addition to the already mentioned advantages, this process ensures
that only software is chosen that can be used over longer periods of time,
even beyond the actual project phase. This is necessary because software and
services which are based on a particular program still have to be usable after
the end of the project phase.

3. Basic software

Our software implementations are based on some basic technologies. This
part gives a brief introduction to this software.

4 M. Jackson/S. Crouch/R. Baxter, Sof tware Evaluation, 7-8.
5 Ibid., 13.

From Text to Data 93

pyFlow

The OCR and NLP modules we developed were implemented by using the
python module pyFlow.6 It is currently only available for Python 2.7

This module is used to manage multiple tasks in the context of a task
dependency graph. In general this means that pyFlow creates several tasks
with hierarchical dependencies (upstream tasks have to be completed before
the dependent task will be executed). Tasks with the same satisfied depen
dency (or tasks with no first dependencies) can be completed concurrently.
Other tasks depending on those to be finished first will only be executed if
the necessary dependencies are satisfied. Figure 2 shows an example of a
simple OCR process.

At first, the OCR pipeline has to convert input files from PDF to TIFF
because the binarization, which constitutes the following preprocessing step,
can only be done with TIFF files. The conversion of each PDF file to TIFF is a
single task. Because pyFlow is designed with parallelization in mind, some
tasks can be executed concurrently. In this case, the conversion from PDF to
TIFF can be done for multiple files simultaneously depending on the avail
able RAM and CPU cores.8 As soon as all PDFs are converted, the binarization
of the files can start.

Fig. 2: Dependency graph example for a simple OCR process

6 Saunders, Chris, PyFlow: A Lightweight Parallel Task Engine, version 1.1.20, 2018, https://
github.com/Illumina/pyflow/releases/tag/v1.1.20 [accessed: 31.08.2019].

7 Ibid.
8 Ibid.

https://github.com/Illumina/pyflow/releases/tag/v1.1.20
https://github.com/Illumina/pyflow/releases/tag/v1.1.20

Patrick Jentsch, Stephan Porada94

The entire task management is automatically done by pyFlow. We just have
to define the workf lows in Python code and the engine handles all task
dependencies and parallelization. Using pyFlow helps us to handle huge data
inputs of several input files. The entire workload is automatically distributed
among the maximum number of available CPU cores, which accelerates the
entire process.

Container virtualization with Docker

For our development and production environment we decided to deploy our
Optical Character Recognition and natural language processing software
in containers. For that purpose, we use a container virtualization software
called Docker.9 With Docker it is possible to easily create and use Linux con
tainers.

“A Linux® container is a set of one or more processes that are isolated from
the rest of the system. All the files necessary to run them are provided from
a distinct image, meaning that Linux containers are portable and consistent
as they move from development, to testing, and finally to production. This
makes them much quicker than development pipelines that rely on replicat-
ing traditional testing environments. Because of their popularity and ease of
use containers are also an important part of IT security.”10

In order to get a container up and running it is necessary to build a so called
container image. An image is used to load a container in a predefined state
at startup. Thus the image represents the initial state of a container includ
ing the chosen operating system base, software installations and configu
rations. It freezes a software deployment in its creation state and because
of its portability it can then be shared easily.11 That is why it is also suitable
for publishing a software deployment in the context of a publication like the
one at hand.

9 Docker, version 18.09.1 (Docker, 2013), https://www.docker.com/ [accessed: 31.08.2019].
10 Red Hat Inc., What’s a Linux Container?, https://www.redhat.com/en/topics/containers/

whats-a-linux-container [accessed: 20.05.2019].
11 Boettiger, Carl, An Introduction to Docker for Reproducible Research, in: ACM SIGOPS

Operating Systems Review 49 (2015), 71–79, https://doi.org/10.1145/2723872.2723882.

https://www.docker.com
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://doi.org/10.1145/2723872.2723882

From Text to Data 95

To create a container image, Docker provides a build system which is
based on so called Dockerfiles. These files act as a blueprint for the image the
user wants to create. In order to create and maintain it, the developer only
needs knowledge about operating a terminal and the concepts of the operat
ing system used within the image.

Our images are based on the free and open source Linux distribution
Debian 9.12 We ensured that all our software that is installed on top of this
basis is also free and open source software.

4. A practical approach to optical character recognition
of historical texts

As mentioned in the introduction, the first step of creating data is turning
historical texts and sources into machine readable formats. The OCR process
creates text files, namely XML, hOCR and PDF (with text layer). This pro
cess will be described in this part in detail. The corresponding source code
and documentation can be downloaded from the GitLab page.13 We mainly
use the text files for further natural language processing steps which are
described later in the text.

The entire process of turning books as well as other sources into data can
be divided into a few manual pre- and postprocessing steps. The actual OCR
is done automatically by our OCR pipeline.

Before the actual steps are described, we will brief ly outline the goals of
our pipeline and the software used. We also provide a short summary of the
history of the OCR engine Tesseract.

Goals of our OCR pipeline: handling middle to large scale text input

This article proposes a practical way to do mid to large scale OCR for historic
documents with a self developed Tesseract based pipeline. The pipeline is a
tool to easily create mid to large sized text corpora for further research.

12 Debian, version 9 (The Debian Project, 2017), https://www.debian.org/ [accessed:
31.08.2019].

13 The code for the OCR pipline especially the pyFlow part is based on the original work
of Madis Rumming, a former member of the INF team.

https://www.debian.org

Patrick Jentsch, Stephan Porada96

For now, the pipeline is a command line-based application which can be
used to subject input documents to optical text recognition with a few simple
commands. As of yet it is only used by the INF team of the SFB. Research
ers have to request the OCR process for their sources and documents via our
internal ticket system.

In the future, researchers will be able to upload any digitized TIFF or
PDF document to the pipeline. It can handle multiple input documents, for
example books, letters or protocols, at the same time and will automatically
start the OCR process. Those documents will then be turned into text data.
Researchers can choose between different languages per pipeline instance
but not per document input.

To achieve this goal the INF team will build a virtual research environment
(VRE).14 The VRE will be implemented as a web application which can be eas
ily used by every researcher of the SFB1288. Besides starting OCR processes
researchers will also be able to start the tagging processes of text files. Differ
ent tagging sets will be available like the ones discussed in this article. Finally,
researches will also be able to import tagged texts into an information retrieval
system. We plan to either implement CQPweb15 or use some of the provided
application programming interfaces (APIs) to build our own front end.16

By providing this VRE the INF team will provide the researchers of the
SFB1288 with many different tools which will aid them during different
research steps.

Implementation

All software dependencies needed to run our pipeline are documented in our
source code repository hosted by the GitLab system of the Bielefeld Univer
sity Library.17

14 The development of this VRE is in an early stage.
15 CQPweb is a web-based graphical user interface (GUI) for some elements of the IMS

Open Corpus Workbench (CWB). The CWB uses the ef ficient query processor CQP, Har-
die, Andrew/Evert, Stefan, IMS Open Corpus Workbench, http://cwb.sourceforge.net/ [ac-
cessed: 31.08.2019].

16 Sourceforge, CWB/Perl & Other APIs, http://cwb.sourceforge.net/doc_perl.php [ac-
cessed: 13.05.2019].

17 The source code, documentation and pre-built images can be accessed here: https://git
lab.ub.uni-bielefeld.de/sfb1288inf/ocr [accessed: 31.08.2019].

http://cwb.sourceforge.net
http://cwb.sourceforge.net/doc_perl.php
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr

From Text to Data 97

The pipeline consists of three files. The main file is ocr which implements
the actual OCR pipeline. The file prase_hocr is used to create a valid DTA-Ba-
sisformat18 XML from the hOCR output files which follows the P5 guidelines
of the Text Encoding Initiative (TEI).19 The script parse_hocr is called by the
main file ocr. The last and third file is the Dockerfile used to automatically
create an image. The image can then be used to start multiple containers to
run multiple OCR processes. Detailed installation instructions can be found
in the documentation.

