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Courtney A. Roby 
Learning from Mistakes: Constructing 
Knowledge in Late Antique Mathematical 
Texts 
Abstract: This paper analyzes problems in practical mathematics compiled in 
late antiquity from two sources: the newly published P. Math. (Bagnall/Jones 
2019) and the Stereometrica associated with Hero of Alexandria. These texts are 
often far from orderly, and often far from innovative at a first glance: tangles of 
algorithmic problem-solving techniques, most of uncertain authorship, and 
often plagued by scribal, mathematical, and conceptual errors. Yet the very 
features that make these texts so difficult to assess cleanly also mean they are 
fascinating windows onto a rougher stage of “knowledge construction.” 

 Introduction 

The surviving corpus of metrological texts (i.e., mathematical texts containing 
problems on measuring areas and volumes of objects and unit conversions, 
often practically oriented) takes a marginal role in the study of Greek mathemat-
ics, edged out of the spotlight by the justifiably intense focus by most scholars 
on geometry. Euclid’s orderly, rigorous cascades of proofs and Archimedes’ 
dazzling innovations are indeed a compelling field of study. The metrological 
texts, on the other hand, are far from orderly, and often far from innovative at a 
first glance: tangles of algorithmic techniques for solving measuring problems, 
most of uncertain authorship, and often plagued by scribal, mathematical, and 
conceptual errors. Unlike geometrical texts like Euclid’s, where later proofs 
often rely explicitly on earlier ones and so tend to preserve the wholeness of the 
work, the metrological texts are by nature much more “discrete” (to use Markus 
Asper’s term), and in the surviving texts their problems are mixed and matched 
with abandon.1 Yet the very features that make these texts so difficult to assess 
cleanly also mean they are fascinating windows onto a rougher stage of 
“knowledge construction.” The manuscript codices of problem-sets assembled 
and reassembled in late antiquity, the pedagogical papyri that preserve stu-
dents’ errors among their efforts to learn by imitation — these show us 

 
1 Asper 2007, 198. 
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knowledge in the making at the level of the discipline and the individual. In 
what follows I will use recent scholarship on mathematics pedagogy to show 
how the very errors found in these texts can open up that learning process for 
analysis. 

Perhaps “corpus” is not quite the right term here: this term suggests some-
thing more cohesive than the actual state of affairs. Metrological texts survive as 
problem collections in papyri and manuscript codices, texts often accompanied 
(or meant to be supplemented) by diagrams, tables of fractions and unit conver-
sions, and other aids to visualization and calculation. Several of the texts com-
piled into Byzantine manuscripts are associated with the name of Hero of Alex-
andria, but most should not be attributed to the historical Hero, a figure likely 
from the 1st or 2nd century CE who composed works on geometry, theoretical 
mechanics, and practical applications of mechanics like catapult design or the 
construction of automatic puppet theaters.2  

Hero did compose a Metrica whose three books include one on geometrical 
and arithmetical techniques for calculating surface areas of a wide range of 
geometrical objects, one on calculating their volumes, and a third on methods 
for dividing up those objects in set proportions. The Metrica is a fascinating text 
in its own right for the way it blends the techniques and language associated 
with geometrical methods (usually abstract, general, and highly privileged) and 
those characteristic of arithmetical calculation methods (which by contrast are 
typically focused on specific concrete problems and are less privileged). It also 
served as the foundation for a centuries-long tradition of Greek metrological 
texts, many associated with Hero’s name, like the Geometrica, Geodaisia, and 
Stereometrica. These texts incorporate some problems and techniques from the 
Metrica alongside a host of new types of problems, many of them creatively 
reworked and reorganized in the texts’ several recensions.  

Vitrac has made a detailed codicological study of the resulting “corpus” of 
metrological texts, updating previous studies by Hultsch and Heiberg, focusing 
more on the complexities of their collection and propagation rather than trying 
to establish a single authoritative text, as Heiberg of necessity did in pursuit of a 
definitive edition.3 Amid the variations in structure, content, and apparent au-
dience between the various texts of the metrological corpus, Vitrac nevertheless 
identifies some common features, like the inclusion of Euclidean-style defini-

 
2 For an excellent overview of these metrological texts with detailed consideration of ques-
tions about authorship, see Hero 2014, 429–533. On Hero’s works more generally, see Cuomo 
2002; Tybjerg 2003; 2004. 
3 Vitrac 2010. 
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tions of the objects under study, tables of metrical units and equivalences in-
cluding a wide range of geographical variations, and the assimilation of real-
world objects to geometrical objects and diagrams. Vitrac notes further that the 
problems in the metrological texts other than the Metrica draw almost exclu-
sively on the “algorithmic” tradition of practical mathematics rather than the 
demonstrative tradition of geometrical texts. And indeed, Hero’s persistent 
focus on the practical applications of science and mathematics, even as he con-
tinues to engage with the “demonstrative” tradition in his own texts, probably 
encouraged his association with the metrological texts, which are overwhelm-
ingly practical in their focus.  

The practicality of the metrological texts might seem pedestrian compared 
to Archimedes’ flights of logic or Apollonius’s elegant curves, but the mathe-
matics of the “real world” has its own kind of beauty. Gregory of Nazianzus 
eloquently praised the hexagonal precision of honeycombs, the complex webs 
woven by spiders, and the effortless flying formations of cranes, contrasting 
them with Euclid, whom he characterizes as “finding philosophy in nonexistent 
lines and exhausting himself in his demonstrations.”4 He critiques the efforts of 
geometers and tactical theorists as empty labor that blinds them to the order 
already present in the natural world. The metrological authors are, to be sure, 
concerned with the study of human artifacts like granaries, theaters, and taxa-
tion systems rather than the natural world. But one can imagine a comparable 
frustration with Euclid’s “nonexistent lines” fueling their commitment to devel-
oping techniques to apprehend the concrete, the measurable, and the marketa-
ble. Metrological texts often bridge the gap between geometry and the “real 
world” representations featured in many technical texts by blending problems 
dealing with measuring purely geometrical objects with problems in measuring 
objects, like buildings or wells, that can be approximated by geometrical objects 
like cylinders or rectangular prisms. These problems can take various forms, 
from proofs to algorithmic problem-solving routines, with accompanying varia-
tions in their formal characteristics like forms of address, use of letter labels and 
numerical quantities, and the way the text interacts with visual elements like 
diagrams and tables. 

But it is not only human artifacts as objects of study, but humans as learn-
ing subjects, that the metrological texts illuminate with particular clarity. Their 
focus on algorithmic problem-solving is in some ways conceptually rigid: one 
identifies the problem-type, chooses an appropriate algorithm for the type, and 
follows the steps of calculation. In practice, however, the surviving texts offer 

 
4 Gregorius Nazianzenus, De theologia 25. 
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glimpses into the human behind the algorithm: their selection of problem-
solving techniques, the diagrams, calculations, and other aids used to help 
them along the way, and even the errors and missteps that the journey to a solu-
tion may entail. Some of these errors are simple scribal or arithmetic errors, but 
others are conceptual errors that can, from a perspective focused on mathemati-
cal pedagogy, illuminate some aspects of the processes of learning in antiquity 
that are otherwise so difficult to piece together from the surviving evidence. 

Those learning processes are captured still more vividly in the mathemati-
cal papyri, another class of texts dealing with practical mathematics. A long 
Egyptian tradition of mathematical papyri written first in hieroglyphics and 
later in demotic Egyptian were eventually augmented by Greek mathematical 
papyri beginning in the Hellenistic period. While the Greek papyri do include 
some fragments of geometrical texts like Euclid’s Elements, both the Egyptian 
and Greek papyri more commonly featured problems familiar from the long 
Egyptian and Mesopotamian traditions of arithmetical problems focused on 
techniques for measuring and manipulating real-world objects.5 Quite often 
these problems are framed as “model” problems for a technique, including a 
formulaic statement that similar problems may be solved with the same method. 
The whole population of mathematical papyri is of course quite diverse, includ-
ing formal geometrical and algebraic texts, astronomical texts, and less formal 
problem collections that seem to have served a pedagogical purpose.6 Most 
interesting here will be the tradition of papyri that seem for various reasons to 
have been designed for a teaching context. 

