
Alexander Mel’nikov, Sergey Mironov, and Alexander Buzdin
13 Interference phenomena in

superconductor–ferromagnet hybrids

Abstract: The mismatch of Fermi surfaces for electrons with up and down spin ori-
entation in ferromagnets leads to the oscillatory behavior of the Cooper pairs wave-
function. In the ballistic regime the Cooper pair phase accumulation depends on
its trajectory and the exchange field along the trajectory. The critical current of the
superconductor–ferromagnet–superconductor (SFS) Josephson junction results from
the phase interference from different trajectories. We demonstrate how such an inter-
ference may produce a long-range singlet proximity effect. The additional spin–orbit
interaction provides amechanism for nonconventional Josephson junction formation,
which may have an arbitrary phase difference in the ground state. As expected, scat-
tering on the impurities weakens the interference effects. However, in the mesoscopic
systems their presence may lead to new qualitative and observable effects.

13.1 Introduction

V. L. Ginzburg was the first to point out the antagonistic character of magnetism and
superconductivity [1], by studying the orbital mechanism of interaction (via a vector
potential A) between them. Later it became clear that the singlet superconductivity is
primarily destroyed by the exchange field h of the ferromagnet, making their coexis-
tence impossible in bulk materials. This paramagneticmechanism [2] is ineffective for
the triplet Cooper pairs and now we know of four triplet ferromagnetic superconduc-
torsUGe2,URhGe,URhGe andUIr [3]. Anoverwhelmingmajority of superconductors
are singlet ones and the interplay between magnetism and superconductivity is only
possible in the superconductor–ferromagnet (SF) hybrid structures near the SF inter-
face. During the last fifteen years an important progress has been achieved in experi-
mental and theoretical studies of SF hybrids and a lot of interesting new phenomena
was revealed (as reviews see [4–7]).

In the case of the proximity effect between superconductor and normal metal (N),
the correlated electrons (Cooper pairs) penetrate into the normal metal at a meso-
scopic length scale preserving their superconducting correlations and providing the
superconducting current flow through SNS weak links [8]. The use of a ferromagnet
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as a normal metal opens a way to manipulate the spin structure of the propagating
Cooper pair. Both the internal magnetic field and exchange interaction in the ferro-
magnet lift a degeneracy with respect to spin orientation of the electrons. This leads
to different de Broglie wavelengths of electrons at the Fermi surface for spin-up and
spin-down orientation and produces a modulation of the Cooper pair wavefunction
while propagating along the ferromagnet [4], similar to the Fulde–Ferrell–Larkin–
Ovchinnikov state [9, 10]. As a result, an oscillatory damping of the superconducting
wavefunction is known to appear when the ferromagnetic ordering occurs in a normal
metal link connecting two S electrodes. This phenomenon provides the basis for the
π-junction realization [11–13].

Considering the quantum mechanics of quasiparticle excitations this destructive
effect of the exchange field can be viewed as a consequence of a phase difference
γ ∼ L/ξh = 2Lh/ℏvF gained between the electron- and hole-like parts of the total
wavefunction at the path of the length L [14, 15]. Here ξh = ℏvF/2 h is a characteristic
length determined by the exchange field (vF is the Fermi velocity). Both in the clean
and dirty limits the measurable quantities should be calculated as superpositions of
fast oscillating contributions eiγ from different trajectories and, thus, rapidly vanish
with the increasing distance from the SF boundary.

As a result of this interference the critical current of SFS junction in the ballistic
regime oscillates and decays with the thickness of the ferromagnetic layer df

Ic ∼ sin ( 2df
ξh )( 2df

ξh ) . (13.1)

The oscillatory behavior of the superconducting order parameter in ferromagnets
produces the commensurability effects between the period of the order parameter os-
cillation (which is of the order of ξh) and the thickness of a F layer [16]. This results in
the striking nonmonotonic superconducting transition temperature dependence on
the F layer thickness in SF multilayers and bilayers [17].

In the diffusive regime the lengths of the trajectories increase dramatically and the
decay of the superconducting correlation becomes exponential (and thusmuch faster)
with a “dirty limit” characteristic length ξf = √Df

h , where the diffusion coefficient in
the F layer Df = 1

3 vF l is determined by the electron mean free path l. This is related
to the averaging of the fast oscillating contributions eiγ for many random trajectories
created by scattering.

In the case of an inhomogeneous (noncollinear) exchange field distribution the
so-called odd-frequency triplet pairing component in the anomalous Green functions
is generated [5], which provides themechanism for the long range proximity phenom-
ena. The resulting dramatic increase in the range of superconducting correlations has
been confirmed by the experiments on SFS Josephson junctions with a composite F
layer containing a region with the noncollinear magnetic moments [18, 19].
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In thepresent chapterwedemonstrate that other possiblemechanismsgenerating
the long-range proximity effect exist due to the quantum interference phenomena. In
Section 13.2 we study the Josephson junctions with composite F layer comprising the
noncollinear regions in the ballistic regime. The interface between the noncollinear
magnetic domains produces the magnetic scattering with the flip of the spins of the
Cooper pair electrons. Therefore, the phases accumulated in different domains may
have opposite signs and compensate each other. This phenomenon gives rise to the
long-range Josephson current revealed by the first or second harmonics [20, 21] and
opens a way to a simple control of the critical current of SFS junctions.

Another type of interference is provided by the nanowires, where the spin–orbit
interaction competes with the orbital and exchange interactions and gives rise to the
novel type of the Josephson “φ-junction” (with an arbitrary phase difference at the
ground state) [22]. The physics of these interference phenomena is considered in Sec-
tion 13.3.

Finally in Section 13.4 we consider the mesoscopic SFS structures and analyze in
depth the averaging procedure in the presence of the potential scattering. It happens
that the standard Usadel approach overlooks the mesoscopic sample-to-sample fluc-
tuations of the Josephson current which are in fact long-range. Indeed, the destructive
interference cannot play such a dramatic role when we calculate root-mean-square
values due to partial phase gain compensation in squared quantities. This circum-
stance naturally explains the puzzling observation of the long-range SF proximity ef-
fect in the experiments [23–25], where no traces of a noncollinear magnetization were
reported.

13.2 Josephson current through the composite ferromagnetic
layer

The goal of this section is to show that the interference phenomena provide a pos-
sibility to cancel the particle–hole phase difference for a large group of quasiclassi-
cal trajectories due to either spatial or momentum dependence of the exchange field.
Such a set of trajectories provides a long-range contribution to the Josephson current
through a ferromagnetic system. We consider two generic examples which illustrate
the above scenario of a long-range proximity effect: (i) Josephson transport through
a pair of ferromagnetic layers with a stepwise exchange field distribution; (ii) Joseph-
son transport through a nanowire with a specular electron reflection at the surface
and exchange field varying with the changing quasiparticle momentum.
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Josephson transport through a ferromagnetic bilayer

Let us start from the simplest model illustrating the origin of the quasiparticle inter-
ference suppression: Josephson junction containing two ferromagnetic layers of thick-
nesses d1 and d2, respectively (see Figure 13.1). Here we consider the limit of the short
junction d1 + d2 ≪ ξs, where ξs is the superconducting coherence length. The ex-
change fields h1 and h2 in the layers are rotated at the angle α. For the sake of sim-
plicitywe assumehere the superconducting gap (exchangefield) to vanish inside (out-
side) the F layer. The current–phase relation in the clean limit is known to be easily
defined by the spectrum of the subgap Andreev states

ϵ = ±∆0 cos (φ + γ
2 ) , (13.2)

where ∆0 is the temperature-dependent superconducting gap, φ is the Josephson
phase difference, and γ = γσ(nF) is the spin-dependent phase shift between the
electron- and hole-like parts of the total wavefunction along the quasiclassical trajec-
tory defined by the vector nF. Summing up over all trajectories we find the current–
phase relation in the form:

I = 1
s0

∫ ds∫ dnF [j(φ + γ) + j(φ − γ)] (nF , n) , (13.3)

where s−10 = kF/2π (s−10 = (kF/2π)2) for 2D (3D) junctions, n is the unit vector normal
to the surface of the superconducting electrode, the integral ∫ . . . ds is taken over the
junction cross-section, and

j(φ) = e∆0
2ℏ sin φ

2 tanh(∆0 cos(φ/2)
2T ) = ∑

n≥1

jn
2 sin(nφ) . (13.4)

is the current–phase relation for the junction of the same geometry and zero exchange
field. The coefficients jn in the above Fourier expansion read:

jn = 2eT
πℏ ∞∑

m=0

2π∫
0

dχ sin χ sin(nχ)
μm + cos χ

, (13.5)

where μm = 2π2T2(2m + 1)2/∆20 + 1.