A short history of Tesseract

We use Tesseract for the actual OCR process. Tesseract is an open source
OCR engine and a command line program. It was originally developed as
a PhD research project at Hewlett-Packard (HP) Laboratories Bristol and
at Hewlett-Packard Co, Greeley Colorado between 1985 and 1994.20 In 2005
HP released Tesseract under an open source license. Since 2006 it has been
developed by Google.21

The latest stable version is 4.0.0, which was released on October 29, 2018.
This version features a new long short-term memory (LSTM)22 network based

18 Berlin-Brandenburgische Akademie der Wissenschaf ten, Ziel und Fokus des DTA-Basisfor-
mats (Deutsches Textarchiv, Zentrum Sprache der Berlin-Brandenburgischen Akademie
der Wissenschaf ten), http://www.deutschestextarchiv.de/doku/basisformat/ziel.html#
topic_ntb_5sd_qs__rec [accessed: 12.03.2019].

19 Text Encoding Initiative, TEI P5: Guidelines for Electronic Text Encoding and Interchange (TEI
Consortium) https://tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf [11.06.2019].

20 Smith, Ray, An Overview of the Tesseract OCR Engine, in: Ninth International Confer-
ence on Document Analysis and Recognition (ICDAR 2007) Vol 2 (2007), https://doi.org/
10.1109/icdar.2007.4376991 [accessed: 31.08.2019].

21 Google Inc., Tesseract OCR (2019), https://github.com/tesseract-ocr/tesseract/ [accessed:
31.08.2019].

22 A special kind of recurrent networks, capable of using context sensitive information
which is not near to the data which is processed (long-term dependencies). A LSTM
network can be used to predict words in a text with respect of information which is
further away. For example in a text it says that someone is from France and way later
it says that this person speaks fluently x. Where x (= french) is the word to be guessed
with the LSTM network by using the first information. Olah, Christopher, “Understand-
ing LSTM Networks, https://colah.github.io/posts/2015-08-Understanding-LSTMs/ [ac-
cessed: 26.03.2019].

http://www.deutschestextarchiv.de/doku/basisformat/ziel.html#topic_ntb_5sd_qs__rec
http://www.deutschestextarchiv.de/doku/basisformat/ziel.html#topic_ntb_5sd_qs__rec
https://tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
https://doi.org/10.1109/icdar.2007.4376991
https://doi.org/10.1109/icdar.2007.4376991
https://github.com/tesseract-ocr/tesseract
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Patrick Jentsch, Stephan Porada98

OCR engine which is focused on line recognition.23 Our own developed pipe
line is based on the upcoming minor release, specifically on version 4.1.0-rc1
to benefit from the new neural net technology. During the development we
also used version 3.05.01.

Choosing data files for Tesseract

Tesseract needs models or so called data files per language for the OCR pro
cess. Models are manually trained. There are three main sets of trained data/
data files for various languages available.

1. tessdata (Legacy models for Version 3)
2. tessdata_fast (Fast standard models)
3. tessdata_best (Slower for slightly better accuracy)

For now we are using the following models for the corresponding languages:

• German model from tessdata_best24

• German Fraktur not available as tessdata_best25

• English model from tessdata_best26

• English middle from tessdata_best27

• French from tessdata_best28

• French middle from tessdata_best29

• Portuguese from tessdata_best30

• Spanish from tessdata_best31

23 Google Inc., Tesseract OCR.
24 https://github.com/tesseract-ocr/tessdata_best/raw/master/deu.traineddata
25 https://github.com/tesseract-ocr/tessdata/raw/master/deu_frak.traineddata
26 https://github.com/tesseract-ocr/tessdata_best/raw/master/eng.traineddata
27 https://github.com/tesseract-ocr/tessdata_best/raw/master/enm.traineddata
28 https://github.com/tesseract-ocr/tessdata_best/raw/master/fra.traineddata
29 https://github.com/tesseract-ocr/tessdata_best/raw/master/frm.traineddata
30 https://github.com/tesseract-ocr/tessdata_best/raw/master/por.traineddata
31 https://github.com/tesseract-ocr/tessdata_best/raw/master/spa.traineddata

https://github.com/tesseract-ocr/tessdata_best/raw/master/deu.traineddata
https://github.com/tesseract-ocr/tessdata/raw/master/deu_frak.traineddata
https://github.com/tesseract-ocr/tessdata_best/raw/master/eng.traineddata
https://github.com/tesseract-ocr/tessdata_best/raw/master/enm.traineddata
https://github.com/tesseract-ocr/tessdata_best/raw/master/fra.traineddata
https://github.com/tesseract-ocr/tessdata_best/raw/master/frm.traineddata
https://github.com/tesseract-ocr/tessdata_best/raw/master/por.traineddata
https://github.com/tesseract-ocr/tessdata_best/raw/master/spa.traineddata

From Text to Data 99

We aim to only use trained data from tessdata_best to achieve high qual
ity OCR results. Only German Fraktur is not available as a tessdata_best
model.

Overview of the entire OCR process and the pipeline

This part describes the function of the developed pipeline in detail, begin
ning with the digitization and preprocessing of input documents. Follow
ing these steps, the actual process of OCR is described in general to provide
an overview of the underlying principles and technologies used. Lastly, the
output files of the pipeline are described, and we explain why those files are
generated and what they are used for.

In addition to this we also discuss the accuracy of the OCR and how it can
affect the text data output as well as further research using the data.

Figure 3 shows the entire OCR process including manual and automatic
steps. Every step is discussed in the following parts.

Input for the pipeline: digitization and collection of historic documents

As mentioned above the pipeline accepts TIFF (only multi-page TIFFs per
document) and PDF files as input. These input files have to be obtained or
created first. The process of creating input files as discrete sets of pixels from
physical media like paper based books, etc. is called digitization.32 Scanning
a book and creating a PDF file from it is only one example of digitization,
however. Another example is taking a picture of a document with the camera
of a mobile phone, which creates a JPEG file. Both examples obviously result
in digital representations of different quality.

Digitization is the first step of the full OCR process as depicted in figure 3.
Below we describe the most common ways how researchers of the SFB are

obtaining or creating input files for the pipeline. The different ways result in
different qualities of input files.

32 Ye, Peng/Doermann, David, Document Image Quality Assessment: A Brief Survey, in:
2013 12th International Conference on Document Analysis and Recognition (2013), 723,
https://doi.org/10.1109/icdar.2013.148.

https://doi.org/10.1109/icdar.2013.148

Patrick Jentsch, Stephan Porada100

Fig. 3: The entire OCR process

From Text to Data 101

The first and most common way to obtain input files for the pipeline is to
use digitized documents provided by libraries or other institutions. These
files vary in quality depending on how they were created.

It is also common to obtain image files from libraries which were cre
ated from microfilms. This way is similar to obtaining scans of books like
mentioned above. Unfortunately, sometimes those images are of poor
quality.

Our experience has shown that images obtained from libraries do not
meet our quality demands sometimes. Whenever this is the case and a phys
ical copy of said document is at hand, we repeat the digitization within our
own quality parameters.

We advise to always assess the quality of input images based on the cri
teria listed below. Especially background noise and geometric deformation
decisively decrease the quality of the OCR process.

It may sound as if libraries in general do not do a very good job of creating
high quality digital representations of books and other documents. This is
not the case because we have to keep in mind that the digitization is mainly
done with human readers in mind. Humans are far better at reading docu
ments of relatively low quality than computers. The demand for high quality
images used for OCR processes and thus for corpus linguistic projects has
risen over the years. Most of the libraries are adapting to this new trend and
are providing the necessary images.

The third way to obtain input files is to perform our own scans of books
and microfilms. This should always be the method of choice if already
obtained digitized input files are of low quality. In general, it is better to
always perform own scans with predefined parameters to ensure the best
possible quality.