In this paper I will compare the collections of metrological problems edited 
by Heiberg as the pseudo-Heronian Stereometrica to the problem-solving ap-
proaches taken in P. Math., a mathematical papyrus recently published by 
Bagnall and Jones, likely dating from 4th-century Oxyrhynchus.7 Diverse as 
these texts are, they are linked by common threads of problem types and algo-
rithms, so I will begin by sketching out these links, emphasizing in particular 
their situations within particular cultures. I will then explore a few case studies 
of missteps in problem-solving in P. Math., including conceptual and algorith-
mic errors with mentally assembling complex objects, and related struggles on 
the solver’s part to visualize and diagram elements of his problems in a way that 
facilitates correct solution. 

 
5 For wide-ranging analyses of these traditions, see Høyrup 1994; Imhausen 2016. For an 
excellent review of the papyrus evidence for Greek geometrical texts, see Fowler 1999, 204–217. 
6 An overview of the mathematical papyri is found in Jones 2009. 
7 Bagnall/Jones 2019. 
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Given that we know so little about the details of pedagogy of any kind in an-
tiquity, but especially technical education such as the P. Math. solver seems to 
have been engaged in, it might seem fruitless to understand these errors as 
anything but the random vagaries of a novice student. However, I hope that I 
can extract some insight into the solver’s experience both by comparing his 
missteps to more successful solutions of comparable problems in the differently 
organized Stereometrica, and also by engaging with contemporary scholarship 
on cognition and mathematics learning. Here I will give particular attention to 
the importance of what Davis calls problem-solving “frames” and the conceptu-
al “framing errors” that manifest in some of the solutions in P. Math. and other 
texts.8 Both the correct solutions and errors open up a picture of what Lave calls 
“cognition in practice,” mathematics performed in and on a real world that 
offers pedagogical and conceptual opportunities quite different from “pure” 
mathematical exercises like those we associate in antiquity with Greek geomet-
rical texts.9 

 Learning Mathematics 

The aims and practices of ancient education remain, for the most part, tantaliz-
ingly out of reach, all the more so for the specific case of education in technical 
or scientific subjects. Cribiore touches on numeracy in her foundational study of 
ancient education, while Fowler considers the mathematics curriculum sug-
gested by Plato’s Republic alongside some surviving material evidence for ge-
ometry teaching in antiquity.10 Nevertheless, more questions than answers re-
main about how mathematics was taught in antiquity and the differences that 
might have separated the teaching of geometry from “practical” mathematics 
education. The metrological texts in the “Heronian” corpus and several of the 
surviving mathematical papyri do seem to have been composed with pedagogi-
cal aims in mind, though the signals of these aims differ considerably between 
the two types of text. 

The Metrica is a model for many of the later compilations of metrological 
problems, and it is structured quite rigorously in a way that facilitates learning 
from the ground up, not unlike Euclid’s Elements. For example, the first book of 

 
8 Davis 1984. 
9 Lave 1988. 
10 Cribiore 2001, 180–183; Fowler 1999, 103–151. 
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the Metrica is dedicated to techniques for measuring plane figures. Hero begins 
with the trivial case of the rectangle, and indeed this first passage seems to be 
as much a continuation of the argument from the preface in favor of the use of 
abstract “units” (monades) rather than concrete units like cubits or feet as it is 
about the rectangle itself. As the book proceeds, Hero goes on to deliver a series 
of highly standardized problems in finding the areas of equilateral polygons 
from the triangle to the dodecagon. Each of these problems is structured in the 
same way, beginning with the same formulaic language stipulating that each 
side of every polygon is 10 units. Each begins its solution with a geometrical 
construction that closely follows the “prototypical” Euclidean linguistic form.11 
Indeed, each of those constructions proceeds through steps familiar from Eu-
clid, locating the center of the polygon’s circumscribed circle (compare Ele-
ments III.1) and using that point to launch the triangles between center and 
edge that will allow Hero to demonstrate the proportional relationships between 
them (or, in the case of the enneagon and hendecagon, the diameters that de-
fine the right triangles used for that purpose).12 All three books of the Metrica 
proceed similarly, beginning with simpler problems in each domain (plane 
geometry for book 1, solid geometry for book 2, and proportional division for 
book 3) and working toward more complex problems. 

The later compilations of metrological problems adopt some of the same or-
ganizational strategies as the Metrica. The Stereometrica, at least in Heiberg’s 
recension, often builds up stretches of problems based on the same basic geo-
metric form, starting with simpler cases and working up to more complex varia-
tions. So, for example, a string of problems in the second book (which we will 
examine in more detail later) begins with a semicircular arch inscribed in a 
rectangular wall, goes on to a free-standing arch where the reader needs to 
consider the relationship between its inner and outer semicircular peripheries, 
and then combines those two forms of arch into a single construction. Other 
connections between problems are more complex; the series of problems above 
continues with a structure where arches made specifically of bricks are com-
bined with rubble into a construction element, then moves on to a shell-shaped 
form (konchē) made of bricks, and eventually to a house whose roof has to be 

 
11 On the formulaic language of Greek geometry, see especially Netz 1999, 9–11, 127–167. 
Further discussion of the stylistic features of this genre of text may be found at Asper 2001, 75–
76. 
12 The equilateral triangle is an exception to this pattern as Hero does not circumscribe a 
circle, but he does make use of another Euclidean mainstay, the “Pythagorean theorem” of 
Elements I.47. 
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covered in tiles. The internal structures of these later metrological compilations 
thus hint strongly at a context blending familiarity with the basics of the Euclid-
ean “elements” with a strong emphasis on practical tasks. Vitrac suggests that 
while the metrological texts associated with Hero’s name certainly suggest as-
sociations with technical education such as surveyors and architects may have 
received, they may also have drawn on a tradition of elementary geometrical 
education, perhaps offering a kind of geometrical analogue to Nicomachus’s 
Introduction to Arithmetic.13 

Yet the caveat above about reference to Heiberg’s recension is an important 
one. The metrological texts associated with Hero’s name (and to a lesser extent 
with Euclid’s, as well as other figures like Didymus of Alexandria) reflect a diz-
zying codicological history of textual blending and reshuffling. The works con-
structed by modern editors Hultsch and Heiberg as the Geometrica, De mensuris, 
and Stereometrica in fact emerge from an array of manuscripts that collect vari-
ous subsets of problems and tables of metrological conversions under different 
titles. To be sure, these manuscripts are far from being random assortments of 
individual problems; in many cases relatively stable clusters of problems and 
tables are found in multiple manuscripts, in the same order, and often under 
the same or similar title. Still, on the scale of the whole work there remains an 
immense amount of variation between the collections, and Hultsch and 
Heiberg’s editions naturally tend to make sense of the varied problem collec-
tions they inherited by grouping similar problems together in the edition, even 
when this means creating a problem collection that does not entirely match any 
single manuscript.14 Vitrac indeed views these editions effectively as novel crea-
tions by their editors, and so emphasizes the importance of analyzing the con-
tents and entitled collections found in individual manuscripts.15 

While it is difficult to assign a particular date to the formation of the collec-
tions found in this wealth of manuscripts, there are some indicators that in most 
cases this process took place sometime in the first few centuries CE. The De 
mensuris, for example, was already collected by the 9th century, as it appears in 
a branch of the Archimedean manuscript tradition whose earliest known wit-
ness dates from then.16 Heiberg observes that the problems from the Stereomet-

 
13 Vitrac 2010. 
14 Comparisons of the lists of problems in the texts I discuss here in the editions assembled by 
Hultsch and Heiberg can be found at Hero 1976, vii–viii. 
15 Hero 2014, 430–448; Vitrac 2010. 
16 Hero 2014, 435 n. 16. The manuscript in question is known to have been in the possession of 
Giorgio Valla in the fifteenth century, and went missing by the sixteenth, but not before having 
yielded several copies, many of which feature the De mensuris. 
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rica on vaults and arches, which will be a topic of particular interest here, seem 
to correspond to a work attributed to Hero for which Isidorus of Miletus com-
posed a commentary in the 6th century.17 Corcoran further suggests a tentative 
dating of the Stereometrica to the first half of the 5th century, based on a refer-
ence to a particular praetorian prefect’s having fixed the weights per volume of 
commodities like bacon.18 While other collections appear somewhat more unru-
ly and resistant to dating, then, we can at least say that the work of constructing 
these compilations of practically-focused metrological problems was well un-
derway in late antiquity. The resulting corpus, loose-limbed though it may be, is 
a rich store of practical problem-solving techniques, squarely located in the 
domain of the marketplace and construction site both by the kinds of problems 
the texts solve and by the metrological conversion tables themselves. 