Fig. 13.1: Josephson junction containing two ferromagnetic layers. Lin-
ear quasiparticle trajectory is shown by the dashed line.
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To find the phase gain γ for a certain of quasiclassical trajectory passing through
the point R we should consider the Andreev-type equations:− iℏvF τ̂z∂s ĝ + h(R + snF) σ̂ĝ + (13.6)

( 0 ∆(R + snF)
∆∗(R + snF) 0

) ĝ = ϵĝ ,

where s is the coordinate along the trajectory, ∆ is the gap function, ĝ = (u, v), u
and v are the electron- and hole-like parts of the quasiparticle wavefunction, and τ̂ =(τx , τy , τz) is a vector of Pauli matrices in the electron–hole space. To find the phase
γ induced by an arbitrary inhomogeneous exchange field h(r) we introduce a unitary
transform (see also [15])

̂f = (fufv) = Ŝ ĝ Ŝ = (Ŝu 0
0 Ŝv

) , (13.7)

with Ŝu,v = αu,v + iβu,v σ̂ and exclude, thus, the exchange field term from the above
equations inside the F layer. For this purpose we should solve the following set of
equations ℏvF∂sαu,v = ∓hβu,v , ℏvF∂sβu,v = ±αu,vh ± [h, βu,v] , (13.8)

with the boundary conditions

αu,v(0) = 1, βu,v(0) = 0 ,

at the left superconducting electrode (at s = sL). The operator modifying the order
parameter in the right half–space takes the form:

ŜuŜ+v = αuαv + (βuβv) + iσ̂ (αvβu − αuβv + [βu , βv]) , (13.9)

where the values αu,v and βuv should be taken at the right superconducting electrode
(at s = sR). Choosing an appropriate direction of the spin quantization axis in the
above expression (i.e., along the vector αvβu − αuβv + [βu, βv]) we find the final ex-
pression for an additional order parameter phase γ induced by the exchange field:

eiγ = αuαv + (βuβv) ± i αvβu − αuβv + [βu , βv] . (13.10)

The phase γ can be conveniently determined from the Eilenberger-type equations
if we introduce the singlet and triplet parts of the anomalous quasiclassical Green
function f = fs + ft σ̂ according to the expressions

fs = cos γ = αuαv + (βuβv) (13.11)
ft = i (αuβv − αvβu + [βu , βv]) . (13.12)

Using Equations (13.8) we find the linearized Eilenberger equations written for zero
Matsubara frequencies − iℏvF∂sfs + 2hft = 0 , (13.13)− iℏvF∂sft + 2fsh = 0 . (13.14)
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So, the phase gain γ along the trajectory in SFS constriction is determined by the sin-
glet part of the anomalous quasiclassical Green function fs(s = sR) = cos γ taken at
the right superconducting electrode.

Finally, the current–phase relation reads:

I = ∑
n
In = ∑

n
an sin nφ

⟨(n, nF ) cos nγ⟩⟨(n, nF)⟩ , (13.15)

where n is the unit vector normal to the junction plane, nF is the unit vector along the
trajectory, and

an = jnN = jn
1
s0

∫ ds∫ dnF(nF , n) ,
are the coefficients of the Fourier expansion for the current–phase relation ISNS(φ)
for zero exchange field, i.e., for superconductor–normal metal junction of the same
geometry. The angular brackets denote the averaging over different quasiclassical tra-
jectories. The first two coefficients in this expansion take the form:

an = 4eTℏ N(−1)n−1 ∞∑
m=0

(μm − √μ2m − 1)n , n = 1, 2 , (13.16)

where μm = 2π2T2(2m+1)2/∆20+1, ∆0 is the temperature-dependent superconducting
gap, N = s−10 ∫ ds ∫ dnF(nF , n), and the integral ∫ . . . ds is taken over the junction
cross-section. The factor N is determined by the number of transverse modes in the
junction: N ∼ S/s0, where S is the junction cross-section area.

Solving the above Eilenberger-type equations for the particular bilayer geometry
we find:

cos γ = cos2 α
2
cos( d1 + d2

ξh cos θ
) + sin2 α

2
cos( d1 − d2

ξh cos θ
) , (13.17)

(a) (b)

Fig. 13.2: The examples of the closed electron (straight lines) and hole (dashed lines) trajectories for
the Andreev reflection which have no phase accumulation. For such trajectories averaging over the
angles does not lead to destructive interference. The vertical arrows indicate the spin direction for
each part of the trajectory. (a) Possible trajectory which provides the phase compensation for equal
thicknesses d1 = d2 and give rise to the long-range first harmonic of the current–phase relation.
(b) Possible trajectory which provides the phase compensation for arbitrary thicknesses of the F1
and F2 layers and gives rise to the long-range second harmonic of the current–phase relation.
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where cos θ = (n, nF). This expression allows us to write the first harmonic in the
current–phase relation in the form:

I1 = [cos2 α
2 Ic1 (d1 + d2

ξh
) + sin2 α

2 Ic1 (d1 − d2
ξh

)] sinφ , (13.18)

where Ic1(d/ξh) is the critical current of the first harmonic in a SFS junction with a
homogeneous exchange field h. The interference effects discussed in the introduction
result in the power decay of the critical current Ic1 vs the F layer thickness d: Ic1 ∝
d−1/2 for a 2D junction [27] and Ic1 ∝ d−1 for a 3D junction [11]. Taking the symmetric
case d1 = d2 (see Figure 13.2a) we immediately get a long-range contribution to the
Josephson current

δIc1 = sin2 α
2 Ic1 (0) sinφ , (13.19)

which does not decay with the increasing distance between the S electrodes. It is im-
portant to note that this contribution does not vanish for an arbitrary nonzero angle
between the magnetic moments in the F layers.

Long-range behavior can be observed for a second harmonic in the current–phase
relation as well. Indeed, calculating the average ⟨(n, nF) cos 2γ⟩we find a nonvanish-
ing long-range supercurrent contribution even for d1 ̸= d2 (see Figure 13.2b):

δIc2 = a2 sin2 α
2

sin 2φ . (13.20)

Note, that the emergenceof a long-rangeproximity effect for highharmonics in Joseph-
son relation is in a good agreement with recent theoretical findings in [28, 29] (see
Figure 13.2b and the similar figure in [28]).

The long range proximity via controlled magnetic scattering

As we have noted the short range of the proximity effect in the ferromagnets is due to
the Cooper pairs phase accumulation over its trajectory. The Josephson junction with
two noncollinear ferromagnetic layers, considered above provides the mechanism to
avoid this. Another way to compensate such phase accumulation is to introduce the
magnetic scatterer at themiddle of the path of the Cooper pair [21]. Indeed the spin-flip
scattering changes the spin arrangement of a pair: if initially the pair have a nonzero

Fig. 13.3: SFS Josephson junction containing three ferromag-
netic layers (domains) with a stepwise profile of the exchange
field. Linear quasiparticle trajectory is shown by the dashed
line.
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total momentum ℏq = ℏk↑ − ℏk↓ (|q| ∼ 1/ξh) then after the spins flip the new total
momentum of the Cooper pair ℏq is reversed ℏq = −ℏq. Let us consider the Joseph-
son transport through a ballistic SFS junction containing three ferromagnetic layers
(domains) with a stepwise profile of the exchange field

h(z) = {{{
hx0, in domains d1, d3
h (x0 cos α + y0 sin α) , in domain d2 ,

(13.21)

where α is the angle of the exchange field rotation in the central domain d2 (see Fig-
ure 13.3). At a symmetric position of the scatterer (d1 ≃ d3) the total phase gain γ ∼(d1−d3)/ξh for a singlet Cooper pair shouldbe cancelledout and the long-range singlet
superconducting proximity in SFS link becomes possible. So the introduction of the
additional noncollinear ferromagnetic layer may strongly increase the critical current
of SFS junction!

To calculate the current–phase relation for the junction Figure 13.3 we may start
with a general formula (13.15) and calculate the phase gain γ(θ) along a trajectory s =
s nF (see Figure 13.3), which is cos γ = fs(sR).

To consider the Josephson transport through ferromagnetic layer with an arbi-
trary noncollinear distribution of the magnetizations M and the exchange field h it
is convenient to utilize the transfer matrix formalism [21]. For this, we need to solve
Equations (13.13) and (13.14) for the case when the quantization axis is taken arbitrar-
ily in the ferromagnetic layer of a thickness di = zi − zi−1. We assume that a qua-
siclassical trajectory s is characterized by a given angle θ with respect to the z-axis
and exchange field h = h (x0 cos αi + y0 sin αi) lie in the plane (x, y), as shown in Fig-
ure 13.3. The triplet part ft consists of two nonzero components and can be written as
ft = ftxx0 + ftyy0. Defining the transfer matrix T̂αi (di , θ) that relates the components
of the Green function ̂f (s) = {fs(s), ftx(s), fty(s)} at the left (s = si−1 = zi−1/ cos θ) and
right (s = si = zi/ cos θ) boundaries of the F layer,̂f (si) = T̂αi (di , θ) ̂f (si−1) , (13.22)

we get the following expression:

T̂αi (di , θ) =
( cos(qsdi ) −i cos αi sin(qsdi ) −i sin αi sin(qsdi )−i cos αi sin(qsdi ) sin2 αi + cos2 αi cos(qsdi ) sin αi cos αi (cos(qsdi ) − 1)−i sin αi sin(qsdi ) sin αi cos α (cos(qsdi ) − 1) cos2 αi + sin2 αi cos(qsdi ) ) ,

(13.23)

where q ≡ 1/ξh = 2h/ℏvF and sdi = di/ cos θ.
Solving Equations (13.13) and (13.14) by the transfer matrix method for the step-

wise profile of the exchange field (13.21), the anomalous quasiclassical Green func-
tion ̂f (sR) = {fs(sR), ftx(sR), fty(sR)} at the right superconducting electrode (s = sR =
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d/ cos θ) can be easily expressed via the boundary conditions ̂f (0) = (1, 0, 0) at the
left superconducting electrode (s = 0) as follows:̂f (sR) = T̂0(d3, θ) T̂α(d2, θ) T̂0(d1, θ) ̂f (0) , (13.24)

where d = d1 + d2 + d3 is the total thickness of the ferromagnetic barrier, and the
transfer matrix T̂α(di , θ) is determined by the expression (13.23). As a result:

cos γ = cos δ2 cos(δ1 + δ3) − cos α sin δ2 sin(δ1 + δ3) (13.25)− sin2 α sin δ1 sin δ3(1 − cos δ2) , (13.26)

where cos θ = (n, nF) and δi = di/ξh cos θ (i = 1, 2, 3). Averaging the expression
(13.25) over the trajectory direction θ and neglecting the terms proportional to ξh/d ≪
1, which decrease just as for the case of homogeneous ballistic 3D SFS junction, one
arrives at the following long-range (LR) contribution:

(cos γ)LR = −12 sin2 α(1 − cos δ2) cos 2δz , (13.27)

where δz = z0/ξh cos θ and z0 = (d1 − d3)/2 is the shift of the central domain with
respect to the weak link center.