During the stage of obtaining and creating input files we can already
enhance the accuracy of the subsequent OCR process significantly. It should
always be the goal to obtain or create image files of the highest quality. The
higher the quality of the scans the better are the end results of the OCR,
which ultimately leads to high quality text data corpora.

Patrick Jentsch, Stephan Porada102

There are a few criteria on how to determine if a digital representation is of
good quality:33

1) Stroke level
a) Touching characters
b) Broken characters
c) Additive noise:

i) Small speckle close to text (For example dirt.)
ii) Irregular binarization patterns

2) Line level
a) Touching lines
b) Skewed or curved lines
c) line inconsistency

3) Page level
a) background noise:

i) Margin noise
ii) Salt-and-pepper
iii) Ruled line
iv) Clutter
v) Show through & bleed through
vi) Complex background binarization patterns

b) Geometric deformation:
i) Warping
ii) Curling
iii) Skew
iv) Translation

4) Compression methods
a) Lossless compression methods are preferred

When creating our own scans, we can follow some best practices outlined
below to avoid some of the above mentioned problems with the digital repre
sentation of documents:

33 P. Ye/D. Doermann, Document Image Quality Assessment: A Brief Survey, 724.

From Text to Data 103

General best practices are mainly based on the official Tesseract wiki entry:34

• Create scans only with image scanners. Other digitization measures like
using mobile phone cameras etc. are not advised. These will easily intro
duce geometric deformation, compression artifacts and other unwanted
problems all mentioned in this list and the criteria list above. We mention
this especially because we often had to handle images of books that have
been taken with mobile phone cameras or other cameras.

• Avoid creating geometric deformation like skewing and rotation of the
page. (This can be hard with thick books because the book fold will always
introduce some warping.)

• Avoid dark borders around the actual page. (These will be falsely inter
preted as characters by Tesseract.)

• Nonetheless also avoid not having any border or margin around the text.
• Avoid noise like show through, bleed through etc.
• One page per image recommended. Do not use double-sided pages.

Technical specifications also mainly based on the of ficial Tesseract wiki
entry:35

1. Scan with 300 dots per inch (DPI)
2. Use lossless compression

a) Avoid JPEG compression methods. This method introduces compres
sion artifacts and compression noise around the characters.36 This is
due to the discrete cosine transform (DCT) which is part of the JPEG
compression method.37 (Figure 4 shows an example of the differences
between a lossless compressed TIFF and a lossy compressed jpeg.)

b) Avoid lossy compression methods in general.

34 Google Inc., ImproveQuality: Improving the Quality of the Output (2019), https://github.
com/tesseract-ocr/tesseract/wiki/ImproveQuality [accessed: 31.08.2019].

35 Ibid.
36 P. Ye/D. Doermann, Document Image Quality Assessment, 723.
37 Oztan, Bazak, et al., Removal of Artifacts from JPEG Compressed Document Images, in:

Reiner Eschbach/Gabriel G. Marcu (eds.), Color Imaging XII: Processing, Hardcopy, and
Applications, (SPIE) 2007, 1-3, https://doi.org/10.1117/12.705414.

https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://doi.org/10.1117/12.705414

Patrick Jentsch, Stephan Porada104

c) This is why we use and recommend TIFF files with lossless compres
sion using the Lempel-Ziv-Welch-Algorithm (LZW-Algorithm or
LZW)38

d) We also accept PDFs. (We have to admit that this is a trade off for
convenience. PDFs can be of the same quality as TIFF files if they are
created from images using the FLATE/LZW compression. The default
though is lossy JPEG compression.)39

Fig. 4: Lossless and lossy image compression

The top string shows a lossless compressed TIFF file. The lower string shows a lossy
compressed JPEG file. Both files are binarized. The JPEG compression rate is 70 to give a
better visual example. (self-created)

To sum up, digitization of historical documents is already an important step
significantly inf luencing the accuracy of the OCR process. In this part we
have outlined how we obtain and create input files for our OCR pipeline. The
main goal is to always obtain or create input files of the highest quality as
possible. To achieve this, we described criteria to determine the quality of
given input files. Additionally, we described some rules on how to create high
quality scans of historic documents.

38 Adobe Systems Incorporated, TIFF: Revision 6.0, version 6.0 (1992), 57–58, https://www.ado
be.io/content/dam/udp/en/open/standards/tif f/TIFF6.pdf [accessed: 31.08.2019].

39 Adobe Systems Incorporated, Document Management – Portable Document Format –
Part 1: PDF 1.7 (2008), 25 f f., https://www.adobe.com/content/dam/acom/en/devnet/pdf/
PDF32000_2008.pdf [accessed: 26.03.2019].

https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/PDF32000_2008.pdf

From Text to Data 105

Starting the pipeline with input files and user set parameters

In the next step the collected and created files are passed into the actual OCR
pipeline. The OCR pipeline is written in python using the pyFlow package.
It is deployed by using Docker. A description of Docker and pyFlow can be
found in part 3.

As soon as this is done, we can place our input files in the folder “files_for_
ocr”, which was created during the setup of the pipeline. Files must be sorted
into folders beforehand on a per document basis. For example, a scanned
book results in one multi-page TIFF file. This file has to be placed into its own
corresponding folder inside the folder files_for_ocr. PDFs should be handled
the same way. We can put as many folders into the input folder of the pipeline
as we want. The only constraint here is that every input document should be
of the same language because we tell Tesseract to use a specific language
model for the OCR process. Because the pipeline is written using pyFlow it
creates different processes for each document in the input folder and works

Fig. 5: Comparison between high and low quality

The lef t part of the figure shows a high quality scan. The right part shows a low quality scan
with several problems like background noise and geometric deformation. (self-created)

Patrick Jentsch, Stephan Porada106

through those in an efficient manner (see also part 3.). To handle multiple
documents of different languages at the same time we recommend starting
a new Docker instance per language and place the documents per language
in the corresponding input folder of the Docker instance. If a document
consists of multiple languages it is possible to tell Tesseract which language
models it should use at the same time.

Once every input file has been put into the folder files_for_ocr we can start
the pipeline with a simple command. The command and further examples
can be found in our corresponding GitLab repository documentation.40

The following parameters can be set by the user:

Language
This parameter tells Tesseract which model it should use for the OCR process.
Language should be set to the corresponding language of the input files.

Binarization
The user can decide to binarize the input images with ocropus-nlbin in an
additional upstream preprocessing step (see below for more information on
binarization).

Pipeline processing step 1: unify input files

Before the preprocessing of the input files starts, the pipeline converts PDF
files into TIFF files using the package pdf toppm. Every page of the PDF is con
verted into one TIFF file with 300 DPI using the lossless LZW compression
method. Multi-page TIFF files are split per page into individual files. Now
that all input files are of the same type every following preprocessing step
(e. g., binarization) can be applied to those uniformly file by file.

Pipeline processing step 2: preprocessing of the input files

The first internal step of the pipeline is preprocessing of the input images.
Some major steps in enhancing the image quality are described below.

40 Jentsch, Patrick/Porada, Stephan, Docker Image: Optical Character Recognition, version
1.0, Bielefeld 2019, https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/container_registry
[accessed: 31.08.2019].

https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/container_registry

From Text to Data 107

Binarization and noise removal

One important first step in preprocessing is binarization. The goal of bina
rization is to reduce the amount of noise and useless information in the input
image.41

In general binarization is the step of converting a color image into a black
and white image. The idea is to only extract the pixels which actually belong
to the characters and discard any other pixel information which, for exam
ple, is part of the background. To achieve this the technique of thresholding
is used. Basically, the method of thresholding analyses each pixel of a given
picture and compares its grey level or another feature to a reference value.
If the pixels value is below the threshold it will be marked as a black pixel
and thus as belonging to a character. If the value of the pixel is above the
threshold it will be labeled as white pixel und thus be handled as the back
ground. Binarization techniques using thresholding can be divided into
two classes: global and local thresholding. Both methods dif fer in what
reference value for the pixel comparison is being used. Global thresholding
calculates one reference value per pixel in one picture while local thresh
olding calculates the reference value for each pixel based on the neighbor
ing pixels.42 Figure 6 shows the successfully applied binarization step done
with ocropus-nlbin.