While the surviving Byzantine manuscripts reflect one set of processes of 
mathematical knowledge-construction dating at least partially to late antiquity, 
the mathematical papyri reflect another side of those construction processes. 
The majority of the surviving mathematical papyri draw on contexts of practical 
problem-solving comparable to those found in the “Heronian” metrological 
texts, and many seem to have functioned as tools for teaching and learning. 
Cuomo gives the example of a demotic papyrus from Hermopolis dating to the 
3rd century BCE, which features a selection of arithmetical and geometrical 
problems framed largely as practical problems about measuring land or cloth, 
as well as some practice problems with common techniques like finding square 
roots. Cuomo argues that “a teaching context is suggested by direct appeals to 
the reader and by statements such as this: ‘When another [add-fraction-to-them] 
(problem) is stated to you, it will be successful according to the model.’”19 So 
while the problems in these papyri are solved for the specific case of the given 
sample numbers rather than in the entirely general manner characteristic of 
Greek geometry, those sample solutions are meant to serve as templates for 
solving similar problems encountered later. 

Imhausen’s comprehensive examination of Egyptian mathematical papyri 
suggests some similar conclusions. Her study of the major demotic mathemati-
cal papyri (Cairo, BM 10399, BM 10520, BM 10794, Carlsberg 30, Griffith I E7, 
and Heidelberg 663) explores both the mathematical techniques they exemplify 
and the way these problem collections are contextualized against a backdrop of 
“practical” problems. The scare quotes here reflect the complication that as 

 
17 Hero 1976, xxxi. 
18 Corcoran 1995, 380. 
19 Cuomo 2001, 72. 
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Imhausen points out, several problems that appear quite practical at first glance 
turn out to be what she calls “suprautilitarian.” This term refers to problems 
designed to showcase a mathematical technique rather than an actual guide to 
the physical processes one would undertake in carrying out the task described 
in the problem. For example, problem 8 in P. Cairo purports to deal with meas-
uring out a piece of cloth of a given area and cutting it, preserving the total area 
while reducing the height by one cubit and increasing the width.20 However, as 
Imhausen notes, the cut-off strip vanishes from the problem almost immediate-
ly, as the problem is actually focused on determining how broad the strip added 
to the width dimension would have to be in order to keep the area the same 
once a one-cubit strip was removed from the height. Obviously that same one-
cubit strip cannot just be stuck back onto the width dimension; the answer to 
the problem tells you the required width of the addition, but not how to make it 
from the existing cut-off strip. So the problem is less practical than it might first 
have appeared, geared rather for the pedagogical exercise of calculating rectan-
gular areas. 

Among the likely Greek “pedagogical” papyri is P. Mich. [inv.] 4966, written 
on one side of a papyrus dated to the second century CE.21 This document fea-
tures a table of fractions (all with prime numbers as denominators) expressed as 
the sum of unit fractions, combined with a series of practical problems: arith-
metical calculations framed as being about quantities of wheat, problems ask-
ing the reader to convert different amounts of money to copper or silver drach-
mai, calculations on areas of land, and so on. Smyly conjectured that the 
Akhmim mathematical papyrus (P. Cair. [inv.] 10758) dated to the seventh cen-
tury CE and edited by Baillet was a school exercise book, as it consists of a set of 
division tables and a collection of “disconnected problems, with no method in 
their arrangement” whose solutions often include conceptual and methodologi-
cal errors, to say nothing of frequent errors in Greek.22 

P. Math. combines model business contracts, tables of metrological conver-
sions, and a very diverse group of mathematical problems including calcula-
tions of areas of land, volume calculations on excavations and buildings, arith-
metical problems about the total wages of different classes of workers working 
for various amounts of time, and several other kinds of problems. These are very 
often framed as “model” problems with a formulaic note (“this way for similar 
problems”), similar to the formula Cuomo observed in the Hermopolis papyrus. 

 
20 Imhausen 2016, 193. 
21 Boyaval 1976. 
22 Baillet 1892; Smyly 1920. 
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Bagnall and Jones note that many of the P. Math. problems appear to reflect a 
formulaic “dialogue” of question and answer between teacher and student.23 
This “dialogue” was far from fluent in P. Math., however; they note numerous 
orthographical and mathematical errors, leading them to conclude that “the 
codex belonged to a student in a school devoted to training business agents and 
similar professionals.”24 These pedagogical mathematical papyri seem to have 
aimed at teaching a quite different skill set from the “scribal” education more 
typically associated with grammarians’ schools. Instead of grammar and or-
thography, P. Math. reflects an education focused on algorithms for making 
calculations and unit conversions, models for calculating daily wages, and 
drafting contracts. 

A key skill set in this educational model was fluency with visual “infor-
mation technologies” ranging from geometrical diagrams to tables of numbers 
meant to aid in calculation with fractions, multiplication, division, and so forth 
(indeed, some of the mathematical papyri consist solely of such tables).25 The 
papyri that seem to have served a principally pedagogical function are particu-
larly interesting because they include diagrams that played a role in the learn-
ing process. A fragmentary metrological text in a papyrus dated to the second 
century CE (P. Corn. inv. 69) features diagrams of two trapezoidal figures, one 
dissected into several polygons, whose sides are labeled with numbers given in 
the problems.26 

P. Math. includes diagrams for most problems with a spatial component, 
usually labeled with numbers corresponding to quantities given in the problem, 
and often the result as well. The images in P. Math. are of several kinds; some 
are “diagrams” in the sense of spatially representing objects or quantities, while 
several of the problems are additionally separated from one another by decora-
tive borders and drawings of palm fronds and ankhs. Diagrams of the first type 
will be of most interest here, and they too take several forms. Some depict 
bird’s-eye views of geometrical forms representing problem topics like the di-
mensions of fields, granaries, or holes in the ground. Others are slightly more 
complex representations of three-dimensional objects. A few tabulate step-by-
step results of an arithmetic process or conceptual elements in another kind of 
problem-solving process. Finally, a few are simply baffling, like a curvilinear 

 
23 Bagnall/Jones 2019, 23. 
24 Bagnall/Jones 2019, 55. 
25 On the broader history of tables of information in the Roman world (and in particular their 
relative rarity in most contexts), see Riggsby 2019, 42–82. 
26 Taisbak/Bülow-Jacobsen 2003. 
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shape surmounted by a scribbled line that seems to represent a vaulted granary 
in problem o1 (fig. 4). 

 

Fig. 4: “Granary” diagram from P. Math., problem 01 (after Bagnall/Jones 2019). 

Some medieval manuscripts also include informal diagrams added by readers at 
later stages of the composition process, but the papyri are particularly rich 
sources of these diagrams, which largely appear to have been produced sponta-
neously as part of the solving process, rather than being copied from formal 
exemplars. This latter feature in particular makes the diagrams in the papyri 
witnesses to a live learning process that is otherwise difficult to capture. Indeed, 
the importance of diagrams to Greek mathematics can hardly be overstated.27 
Geometrical proofs are linked at every stage to a letter-labeled diagram depict-
ing every component referenced in the proof. In cases where formal geometrical 
proof is no longer the principal objective, diagrams take on a variety of other 
roles and forms. When technical texts in other genres like mechanics or survey-
ing call upon them to represent objects in the world rather than purely geomet-

 
27 The foundational work on diagrams in Greek geometry is Netz 1999. Further studies that 
focus on the manuscript traditions of these diagrams include Saito 2012; 2018. 
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rical ones, they may adapt the systems of spatial representation and letter label-
ing to new ends. 

Several different skills are involved in producing a mathematical diagram. 
Some amount of scribal skill and draftsmanship, possibly involving the use of 
compass and straightedge, is necessary to produce a clearly drawn diagram. 
Provided the diagram is not simply copied from an exemplar, competence in the 
“graphical languages” that might come into play is also required. For a table, 
this might mean an ability to distinguish headers from data in individual cells, 
and to keep the rows and columns properly aligned; for a geometrical diagram, 
this might include an understanding of the relative placement of letter-labeled 
points in the diagram. However, as Netz, Carman, and others have pointed out, 
manuscript diagrams are “underdetermined” with respect to the problem 
statement and do not reliably reflect relative lengths of line segments or arcs (so 
a triangle specified as isosceles might be represented as scalene), or even pre-
serve easily assumed features such as line segments bounding a polygon (e.g., 
polygons in some manuscripts are represented as bounded by arcs or spiked 
triangles instead of straight lines).28 

In addition to the skills required to produce some diagram of a polygon, a 
circle, and so forth, another set of skills serves to produce a “correct,” or at any 
rate heuristically useful, diagram for the problem at hand. Van Garderen, 
Scheuermann, and Poch enumerate a set of “strands of diagram proficiency” for 
modern mathematics students. These include a conceptual understanding of 
how to use a diagram to solve a given problem, the procedural skill to generate 
an accurate diagrammatic representation of the situation in the problem, and 
the strategic ability to engage the diagram as a problem-solving tool.29 Addi-
tionally, van Garderen et al. identify proficiencies in students’ ability to explain 
how the diagram was used to solve the problem, and their belief in their ability 
to use the diagram appropriately. These latter two are obviously impossible to 
extract from the surviving ancient evidence, but clues to the first three can be 
found, and can yield some insight into the process of mathematical learning at 
play in the papyrus. 