For a thin central domain d2 ≪ ξh in the center (z0 = 0) one can easily estimate
from (13.27) the critical current of the SFS junction

max{ILR} ≈ I0
2 sin2 α (d2ξh )2

ln ξh
d2

, (13.28)

where I0 = (eTcN/8ℏ) (∆/Tc)2 is the critical current of the SNS junction for zero ex-
change field (γ = 0). Figure 13.4a shows the dependence of the maximal Josephson
current ILRc = a1TLR

1 on the thickness d2 of the 90o domain (α = π/2) for differ-
ent positions of the domain with respect to the weak link center. The amplitude of
ILR oscillates with varying the thickness of the central domain d2, and has the first
maximum at d2 ≃ 2.5ξh. Naturally, when the central domain disappears (d2 → 0),
the long-range effect vanishes. We see that the long-range critical current reaches the
maximum at α = π/2 and grows with the increase of d2 up to d2 ∼ ξh. The numerical
calculations show that it is maximum for d2 ≃ 2.5 ξh and may reach ∼ 0.7I0.

Figure 13.4b shows the dependences of the maximal Josephson current Ic on the
position of the central domain z0 for different values of the rotation angle α. We may
see that the critical current is quite sensitive to the position of the central domain and
the first zero of I1 occurs already at z0 ≃ 0.5ξh.

The transfer matrix formalism can be easily generalized for a layered ferromag-
netic barrier with an arbitrary noncollinear distribution of the exchange field and
qualitatively the long range singlet proximity effect occurs to be quite robust [21]. In
contrast to the widely discussed triplet long-range proximity effect where the thin lat-
eral F-layers are needed [30], here the required geometry is somewhere complimentary
with the thin central layer.
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The interesting property of the discussed system is that it provides a directmecha-
nism of the coupling between supercurrent andmagnetic moment, similar to the situ-
ation discussed in [31]. Since the long-range critical current ILRc depends on the profile
of the magnetization, the superconducting current acts as a direct driving force on
the magnetic moment and can change its orientation. Inversely, the precession of the
magnetic moment shall modulate the critical current.

Josephson current through a ferromagnetic wire

We now consider a more complicated example of the interference phase suppression
in a ferromagnetic wire where the quasiclassical trajectories of electrons and holes
experience multiple specular reflections from the wire surface (see Figure 13.5a). The
particular geometry shown in Figure 13.5a can be considered as a rough model for
experiments on Co nanowires [25]. For simplicity we restrict ourselves to the case of a
short 2D junction with L ≪ ξs.
Taking into account the spin–orbit interaction inside the ferromagnet we obtain the
exchange part of the effective Hamiltonian for the band electrons depending on the

(a)

(b)

Fig. 13.4: (a) The dependence of ILR
c on

the thickness d2 of the 90o domain
(α = π/2) for different values of the
shift of the domain z0: z0 = 0 (solid
line); z0 = ξh (dashed line); z0 = 3ξh
(dash-dotted line). Dotted line shows
the value of Ic = max{I1} in absence
of domain d2. (b) The dependence
of maximal Josephson current ILR

c on
the shift of the central domain z0 for
different values of the d2: d2 = ξh
(dashed line); d2 = 2ξh (solid line);
d2 = 4ξh (dash-dotted line). We
have set T = 0.9Tc; d = 50ξh [ I0 =
(eTcN/8ℏ) (∆/Tc)2 ].
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(a) (b)

Fig. 13.5: Josephson transport through a nanowire in the overlap (a) and edge (b) geometries. The
quasiparticle trajectories are shown by the dashed lines.

quasimomentum (k) orientation [32]:

Ĥex = ∑
ij
βij(k)h0i σj = h(k)σ̂ ,

where h0 is a pseudovector determined by the ferromagnetic moment. Assuming the
absence of the system anisotropy described by a polar vector wefind the simplest form
of the resulting exchange field: h = h0 + βsok−2F (h0, k)k, where βso is a constant deter-
mined by the spin–orbit interaction, and kF is the Fermi momentum.

The exchange field along the quasiparticle trajectory experiencing the reflection
at thewire surface should change its direction. Thus,we obtain the problemdescribed
by Equations (13.13), (13.14) with a periodic exchange field along the trajectory charac-
terized by a given angle θ and a certain starting point at the superconductor surface.
The same equations for each trajectory can be of course derived for a periodic domain
structure. Let us consider first the problem of calculating the band spectrum ϵ(k) in
the field h varying with the period 2D/ sin θ:

− iℏvF∂sfs + 2hft = ϵ(k)fs , (13.29)− iℏvF∂sft + 2fsh = ϵ(k)ft . (13.30)

The solution can be written in the Bloch form:

( fsft ) = eiks ( fskftk) ,

where fsk(s+2D/ sin θ) = fsk(s) and ftk(s+2D/ sin θ) = ftk(s). Provided that this solu-
tion corresponds to the energy branch ϵσ(k) another solution (f∗s , −f ∗t ) correspond-
ing to the energy −ϵσ(k) exists. The latter solution corresponds also to the energy
ϵσ̃(−k) and, thus, we obtain the following symmetry property of the band spectrum:
ϵσ̃(−k) = −ϵσ(k), where the indices σ and σ̃ denote different branch numbers. The full
set of energy branches can be split in such pairs provided the number of branches is
even. For an odd number of branches there is always one branchwhich does not have
a partner. For this branch we obtain ϵσ(−k) = −ϵσ(k) and, thus, this spectrum branch
crosses the zero energy level at k = 0: ϵσ(0) = 0. The corresponding phase gain γ
appears to vanish for trajectories containing an integer number of periods shown in
Figure 13.5a and, therefore, the solution with k = 0 and ϵ = 0 provides a long-range
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contribution to the supercurrent. Note that this zero energy state is somewhat similar
to the Majorana midgap state (see [33, 34] for review).

We choose the field h0 to be directed along the wire axis x and obtain the
exchange field in the form: h = x0hx + y0hy(s), where hx(θ) ≃ h0 is constant
along the trajectory and hy(s) is a periodic function with zero average. In the in-
terval −D/ sin θ < s < D/ sin θ the hy field component is defined by the expression
hy = βsoh0 sin θ cos θ sign s. Introducing the Fourier expansions

hy = ∑
q
Hqeiqs, Hq = −ih̃2 sin θDq ,

fs,tx,ty = eiks ∑
q
Fs,x,y(k + q)eiqs ,

we rewrite Equations (13.29) and (13.30) in the form:

(ℏvF(k + q) − ϵ)Fs(k + q) + 2hxFx(k + q)+ 2 ∑̃
q
Hq−q̃Fy(k + q̃) = 0 , (13.31)

(ℏvF(k + q) − ϵ)Fx(k + q) + 2hxFs(k + q) = 0 , (13.32)(ℏvF(k + q) − ϵ)Fy(k + q)+ 2 ∑̃
q
Hq−q̃Fs(k + q̃) = 0 . (13.33)

Here q, q̃ = qm = π(2m + 1) sin θ/D, m is an integer, and h̃ = βsoh0 sin θ cos θ.
To get the solution for a small periodic field hy we use a perturbative approach

similar to the nearly free electron approximation in the band theory of solids and re-
strict the number of interacting Fourier harmonics in the expansions. For this pur-
pose it is instructive to consider the limit of zero periodic potential hy and separate
three solutions: (i) the solution (Fs , Fx , Fy) = (0, 0, 1)δq−p corresponding to the en-
ergy ϵ0 = ℏvF(k + p) (ii) the solution (Fs , Fx, Fy) = (1, 1, 0)δq−p+

corresponding to
the energy ϵ+ = ℏvF(k + p+) + 2hx, and (iii) the solution (Fs , Fx , Fy) = (1, −1, 0)δq−p−

corresponding to the energy ϵ− = ℏvF(k + p−) − 2hx. Here p and p± are arbitrary re-
ciprocal lattice vectors. The above modes should strongly interact provided that the
resonant condition ϵ0 = ϵ+ = ϵ− is fulfilled. Such resonance is possible when the
value 2hx/ℏvF equals a certain reciprocal lattice vector qm. Close to such Bragg-type
resonance we see that the dominant harmonics correspond to the following choice
of reciprocal lattice vectors: p = 0, p± = ∓qm . Writing the solution as a superpo-
sition of these three harmonics we find renormalized spectral branches ϵ0 = ℏvFk,
ϵ± = ℏvFk ± √(ℏvFqm − 2hx)2 + 8|Hqm |2 and relative eigenfunctions. Applying now
the boundary conditions at s = 0 for the superposition of the above eigenfunctions
we find the amplitude of the singlet component corresponding to the energy branch
ϵ0 and k = 0:

fsm = 8|Hqm |2 cos(qms)(ℏvFqm − 2hx)2 + 8|Hqm |2 .
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At the surface of a right superconducting electrode we should take the coordinate s to
be equal to the integer number of periods. We also need to sum up the above resonant
expressions over all Fourier harmonics of the periodic potential:

fs(s = sR) = ∞∑
m=0

8|Hqm |2(ℏvFqm − 2hx)2 + 8|Hqm |2 .