The pipeline will always use the built in Tesseract binarization. Tes
seract’s built in binarization uses the Otsu algorithm.43 There is also the
option to binarize the pictures before passing them to Tesseract, if the
built in binarization is not suf ficient. For this additional upstream bina
rization process our pipeline uses the ocropus-nlbin library. This step can
easily be invoked by using the corresponding parameter (see our docu
mentation).

Omitting or explicitly using this additional upstream step can in both
cases either result in better or worse accuracy. Which option is chosen is

41 Chaudhuri, Arindam, et al., Optical Character Recognition Systems for Dif ferent Lan-
guages with Sof t Computing, Springer International Publishing: 2017, 90–92, 17–22,
https://doi.org/10.1007/978-3-319-50252-6.

42 Cheriet, Mohamed, et al., Character Recognition Systems, John Wiley & Sons, Inc.: 2007,
8–15, https://doi.org/10.1002/9780470176535.

43 Google Inc., ImproveQuality: Improving the Quality of the Output.

https://doi.org/10.1007/978-3-319-50252-6
https://doi.org/10.1002/9780470176535

Patrick Jentsch, Stephan Porada108

decided on a per input file basis taking the input files quality into account.
Sometimes we also evaluate the output accuracy of one step and rerun the
OCR process to achieve a better accuracy by using or not using ocropus-nl
bin. Subchapter Accuracy in Part 5 discusses the different accuracy values
for the use and non-use of the additional upstream binarization step for
some example files.

Skew detection and correction

Even when using scanners for the digitization process, there will always be
a few degrees of tilt or skew of the text due to human inf luence (for example
how the book was placed inside the scanner etc.).

Fig. 6: Binarization process

The lef t part shows an input image before the binarization step has been applied. The right
part shows the same image af ter the binarization step. Note that during the binarization
minimal skew is also automatically removed. (self-created)

From Text to Data 109

Tesseract’s line finding algorithm was designed to work without hav
ing to deskew a page to successfully identify text lines. This design choice
avoids the loss of image quality.44, 45 Manual deskewing is only needed if the
skew is too severe, as mentioned in the of ficial wiki.46 According to the orig
inal paper from 1995 describing the algorithm47 the line finding algorithm
produces robust results for angles under 15 degrees. Because of this we have
not implemented automatic deskewing of input files.

If the skew of the input files is too severe, they have to be deskewed
manually before passing them into the pipeline. Manual deskewing is also
advised because the skew can vary severely from page to page. Automatic
deskewing could therefore result into the loss of text parts, depending on the
discrepancies in skew between pages.

After the preprocessing steps, the actual OCR process starts. The process
is described in the following part.

Pipeline processing step 3: OCR process

This part gives an overview of the internal steps of the actual OCR process.
We describe which steps are performed by Tesseract internally to perform
the OCR process. Some of the steps are done by various other OCR engines
in general, some of the steps are specific to Tesseract. Those differences are
highlighted and explained.

One of the first steps performed by Tesseract is line finding.48 This
step is specific to Tesseract because the algorithm was explicitly designed
for it.49 In general this step detects lines of text in already provided and
identified text regions. One advantage of the algorithm is its achieve
ment of robust results for line recognition on pages with a skew of up to
15 degrees.

44 R. Smith, An Overview of the Tesseract OCR Engine.
45 Smith, Ray, A Simple and Ef ficient Skew Detection Algorithm via Text Row Accumula-

tion, in: Proceedings of 3rd International Conference on Document Analysis and Recog-
nition (IEEE Comput. Soc. Press, 1995), https://doi.org/10.1109/icdar.1995.602124.

46 Google Inc., ImproveQuality: Improving the Quality of the Output.
47 R. Smith, A Simple and Ef ficient Skew Detection Algorithm via Text Row Accumulation.
48 R. Smith, An Overview of the Tesseract OCR Engine.
49 R. Smith, A Simple and Ef ficient Skew Detection Algorithm via Text Row Accumulation.

https://doi.org/10.1109/icdar.1995.602124

Patrick Jentsch, Stephan Porada110

Once the lines have been identified, additional steps are being executed
to fit the baseline of every line more precisely. Tesseract handles curved lines
especially well.50 This is another advantage of the algorithm as curved lines
are a common artifact in scanned documents.

The next major step executed by Tesseract is word recognition. This step
is also performed by various other available OCR engines. The goal of word
recognition is to identify how a word should be segmented into charac
ters.51, 52 For this step characters have to be recognized and then chopped or
segmented.

Another part of the Tesseract OCR process is the so called Static Char-
acter Classifier or, in more general terms, the character classification. This
step is feature based which is a common approach in various available OCR
engines.53, 54 The goal of feature extraction is to identify essential character
istics of characters.55 Based on the extracted features the classification pro
cess will be executed. Each character will be identified based on its features
and will be assigned to its corresponding character class.56, 57

One of the last steps Tesseract executes is a linguistic analysis. It only
uses a minimal amount auf linguistic analysis.58 Tesseract, for example,
compares every word segmentation with the corresponding top dictionary
word. This process is a statistical approach where the segmentation will be
matched with the most likely corresponding word. This process is done for
other categories besides the top dictionary word.59

These are the main steps done by Tesseract to turn images into machine
readable text.

50 R. Smith, An Overview of the Tesseract OCR Engine.
51 M. Cheriet et al., Character Recognition Systems, 204–206.
52 R. Smith, An Overview of the Tesseract OCR Engine.
53 Ibid.
54 A. Chaudhuri et al., Optical Character Recognition Systems for Dif ferent Languages with

Sof t Computing, 28.
55 Ibid.
56 A. Chaudhuri et al., Optical Character Recognition Systems for Dif ferent Languages with

Sof t Computing, 28.
57 R. Smith, An Overview of the Tesseract OCR Engine.
58 Ibid.
59 Ibid.

From Text to Data 111

Pipeline processing step 4: output file creation

Tesseract can automatically create several output files after the OCR process
is finished. Output files will be created per TIFF file. The file formats are:

hOCR
Standard output file. HTML based representation of the recognized text.
Includes position of lines and characters matching the corresponding input
image. Can for example be used to create PDFs with an image layer using
the original input image. Also needed for post correction with PoCoTo. (See
Pipeline processing step 5 in part 4.)

PDF
Tesseract automatically creates one PDF file per page consisting of an image
layer and an invisible text layer. The image layer shows the input TIFF file.
The text layer is placed in such a way that the recognized strings mach the
actual visible text in the image.

Besides those two outputs the pipeline automatically creates the following
files per input document:

• Combined PDF (combines the single PDF pages into one file per docu
ment)

• Combined text file (created from the combined PDF file)
• DTA-Basisformat XML (created from the hOCR files per document)

The combined PDF file is created from the single page PDFs containing the
image and text layer. The combined PDF files are mainly created for humans
because they are easily readable on any device.

The text file per document is created from the text output files of Tesser
act. For that purpose we use a simple bash command which utilizes cat. We
aim to export paragraphs and other formatting structures. The text files are
mainly used as input for further computer linguistic methods. These meth
ods are described in part 5.

Lastly, the pipeline automatically creates valid DTA-Basisformat XML
files per input document. The XML files are created from the hOCR output
files. The DTA-Basisformat XML structure follows the P5 guidelines of the

Patrick Jentsch, Stephan Porada112

Text Encoding Initiative (TEI).60 The DTA-Basisformat is developed by the
Deutsches Textarchiv and recommended for digitizing and archiving histor
ical texts.61 One goal of the XML markup is to preserve the logical structure
of the digitized texts. For example, headings, paragraphs and line breaks are
being annotated with corresponding tags. Also, procedural markup of text
color or italic written text is being annotated. The DTA-Basisformat syntax
can also be used to annotate more uncommon text parts like poems, recipes,
marginal notes or footnotes.