Cases where students of mathematics are not told what a diagram should 
look like are particularly revealing in this sense. Van Garderen, Scheuermann, 
and Jackson record the results of several experiments where students of differ-
ent ability levels were asked to solve word problems with diagrams, but not told 

 
28 On these features see Carman 2018; Netz 2020, 512, 521. 
29 Van Garderen/Scheuermann/Poch 2014, 137. 
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what type of diagram to use.30 The example below (fig. 5) shows two very differ-
ent approaches, along with interviews that illuminate the reasoning process the 
students used. The second student’s carefully counted divisions of the sand-
wich, and the accompanying strategy of making further subdivisions and count-
ing those up, are worlds apart from the iconic depiction of several stick-figure 
students next to an assortment of sandwiches drawn by the first student, who 
ultimately resorts to guesswork when that graphical strategy fails. 

 

Fig. 5a: Figures 5a and 5b: Two different approaches to diagrammatic problem-solving, author’s 
drawing after van Garderen et al. 2013. 

Interview a:  
I: All right, how did you get that answer? Tell me about that. 
S: I don’t know. 
I: Where did the 10 come from? 
S: People. 
I: How did you use this picture then to help solve it? Tell me about that. 
S: I don’t know. 
I: Tell me about what’s this and what’s this. 
S: Those are the students and those are the sandwiches. 
I: OK, and then what were you counting to get to 10? 
S: I just guessed on the 10. 

 

 
30 Van Garderen/Scheuermann/Jackson 2013. 
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Fig. 5b: Figures 5a and 5b: Two different approaches to diagrammatic problem-solving; au-
thor’s drawing, after van Garderen et al. 2013. 

Interview b: 
I: How did you solve this one? 
S: I drew the sandwich. Then I divided it up into 12 ¾ feet long. I drew little 
lines above it and counted all the little fourths, all the way up to 17 sets of 3’s.  
 
The practically oriented problems found in P. Math. and other metrological texts 
are in many ways close analogues to the kinds of problems students were asked 
to solve in studies like van Garderen’s. They engage the diagram in a very dif-
ferent way from geometrical texts, where the construction of the diagram is 
typically explained in the course of the proof. The metrological problems do not 
specify the drawing process in this way. Some are phrased in such a way that 
the appropriate diagram is obvious, like problem f6 from P. Math.: “A right-
angled (triangle) whose hypotenuse is 17. To find the other sides.” Others allow 
for more latitude in selecting a diagram, like o2, which specifies the length of 
each side of a quadrilateral plot of land but does not call it a quadrilateral, ac-
companied by a diagram that is just a horizontal line with the measurements 
marked above, below, and on either side. Such a diagram might be viewed as 
incorrect for the analogous geometrical problem carried out on an abstract 
quadrilateral, but the simplified line diagram includes all the information need-
ed to carry out the calculation. As it happens, the example dimensions given to 
carry out the calculation turn out to refer to a quadrilateral which is actually 
impossible to construct, a problem that could have been illuminated by a more 
faithful diagram. However, the same kind of breakdown between the problem’s 
sample numbers and the geometrical object depicted also occurs elsewhere in 
the papyrus even where the diagrams are more robust. 

Papyri like P. Math and problem collections like the metrological problems 
associated with Hero’s name can thus be construed as valuable witnesses to 
how education in “practical mathematics” might have been constructed in late 
antiquity. Yet on their own the ancient texts leave many gaps in our under-
standing of how mathematical concepts might have been inculcated and prac-
ticed, and how this education might have worked on the learner’s side. In ad-
dressing these mysteries we can call not only on scholarship on ancient 
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pedagogy, where mathematics education is not particularly strongly represent-
ed, but also on investigations of modern mathematics pedagogy exploring how 
students grapple with a growing corpus of mathematical concepts, some more 
successfully than others. 

A particularly lucid and influential study of mathematics learning is Davis’s 
Learning Mathematics, which largely focuses on errors as evidence for how 
students learn mathematics. Davis argues that student errors often follow dis-
tinctive and regular patterns of their own, and explains many of these common 
errors as the result of selecting the wrong conceptual “frame” from the collection 
of frames students acquire in the course of their mathematics education. Davis 
uses the term “frame” flexibly to refer to different types of “knowledge represen-
tation structures.”31 While his particular approach takes an information-
processing view of how the mind handles those structures, the principles of 
mathematics learning he invokes are flexible enough to suit other cognitive 
models as well, such as more embodiment or enaction-focused approaches.32 

A second source of comparisons that will prove particularly useful here is 
Lave’s Cognition in Practice, a groundbreaking study of how non-mathematicians 
perform mathematical tasks in everyday environments like the grocery store. 
Lave found that her experimental subjects typically performed quite poorly on a 
written test of their ability to make calculations. However, when they were ob-
served doing everyday tasks like grocery shopping and meal preparation de-
manding those very same calculations, they performed with a very high degree 
of confidence and accuracy. Lave concludes that there is an important distinc-
tion between contextualized “math-in-practice” and “math conceived as a sys-
tem of propositions and relations (a ‘knowledge domain’).”33 In what follows, I 
will focus on three main lines of investigation: the ways mathematics learners 
seem to acquire mathematical concepts and apply them to new problems (ap-
propriately or inappropriately), the relationship between abstract mathematical 
concepts and what Lave calls “cognition in practice,” and the uses of diagrams 
in mathematics learning. 

 
31 Davis 1984, 107. 
32 On the role of embodiment and gesture in mathematics education, see for example Alibali/ 
Nathan 2012; de Freitas/Sinclair 2012. 
33 Lave 1988, 97. 
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 Problems with Problem-Solving 

Papyri like P. Math. contain a rich variety of types of errors. Some are simple 
scribal errors or departures from Greek orthographical conventions, which these 
papyri of course have in common with papyri of every genre. Some are the nu-
merical equivalent of scribal errors: mistakes in the modified alphabetic system 
used to represent numbers in Greek mathematics. Other types of errors are more 
interesting, since conceptual errors offer another window into the student’s 
learning process. The solver of P. Math., while highly competent in some re-
spects like unit conversions and arithmetical calculations, stumbles into a range 
of conceptual errors. These include failures to match up a problem with a dia-
gram that illustrates features of the structure under investigation in a sensible 
way, inappropriate selection of algorithms for calculation, and confusion about 
the elements of a geometrical object. Other “errors” are not mathematical mis-
takes in and of themselves but rather common-sense breakdowns in choices of 
dimensions, yielding improbably tiny vineyards or granaries, or worse, struc-
tures that turn out to be impossible given the specified dimensions, e.g., of out-
er and inner perimeters and wall thickness. Even though these are not exactly 
errors, they do seem to be “precursors” to errors in the sense that they often 
lead to mistakes in constructing diagrams and performing calculations. That is, 
a breakdown between the solver’s mental conception of the problem and a real-
world object that can actually be pictured does seem to lead him into errors that 
he otherwise might not make. 