The precision of such resonant-type expression has also been confirmed by the nu-
merical solution of Equations (13.29) and (13.30), carried out using the transfer matrix
method. Note, that we omit here the contribution from the solutions corresponding
to the branches ϵ±: these functions correspond to a nonzero quasimomentum and,
thus, should gain a finite phase factor along the trajectory length. During averaging
over different trajectories this phase factor causes the suppression of the resulting su-
percurrent contribution with the increase of the wire length L.

The starting point of the trajectory varies in the interval ∆x = 2D/ tan θ and, as a
consequence, the long-range first harmonic in current–phase relation takes the form:

I1 = a1 sinφ
π/2∫
0

dθ cos θfs(sR) .
Assumingnarrow resonancesweapproximate themby thedelta-functions andobtain:

I1 = a1 sinφ∑
m

√2πℏvF h̃(θm)
h2xD

sin2 θm ,

where sin θm = 2hxD/πℏvF(2m+1). In the limitD ≫ ℏvF/2hx one can replace the sum
over m by the integral:

I1 ≃ a1√2 π/2∫
0

dθ h̃(θ)
hx(θ) cos θ sinφ ≃ a1

√2
3

βs0 sinφ .

Certainly, the above long-range effect in the first harmonic is rather sensitive to
the system geometry and possible disorder. Taking, e.g., the system sketched in Fig-
ure 13.5bwewill not obtain the full cancellation of the phase γ because the trajectories
in this case do not contain integer number of exchange field modulation periods. The
breakdown of the exchange field periodicity due to nonspecular quasiparticle reflec-
tion at the wire surface mixes the solutions with ϵ = 0 and different quasimomenta k
and, thus, should also prevent the full cancellation of the phase γ. However, similarly
to the case of the bilayer we expect the long-range effect to be still possible for higher
harmonics. We apply the above perturbative procedure for the calculation of the full
fs function for the geometry shown in Figure 13.5b.

The second harmonic in the current–phase relation reads

I2 = a2 sin 2φ
π/2∫
0

dθ cos θ ( 2⟨f 2s (sR)⟩y0 − 1 ) , (13.34)
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where ⟨. . .⟩y0 = (1/D) ∫D
0 . . . dy0 denotes averaging over the starting point of the tra-

jectory y0 (see Figure 13.5b). Keeping only the terms linear in the small |Hqm | amplitude
we get the following expression for the long-range part of the second harmonic I2:

I2 = a2 sin 2φ∑
m

√2πℏvF h̃(θm)
h2xD

sin2 θm ≃ a2
√2
3 βs0 sin 2φ .

We emphasize that the second harmonic of the Josephson current in both examples
described above is negative because of the condition a2 < 0.

Note that the absence of the decay of the single-channel critical current was
pointed out in [35] as a possible source of the long-range proximity effect in Co
nanowires. However the averaging of the phase gain for different modes strongly
decreases the critical current. In contrast the results presented in this section demon-
strate that in the ballistic regime the spin-orbit interaction generates the noncollinear
exchange field which produces the long-range Josephson current. This conclusion
is always true for the second harmonic in the current–phase relation and for some
geometries it may be also valid for the first harmonic. Therefore our findings provide a
natural explanation of the recent experiments with Co nanowire [25]. To discriminate
between two proposed mechanisms of the long-range effect, the studies of higher
harmonics in Josephson current–phase relations could be of major importance. Also
it should be interesting to verify with experiment the predicted simple angular depen-
dence (13.19) of the critical current in SFS junctions with composite interlayer.

13.3 Interference phenomena in nanowires

The systems with a few conductive channels reveal unusual interference phenomena
arising from the interplay between the spin–orbit, Zeeman and orbital interactions.
The experimental realization of such systems is based, e.g., on the localized electronic
states appearing at the surface of topological insulators [36], at the edges of graphene
nanoribbons [37], and InAs, InSb andBi nanowires [38–41]. The physics of the Joseph-
son transport through these states appears to be extremely rich since they combine
several unique properties which are not available simultaneously in conventional SFS
junctions: (i) large Fermi wavelength λF ∼ 50nm, whichmakes the transport through
the edge states nearly one-dimensional [42]; (ii) large g-factor ∼ 102 for certain di-
rections of magnetic field H [43], which makes the effect of the Zeeman spin-splitting
significant even without the ferromagnetic order; (iii) strong Rashba spin–orbit cou-
pling with the energy comparable with the Fermi energy [44, 45].

In this section we discuss two main effects arising in such Josephson systems:
multiperiodicmagnetic oscillations of the critical current Ic [22, 46] and the formation
of the φ0-junction with the arbitrary phase difference φ0 in the ground state [22, 31].
The oscillations of Ic originate from the interplay between the orbital and Zeeman in-
teractions of electrons with the magnetic field. The Zeeman interaction produces the
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Fig. 13.6: A model Josephson junction with a
two-channel nanowire in external magnetic
field.

spatial oscillation of the Cooper pair wavefunction at the scale ℏvF/gμBH (similar to
the ones in SF structures [4]) which result in the magnetic oscillations of the critical
current with the period ℏvF/gμBL, where L is the channel length. If there are several
edge states in the system the orbital effect gives rise to the quantum mechanical in-
terference between Cooper pairs propagating along any two different channels. As
a result, the critical current oscillates with the periods Φ0/Sij, where Sij is the area
enclosed by the i-th and j-th interfering paths projected on the plane perpendicu-
lar to the magnetic field. Finally, the combination of spin–orbit and Zeeman inter-
actions for the special orientations of the magnetic field breaks the inversion sym-
metry in the direction along the conductive channel. As a result, the usual symmetry
relation Ic(−φ) = −Ic(φ) (φ is the Josephson phase difference) becomes violated and
the current–phase relation takes the form I = Ic sin (φ − φ0), where the spontaneous
phase φ0 is determined by the magnetic field.

Belowwe compare two different approaches based on the Bogoliubov–de Gennes
(BdG) and Ginzburg–Landau equations, which are convenient for the description of
the Josephson transport through the edge states.

13.3.1 Bogoliubov–de Gennes approach

Let us consider a Josephson system containing only two conductive channels, which
model the edge states localized, e.g., at the surface of a single nanowire. The geometry
of the system is shown in Figure 13.6. A nanowire (NW) is placed on top of the insulat-
ing substrate and put in contact with two superconducting leads S1 and S2 with the
gap functions ∆se−iφ/2 and ∆seiφ/2, respectively. We choose the origin of the Carte-
sian coordinate system at the middle of the wire. The x-axis is taken along the NW
and the y-axis is chosen in the direction perpendicular to the substrate surface. The
current–phase relation of the Josephson junction is defined by the dependence of the
quasiparticle excitation energies ε on the Josephson phase φ (we put ℏ = 1) [47]:

I (φ) = −2e ∑
ε∈(0;∞)

∂ε
∂φ

tanh ( ε
2T

) , (13.35)

where ε should be found from the BdG equations

( Ĥ ∆̂
∆̂† −Ĥ†)(u

v
) = ε(u

v
) . (13.36)
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The electron- and hole-like parts of the quasiparticle wavefunction u and v are multi-
component: u = (u1↑, u2↑ , u1↓, u2↓) and v = (v1↑ , v2↑ , v1↓, v2↓), where thefirst indices
enumerate the conductive channels and arrows indicate the z-axis spin projections. In
Equation (13.36) ∆̂ is the superconducting proximity induced gap and Ĥ is the single-
electron 4 × 4-matrix Hamiltonian of the isolated wire, which for zero magnetic field
takes the form

Ĥ = [ξ (p̂) − μ + αp̂σ̂z] ⊗ ̂I + V̂(x) . (13.37)

Here p̂ = −i∂x is themomentum along the x-axis, ξ (p) is the electron energy in the iso-
lated wire, μ is the chemical potential, the term αp̂σ̂z describes the Rashba spin–orbit
coupling due to the broken inversion symmetry in the y-direction [48, 49], ̂I is a 2 × 2
unitmatrix in the channel subspace, and the potential V̂(x) describes the scattering at
the S/nanowire interfaces. Applying the magnetic field we should include the Zeeman
term gμBHσ̂z into (13.37) and replace p̂ with (p̂ + |e|Ax/c), where Ax(y) = −Hy.