Creating the output files is the last automatic step done by the pipeline.
Files can now be enhanced and corrected during postprocessing steps or be
passed to the next process (POS tagging, NER etc.).

Pipeline processing step 5: optional manual postprocessing steps

If needed, manual postcorrection of the output texts can be done. For this,
the post correction tool PoCoTo can be used. With this it is possible to use
the hOCR files in conjunction with the corresponding TIFF files. PoCoTo
gives the user a side by side view where one can compare the recognized text
with the actual image representation. If the text does not match the image,
the user can correct it. It is also possible to correct common repeated errors
automatically and thus save time.

Alternatively, every common text editor can be used to correct the text in
the hOCR files directly.

After the post correction, new PDFs, XML and text files have to be cre
ated manually.

Besides a simple postcorrection of the text, another manual and optional
step would be the enhancement of the XML markup. Tesseract and our
pipeline recognize paragraphs and line breaks, which are automatically
written into the XML file. More sophisticated elements must be annotated
by hand. The annotation can be done with any common text editor. Com
mon elements that have to be annotated manually are marginal notes or
footnotes.

60 Text Encoding Initiative, TEI P5: Guidelines for Electronic Text Encoding and Interchange.
61 Berlin-Brandenburgische Akademie der Wissenschaf ten, Ziel und Fokus des DTA-Basisfor-

mats.

From Text to Data 113

Evaluation accuracy of Tesseract

In this part we talk about the accuracy and error rates of Tesseract and
our pipeline. First, we brief ly show some error rates and accuracy val
ues for the Tesseract OCR engine published by Ray Smith working for
Google.

Besides the of ficial numbers we also show some results from our own
accuracy tests performed with collected and self created test data as an
input for our pipeline. The test data consists of digital input images and
the corresponding manually created and corrected accurate textual con
tent of those. In the context of OCR this transcription is called ground
truth data.62

For these accuracy tests we will input the test data images into the pipe
line and compare the output text with the ground truth text. From the dis
crepancies between the output and the ground truth data we can calculate
two different error rates.

In the context of OCR evaluation two metrics are used to describe the
error rate at two different levels: Character error rate (CER) and Word error
rate (WER). Both metrics are calculated independently in regard to the
length of the output text data. In order to achieve this, the number of mis
takes is divided by the text length resulting in an error rate either for words
or characters. This has to be done for both metrics.63

For the concrete calculation of those error rates we use the OcrevalUAtion
tool.64, 65 This tool compares the ground truth text with the actual output
text from the OCR pipeline and calculates the error rates accordingly.

The goal of our own accuracy tests is to see if our digitization, prepro
cessing and binarization steps are either beneficial or disadvantageous for
the accuracy of the OCR process. We also want to measure the quality dif
ference between files that have been binarized with ocropus-nlbin and those

62 Carrasco, Rafael C., Text Digitisation, https://sites.google.com/site/textdigitisation/ [ac-
cessed: 11.06.2019], ch. 2.1.

63 Ibid.
64 University of Alicante, ocrevalUAtion, https://github.com/impactcentre/ocrevalUAtion

[accessed: 05.04.2019].
65 University of Alicante, OcrevalUAtion, version 1.3.4 (2018), https://bintray.com/impactocr/

maven/ocrevalUAtion [accessed: 31.08.2019].

https://sites.google.com/site/textdigitisation
https://github.com/impactcentre/ocrevalUAtion
https://bintray.com/impactocr/maven/ocrevalUAtion
https://bintray.com/impactocr/maven/ocrevalUAtion

Patrick Jentsch, Stephan Porada114

that have not. In addition to that we can also compare our values to the ones
published by Google.

We focus on the values for modern English and Fraktur.

Official numbers

The published accuracy results for Tesseract show quite low error rates for
Latin languages like English and French. Tesseract version 4.0+ using the
LSTM model and an associated dictionary check has an CER of 1.76 for
English text. The WER is 5.77. The CER for French is 2.98 and the WER is
10.47. In general, the error rates for Latin languages are in a similar range.66
Note that these low error rates are probably the result of high quality image
inputs. We can deduce this from our own calculated error rates shown in the
following part.

Own tests with ground truth data

Table 1 shows our own calculated error rates for different input data. We
tested our pipeline with input images of two different quality levels. High
quality images are TIFFs we created with our own scanners. These images
were created with a minimum of 300 DPI and full color range. We also made
sure that we introduced as little skew and rotation as possible during the
scanning process. Input images of medium quality were created from PDF
files with lower DPI and possible JPEG compression artifacts. Skew and
rotation levels are still minor though. Ground truth data exists for every file,
either self created from OCR with postcorrection or from available online
sources. Images, ground truth data and the accuracy test results can be
found in detail in the respective GitLab repository.67

66 Smith, Ray, Building a Multilingual OCR Engine: Training LSTM Networks on 100 Lan-
guages and Test Results (Google Inc., June 20, 2016), 16, 17, https://github.com/tesser act-
ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20
Engine.pdf.

67 https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ground_truth_test.

https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ground_truth_test

From Text to Data 115

Table 1: Accuracy test results (self-created)

Quality Quality
features

Document Pages CERa WERb CERc WERd

Fraktur High 300 DPI, self
created TIFF
scans

Estor – Rechts-
gelehrsamkeit

4 19�45 45�58 23�61 58�78

Luz – Blitz 4 19�91 44�54 22�28 61�76

Middle TIFFS created
from PDFs

Die Gegenwart 10 12�07 19�71 5�38 10�42

English High 300 DPI, self
created TIFF
scans

Inside Germany 10 2�60 5�86 1�62 1�88

Middle TIFFS created
from PDFs

Germans Past
and Present

10 4�17 5�69 4�00 5�13

a Additional binarization with Ocropus.
b Additional binarization with Ocropus.
c Only internal Tesseract binarization.
d Only internal Tesseract binarization.

We tested the OCR pipeline with every input document twice, each time
using different parameters. The first run utilized the additional binarization
step using ocropus-nlbin from ocropy. After the OCR process had finished,
we calculated CER and WER with the ocrevalUAtion tool. For the second
test run we omitted the additional binarization step and only used the inter
nal binarization step provided by Tesseract. CER and WER were calculated
accordingly.

As we can see the pipeline achieves low error rates for Modern English
high quality input images. CER is 2.6 and WER is 5.86. When not using the
additional binarization step the results are even better with CER being 1.62
and WER being 1.88. If we compare those findings to the results published by
Ray Smith, we can see that we achieved slightly better results. We attribute
this to the high quality of our self created input images. They were created in
accordance with our own best practices, as outlined above.

Error rates for English medium quality input images are slightly worse
but still in close range to the error rates of high quality input images.

Patrick Jentsch, Stephan Porada116

In general, the error rates for Fraktur text are much higher than for
English text. This could be linked to several factors. First, as mentioned
above, the model for German Fraktur is not available from the tessdata_best
set. Second, because of their age, Fraktur texts are more often susceptible to
background noise, touching or broken characters and geometric formation.
This could also explain the higher error rates for supposedly high quality
Fraktur input images compared to medium quality input images. On paper
the high quality input images have a much higher DPI but suffer more from
bleed through, line skew and broken characters (fading characters), etc. than
the middle quality input images.

From these findings we can conclude that the quality level of the input
images should be seen as a two dimensional parameter consisting of tech
nical quality (DPI, lossless compression, etc.) and physical quality of the text
(fading characters, skew, bleed through, etc.).

Regarding the additional binarization step, it is hard to judge when it is
beneficial. For the OCR of Fraktur text the results suggest that it could be
beneficial in some cases. Possible researchers should run the OCR process
twice, once with additional binarization and once without it, and judge for
themselves which output has fewer errors.

For English text the results suggest that additional binarization is not
beneficial.

To give a finite answer we would have to do more testing with more
diverse ground truth data.