Case study 1: Faults with Vaults 

A particularly interesting conceptual error plagues two problems in P. Math 
with the same basic aim: to calculate the volume of a granary shaped as a rec-
tangular building surmounted by a vaulted (kamarōtos) roof. In neither case is 
the form of the vault specified, though the default form (at least in mathemati-
cal teaching problems in the metrological collections) is the relatively mathe-
matically simple case where the vault is a section of a circle. However, this is the 
least of the troubles the P. Math. solver encounters. In the first of these problems 
(n4), the solver multiplies the granary’s length times its breadth, which yields 
the floor area. So far so good, but then he multiplies the depth by a dimension 
he calls the “vault (kamara),” and finally multiplies the two products by one 
another. The resulting product of the four dimensions is then converted from 
solid-cubit volume to grain measure in artabas using the standard conversion 
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figure. But of course, the four-dimensional product of lengths in cubits is no 
longer in solid cubits: Bagnall and Jones delightfully suggest “hypercubits” as a 
name for this newly coined unit of measure.34 The numerical result is an impos-
sibly large 364,500 artabas.35 

Perhaps the solver realized he had gone astray upon revealing this answer, 
because the next problem is framed just the same, though the dimensions are 
reduced: the length from 25 cubits in n4 to 5 cubits in o1, the breadth from 15 
cubits to 3, the depth from 16 cubits to 2, and the “vault” from 18 to 2. The prob-
lem-solving process is close to identical, but a little more deliberate: instead of 
multiplying the two pairs of numbers and then finding their product, the author 
first multiplies the length (misnamed “breadth”) by the depth, then the result 
by the breadth, and finally that result by the “vault.” Of course the result is once 
again nonsense, even after this second attempt with smaller (and thus perhaps 
more tractable) numbers: this tiny granary is calculated to hold 60 solid cubits, 
or about 9 cubic meters. This repetition of the initial error is common in prob-
lem-solvers even today; Davis notes from a study of student mathematical errors 
carried out by Erlwanger that “the malfunction occurs, as it were, at the same 
location in the cognitive machinery. In nearly every case, a super-procedure selects 
the wrong sub-procedure.”36 As in Erlwanger’s study, the solver of P. Math. is 
stuck in the same faulty routine the second time he attempts the problem. 

The solver’s inappropriate introduction of the “vault” dimension thus ren-
ders the problem completely intractable. What was so appealing about that 
framework for solution that the solver attempted it not once, but twice? Bagnall 
and Jones consider that the solver may have had in mind the formula for calcu-
lating the area of a half-oval using the formula 𝐴𝐴 = 3𝑤𝑤/4ℎ, but since the ¾ 
coefficient (or its unit-fraction equivalent) doesn’t appear here, he certainly did 
not get far if that was his intent. To better understand where the solver of P. 
Math went wrong, we might search the metrological corpus for models of cor-
rect solutions. Hero’s Metrica does discuss the measurement of vaults, but only 
briefly. Metrica II.12 proposes a method for measuring a washtub (or bathtub?) 
conceptualized as a slice of a spherical shell: a figure consisting of the space 
between two concentric spheres is sliced by two parallel planes, one defining 
the top of the tub, and the other the flat surface upon which it rests. Hero intro-

 
34 Bagnall/Jones 2019, 149. 
35 Converting this result to more familiar units is tricky as the value of the artabē could vary, 
but converting directly from the result in solid cubits, this volume would be around 15,500 
cubic meters! 
36 Davis 1984, 98. Italics in original. 
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duces II.13 with a retrospective look back at II.12, saying that now that the read-
er has encountered strategies for measuring conical, cylindrical, and spherical 
shapes, he can use the “tub” example as a model for how to perform calcula-
tions on vaults having any of those forms. However, he does not go on to calcu-
late the space inside a cylindrical vault (or any other form), but rather proceeds 
with the process of measuring the torus. He mentions vaults again in II.15, 
where the topic is a cube containing two cylinders intersecting perpendicularly 
to yield a form which he says is useful for designing baths with windows or 
doors on all sides, or “places difficult to roof over with wood.” He does not fol-
low up further on this tantalizingly opaque description, however, and Acerbi 
and Vitrac note that while a comparable figure is mentioned in the preface to 
Archimedes’ Method, the solution does not survive.37 

The connection between vaults and tori at first appears contextual rather 
than mathematical, since Hero refers explicitly to the use of segments of tori as 
decorative elements on architectural columns. However, in measuring the vol-
ume of the torus (II.13, fig. 6) he appeals to a result relating a torus to a cylinder, 
which he credits to a lost work On the torus by a certain Dionysodorus. The torus 
in Dionysodorus’s result is generated by translating the circle ΒΓΔΕ around the 
circle formed by looping the line segment ΑΒ to connect to itself. The cylinder 
he relates to this torus has axis ΗΘ and base radius ΕΘ. Finally, the proportional 
relationship Dionysidoros discovered is that the circle ΒΓΔΕ has the same ratio 
to half ΔΕΗΘ as the torus and cylinder defined above have to one another. A 
neat result indeed, but the Metrica then takes a puzzling turn. As is often the 
case in this text, the numerical “synthesis” where the dimensions and propor-
tions are actually calculated follows the demonstrative “analysis” where they 
were introduced. The synthesis in this case does involve a cylinder, but the 
cylinder turns out to be not the one defined by Dionysodorus, but the one pro-
duced by unfurling the torus so that ΑΒ becomes a straight line rather than a 
circle. Vitrac and Acerbi suggest that the metrical procedure here is likely to be 
a later insertion, though it is not incorrect. Whatever the particular textual his-
tory of this proposition, the close association between tori and cylinders is clear.  

 
37  Hero 2014, 293 n. 145. On the different ways this form is treated by Archimedes and the Chi-
nese mathematician Liu Hui, see Netz 2018. 
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Fig. 6: Schematic depiction of the features of a torus from Hero Metrica II.13. 

The next section of the Metrica (II.14) gets us one final step closer to the connec-
tion between the vault and the cylinder. This proposition offers a method for 
measuring the volume of a segment of a cylinder sliced by a plane through the 
center of its base, citing a result from Archimedes’ Method that this segment will 
be one-sixth the volume of the rectangular prism with cross-section defined by 
the square circumscribing the cylinder’s base and the same height (maybe more 
easily conceived of as length) as the cylinder. The diagram associated with this 
problem shows the cylinder mounted on the circumscribing square, in a way 
that immediately summons the image of a structure with a cylindrical vaulted 
roof. So in a roundabout way, Hero does relate the torus to the cylinder, a form 
that could be related to a vault, but the application to problems like the vaulted 
granary in P. Math. is hardly obvious. 

However, in the texts of the metrological corpus compiled in the centuries 
following Hero, problems having to do with the measurement of vaults became 
more common as the focus on real-world objects grew stronger. Heiberg’s edi-
tion of the Stereometrica includes two clusters of problems related to the calcu-
lation of the area or volume enclosed by vaults and arches. The more obviously 
relevant of these is found in the collection edited by Heiberg as the second book 
of the Stereometrica. Given the cautions mentioned above about the difficulties 
of creating an edition of the Stereometrica, I should begin with a word about 
how the problems I discuss here fit into that complicated manuscript tradition. 
All are found in the manuscript denoted S (Codex Seragliensis G.I.1 or Constan-
tinopolitanus Palatii Veteris 1), which likely dates to the early tenth century, 
making it the earliest of the metrological manuscripts, and the only one to con-
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tain Hero’s own Metrica.38 Some are also found in the other major manuscripts 
that contained material found in Heiberg’s edition of the work, and for the most 
part appear in the same order in all manuscripts.39 This problem series is thus 
built on relatively firm foundations by the standards of the metrological corpus. 

This cluster (2.28–45) begins by telling the reader how to construct a semi-
circular arch within a square framework, then how to find the area enclosed by 
the outer and inner semicircular perimeters of a free-standing arch, then com-
bines the two structures in the form of a square framework enclosing an interior 
semicircular arch and surmounted by another. The next problem (32) introduces 
a new method for calculating the area under a semicircular arch, and then pro-
ceeds to describe a comparable process for finding the area under a “dispropor-
tionate (apeulogos)” arch, which is not clearly described in the problem (itself 
beset with scribal errors). Returning to more readily comprehensible objects, the 
author next integrates the method from the first part of problem 32 into a prob-
lem involving arches made of bricks which border the exterior of a segment of 
rubble wall. The next few problems continue with the now-established context 
of architectural construction while introducing a new shape, the “conch 
(konchē)”: first constructed of bricks, then covered in mosaic tiles. Next the 
author returns to the vault. Let us study this problem more closely:  

To measure a vault whose enclosure is less than a semicircle, of which the base of the in-
terior space is 14 feet, and the “front-wedges” [πρωτοσφῆνες; this term seems to refer to 
the thickness of the wall] on each side 2 feet, whose perpendicular in the interior space is 
6 feet, and whose length is 15 feet. Do it like this: add the 14 feet of the interior space and 
the 6 of the perpendicular; the result is 20. Of this [take] the half; the result is 10. [Multi-
ply] this by the 6; the result is 60. Again, add the 14 feet of the interior space and the 
“front-wedges” of 2 feet on each side; the result is 18. To these add the 6 of perpendicular 
of the interior space and the 2 feet; the result is 26. Of these [take] half; the result is 13. 
[Multiply] these by the whole height/extension (anatasis), by 8; the result is 104. Divide 
this by the 60 feet of the interior space; the remainder of the framework/foundation is 44 
feet. Multiply this by the 15 feet of the length; the result is 660 feet. So large is the vault.40 