Our strategy is to find the quasiclassical solutions of Equation (13.36) inside the
nanowire where both ∆̂ and V̂ are zero and then to match the solutions at the ends
of the wire using phenomenological scattering matrices. As a first step we derive the
quasiclassical version of Equation (13.36) inside the wire. Taking, e.g., the functions
u1↑ and u2↑ one can separate the fast oscillating exponential factor: un↑ = ũ±n↑e

±ip±
Fx,

where the Fermi momenta p+F and p
−
F for p > 0 and p < 0 are different in the presence

of the spin–orbit coupling. Then from the BdG equation (13.36) with ∆̂ = 0, V̂ = 0 and
H = 0 we find:

[ξ (p±F) − μ ± αp±F] ũ±n↑ ∓ i [ξ  (p±F) ± α] ∂xũ±n↑ = εũ±n↑ , (13.38)

where ξ  (p) ≡ ∂ξ/∂p. The Fermi momenta are defined by the equations ξ (p±F) = μ ∓
αp±F. Assuming α to be small we find p±F ≈ [1 ∓ α/ξ  (p0F)] p0F with ξ (p0F) = μ and
obtain: ∓ iv±F∂xũ

±
n↑ = εũ±n↑ . (13.39)

The derivation of equations for u±n↓, v
±
n↑ and v±n↓ is straightforward. Using the expan-

sion ξ  (p±F) = ξ  (p0F) ∓ αp0Fξ  (p0F) /ξ  (p0F), we find the Fermi velocities:

v±F = ξ  (p0F) ± α [1 − p0Fξ
 (p0F) /ξ  (p0F)] . (13.40)

Clearly the spin–orbit coupling results in the difference between the Fermi velocities
v+F and v

−
F of quasiparticleswith oppositemomenta. This renormalization (13.40) is ab-

sent only for exactly quadratic spectrum. It is the difference between v+F and v
−
F which

is responsible for the φ0-junction formation (see [31] and discussion below). Note that
another possibility to get the φ0-junction even for quadratic electron spectrum is to
consider nonballistic two-dimensional quasiparticle motion [50, 51].

Introducing the 4-component envelope wavefunctions

w±
σ(x) = (√v±F ũ

±
1σ,√v±F ũ

±
2σ,√v∓F ṽ

∓
1−σ ,√v∓F ṽ

∓
2−σ) (13.41)
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andneglecting the spinflip at thewire endswecanwrite thematching conditions, e.g.,
for w±

↑ : w
±
↑ (±L/2) = T̂±w±

↑ (∓L/2), and w∓
↑ (±L/2) = Q̂±w±

↑ (±L/2), where L is the wire
length, the unitary matrices T̂± and Q̂± describe the quasiparticle transmission along
the wire and both normal and Andreev scattering at the wire ends. The solvability
condition det [Q̂− T̂−Q̂+ T̂+ − 1̂] = 0 [47, 52] for the above matching equations defines
the quasiparticle energy spectrum ε. Replacing α and g by −α and −g one finds ε for
the opposite spin component.

The general form of the matrices T̂± and Q̂± is

T̂± = ( eip±
FLM̂± 0̂
0̂ e−ip∓

FLM̂∓ ) , Q̂± = ( R̂±
e Â∓

h
Â±
e R̂∓

h
) . (13.42)

The 2 × 2 matrices M̂± are defined from the solution of Equation (13.39) under the
assumption of different g-factors g1 and g2 in different channels:

M̂±
nl = exp [iq±L ∓ (−1)niπϕ/2] δnl , (13.43)

where ϕ = HLD/Φ0 is the dimensionless magnetic flux (the channels pass along
the plane y = ±D/2), q± = (ε − gnμBH) /v±F and δnl is the Kronecker-delta. The phe-
nomenological 2 × 2matrices R̂±

e(h) and Â
±
e(h) describe the normal and Andreev reflec-

tion from the S leads, respectively. The unitarity condition requires these matrices to
satisfy the relations R̂±

j R̂
±†
j + Â∓

k Â
∓†
k = 1̂ and R̂±

j Â
±†
j + Â∓

k R̂
∓†
k = 0̂, where j, k ∈ {e, h}

and j ̸= k.
For simplicitywe restrict ourselves to the casewhen the quasiparticles experience

full Andreev reflection in each channel separately. We assume that such Andreev re-
flection is caused by the superconducting gap ∆n induced in the n-th channel due
to the proximity effect to the S leads. In the case when the S leads cover the ending
parts of the nanowire the asymmetry in the relative position between the channels
and the superconductor can result in ∆1 ̸= ∆2. The specific values for ∆n strongly
depend on the microscopical properties of S/nanowire interfaces and hereinafter we
consider ∆n to be phenomenological parameters [53–56]. The above assumption of full
Andreev reflection means that the size ds of the induced gap regions (see Figure 13.6)
well exceeds the relevant coherence length. In this limiting case the normal scatter-
ing vanish (R̂±

e = R̂±
h = 0̂) while the Andreev scattering is described by the matrices(Â±

e )nl = δnl exp [∓iφ/2 − i arccos(ε/∆n)]. Note that for high tunneling rates between
the S leads and the conductive channels the quasiparticles reveal Andreev reflection
inside the bulk S leads. In our model this situation corresponds to ∆1 = ∆2 = ∆s (∆s is
the gap in the S leads).

In the short junction limit (εL/v±F ≪ 1) only the subgap Andreev states contribute
to the Josephson current. Taking into account all spin projections we obtain four pos-
itive subgap energy levels

ε = ∆n cos [φ/2 − (−1)nπϕ/2 ± gnμBHL/v±F] , (13.44)
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(a)

(c)

(b)

Fig. 13.7: The critical current Ic versus the magnetic field H. We choose T = 0.1 K, ∆1 = 7.5 K,
∆2 = 1 K, vF = 3 ⋅ 105 m/s, L = 2 μm and (a) D = 15 nm and (b)–(c) D = 50 nm. We also take
(a) g1 = g2 = 1.5; (b) g1 = 0 and g2 = 10; (c) g1 = 1 and g2 = 10.

where n enumerates the channels. For large temperatures T ≫ ∆n the current–phase
relation (13.35) takes the form

I = ∑
n=1,2

In sin [φ + βnH + (−1)nπϕ] cos (γnH) . (13.45)

Here In = |e| ∆2n/4 T is the critical current of the n-th channel at H = 0, the flux
ϕ produces the SQUID-like oscillations of Ic, the cosine term depending on the
constants γn = gnμBL (1/v+F + 1/v−F) describes the oscillatory behavior of Ic due to
the Zeeman interaction similar to the one in SFS structures [4]. The term βnH =
gnμBLH (1/v+F − 1/v−F) describes the φ0-junction formation due to the spin–orbit cou-
pling [31]. The critical current corresponding to (13.45) reads

I2c = I21 cos
2 (γ1H)+ I22 cos2 (γ2H)+2I1I2 cos (γ1H) cos (γ2H) cos [2πϕ + (β1 − β2)H] .

(13.46)
Interestingly if g1 ̸= g2 the spin–orbit coupling influences the period of the SQUID-like
orbital oscillations in Ic(H), i.e., renormalizes the effective quantization area enclosed
by the channels: Seff = LD + Φ0(β1 − β2)/2π.

Remarkably, themodel described in this section allows to reproducemost features
of the complicatedmagnetic oscillation of the critical current experimentally obtained
for the Josephson transport through the Bi nanowire. Choosing the parameters rele-
vant to the experimental situation in [46] we obtain a variety of Ic(H) dependencies
shown in Figure 13.7. These dependencies reproduce not only multiperiodic oscilla-
tions due to the interplay of the orbital and Zeeman interactions observed in [46] but
also asymmetry in the form of the upper and lower envelopes. In Figure 13.7a–b one
can clearly see two periods of oscillations: δHorb = Φ0/Seff and δHZeem = 2π/γ1 =
2π/γ2. The slow drift of the average current in Figure 13.7d should be considered in
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fact as a fragment of the large-period oscillations caused by the difference between γ1
and γ2.

13.3.2 Ginzburg–Landau approach

At temperatures close to Tc it is natural to expect that the system behavior can be
described by the Ginzburg–Landau model modified to include the Zeeman and spin–
orbit interactions. First, we consider the simplest case when there is only one conduc-
tive channel of the length L connecting the superconducting leads of the Josephson
junction. We again assume that the magnetic field H = Hẑ is perpendicular to the
channel and the sample edge breaks the inversion symmetry in the y-direction which
results in strong spin–orbit coupling of the Rashba type. Then at temperatures close
to the superconducting transition temperature Tc the expansion of the free energy F
up to the terms ∼ O(Ψ2) has the form [57, 58]

F = ∫{a |Ψ |2 + γ D̂xΨ
2 + β D̂2

xΨ
2 − νH [Ψ (D̂xΨ)∗ + Ψ∗ (D̂xΨ)]} dx , (13.47)

where Ψ is the superconducting order parameter in the conductive channel, a(x) ∼[T − Tc(x)] and inside the channel a > 0, D̂x = −i∂x + 2πAx/Φ0 (Ax = −Hy is the
vector potential) and the constant ν ∼ gα describes the strength of the spin–orbit
coupling. In (13.47) the constant γ is determined by the Zeeman interaction and as a
result the profileΨ(x) inside the channel strongly depends on the ratio between H and
the field HL corresponding to the tricritical Lifshitz point. For H < HL one has γ > 0
and Ψ monotonically decays from the superconducting leads towards the center of
the channel. In contrast, when H > HL (above the Lifshitz point) γ becomes negative
giving rise to the damped oscillatory behavior of the Cooper pair wavefunction due to
the formation of the FFLO state [4]. In the latter case one should take into account the
higher order gradient term with β > 0 in (13.47) which provides an additional length-
scale ξf = 2√β/ |γ| characterizing the period of the gap function oscillation.

