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Systems Biology

Enormous amounts of data being generated

• DNA sequencing: Fully sequencing genomes is rapid and easy

• DNA microarray: Which genes are being transcribed

• Proteomics: Which proteins are present

• Flow cytometry: Concentration in individual cells

And how to use it to predict clinical observations and phenotypes?
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Systems Biology

Model-based development

Also, a common feature in embedded system design

Goal: Models can help

• perform in-silico experiments

• guide wet lab experiments

• suggest novel drug targets
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Nutrient Sets

Goal: Starting from the genome, find nutrient sets on which that organism will
grow

• Sequence genome of the organism

• Extract genes

• Predict metabolic network

• Predict growth on nutrient sets
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Metabolic Network: Rewriting-based Modeling

Rewriting is used as a language for writing Petrinets

Petrinets: Ground AC rewrite systems with 1 AC symbol

Example:

a1 : A+B → C +D

a2 : C +A → E

The numeric parameters a1, a2 capture relative affinity/preference/ likelihood

Typical metabolic networks have 1000’s of reactions and metabolites
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Rewrite Rules as Models

Rewrite rules used to model

• metabolic networks

• cell signaling

• gene regulatory networks

Terms can have complex structure: compartments, binding sites

Three different semantics of these rules

• stochastic

• deterministic

• nondeterministic
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Stochastic Firing: Chemical Master Equation

Strategy for firing rewrite rules: stochastic

Physics-based models of biochemical reaction networks: stochastic Petrinets

Semantics is given using the CME

X: set of metabolites, |X| = n; e.g. X = {A,B,C,D,E}
R: set of reactions

r: a reaction, element of Nn; e.g. A+ C → E 7→ [−1, 0,−1, 0, 1]
P : map from N+n × R+ 7→ [0, 1]

dP (X, t)

dt
=

∑
r∈R

a(P (X − r, t), r)
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Stochastic Firing: Example

a1 : A+B → C +D a2 : C +A → E

Evolving probability distribution:

A=2,B=1,C=D=E=0 A=1,B=0,C=1,D=1,E=0 A=0,B=0,C=0,D=1,E=1

1 1 0 0

2 1/2 1/2 0

3 1/4 1/2 1/4

4 1/8 3/8 1/2

5 ... ... ...

6 0 0 1

Difficulty: Not enough data to know how to compute a

High-dimensional Markov Chain: Does not scale
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Deterministic Firing: Mass Action Dynamics

Approximation of CME using ordinary differential equations

a1 : A+B → C +D a2 : C +A → E

ODE model using mass action dynamics:

dA(t)

dt
= −a1 ∗A(t) ∗B(t)− a2 ∗A(t) ∗ C(t)

dB(t)

dt
= −a1 ∗A(t) ∗B(t)

dC(t)

dt
= −a2 ∗A(t) ∗ C(t) + a1 ∗A(t) ∗B(t)

dD(t)

dt
= a1 ∗A(t) ∗B(t)

dE(t)

dt
= a2 ∗A(t) ∗ C(t)

Issue: (i) approximate (ii) Still need a1, a2
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Nondeterministic Firing: Rewriting

Preferable because we do not need extra parameters

Organism grows if it can produce biomass compounds starting from nutrients

This is a reachability question

Petrinet reachability is decidable, but inefficient

Example: If A,B are nutrients, and E is a biomass compound, then:

2A+B → A+ C +D → E +D
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Reachability: Via Constraint Solving

We can perform approximate reachability via constraint solving

Example:

A+B → C +D C +A → E

Constraints: Suppose initial state is 2A+B, we want to reach D + E

A : −r1 − r2 + 2 = 0

B : −r1 + 1 = 0

C : r1 − r2 = 0

D : r1 − 1 = 0

E : r2 − 1 = 0

If D + E is reachable from 2A+B, then above constraints are satisfiable

This is called Flux Balance Analysis
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Nutrient Sets for E.Coli

We have used constraint solving for finding (minimal) nutrient sets for E.Coli

Flux Balance Analysis: an overapproximation of the reachability relation

We developed a constraint-based approach that captures reachability more
accurately than FBA