We may immediately note how the author here has gone about calculating the 
cross-section of the vault: the formula (𝑑𝑑 + ℎ)/2 ×𝐻𝐻 (in this case, (18 +
6)/ 2 × 8). Just as in P. Math., an incorrect formula has again been engaged to 
find this area. However, the erroneous formula here may point the way to the 

 
38 For more details on this manuscript, see Hero 2014, 85–97; Lévy/Vitrac 2018, 190–192. 
39 For a detailed discussion of how the problems are ordered in the manuscripts, see Hero 
2014, 471–474. 
40 [Hero] Stereometrica 2.37. 
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reasoning behind the error in P. Math, since the error here is slight — the author 
has forgotten to include a corrective factor of (1 + 1/21), which was previously 
introduced in problem 28. The same formula, or variants of it meant to apply to 
different cross-sections, is used several times on problems of this type in the 
Stereometrica, and it is plausible that it was a common formula for this kind of 
calculation in late antiquity.41 The solver of P. Math. could have recalled that 
there was a formula for calculating the volume under a roughly semicircular 
vault that involved combining three different dimensions of the cross-section, 
including the height of the space under the vault, and multiplying those by the 
length to produce a volume. In Davis’s terms, however, he inappropriately re-
trieved the “multiplication” rather than the “addition” frame in the course of 
carrying out that calculation, hence ending up with a granary occupying four 
dimensions rather than the more conventional three. The additional errors of 
failing to divide by half and omitting the (1 + 1/21) corrective here seem trivial by 
comparison. 

Of course it is impossible actually to reconstruct the thought process of the 
P. Math. solver, particularly given the lack of a parallel, correctly solved prob-
lem in that text. But, in a sense, that lack is precisely the point: the structure 
and scale of the Stereometrica are such that the author can introduce new geo-
metrical forms gradually, starting from simple shapes and building up to more 
complex variations and combinations. The reader of manuscript S has by this 
point been led carefully along a path where each step usually involves a fairly 
minor variation on what has come before. The same would have been true for 
readers of other sequences of problems in other versions of the manuscript, 
which typically group similar problems together, even if the particular group-
ings change from one manuscript to the next. The steps of the path are by no 
means flawlessly laid; the Stereometrica, including this sequence of chapters, 
contains a great many erroneous formulas. However, unlike the case of the 
comparatively short P. Math., the lengthy Byzantine codices of metrological 
problems afford the opportunity to check a formula against a similar problem, 
and if a variation occurs (as in this case), the reader is provoked to compare the 
two and select what appears to be the correct algorithm rather than doubling 
down on an incorrect formula as in P. Math. 

 
41 Other ancient pedagogical contexts may furnish some comparable examples. Monika 
Amsler suggested in her comments to this paper that the remarkable stability of the exemplary 
rhetorical progymnasmata described by Theon, Aphthonius, Nicolaus, and other authors might 
reflect a similar case. On the pedagogical context and sources of these examples, see Webb 
2009, 39–49. 
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The process of gradually accumulating related problem-solving techniques 
invites comparisons between recently acquired techniques and new ones, and 
provides opportunities for self-correction not unlike the problem-solving dia-
logues between students and teachers (or researchers) common to contempo-
rary studies of mathematical problem-solving. Davis notes that in the studies he 
analyzes, when a teacher intervened by following up a student’s retrieval of an 
incorrect procedural frame (e.g., “4*4=8,” where the “addition” frame is inap-
propriately retrieved) by asking them the question that would have generated 
the wrong answer (in this case “what is 4+4?”), the student nearly always im-
mediately corrected the previous wrong answer rather than simply answering 
the new question. Even though many of the problems in P. Math. are framed as 
though they represented a question-and-answer dialogue between teacher and 
student, the actual learning process does not seem to have involved a similar 
one-on-one dialogue where the student could have been alerted to his incorrect 
problem-solving “frames.” While the Stereometrica is clearly even further re-
moved from the classroom context of genuine question-and-answer dialogue, 
its more robust structure, with a greater number of similar problems gathered 
together, could have facilitated a cognitive process in the reader more like what 
Davis posits for the contemporary student who corrects her response thanks to 
an “interesting phenomenon of perception, control or short-term memory” fos-
tered by the dialogue with the teacher.42 

Besides the greater availability of “checks” on incorrect formulas and prob-
lem-solving techniques in the Stereometrica compared to P. Math., we should 
not neglect to mention the value of the Stereometrica’s chains of problems relat-
ed to a particular context, in this case the construction of buildings. P. Math. is 
one of the largest collections of mathematical problems in a papyrus, but even 
so it is a short text relative to the Heronian metrological works. Within a span of 
relatively few problems which aim to address a very wide-range of problem-
solving techniques, it is simply not possible to follow the Stereometrica’s strate-
gy of gathering together a large number of problems focused on vaults and 
arches and incrementally building complications onto a relatively firm problem-
solving foundation. By the time the reader works through a series of problems 
like Heiberg’s Stereometrica 2.28–44, she has built up a fairly solid mental pic-
ture of the walls, archways, peristyles, and roofs in those problems. Those im-
ages may not be elegantly drawn, as is the case for the Vatican manuscript 
(fig. 7), but simply seeing how the geometrical objects fit into the more complex 
structures allows the reader to anchor their problem-solving process in their 

 
42 Davis 1984, 100. 
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lived experience. By mentally constructing the more complex structures step by 
step, the reader is less likely to make a grave conceptual error like the extra 
dimension attributed to the granary by the P. Math. solver. As we will see, this 
kind of mental slippage in picturing the object under study is a recurrent prob-
lem in P. Math. 

Fig. 7: Stereometrica text and images from Vat. gr. 215, fol. 9r. 
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Case study 2: Reality Breaks 

Some of the “errors” in P. Math. are not really mathematical errors at all, but 
rather involve a breakdown between the numerical values stipulated in the 
problem and the real-world objects they allegedly correspond to. The vagueness 
of some of the problem statements can make this assessment difficult, as when 
problem b5 calculates the volume of a form called a “quadrangular trapezoid,” 
an odd nomenclature that turns out to refer to an extremely elongated trapezoi-
dal prism. Certainly it is true that a trapezoidal prism (like any polygonal prism) 
has quadrangular sides, but this is an odd way to frame the shape given that 
prisms are usually just identified by their cross section. The trouble the solver 
seems to have giving the shape a name appears to mirror a difficulty in visualiz-
ing its dimensions; Bagnall and Jones point out the improbability of a “rod-like 
object” 48 cubits in length, just 10 cubits wide, and only 5 fingers and 2 fingers 
on the parallel trapezoidal surfaces. Other forms are improbably small rather 
than too large; the vaulted granary with a 5x3x2-cubit rectangular base sur-
mounted by a 2-cubit high vault was already mentioned above. Trivial as these 
errors may seem, they suggest a breakdown in common sense at some point in 
the process from devising the problem in the first place, to copying it down, to 
attempting a solution, which makes it difficult for the solver to perform a “reali-
ty check” on whether the numbers make sense. In the case of problem b5 (the 
“quadrangular trapezoid”), the solver has so much trouble envisioning the ob-
ject under consideration that he fails to perform the necessary unit conversion 
from cubits to fingers, a rare mistake for him. 

Problem b3 demands the solver picture a more complicated object: a tower 
(porgos) with “substructures (krēpidai),” where the aim is to calculate how 
many bricks the tower contains. This kind of calculation has a long tradition in 
both the Mesopotamian and Egyptian traditions.43 In this case, the tower is de-
scribed in an unnecessarily confusing way and is quite difficult to picture. First, 
the tower: we are given the outer and inner perimeters, as well as the thickness 
of the walls, but not the shape. In fact, the given dimensions (where the thick-
ness of the wall is equal to the difference between the two perimeters) render 
the tower impossible to construct, whatever its form (in the likely event it was a 
rectangle, for example, the wall’s thickness would be ¼ the difference between 
the perimeters). Still, the solver chooses an appropriate frame for this calcula-
tion, recognizing that the wall’s cross-section can be dissected into four trape-

 
43 On “brick numbers” in Babylonian mathematics, see Friberg 2007, 89, 93–95, 169–174. 
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zoids and calculating the walls’ volume using the algorithm for calculating the 
volume of a trapezoidal prism.  