To calculate the Josephson current–phase relation we assume that: (i) the spin–
orbit coupling is weak and can be treated perturbatively; (ii) L ≫ √ξ2 + ξf ξ where
ξ = √|γ|/a; (iii) inside the S leads the Zeeman interaction is negligible; (iv) the conduc-
tivity of the S leads well exceeds the one in the wire so the inverse proximity effect can
be neglected; (v) the interfaces between the channel and the superconducting leads
are absolutely transparent for electrons. The latter assumption results in the continu-
ity of the order parameter at the interfaces x = ±L/2 so thatΨ (±L/2) = ∆ exp (±iφ/2),
where ∆ and φ are the absolute value and phase of the gap function in the supercon-
ductors.

Varying the free energy∫ Fdxwith respect toΨ∗ andAx andexcluding the effect of
the vector potential (which is constant along thewire) by introducing the new function
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ψ(x) = Ψ(x) exp {−2πiAxx/Φ0} we obtain the equations
aψ − ∂x (γ∂xψ) + ∂2x (β∂2xψ) + iH [∂x (νψ) + ν∂xψ] = 0 (13.48)

and the expression for the superconducting current

j = 4c
Φ0

{ℑ [γψ∗∂xψ + β (∂2xψ∂xψ∗ − ψ∗∂3xψ)] − νH ψ2} , (13.49)

where Φ0 = πℏc/ |e| is the superconducting flux quantum.
Equations (13.48) should be supplemented by four boundary conditions. The first

two conditions reflects the continuity of the order parameter at the ends of the chan-
nel x = ±L/2: ψ (±L/2) = ∆ exp (±iφ̃/2), where φ̃ = φ/2 + 2πAxL/Φ0 is the gauge-
invariant phase difference between the superconductors. The second pair of condi-
tions can be obtained by the integration of Equation (13.48) over a small region near
the interfaces. Neglecting the Zeeman interaction inside the superconductors and the
inverse proximity effect one obtains that −γ∂xψ + β∂3xψ + iνHψx=±L/2 = 0.

The solution of Equation (13.48) strongly depends on the system parameters. The
simplest situation is realizedwhen themagnetic field is well below the tricritical point
so that the coefficient γ is positive and not small. In this case the term∝ β in the free
energy (13.47) is small and can be neglected. Then the solution of Equation (13.48)
takes the form ψ(x) = A+ exp(q+x) + A− exp(q−x), where q± = iνH

γ ± √ a
γ − ν2H2

γ2 are
the roots of the characteristic equation a − γq2 + 2iνHq = 0. Note that the absence of
the intrinsic superconductivity in the channels requires a > ac = ν2H2/γ. Taking into
account the continuity of the order parameter at x = ±L/2 one finds the constants A±
and, thus, the superconducting current (13.49). To make the results more transparent
we will focus only on the long junction limit (L√(a − ac)/γ ≫ 1). In this case each
exponent in the function ψ(x) is localized near the corresponding superconducting
lead and can be considered independently from another one. From the boundary con-
ditions we find A± = ∆ exp (±iφ̃/2 ∓ q±L/2) and substitute the resulting profile ψ(x)
into Equation (13.49). Assuming the spin–orbit coupling to be small we treat only cor-
rection ∝ ν in the wavevectors q and neglect the effect of the spin–orbit coupling in
the exponential prefactors. Then the current–phase relation takes the form

j(φ̃) = jc sin (φ̃ − φ0) , (13.50)

where jc = (4c/Φ0)γ∆2√(a − ac)/γ exp (−√(a − ac)γL) is the critical current andφ0 =
νHL/γ.

The current–phase relation (13.50) implies that the minimum of the junction en-
ergy E ∝ −jc cos(φ̃−φ0) corresponds to the nonzero phase difference φ̃ = φ0, which is
determined by the spin–orbit coupling and the magnetic field. In contrast with the π-
junctions where the transitions between 0 and π states occur as a phase jump accom-
panied by the vanishing of the critical current, here φ0 as a function of H is changing
continuously and the critical current remains nonzero.
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Now we turn to the more interesting situation when the magnetic field is close
to the tricritical point and in (13.47) the coefficient γ is small (the solution of the
Ginzburg–Landau equation exactly at the tricritical point is considered in [59]). In
this case the solution of Equation (13.48) inside the channel is the sum of 4 exponents
of the form exp(qx) with q satisfying the equation a − γq2 + βq4 + 2iνHq = 0. If the
spin–orbit coupling constant ν ≪ 1 this equation canbe solved perturbatively. Taking
q = q0+q1, where qn ∝ νn, in the zeroth order we get q20 = 2 sign(γ)

ξ2f
(1+ iμ√ξ2f /ξ2 − 1),

where ξ = √|γ|/a and μ = ±1. One sees that if the magnetic field is well below the
tricritical point so that ξ > ξf the wavevector q0 is real. This situation is qualita-
tively equivalent to the case described above. However when ξ < ξf the imaginary
component of q0 appears and the order parameter reveals spatial oscillations. These
oscillations result in a series of transitions between the 0- and π-states which are
revealed through vanishing of the critical current. Note that for γ < 0 the absence of
the intrinsic superconductivity in the channel requires ξ < ξf (otherwise ψ(x) would
be an oscillating function whose amplitude does not depend on the distance from the
superconducting lead).

Let us analyze the case ξ < ξf for arbitrary sign of γ. Introducing the values k± =
ξ−1f √ξf /ξ ± 1 we obtain the following solutions for q0:

q0 = {{{
λ (k− − iμk+) for γ < 0,
λ (k+ + iμk−) for γ > 0,

(13.51)

where λ = ±1. Then in the first order of the perturbation theory we find q1 = μs, where
s = −νH sign(γ)/ (4βk+k−).

Let us first treat the case γ < 0 in detail (for γ > 0 one has to replace k− → k+ and
k+ → −k− in the final answers). For simplicity we assume the junction to be long so
that k−L ≫ 1. In this case one may consider the superconducting nuclei with λ = −1
(localizednear the left endof the channel) and theoneswith λ = +1 (localizednear the
right end) independently. Taking into account the boundary conditions at x = ±L/2
and neglecting the effect of the spin–orbit coupling in the exponential prefactors we
find:

ψ(x) = ∆
2

∑
λ,μ=±1

(1 + iμ k
−

k+) eiλφ̃/2+[λ(k−−iμk+)+μs](x−λL/2) . (13.52)

Substituting (13.52) into (13.49) and accounting for the effect of the spin–orbit coupling
only inside the arguments of exponents we again obtain the current–phase relation of
the form (13.50), where sinφ0 = cosh(sL) sin χ/√sin2 χ + sinh2(sL),

jc = 32√2cβ∆2k−(ξf ξ)3/2Φ0k+
e−k−L√sin2 χ + sinh2(sL) , (13.53)

and cos(χ − k+L) = k+ (ξf − 2ξ) √ξ/(2ξf ).
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Fig. 13.8: The dependencies of the critical current
jc as a function of the applied magnetic field H.
The critical current is scaled by the value jc0 =
32√2cγ3/2

0 ∆2/Φ0√β. Different curves correspond
to different values of the parameter ̃ν = νHtr/4γ0 de-
scribing the strength of the spin–orbit coupling. We
take 2√β/γ0 = 1 and √γ0/a = 0.5.

Interestingly, the spin–orbit coupling not only causes the φ0-junction formation
but also affects the critical current. Indeed, for long junctions with L ∼ s−1 the term
sinh2(sL) can result in the increase in Ic with the increasing H. Obviously this effect
canbe suppressed because of damping of the superconductivity inside the S leads due
to the magnetic field. However for the Pb films and LaAlO3/SrTiO3 heterostructures
with strong spin–orbit coupling in rather small magnetic fields the increasing depen-
dencies Tc(H)were observed [60]. In this case as follows from (13.53) the dependencies
Ic(H) should reveal the increasing trend due to the spin–orbit coupling. Note also that
the Zeeman interaction causes the sign change of the coefficient γ near the tricritical
point, which results in the nonmonotonic dependencies of the critical current as a
function of H. Expanding γ = γ0 (1 − H/Htr) (here Htr is the field corresponding to the
Lifshitz point) one obtains the dependencies jc(H) shown in Figure 13.8. One sees that
if there is no spin–orbit coupling the critical current turns to zero at the points of the
transition between 0- and π-states while in the presence of the spin–orbit coupling
Ic stays finite. Note also that if there are several conductive channels the dependen-
cies Ic(H) reveal the usual Fraunhofer oscillation which was described in detail in
Section 13.3.1. The origin of these oscillations is the difference in the vector potential
entering the gauge invariant phase φ̃ for different channels.