Results:
(1) About 75% accuracy with experimental results
(2) Predicted growth of E.Coli on cynate as both Carbon and Nitrogen source,
which was experimentally verified
(3) Can compute all minimal nutrient sets for E.Coli
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Rewriting in Biology

Apart from metabolic networks, rewrite rules are also commonly used for
modeling signalling pathways

Signaling pathway: Biochemical reactions that show how signals are transmitted
from the cell surface to the cell cytoplasm to nucleus

Questions of interest to biologists vary
visualization
reachability pathways
conflicts: A→∗ C and B →∗ D, but A+B − (A ∩B) 6→∗ C +D

knockouts: Is it possible A→∗ C, but without using B

All analysis techniques should scale
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Competing Rules in EGF Stimulation Pathway
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Outline

Rewriting in

• Systems Biology

• Algorithm Description and Design

• Theorem Proving
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Algorithms

Rewriting is useful in two different ways in the study of algorithms:

• Rewriting-based descriptions for algorithms

• Rewriting as a paradigm for algorithm design
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Rewriting-based Descriptions

• Express the algorithmic problem by identifying the term structure of initial
and final configuration

• Define an ordering on the space of configurations such that the final
configuration is minimal

• Find local transition rules that decrease configuration measure
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Rewriting-based Descriptions

Such descriptions are obtained when writing algorithms in rewriting logic (such
as, in Maude)

Example: Sorting can be described by

X, a, Y, b, Z → X, b, Y, a, Z if a > b

Benefit:

• Separates implementation from the algorithm

• Correctness argument simpler

• Algorithms are nondeterministic
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Algorithmic Design Paradigms

Some paradigms taught in a course on algorithms:

• greedy

• divide and conquer

• dynamic programming

• branch and bound

One important paradigm often not taught:

• completion
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Completion as Paradigm

for Algorithm Design

• Express the algorithmic problem by identifying configurations as sets of facts

• Define an ordering on the facts and proofs

• Find local transition rules that add or delete facts such that

◦ proofs of (provable) facts do not get any bigger

◦ some proof gets smaller

In the final configuration, all facts have minimal proofs
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Completion-based Procedures: Examples

Shortest-path in a graph:

Deduce
C := {. . . , path(u, v, duv), path(v, w, dvw), . . .}

C ∪ {path(u,w, duv + dvw)}

Delete
C := {. . . , path(u, v, d), path(u, v, d′), . . .}

C − {path(u, v, d′)}
if d < d′

Orderings determine what deduction and deletion steps are acceptable

Deleted facts should have smaller proof using remaining facts

Deduced facts should make some proof smaller
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Benefits

• Uniform understanding of several algorithms

• Different orderings will yield different algorithms

• Strategy for applying the inference steps can be determined by other factors

Can optimize an algorithm by

• choosing an appropriate ordering

• choosing an appropriate strategy

• choosing an appropriate data structure
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Completion-based Algorithms

• Union-find

• Congruence closure

• Rational linear arithmetic
(Simplex)

• Fourier-Motzkin

• Gröbner basis

• Ordered resolution

In this talk,

• Linear equalities

• Linear equalities + inequalities

• Nonlinear equalities

• Nonlinear equalities + inequali-
ties
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Solving Linear Equations

Facts: a1x1 + · · ·+ anxn + b = 0

Pick an ordering x1 � x2 � · · · � xn

Define measure m(a1x1 + · · ·+ anxn + b = 0) := {xi | ai 6= 0}, and
m(xi > 0) := {xi}

Order facts by �m on their measures

Measure of a proof := measure of all facts used in it

Deduce
C := {. . . , ax+ Y = 0, bx+ Z = 0, . . .}

C ∪ {bY − aZ = 0}

But, here, we need to do this even when x is not maximal
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Solving Linear Arithmetic Equations

Get more flexibility in ordering facts

Distinguish: a1x1 + · · ·+ anxn + b = 0 and a1x1 = −a2x2 − · · · − anxn − b

Pick an ordering x1 � x2 � · · · � xn

Define measure m(a1x1 + · · ·+ anxn + b = 0) := {xi | ai 6= 0}, and
m(a1x1 = −a2x2 − · · · − anxn − b) := {x1}

Order facts by �m on their measures

Measure of a proof := measure of all facts used in it

Deduce
C := {. . . , ax = Y, bx = Z, . . .}

C ∪ {bY − aZ = 0}

Now, we only need to overlap on largest x

Procedure for solving equations (triangular form)
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Example: Solving Linear Equations

Example: Ordering x � y

x+ 2y = 0, x− y = 0

x→ −2y, x→ y

x→ −2y, −2y = y

x→ −2y, −3y → 0

This is a solved/triangular form
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Linear Arithmetic Simplex

Consider equality and inequality facts, xi > 0

We are interested in whether the facts together are consistent

How can rewriting help?