Natural language processing

By using natural language processing (NLP) methods it is possible to enrich
plain texts with various useful information. Our goal after processing is to
make the source searchable for the added data. For that purpose, we decided
to use the free open source NLP library spaCy. It is fast, reliable and offers
natural language processing for all languages used in our context to the
same extent. The latter is not self-evident, other open source approaches we
have tried, like Stanford CoreNLP, do not provide all features we want to make
use of for all languages.

It was important that we were able to handle each text corpus in the
same way, independently of the input language. For further work with the
gathered data we use the software collection The IMS Open Corpus Work-

From Text to Data 117

bench (CWB) which uses a data type called verticalized text (vrt) format. This
data type is a fairly uncommon variation of XML, which is why most of the
NLP libraries do not offer it as an output option. Because we did not want to
perform much data type conversion, we needed a f lexible NLP toolkit with
which we could configure the output format with an, in the best case, appli
cation programming interface (API).

For the time being it is enough for us to use four methods for further
text analysis. These are tokenization, lemmatization, part-of-speech tagging
(POS tagging) and named entity recognition, which are all described in the
following. It is good to know that our chosen natural language processing
toolkit offers this and gives us the possibility to extent this portfolio with
more features in the future.

After performing NLP on a text, it is possible to fulfill queries, like “show
all text passages where words of the category adjective appear

around the word ‘world’ in all its reflections within a maximum

word spacing of 5 words”, which can help you by finding assessments
made of the world in the queried text.

5. Tokenization

Tokenization is the task of splitting up a text into so called tokens. These can
either be words or punctuation marks.68 This process can be easily explained
by a short example. The sentence “Let’s go to N.Y.!” will get tokenized into
eight tokens: “, Let, ‘s, go, to, N.Y., !, ”. As you can see, tokenization is not
just about splitting by white space or non-alphanumeric characters. The
tokenizer system needs to recognize that the dots between and after the

“N” and “Y” do not indicate the end of a sentence, and that “Let’s” should not
result in one token but in two: “Let” and “’s”. The process of tokenizing dif
fers a bit in each software implementation. The spaCy tokenizer, which is
used by us, is shown in figure 7.

68 Manning, Christopher D./Raghavan, Prabhakar/Schutze, Hinrich, Introduction to Informa-
tion Retrieval, Cambridge: Cambridge University Press, 2008, 22, https://doi.org/10.1017/
cbo9780511809071.

https://doi.org/10.1017/cbo9780511809071
https://doi.org/10.1017/cbo9780511809071

Patrick Jentsch, Stephan Porada118

Fig. 7: Tokenization process with spaCy

First, the tokenizer splits the sentence into tokens by white space. Af ter that, an iterative
process starts in which the tokenizer loops over the gained tokens until the process is not
interrupted by exceptions anymore. An exception occurs when tokenization rules exist that
can be applied to a token.69

The tokenization rules which trigger the exceptions are usually extremely
specific to the language used in the text. SpaCy of fers the ability to extend
its features with predefined language packages for all languages we want
to support. These packages already include the language specifics. They
are easily expandable by adding your own rules for special expressions in
texts. The latter can be the case if your text uses an old style of a language –
which is likely to appear in historical texts – which is not processable by
modern tokenization rules that are designed for today’s language compo
sitions.

69 Image from Explosion AI, Linguistic Features · spaCy Usage Documentation: Tokeniza-
tion, https://spacy.io/usage/linguistic-features#tokenization [accessed: 25.03.2019].

https://spacy.io/usage/linguistic-features#tokenization

From Text to Data 119

Lemmatization

The grammar, which forms a language, leads to different forms of a single
word. In many situations where you want to use methods for text analysis,
you are not interested in a specific form but in the occurrence of any form.
To make it possible to query for those occurrences we use a lemmatization
process, which adds a lemmatized version to each token of a text. The lem
matized version of a word is defined as the basic form of it, like the one which
can be found in a dictionary.70 As an explanatory example the following
words are lemmatized like this:

• writes, wrote, written → write
• am, are, is → be
• car, cars, car’s, cars’ → car

The lemmatization process is based on a dictionary lookup where a lemma
dictionary (basically a long list of words in all its inf lections with a corre
sponding lemmatized entry) is used to lemmatize words. These dictionaries
are usually bundled in the NLP toolkit’s language packages. If the software
does not find a word which should be lemmatized in the corresponding dic
tionary, it just returns the word as it is. This is a pretty naive implementation,
which is why for some languages the developers added some generic rules
which are applied after a dictionary lookup fails.

For our chosen NLP toolkit, the lemmatization implementations can be
found in the source code repositories of Explosion AI. These repositories
show why their English lemmatizer performs better than most of their oth
ers like, for example, the German one. It is not only based on dictionaries but
also on more generic rules specific to the language.71, 72

70 C. D. Manning/P. Raghavan/H. Schutze, Introduction to Information Retrieval, 32.
71 Explosion AI, Industrial-Strength Natural Language Processing (NLP) with Python and

Cython: SpaCy/Spacy/Lang/de/Lemmatizer.py, https://github.com/explosion/spaCy/tree/
v2.1.0/spacy/lang/de/lemmatizer.py [accessed: 21.05.2019].

72 Ibid.

https://github.com/explosion/spaCy/tree/v2.1.0/spacy/lang/de/lemmatizer.py
https://github.com/explosion/spaCy/tree/v2.1.0/spacy/lang/de/lemmatizer.py

Patrick Jentsch, Stephan Porada120

Part-of-speech tagging

Words can get categorized into different classes. Knowing the class of
a word is useful because they offer further information about the word
itself and its neighbors. Part-of-speech tagging is exactly about that: Toke
nized texts are analyzed, and a category of a predefined set is assigned
to each token.73 These category sets are also called ‘tagsets’. SpaCy’s POS
tagging process is based on a statistical model which improves the accu
racy of categorization predictions by using context related information,
for example, a word following “the” in English is most likely a noun.74 The
part-of-speech tagsets used by spaCy are based on the chosen language
model.75

Named entity recognition

Named entity recognition (NER) is the task of detecting named entities in
a text. These can be understood as anything that can be referred to with a
name, like organizations, persons and locations. Named entities are quite
often ambiguous, the token Washington, for example, can refer to a per
son, location, and an organization.76 Our used NLP software offers a system
that detects named entities automatically and assigns a NER-tag to the cor
responding token. The release details of spaCy’s language packages list all
NER-tags that are assigned by it.

Accuracy

Having NLP software that satisfies your needs in terms of functionality is
important, nevertheless you should be aware of its reliability. Table 2 gives
an overview of the accuracies of spaCy’s language packages.

73 Jurafsky, Daniel/Martin, James H., Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
Draf t of September 23, 2018, 2018, 151, 156.

74 Explosion AI, Linguistic Features spaCy Usage Documentation: Tokenization.
75 Explosion AI, Annotation Specifications · spaCy API Documentation: Part-of-Speech Tag-

ging, https://spacy.io/api/annotation#pos-tagging [accessed: 27.03.2019].
76 D. Jurafsky and J. H. Martin, Speech and Language Processing, 328–29.

https://spacy.io/api/annotation#pos-tagging

From Text to Data 121

Table 2: Accuracy values of spaCy

NER POS tagging Tokenization

Dutcha 100�00 87�02 91�57

Englishb 99�07 86�56 96�92

Frenchc 100�00 82�64 94�48

Germand 95�88 83�10 96�27

Greeke 100�00 71�58 94�60

Italianf 100�00 86�05 95�77

Portugueseg 100�00 88�85 80�36

Spanishh 100�00 89�46 96�92

These numbers are gained from tests made by Explosion AI, the organization behind
spaCy. They tested their language models with data similar to the data the models are
based on, these are mostly Wikipedia text sources. This means that these numbers can
not be assigned to all text genres we are processing. Until now we have not made accuracy
tests with our data but we expect lower accuracies.
a Explosion AI, Nl_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/nl_core_news_sm-2.1.0.
b Explosion AI, En_core_web_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/en_core_web_sm-2.1.0.
c Explosion AI, Fr_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/fr_core_news_sm-2.1.0.
d Explosion AI, De_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/de_core_news_sm-2.1.0.
e Explosion AI, El_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/el_core_news_sm-2.1.0.
f Explosion AI, It_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/it_core_news_sm-2.1.0.
g Explosion AI, Pt_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/pt_core_news_sm-2.1.0.
h Explosion AI, Es_core_news_sm, version 2.1.0 (2019), https://github.com/explosion/

spacy-models/releases/tag/es_core_news_sm-2.1.0.