13.4 Mesoscopic fluctuations

The existing experiments [23–25, 61] demonstrating the anomalously slow decay of
superconducting correlations in ferromagnets in the absence of a noncollinear mag-
netization and with the questionable strength of the spin–orbit effects force theoreti-
cians to look for other possible sources of the suppression of the interference of ran-
dom quasiparticle trajectories. Motivated by the above discrepancy between the ex-
periment and theory we reexamine the standard Usadel-type model and search for its
possible shortcomings which can reveal themselves in the estimates of the length of
decay of superconducting correlations in a dirty ferromagnet. One of the most impor-
tant assumptions which form the basis of the Usadel theory is that we operate with
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the ensemble-averaged Green functions neglecting, thus, possible fluctuations of the
measurable quantities due to the random distribution of impurities [62–64]. In the
case of the dirty ferromagnet this assumption is crucial to obtain the exponential de-
cay of the anomalous Green function at the length ξf . Indeed, the motion of quasi-
particles in a ferromagnetic metal occurs along the randomquasiclassical trajectories
which experience sharp turns at the impurity positions. As it has been noted in the in-
troduction, the exchange field is responsible for the relative phase γ gained between
the electronic and hole parts of the quasiparticle wavefunction along these trajecto-
ries. Averaging the Green functionswe average in fact the exponential phase factor eiγ

with the random phase γ depending on the trajectory length obtaining naturally an
exponentially decaying quantity ∝ e−x/ξf , where x is the distance from the SF inter-
face. This destructive interference cannot play such a dramatic role whenwe calculate
root-mean-square (rms) values due to a partial phase gain compensation in squared
quantities. Considering, e.g., the supercurrent I of the SFS Josephson junction we can
introduce the rms value of the current as follows: δI = √⟨I2⟩ − ⟨I⟩2. The compensa-
tion of the phase factor γ can occur only for correlated random trajectories passing at
the distance not exceeding the Fermi wavelength λF = 2π/kF. This restriction causes
the reduction of the δI value by a factor of √N, where N is the number of transport
channels in the junction. Finally, we obtain δI/⟨I⟩ ∼ ed/ξf /√N, where d is the dis-
tance between the S electrodes [65]. The number of channels can be of course pretty
large: N ∼ kFL for two dimensional and N ∼ (kFL)2 for three dimensional junctions
with the transverse dimension L. Nevertheless the current fluctuations can strongly
exceed the average value at large distances d well above the coherence length ξf .
In this sense these fluctuations are giant compared to the ones in superconductor–
normal metal–superconductor (SNS) junctions where the value δI ∼ e∆0/ℏ for short
junctions with d ≪ ξs [47] is known to be determined by the universal conductance
fluctuations [66, 67] or even smaller for long junctions with d ≫ ξs [68]. Here ∆0 is
the gap in the bulk superconductor and ξs is the superconducting coherence length.
Experimentally, in each particular sample we can expect to measure a random crit-
ical current value which should exhibit giant sample-to-sample fluctuations. Thus,
in a given experiment one can easily obtain the critical current well above the limit
imposed by the Usadel theory which can give us only the average current value. The
above arguments and standard Landauer relation between the normal junction resis-
tance R and the N number make it possible to guess a simple estimate for the fluctu-
ating critical current:

δI ∼ ∆0/√ℏR . (13.54)

Note that this inverse square root dependence differs strongly from the standard rela-
tion Ic ∼ ∆0/(eR) for the SNS junction. Our further calculations nicely confirm the
above δI estimate and, thus, the observation of this unusual relation between the
supercurrent and normal junction resistance could provide a verification of the long
range proximity mechanism caused by mesoscopic fluctuations. The ensemble aver-



432 | 13 Interference phenomena in superconductor–ferromagnet hybrids

aging laying in the basis of the derivation of the Usadel equations from the quasi-
classical Eilenberger theory overlooks the above fluctuation effects emerging atmeso-
scopic scales. These fluctuation effects reveal themselves even in the quasiclassical
limit λF → 0 when we can neglect the corrections found in [63, 64] which vanish in
this limit corresponding to a large junction conductance.

We proceedwith a detailed consideration of the critical current fluctuations in the
SFS junction and for this purposewe use an approachbased on the averaging over the
random quasiparticle trajectories passing in the field of point scatterers (see [69] for
review). For each random trajectory inside the F layer one can consider the 1D prob-
lem for propagating electrons and holes experiencing Andreev reflection at the point
where the trajectory touches the left or right S electrode. We start from the case d ≪ ξs
and assume the superconducting gap (exchange field) to vanish inside (outside) the
F layer. Thus, we neglect the so-called inverse proximity effect, i.e., the mutual influ-
ence of the order parameters at the interface. The current–phase relation for the short
junction limit can be defined only from the spectra of the subgap Andreev states at
the trajectories ending at both the left and right S electrodes ϵ = ±∆0 cos ((φ ± γ)/2)
neglecting the contributions from the states above the gap. Here φ is the phase dif-
ference between the S electrodes, and ±γ is the spin-dependent phase shift between
the electron- and hole-like parts of the total wavefunction along the quasiclassical
trajectory Γ12. Each trajectory Γ can touch each of the S electrodes only once other-
wise part of the trajectory Γ touching the same electrode two times can be considered
separately and the corresponding spectrum does not depend on the phase difference
φ. Certainly, there exist trajectories of the length exceeding ξs with the quasiparticle
spectrum consisting of several subgap branches but the probability to get such tra-
jectories vanishes for short junctions. According to the procedure suggested in [20]
the phase shift γ can be determined from Equations (13.13) and (13.14) which formally
coincide with the Eilenberger-type equations written for the singlet and triplet parts
of the anomalous quasiclassical Green function f = fsing + ft σ̂ and zero Matsubara
frequencies.

Theboundary conditions at the left electrode read: fsing(s = sL) = 1, ft(s = sL) = 0.
The function fsing(s = sR) = cos γ taken at the right S electrode determines the phase
gain γ along the trajectory. Let us emphasize here that contrary to the standard con-
sideration the Eilenberger-like equations in our approach are written along a random
trajectorywithmany sharp turns and therefore they donot contain the impurity terms.

Summing up over all trajectories Γ we find the current–phase relation:

I = ∑
Γ

(j(φ + γ) + j(φ − γ)) (nF , nL) , (13.55)

where j(χ) is defined by Equation (13.4). The vectors nL and nF are the unit vectors
normal to the left electrode surface and parallel to the trajectory direction, respec-
tively. The vector nF parametrizes random quasiparticle trajectories outcoming from
the left electrode. The random phase γ depends on the whole path between the elec-
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trodes and not just on the distance between the starting and ending points of the
trajectory. Taking for simplicity the case of a homogeneous exchange field we find
γ = 2h(sR − sL)/ℏvF = Ωt, where t is the time of flight of electron along the trajectory
and Ω = 2h/ℏ.

Our next step is the averaging of the above Josephson current expression over the
random timeof flight t. For this purposeweneed to introduce the distribution function
describing the probability density w(r2 , r1, t) to get the trajectory starting at a certain
point r1 at the left electrode at the time t1 = 0 and touching the right electrode at
an arbitrary point r2 at the time t2 = t. In the diffusion limit this probability density
is almost independent on the quasiparticle velocity direction at the electrodes and
satisfies the diffusion equation:

∂
∂t w = D ∂2

∂r22
w + δ(r2 − r1)δ(t) . (13.56)

Here we assume the elastic mean free path ℓ to be less than all the relevant length
scales so that, in particular, one takes ℓ ≪ ξf . The boundary condition should be de-
fined from the fact that the trajectory which touches the S electrodes do not contribute
to the total probability density anymore. An obvious reason is that the corresponding
electron moving along the trajectory experiences in this case the full Andreev reflec-
tion. Thus, at the surfaces of both S electrodes we should put w = 0. Choosing r1,2 at
the left and right electrodes, respectively, we find the probability distribution P(t) for
the first-passage time between two electrodes:

P(t) = − ∫
SR

D (nR
∂
∂rR

)w(rR , rL , t)dsR , (13.57)

where the integral is taken over the surface of the right electrode and nR is the unit vec-
tor normal to this surface. The value P(t) gives the probability of the trajectory starting
at the point rL at t1 = 0 to leave the junction in the time interval from t to t + dt. The
average current can be written as follows:

⟨I⟩ = ∑
n≥1

Njn sin nφ⟨cos nγ⟩ , (13.58)

where ⟨cos nγ⟩ = Re ∫∞
0 e−inΩtP(t)dt = ReP(nΩ). We assume here the surfaces of

S electrodes to be flat and obtain a one-dimensional problem along the coordinate
x perpendicular to these surfaces. Introducing the function W(x, t) satisfying the 1D
diffusion equation DW

xx − inΩW = 0 with the boundary conditions DW(x = 0) = ℓ
andW(x = d) = 0 one can find P(nΩ) = DW

x(x = d, nΩ).
Substituting the solution of the above diffusion equation into the current we ob-

tain: ⟨I⟩ = Re ∑
n≥1

Njn sin nφ
ℓ√in
ξf

1
sinh [√ind/ξf ] . (13.59)
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One can see that this expression reproduces the result of the Usadel theory only for
the first harmonic I1 ∝ sinφ in the current–phase relation [35]. The length Ln of the
exponential decay of higher harmonics In ∝ sin nφ appears to exceed the appropriate
length in the Usadel-type calculation:we obtain here Ln = ξf /√n instead of Ln = ξf /n.
This result indicates an obvious increase of the range of superconducting correlations
due to mesoscopic fluctuations and originates from the incorrect calculation of the
ensemble averages of the product of the anomalous Green functions in the ferromag-
net within the Usadel theory. This failure of the Usadel-type consideration is caused
by the appearance of the random interference phase γ and occurs only in the nonlin-
ear regime of rather strong superconducting correlations. Indeed, considering, e.g.,
the value ⟨cos 2γ⟩ in the above derivation we calculate the average ⟨|fsing|2 − |ft|2⟩
which definitely differs from the product of averages ⟨fsing⟩⟨f∗sing⟩ − ⟨ft⟩⟨f∗t ⟩. Note that
the above approach describes the fluctuation contributions which do not vanish in
the limit λF → 0 and can, thus, exceed the corrections found previously in [64]. Our
contributions are caused by the quantum interference effects associated with a much
larger wavelength ℏvF/h of the quasiparticle wavefunction envelope.