So far so good, but what about the “substructures”? One might reasonably 
imagine that the tower would be supported on some kind of rectangular prism, 
likely hollow on the inside like the tower. The solver seems to have had this idea 
in mind in stating the problem: “the length of the rectangle 10 [cubits], breadth 
8 cubits.” However, alert readers will already have noticed that the substructure 
does not have enough given dimensions, and the solver runs into trouble be-
cause of this later in the problem when he goes to calculate the number of 
bricks it is made of. 

Recognizing the missing dimension of thickness, he spontaneously intro-
duces a factor of 2 cubits into his calculations on the substructures, likely im-
porting it from the “tower” section of the problem and assuming incorrectly that 
they have the same thickness as the tower walls. However, rather than calculat-
ing as though he were picturing an 8x10x2 cubit rectangular prism (which 
would be a rickety support indeed for the tower but at least makes some sense 
spatially), he lets the plural “substructures” in the problem statement lead him 
to satisfy the “rectangular prism” schema in a different way. He posits two 
“substructures” of 8x2 and 10x2 cubits respectively, and then adds together the 
size of these two-dimensional bases. But since the brick calculations require a 
three-dimensional structure, the schema is lacking a dimension. The seeds of 
the solver’s catastrophic response to this lack have already been sown in the 
form of a numerical error at the very start of the 10*8 multiplication: “Likewise 
also of the rectangle, [the length, 10] times 60. The result is 20.” Obviously, 60 is 
an error for 2, given that the result is 20. But that 2 itself has just been intro-
duced by the solver’s need to fill in one missing element in the dimensional 
schema, and his decision to import it from the “tower” frame. And now at this 
later point in the problem, he repeats the strategy: he again draws the missing 
dimension from the “tower” frame, this time multiplying the two bases each by 
the height of the tower (60 cubits), rather than any given measure correspond-
ing to the “substructures.” The solver then adds up the volumes of the two tow-
er-height “substructure” sheets, finding the sum slightly larger than the volume 
of the tower. He then converts the solid cubits to bricks with a factor of 48, 
yielding the answer 213,120 bricks. 

As is often the case in P. Math., the solver’s arithmetic is unproblematic, but 
this tower is built on the shakiest of conceptual foundations. The solver is not 
disturbed by the fact that the “substructures” represent the bulk of the construc-
tion because he has not visualized the tower-substructure complex in enough 
detail to have a sense for whether this should be the case. The diagram, drawn 
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on the verso of B, emphasizes this confusion: it has suffered considerable dam-
age but appears to have consisted simply of a trapezoid with some horizontal 
lines across it, marked with “8” at the bottom (the length of one of the “sub-
structures”), “60” at the side (the height of the tower) and a “54” that figures 
nowhere in the problem, like the trapezoidal shape itself. However, a trapezoid 
marked with a “54” dimension did feature in the problem illustrated at the top 
of the recto of B. Given the conceptual confusion the solver experienced with 
the basic task of picturing the tower/substructure complex, it would not be 
surprising if he borrowed the last stable conceptual image he had of a mathe-
matical object, the trapezoid from problem b1 (= a5), to fill the gap. 

As in the case of the vaults described above, the total collapse of the solver’s 
mental image of the tower/substructure complex seems likely to stem in part 
from the structure of the text itself. Problem b3 occurs early in the text, follow-
ing a series of problems on trapezoids and trapezoidal solids. The only excep-
tions to this pattern are a unit-fractions exercise and the problem that immedi-
ately precedes it, a trivially simple calculation of the area of a square field. It 
would not be surprising, then, if the solver carried the “trapezoid” conceptual 
frame from these prior problems into problem b3. Moreover, he used the “trape-
zoid” frame correctly in dissecting the tower’s cross-section into four trapezoids 
to find its area. It is only when he attempts to determine the volume of the 
pathologically underdetermined “substructures” that the strength with which 
this conceptual frame has been lodged in his mind leads him astray, producing 
the incorrectly visualized “substructures” and the nonsensical diagram. Had 
problem b3 been preceded instead by a series of problems on rectangular 
prisms, the solver might have performed better even if the tower’s structure was 
still underdetermined in the problem. Much like the case of the vaults, a text 
like the Stereometrica creates a hedge against these lapses in visual comprehen-
sion by building up the components of more complex structures more gradual-
ly. 

Students attempting to solve mathematical problems today often indicate 
comparable difficulties with common-sense checks on numerical calculations. 
Davis ascribes several such errors to inappropriate retrieval of mathematical 
“frames.” One student, asked to divide 6 into 3606, arrived at the incorrect an-
swer of 61.44 When the interviewer, attempting to spark a self-correction, then 
asked the student to divide 6 into 366 (which would in fact yield 61), the student 
was not surprised, but accepted the identity of the answers as correct, since she 
had learned that “adding zero doesn’t change [the answer]” and “zero means 

 
44 Davis 1984, 199–200. 
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nothing.” The student’s inappropriate retrieval of the “addition” frame for the 0 
in the division problem, coupled with the semantic drift in the phrase “zero 
means nothing,” overwhelmed what should have been their common-sense 
reaction that these very different dividends should not yield the same quotient. 

Davis explores another kind of “framing” error that speaks more specifically 
to the breakdown between numerical and real-world objects, centered on prob-
lems of the following type.45 When students (even engineering, physics, or math 
students) asked to put a phrase like “there are six times as many students as 
professors” into the form of an equation involving the variables S and P, they 
overwhelmingly wrote the equation erroneously as “6S=P.” The error (called the 
Rosnick-Clement phenomenon after the psychologists who first studied it) af-
fects people regardless of their level of mathematical skill and experience, and 
even trumps real-world experience with the objects named in the problem. One 
might think that the error simply stems from writing the S and P in the order in 
which “students” and “professors” were encountered in the problem statement, 
but switching the word order had no perceptible effect on the results. The stu-
dents, familiar with the fact that students outnumber professors (usually by a 
factor of considerably more than 6) should have been able to perform the com-
mon-sense check that multiplying the number of students by 6 should not yield 
the number of professors. 

The very same error persisted in different formulations of the problem. A 
student familiar with the recipe for vinaigrette (which calls for more oil than 
vinegar), who was even given the correct formula 3V = O for the proportions, 
still managed to talk herself into reversing the proportions, drawing pictures 
with the reversed proportions, and finally insisting that the formula meant the 
dressing contained more vinegar than oil. Even a mathematically adept physics 
major, given a formula describing the proportions of people in England and 
China, persuaded himself to reverse the meanings of “E” and “C” in the formula 
rather than renounce his incorrect problem-solving frame. These students are 
not unlike the P. Math. solver, who finds the “trapezoid” frame so firmly lodged 
in mind after several repetitions that it is difficult to break even when encoun-
tering the apparently trapezoid-free tower-complex problem. Like the students 
Davis describes, the P. Math. solver seems to talk himself into a mindset where 
an absurd fusion of a tower supported by thin rectangular sheets as tall as the 
tower itself seems like a plausible construction. Davis makes the key point that 
solvers were not plugging in sample numbers to check that their formulas made 

 
45 Davis 1984, 111–123. 
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sense, which would have called attention to the breakdown between reality and 
number here. 

How can Davis’s characterization of these errors help us better understand 
what is going on in P. Math.? Let us consider a few more troubled mappings 
from reality onto mathematical problems in the text. Problem f2 posits three 
granaries containing various amounts of wheat (200, 300, and 400 artabas re-
spectively). The problem’s drama begins when “someone came in and mixed 
them up. To find 630 artabas. We proceed as follows.” But proceed with what, 
exactly — what is this mysterious “630 artabas” about, and why did someone 
come and mix up the grain from different granaries? One might surmise that 
they came not only to mix up the grain, but also to steal it, and took 630 artabas 
out of the original 900. And indeed that is quite correct, as Bagnall and Jones 
point out a parallel in P.Cair. cat 19758 (problems 47–49), where someone came 
along, mixed up the grain from each granary, and then stole some grain, so the 
problem is to determine how much of the stolen wheat originally came from 
each granary. So in this case, rather than failing to correctly picture a realistic 
object, as in the case of the very long “quadrangular trapezoid” of b5, here the 
solver has failed to imagine a plausible process for the grain-theft.  