Implementation and workflow

Like our OCR implementation the NLP process is also implemented as a
software pipeline. It is capable of processing text corpora in Dutch, English,
French, German, Greek, Italian, Portuguese, and Spanish. It will only accept
raw text files as input and provides verticalized text files as a result. The pipe

https://github.com/explosion/spacy-models/releases/tag/nl_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/nl_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/fr_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/fr_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/de_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/de_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/el_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/el_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/it_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/it_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/pt_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/pt_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/es_core_news_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/es_core_news_sm-2.1.0

Patrick Jentsch, Stephan Porada122

line contains only one processing step, which is the spaCy natural language
processing. While implementing this as a pipeline may sound laborious, it
gives us the f lexibility to easily extend the pipeline in the future.

Fig. 8: NLP pipeline procedure of ten input files

In order to achieve good computational performance, we aimed to make use
of modern multicore systems. For that purpose, we used pyFlow, a power
ful parallel task processing engine. Figure 8 shows one pipeline run where
ten input files are processed. Each of these files is treated in a separate task
that can run parallel to the others if the hardware is capable of doing parallel
computation.

From Text to Data 123

The NLP pipeline is deployed in a Linux container; for that purpose, we
created a Dockerfile which tells the Docker build system to install all depen
dencies which are needed for using our NLP pipeline in a container image.
The source code of this is available at the GitLab system hosted by Biele
feld University.77 There you will find instructions on how to build and use
the image or, in case you do not want to build the image yourself, we also
of fer an image in a prebuilt state.78 The published image contains spaCy79 in
version 2.1.0 and language packages for processing Dutch, English, French,
German, Greek, Italian, Portuguese and Spanish texts. All Software that is
needed to realize and use this image is completely free and open source.

After the image was created, we were able to start multiple instances of
the natural language processing software, encapsulated in Linux containers.
Each instance executes one NLP pipeline run which processes the input data.
An execution is bound to one specific text language, so the files processed
within one pipeline run must contain texts in the same language.

Our usual workf low is described in the following:

1. Receive text corpora as raw text files
2. Create input and output directories
3. Copy files into the input directory
4. Start the NLP software

• nlp -i <inputdir> -l <languagecode> -o <outputdir>

5. Check the results in the output directory

The results are saved as verticalized text files. This is a XML compliant
format, where each line contains one token with all its assigned attri
butes. One line is structured in the following order: word, lemmatized
word, simplified part-of-speech tag, part-of-speech tag, named

entity recognition tag. NULL indicates that no named entity is recog
nized. The beginning and end of a sentence is represented by <s> and </s>

77 Jentsch, Patrick/Porada, Stephan, Natural Language Processing, version 1.0, 2019, https://
gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data [accessed: 31.08.2019].

78 P. Jentsch/S: Porada, Docker Image: Natural Language Processing.
79 Explosion AI, SpaCy, version 2.1.0 (2019), https://github.com/explosion/spaCy/releases/

tag/v2.1.0 [accessed: 31.08.2019].

https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data
https://github.com/explosion/spaCy/releases/tag/v2.1.0
https://github.com/explosion/spaCy/releases/tag/v2.1.0

Patrick Jentsch, Stephan Porada124

and analog to this you have a start and an end tag for the text and the com
plete corpus.

As a short example, we process the text “Tesseract is a software main
tained by Google.” The resulting verticalized text file looks as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

<corpus>

<text>

<s>

 Tesseract tesseract NOUN NN NULL

 is be VERB VBZ NULL

 a a DET DT NULL

 software software NOUN NN NULL

 maintained maintain VERB VBN NULL

 by by ADP IN NULL

 Google google PROPN NNP ORG

 . . PUNCT . NULL

</s>

</text>

</corpus>

spaCy and Stanford CoreNLP

Before we decided to use spaCy as our natural language processing software
we worked with Stanford CoreNLP. This software is versatile but does not
offer its full functionality for all languages used in our context. In order to
work with the processed texts, we decided to use a software called The IMS
Open Corpus Workbench (CWB), which requires the verticalized text file for
mat as input. With Stanford CoreNLP we had to write complex conversion
programs to transfer the output into the desired verticalized text format in
order to be able to import it to our CWB instance.

Table 3 shows our functional requirements and those supported by Stan-
ford CoreNLP for specific languages.80

80 Stanford University, Using Stanford Corenlp on Other Human Languages, https://stan
fordnlp.github.io/CoreNLP/human-languages.html#models-for-other-languages [ac-
cessed: 27.03.2019].

https://stanfordnlp.github.io/CoreNLP/human-languages.html#models-for-other-languages
https://stanfordnlp.github.io/CoreNLP/human-languages.html#models-for-other-languages

From Text to Data 125

Table 3: Functionality of Stanford CoreNLP

English French German Spanish

Tokenization x x x

Lemmatization x

Part-of-Speech Tagging x x x x

Named Entity Recognition x x x

To handle the mentioned problems we switched to spaCy, which offers the
needed functionalities for all languages we encounter and also has a good
application programming interface, which we were able to utilize in order to
create the needed verticalized text files.

6. Conclusion

With our pipeline we hope to encourage scientific researchers, not only at
Bielefeld University, to make use of the means provided by the digital age.
Since the cooperation between information science and the humanities lies
at the very core of Digital Humanities, we want to contribute our share by
providing a tool to digitize and process texts. This tool is constantly revised
and improved in accordance with the needs of its potential users and in close
collaboration with them.

Bibliography

Adobe Systems Incorporated, Document Management – Portable Document
Format – Part 1: PDF 1.7 (2008), 25 f f., https://www.adobe.com/content/
dam/acom/en/devnet/pdf/PDF32000_2008.pdf [accessed: 26.03.2019].

Adobe Systems Incorporated, TIFF: Revision 6.0, version 6.0 (1992), 57–58,
https://www.adobe.io/content/dam/udp/en/open/standards/tif f/TIFF6.
pdf [accessed: 31.08.2019].

Berlin-Brandenburgische Akademie der Wissenschaf ten, Ziel und Fokus des DTA-
Basisformats (Deutsches Textarchiv, Zentrum Sprache der Berlin-Bran
denburgischen Akademie der Wissenschaften), http://www.deutsches

https://www.adobe.com/content/dam/acom/en/devnet/pdf/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/PDF32000_2008.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
http://www.deutschestextarchiv.de/doku/basisformat/ziel.html#topic_ntb_5sd_qs__rec

Patrick Jentsch, Stephan Porada126

textarchiv.de/doku/basisformat/ziel.html#topic_ntb_5sd_qs__rec [ac
cessed: 12.03.2019].

Boettiger, Carl, An Introduction to Docker for Reproducible Research, in:
ACM SIGOPS Operating Systems Review 49 (2015), 71–79, https://doi.
org/10.1145/2723872.2723882.

Carrasco, Rafael C., Text Digitisation, https://sites.google.com/site/textdigi
tisation/ [accessed: 11.06.2019]

Chaudhuri, Arindam et al., Optical Character Recognition Systems for Differ
ent Languages with Soft Computing, Springer International Publishing:
2017, 90–92, 17–22, https://doi.org/10.1007/978-3-319-50252-6.

Cheriet, Mohamed, et al., Character Recognition Systems, John Wiley & Sons,
Inc.: 2007, 8–15, https://doi.org/10.1002/9780470176535.

Debian, version 9 (The Debian Project, 2017), https://www.debian.org/ [ac
cessed: 31.08.2019].