To find the rms value of the supercurrent we evaluate now the expression

⟨I2⟩ = ∑
Γ,Γ̃,n,m

jnjmAnm(nF , nL)(ñF , ñL) sin nφ sinmφ , (13.60)

whereAnm = ⟨cos nΩt cosmΩ ̃t⟩. The calculation of the above double sumcanbedone
similar to the calculation of the conductance R−1 = G(d, ℓ) in a dirty wire above Tc.
Assuming the normal layer thickness to be rather large (d ≫ ξf ) and omitting the
averages of the fast oscillating phase factors (which should give the short-range terms
decaying at the length ξf ) we get

⟨I2⟩ ≃ (G(d̃, ℓ̃)/4G0) ∑
n≥1

j2n sin2 nφ , (13.61)

where G0 = e2/πℏ, d̃ = Ωd/kFvF and ℓ̃ = Ωℓ/kFvF. Taking the Drude-type conduc-
tance G/G0 = Nℓ/d for a disordered wire of the length d we find the estimate

√⟨I2⟩ − ⟨I⟩2 ∼ √Nℓ
d √∑

n≥1
j2n sin2 nφ . (13.62)

The deviations from the Drude result arise naturally from the so-called interfer-
ence or localization corrections to the conductance [69]. Perturbatively, they can be
estimated as terms arising from the paths with self-crossings in the above double sum
over the trajectories. According to the Thouless criterion [70] the localization effects
in a disordered wire are small provided the effective number Nℓ/d of the conduct-
ing modes is large. Thus, one can expect our Drude-type estimate to hold in the case
Nℓ/d ≫ 1. In the opposite limit the wire conductance in Equation (13.61) and, thus,
the rms value of the critical current decay exponentially at the length Nℓ.
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Comparing the rms value with the average current taken in the same limit d ≫ ξf
we find

δI/⟨I⟩ ∼ √ ξ2f
Nℓd exp( d

ξf√2) . (13.63)

This expression for current fluctuations definitely cannot be obtained within the av-
eraged Usadel theory and results from the partial cancelation of the interference con-
tributions in the product of the anomalous Green functions. Note that turning to the
limit d ≪ ξf , i.e., to the case of the SNS junction our consideration should give a
vanishing δI value since we disregarded the quantum interference of random semi-
classical trajectories responsible for standard mesoscopic fluctuations [47]. The effect
of these fluctuations on the critical current through the SNS junction is similar to the
phenomenon of universal conductance fluctuations and gives the value δI ∼ e∆/ℏ
proportional to the single-mode contribution to the supercurrent. Despite the small
factor N−1/2 in Equation (13.63) the current fluctuations for d ≫ ξf appear to be gi-
ant compared to the current average value which decays exponentially at the small
distance ξf . The rms value can well exceed the Josephson current quantum e∆/ℏ in
SNS junctions [47]. It is also important to note that contrary to the average current the
fluctuating contributions to higher harmonics of the current–phase relation are not
suppressed exponentially compared to the first harmonic. This strong anharmonicity
probably relates to the experimental data on the large second harmonics in SFS junc-
tions [13, 71]. Certainly, in realistic junctions the above assumption of the full Andreev
reflection at the SF boundaries canbe brokendue to the effect of the interface potential
barriers which certainly suppress the higher current harmonics. Still the main effect,
namely, the partial compensation of the phases γ in the rms values should exist even
in the presence of the barriers though, of course, the above procedure of averaging
over the random trajectories should be modified.

The rms value decays with the increase of the distance between the S electrodes,
however, this decay follows only the inverse square root law instead of the exponen-
tial decay of the average current. Taking the distance d larger than ξs we can no longer
use, of course, the short junction approximation. However, one can easily see that
the above long-range behavior of the critical current fluctuations holds even in this
regime at least for the first harmonic in the current–phase relation. Indeed, the crit-
ical current in this limit is determined by the singlet component of the anomalous
Green function∑Γ fsingΓ = ∑Γ cos γΓ . The average current, therefore, decays exponen-
tially as ⟨I⟩ ∝ (ℓN/ξf )e−d/ξf√2 while the rms average becomes long-range because of
the partial phase compensation at close trajectories: ⟨(δI)2⟩ ∝ ⟨f 2sing⟩ ∝ Nℓ/d. Thus,
the above calculations confirm the estimate (13.54) both for short and long junctions.
Certainly, further increase in the distance d will give us the exponential decay of the
supercurrent but at the distances exceeding the normalmetal coherence length√D/T.
It is interesting to note that taking, e.g., the gap ∆0 ∼ Tc ∼ 3−4K and the resistance
R ∼ 10−100Ω from the experiment [25] on Co nanowires withW electrodes and using
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the Equation (13.54) we get the value δI ∼ 1 μA, which is only an order of magnitude
less that the critical current observed in [25]. The remaining discrepancy is probably
caused by the overestimating of the wire resistance in Equation (13.54) due to the pres-
ence of contact resistances in the system.

Finally, we briefly comment on the effect of mesoscopic fluctuation on the local
density of states (LDOS) at the Fermi level. In the ballistic system for straight linear
trajectories one can easily obtain an appropriate Eilenberger-type expression for this
quantity as a sumof contributions fromdifferent quasiclassicalpaths. This expression
can be simplified applying the normalization condition for quasiclassical Green func-
tions and taking the perturbation expansion in powers of the f function (see, e.g., [72]
for convenient notations). Generalizing this expressions for the trajectories experienc-
ing many sharp turns one can get: δν/νF ∝ −N−1 ∑Γ(|fsing|2 − |ft |2), where νF is the
normal metal LDOS. The ensemble average of this value certainly decays exponen-
tially ⟨δν/νF⟩ ∝ −⟨cos 2γ⟩ ∝ −(ℓ/ξf )e−d/ξf cos(d/ξf + π/4) with the increase in the
distance d from the S electrode. The fluctuating LDOS contains a long-range contribu-
tion similar to the one calculated above for the critical current:√⟨(δν/νF)2⟩ ∝ √ℓ/dN.
This nonexponential behavior of the fluctuating superconducting contribution to the
LDOS could be measured by a local conductance probe at different points of a ferro-
magnetic nanowire placed in contact with a superconductor providing, thus, a possi-
ble explanation of the long-range proximity effect observed in [23, 24, 61, 73, 74].

The direct observation of the giant sample-to-sample fluctuations assumes the
measurements of the critical current or LDOS on different junctions. It would bemuch
more convenient to find the way to change the interference phases γ i n a given sam-
ple andmeasure the junction “fingerprints” in analogy to the observation of universal
conductance fluctuations vs applied magnetic field [75]. Indeed, such type of experi-
ment in the SFS junctions may become possible provided we apply the magnetic field
which can affect the domain structure in the ferromagnetic layer without producing
noncollinear magnetic regions to avoid the admixture of the long-range triplet corre-
lations. Note finally, that the mesoscopic fluctuations considered in our work should
bemost easily observed in the experiments with the ferromagnetic wires because their
relative contribution decayswith the increase of the number of transport modes in the
junction.

13.5 Conclusion

To sumup, in this chapterwehave shown that the spin splitting of the electronic Fermi
surfaces due to the exchange field and/or the spin–orbit coupling gives rise to very
rich interference physics. The most dramatic consequences of such interference ap-
pear in Josephson junctions with a ferromagnetic weak link.When propagating inside
the ferromagnetic material the electrons gain a phase which is determined mainly by
the interplay between the two length scales: the period of the FFLO oscillations and
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the length of the electron trajectory. The constructive interference among the certain
trajectories significantly enhance the proximity effect andmodifies the current–phase
relation of the SFS/ Josephson junctions. Moreover, the spin-dependent renormaliza-
tion of the electron Fermi velocity due to the spin–orbit coupling results in the appear-
ance of the spontaneous ground state Josephson phase φ0 which can be effectively
controlled by the magnetic or exchange field. Surprisingly, even in the presence of
strong disorder the quantum interference affects the properties of the Josephson sys-
tems due to the mesoscopic fluctuations. The resulting renormalization of the Joseph-
son current–phase relation can explain the experimental data showing the anoma-
lously slow decay of superconducting correlations in ferromagnets.

Note that in all sections of this chapterwe discussmainly the effects caused by the
superconducting correlations with zero spin projection Sz on the exchange field direc-
tion. However if the ferromagnet contains several domainswith the noncollinearmag-
netic moments the triplet correlations with Sz = ±1 appear. Such correlations are not
sensitive to the exchange field and penetrate the ferromagnets over the long distances
giving rise to the so-called long-range triplet proximity effect [5]. The presence of the
long-range triplet correlations gives rise to a series of unusual phenomena controlled
by the quantum interference such as triplet spin–valve effect in S/F1/F2 and F1/S/F2
systems [76, 77] and the long-range Josephson effect in S/F1/F/F2/S junctions [30].
Also the effect of the triplet correlations on the electron interference plays the crucial
role in the fast growing field of the superconducting spintronics which involves the
spin degree of freedom into the functionality of electronic devices [7].

Thus, the interference phenomena described in this chapter show the richness of
the proximity effect physics in superconductor/ferromagnet hybrids and provide de-
sign guidelines for the next generation of tunable elements found in cryogenic com-
putational electronics.
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