A comparable case occurs at c2, where “someone loaded on a boat, from the 
granary half, and for the taxes one-third, and for the pay of the donkey-driver 
one twelfth, and there remained on the boat 50 artabas of wheat.” Now, as 
Bagnall and Jones note, the activities described in the problem make sense in 
the context of unloading a boat rather than loading one. The problem continues: 
we must find the solution to this indeterminate equation by adding the fractions 
listed, finding that their sum is 1/12 less than a unit, and calculating that since 
the 50 artabas remaining are 1/12 of the original amount, the original amount on 
the boat (before unloading) was 600 artabas. Yet the solver frames the solution 
as “the boat will hold 600 artabas of wheat” — again, suggesting he has a 
framework of loading rather than unloading in mind. Still, even though the 
“loading” frame does not make sense with the tax calculation and so forth, the 
solver seems to have in mind a robust and stable context of activity within that 
framework, and carries it out correctly. So this case differs from f2 in that the 
solver is able to picture the process correctly, implausible though that process 
may be in a strictly real-world context. 

Lave warns that typical studies of mathematical cognition presuppose that 
all action is preceded by a separate “structuring” step, which leads to a misun-
derstanding of the relationship between experience and strategic thought: 
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The view is consistent with an emphasis on thought distanced from experience as the ca-
nonical form of human experience to be investigated, but it is not compatible with the 
everyday math practices just described, nor with a theory of practice.46 

Lave’s experimental study of ordinary people (referred to in the text as “just 
plain folks” or “jpfs”) involved first giving them a formal mathematical test, and 
then following them around the grocery store, watching and questioning them 
as they select, buy, and prepare food. Most of the people in her study performed 
quite poorly on the math test but extremely well on practical tasks like deter-
mining which size jar of mayonnaise was the better buy (averaging 98% accura-
cy). As she points out, “98% accuracy in the supermarket is practically error-
free arithmetic, and belies the image of the hapless jpf failing cognitive chal-
lenges in an everyday world.”47 Lave’s study found 

not a single significant correlation between frequency of calculation in supermarket, and 
scores on math test, multiple choice test, or number facts. There is a significant correla-
tion between weight and volume facts (but not length) and frequency of calculation in the 
supermarket.48 

The high correlation between shoppers’ mastery of facts helping them make 
weight or volume conversions and their fluency of calculation in the supermar-
ket is of particular interest in the context of the ancient metrological texts. 
P. Math. and other mathematical papyri, as well as texts like the Stereometrica, 
provide the reader with an astonishing array of conversion mechanisms for 
length, area, volume, and weight. These include universal conversions that 
could work for any substance as well as more specific conversions. For example, 
Stereometrica 2.54 includes standards set by a praetorian prefect named Modes-
tus for converting fresh or stored barley from xestai to cubic feet, bacon from 
cubic feet to litrai, and so on. 

And in fact the writer of P. Math. functions very fluidly with those conver-
sions, nearly always performing them correctly. His fluency with conversions 
and other arithmetical tasks suggests an orientation much like Lave’s jpfs. He is 
really very competent within a known framework of mathematical action, but 
he often struggles to retrieve and apply the correct problem-solving frame for 
new kinds of problems. These problems are exacerbated by the relative lack of 
problem-solving supports in the text such as are found in the Stereometrica, 

 
46 Lave 1988, 130. 
47 Lave 1988, 58. 
48 Lave 1988, 57. 
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notably chains of problems on similar geometric forms, generally built up from 
simpler to the more complex. Crucially, in the Stereometrica these chains are 
often focused on a common real-world application like buildings (or vessels 
containing water, ships, theaters full of seats, etc.), encouraging the reader to 
build up a relatively robust mental picture of the object in question that may 
help them perform a “reality check” on the results. Lave’s study offers an im-
portant intervention in conventional studies of mathematical problem-solving 
as divorced from the “real world”: 

I propose to address cognition and culture and their various entailments at different levels 
of social analysis. Among other things, this requires a broadening of the terms of analysis 
to reflect the claim that the ‘person,’ including the person thinking, is constituted in rela-
tion with other aspects of the lived-in world.49 

These texts (P. Math. and other papyri focused on practical problem-solving, as 
well as the “Heronian” metrological texts) make their meaning not merely from 
recording the arithmetical structures of calculating algorithms, but more pro-
foundly from fitting those algorithms into a concrete and populated world. Cru-
cially, the Stereometrica constructs knowledge by arranging problems into clus-
ters that replicate the construction of objects in the world itself: from abstract 
arches to arches of bricks, to walls, to roofed-over buildings. These clusters 
would seem to constitute a pedagogical process in their own right, affording the 
reader a familiar and grounded problem-solving environment more like the 
grocery store where Lave’s subjects thrived than the abstract math test she ad-
ministered her “hapless jpfs” beforehand. 

 Conclusion 

The corpus of Greek metrological texts developed after the Metrica, like the 
Geometrica and Stereometrica as well as papyri containing related “practical 
mathematics” problems, owe a great deal to the much older Egyptian and Mes-
opotamian traditions of arithmetical problems focused on techniques for meas-
uring and manipulating real-world objects. Not only do the techniques and 
content of the problems differ between the “demonstrative” geometrical and 
“algorithmic” arithmetic traditions, but so does the very language in which 
those problems are couched. Greek geometers in general hewed remarkably 

 
49 Lave 1988, 180. 
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closely to a canonical model of proof-writing. In this model, proofs proceed 
through a series of formulaic steps couched in equally formulaic language: from 
enunciation (protasis) to conclusion (sumperasma), all progress evidently made 
not by the author’s own hand but a shadowy entity adumbrated by the third-
person passive imperatives that are such a peculiar verbal marker of these texts. 
Fowler and Taisbak memorably characterize this mysterious actor as the “Help-
ing Hand,” which “is always there first to see that things are done and to keep 
the operations free from contamination by our mortal fingers.”50 The “Helping 
Hand” is an effective rhetorical tool, suggesting that the work of mathematical 
proof happens in a domain far removed from human fallibility. The geometrical 
proof comes prepackaged and sanitized, as it were, without any indication of 
the trials and errors the text’s author doubtless experienced in its discovery.51 By 
contrast, texts in the arithmetical tradition typically frame the mathematical 
activities they recount as direct instructions to the reader, as an active account 
of steps being taken by the author, or both. 

This difference results from the different generic expectations of the two tradi-
tions, to be sure, but it also resonates powerfully with questions of “knowledge 
construction.” Texts in the geometrical tradition, with their impersonal, passive 
constructions mediated by the “Helping Hand,” are worlds away from the first- 
and second-person constructions of the arithmetical tradition. The difference 
between a problem framed as being solved through an impersonal and perma-
nently valid demonstrative act on the one hand, and a problem framed as being 
solved through a person’s selecting an algorithm, carrying it out, and inviting 
the reader to do the same (explicitly or implicitly) on the other, also reframes 
the meaning of “error.” An error in a geometrical demonstration might be seen 
as a fatal flaw because of the impression of impersonal eternity the generically 
imposed form of the solution creates. But in a problem framed as a personal 
adventure in problem-solving, errors and other idiosyncrasies have a value of 
their own as witnesses to that peculiar personal experience.  

When the P. Math. solver accidentally imagines a four-dimensional granary, 
or collapses the area diagram of a field down to just one dimension, those choices 
open up a window — however hazy — into a living process of “knowledge con-

 
50 Fowler and Taisbak 1999, 362. 
51 This is not to say that Greek geometrical texts are devoid of personality, of course; Netz 
describes some of the authorial personae developed in Greek geometrical texts at Netz 2013. 
Still, he describes a textual tradition where “the mathematician’s results cannot be otherwise” 
(225) even if the writing style varies from author to author, which is clearly not the case here. 
For additional considerations of authorial personae in mathematical commentaries, see Asper 
2019. 
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struction” that works by fits and starts as students of different ability levels 
grapple with mathematical concepts and their real-world analogues. The same 
may be said for the compilers of the metrological problems that crystallized into 
the Stereometrica and related texts: their choices to bring a certain set of prob-
lems and tables together represent a form of “knowledge construction” in its 
own right. That construction process roots the invariant principles of mathemat-
ics in a gloriously varied world, where the mathematical system’s users navigate 
a complex landscape of culturally determined units of measurement and as-
semble geometrical forms into concrete constructions, building meaning from 
the progress from a semicircular arch to a roofed building every bit as much as 
they build meaning from a growing collection of algorithms for calculation. 
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