Docker, version 18.09.1 (Docker, 2013), https://www.docker.com/ [accessed:
31.08.2019].

Explosion AI, Linguistic Features · spaCy Usage Documentation: Tokeniza
tion, https://spacy.io/usage/linguistic-features#tokenization [accessed:
25.03.2019].

Explosion AI, Industrial-Strength Natural Language Processing (NLP) with
Python and Cython: SpaCy/Spacy/Lang/de/Lemmatizer.py, https://git
hub.com/explosion/spaCy/tree/v2.1.0/spacy/lang/de/lemmatizer.py [ac
cessed: 21.05.2019].

Explosion AI, Annotation Specifications · spaCy API Documentation: Part-of-
Speech Tagging, https://spacy.io/api/annotation#pos-tagging [accessed:
27.03.2019].

Explosion AI, SpaCy, version 2.1.0 (2019), https://github.com/explosion/spaCy/
releases/tag/v2.1.0 [accessed: 31.08.2019].

Google Inc., Tesseract OCR (2019), https://github.com/tesseract-ocr/tesseract/
[accessed: 31.08.2019].

Google Inc., ImproveQuality: Improving the Quality of the Output (2019),
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality [ac
cessed: 31.08.2019].

Hardie, Andrew/Evert, Stefan, IMS Open Corpus Workbench, http://cwb.
sourceforge.net/ [accessed: 31.08.2019].

International Organization for Standardization, ISO/Iec 9126-1:2001: Software
Engineering – Product Quality – Part 1: Quality Model (International

http://www.deutschestextarchiv.de/doku/basisformat/ziel.html#topic_ntb_5sd_qs__rec
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://sites.google.com/site/textdigitisation/
https://sites.google.com/site/textdigitisation/
https://doi.org/10.1007/978-3-319-50252-6
https://doi.org/10.1002/9780470176535
https://www.debian.org/
https://www.docker.com/
https://spacy.io/usage/linguistic-features#tokenization
https://github.com/explosion/spaCy/tree/v2.1.0/spacy/lang/de/lemmatizer.py
https://github.com/explosion/spaCy/tree/v2.1.0/spacy/lang/de/lemmatizer.py
https://spacy.io/api/annotation#pos-tagging
https://github.com/explosion/spaCy/releases/tag/v2.1.0
https://github.com/explosion/spaCy/releases/tag/v2.1.0
https://github.com/tesseract-ocr/tesseract/
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
http://cwb.sourceforge.net/
http://cwb.sourceforge.net/

From Text to Data 127

Organization for Standardization, June 2001), https://www.iso.org/stan
dard/22749.html [accessed: 31.08.2019].

International Organization for Standardization, ISO/Iec 25010:2011: Systems
and Software Engineering – Systems and Software Quality Require
ments and Evaluation (SQuaRE) – System and Software Quality Models
(International Organization for Standardization, March 2011), https://
www.iso.org/standard/35733.html [accessed: 31.08.2019].

Jackson, Mike/Crouch, Steve/Baxter, Rob, Software Evaluation: Criteria-Based
Assessment (Software Sustainability Institute, November 2011), https://
sof tware.ac.uk/sites/default/files/SSI-Sof twareEvaluationCriteria.pdf
[accessed: 31.08.2019].

Jentsch, Patrick/Porada, Stephan, Docker Image: Optical Character Recogni
tion, version 1.0, Bielefeld 2019, https://gitlab.ub.uni-bielefeld.de/sf b1288
inf/ocr/container_registry [accessed: 31.08.2019].

Jentsch, Patrick/Porada, Stephan, Natural Language Processing, version 1.0,
2019, https://gitlab.ub.uni-bielefeld.de/sf b1288inf/nlp/tree/from_text_to_
data [accessed: 31.08.2019].

Jurafsky, Daniel/Martin, James H., Speech and Language Processing: An In
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, Draft of September 23, 2018, 2018, 151, 156.

Manning, Christopher D./Raghavan, Prabhakar/Schutze, Hinrich, Introduction
to Information Retrieval, Cambridge: Cambridge University Press, 2008,
22, https://doi.org/10.1017/cbo9780511809071.

Olah, Christopher, “Understanding LSTM Networks, https://colah.github.io/
posts/2015-08-Understanding-LSTMs/ [accessed: 26.03.2019].

Oztan, Bazak, et al., Removal of Artifacts from JPEG Compressed Document
Images, in: Reiner Eschbach/Gabriel G. Marcu(eds.), Color Imaging XII:
Processing, Hardcopy, and Applications, (SPIE) 2007, 1-3, https://doi.
org/10.1117/12.705414.

Red Hat Inc., What’s a Linux Container?, https://www.redhat.com/en/topics/
containers/whats-a-linux-container [accessed: 20.05.2019].

Saunders, Chris, PyFlow: A Lightweight Parallel Task Engine, version 1.1.20,
2018, https://github.com/Illumina/pyf low/releases/tag/v1.1.20 [accessed:
31.08.2019].

Smith, Ray, Building a Multilingual OCR Engine: Training LSTM Networks on
100 Languages and Test Results (Google Inc., June 20, 2016), 16, 17, https://

https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/container_registry
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/container_registry
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/tree/from_text_to_data
https://doi.org/10.1017/cbo9780511809071
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1117/12.705414
https://doi.org/10.1117/12.705414
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://github.com/Illumina/pyflow/releases/tag/v1.1.20
https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf

Patrick Jentsch, Stephan Porada128

github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Build
ing%20a%20Multi-Lingual%20OCR%20Engine.pdf.

Smith, Ray, An Overview of the Tesseract OCR Engine, in: Ninth Interna
tional Conference on Document Analysis and Recognition (ICDAR 2007)
Vol 2 (2007), https://doi.org/10.1109/icdar.2007.4376991.

Smith, Ray, A Simple and Efficient Skew Detection Algorithm via Text Row
Accumulation, in: Proceedings of 3rd International Conference on Docu
ment Analysis and Recognition (IEEE Comput. Soc. Press, 1995), https://
doi.org/10.1109/icdar.1995.602124.

Sourceforge, CWB/Perl & Other APIs, http://cwb.sourceforge.net/doc_perl.
php [accessed: 13.05.2019].

Stanford University, Using Stanford Corenlp on Other Human Languages,
https://stanfordnlp.github.io/CoreNLP/human-languages.html#mod
els-for-other-languages [accessed: 27.03.2019].

Text Encoding Initiative, TEI P5: Guidelines for Electronic Text Encoding and
Interchange (TEI Consortium) https://tei-c.org/release/doc/tei-p5-doc/
en/ Guidelines.pdf [11.06.2019].

University of Alicante, ocrevalUAtion, https://github.com/impactcentre/ocr
evalUAtion [accessed: 05.04.2019].

University of Alicante, OcrevalUAtion, version 1.3.4 (2018), https://bintray.
com/impactocr/maven/ocrevalUAtion [accessed: 31.08.2019].

Ye, Peng/Doermann, David, Document Image Quality Assessment: A Brief
Survey, in: 2013 12th International Conference on Document Analysis
and Recognition (2013), 723, https://doi.org/10.1109/icdar.2013.148.

https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
https://doi.org/10.1109/icdar.2007.4376991
https://doi.org/10.1109/icdar.1995.602124
https://doi.org/10.1109/icdar.1995.602124
http://cwb.sourceforge.net/doc_perl.php
http://cwb.sourceforge.net/doc_perl.php
https://stanfordnlp.github.io/CoreNLP/human-languages.html#models-for-other-languages
https://stanfordnlp.github.io/CoreNLP/human-languages.html#models-for-other-languages
https://tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
https://tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
https://github.com/impactcentre/ocrevalUAtion
https://github.com/impactcentre/ocrevalUAtion
https://bintray.com/impactocr/maven/ocrevalUAtion
https://bintray.com/impactocr/maven/ocrevalUAtion
https://doi.org/10.1109/icdar.2013.148