First, note that:

p1 = 0, p2 = 0, x1 > 0, x2 > 0 is unsatisfiable iff ∃p :

(1) p1 = 0 ∧ p2 = 0 ⇒ p = 0

(2) x1 > 0 ∧ x2 > 0 ⇒ p > 0

How to determine if such a p exists?

Key idea from rewriting: Make this witness smaller.
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Example: Linear Arithmetic Simplex

Example:

Ordering: x � y Ordering: y � x

x+ 2y = 0, x− y = 0, x > 0

x→ −2y, x→ y, x > 0

x→ −2y, −2y = y, x > 0

x→ −2y, −3y → 0, x > 0

x+ 2y = 0, x− y = 0, x > 0

2y → −x, y → x, x > 0

2y → −x, −x = 2x, x > 0

2y → −x, 3x = 0, x > 0

⊥
No contradiction detected. Contradiction detected.

3x = 2(x− y) + (x+ 2y) is the required witness for unsatisfiability.

Simplex: Changing ordering (aka pivoting) helps us detect unsatisfiability
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Nonlinear Equations

Algorithm for computing Gröbner basis is a completion algorithm

Idea behind completion:

• Starting with a set of facts

• Add new facts (saturation)

◦ that do not have a smaller proof using existing facts

• Delete any fact (simplification)

◦ that do have a smaller proof using other facts
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Gröbner Basis: Example

Ordering: Total degree lex with precedence x � y

View as completion enables optimizations

xy2 − x = 0, x2y − y2 = 0

xy2 → x, x2y → y2

xy2 → x, x2y → y2[y], x2 = y3

xy2 → x, x2y → y2[y], y3 → x2

xy2 → x[y], x2y → y2[y], y3 → x2, xy = x3

xy2 → x[y], x2y → y2[y], y3 → x2, x3 → xy

xy2 → x[y, x2], x2y → y2[y, x], y3 → x2, x3 → xy
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Property of Gröbner Basis

If
p′ ∈ Ideal(P )

G : Gröbner basis for P

Then
p′ ↔∗P 0 definition of ideal

p′ →∗G 0 definition of GB

Claim. If there is no p′′ ≺ p′ s.t. p′′ ∈ Ideal(P ), then p′ ∈ G.
Proof. If p′ →G p′′ →∗G 0, then p′ � p′′ and both p′, p′′ ∈ Ideal(P ).
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Nonlinear Simplex

We can generalize the idea of Simplex for linear constraints to nonlinear
constraints

Problem: Given a set of nonlinear equations and inequalities:

p = 0, p ∈ P

q > 0, q ∈ Q

r ≥ 0, r ∈ R

where P,Q,R ⊂ Q[~x] are sets of polynomials over ~x

Is the above set unsatisfiable over the reals?
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Nonlinear Simplex: Examples

Examples of satisfiable constraints:

{x2 = 2}

{x2 = 2, x < 0, y ≥ x}

Examples of unsatisfiable constraints:

{x2 = −2, y ≥ x}

{x2 = 2, 2x > 3}

Applications in: control, robotics, solving games, static analysis, hybrid systems,
. . .
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Nonlinear Simplex: Known Results

• The full FO theory of reals is decidable [Tarski48]
Nonelementary decision procedure, impractical

• Double-exponential time decision procedure [Collins74, MonkSolovay74]

• Exponential space lower bound

• Collin’s algorithm based on “cylindrical algebraic decomposition” has been
improved over the years and implemented in QEPCAD.
In practice, could fail on p > 0 ∧ p < 0.

Obtaining efficient, sound and complete method unlikely

SMT+/SMT-: Can we obtain efficiency by relaxing completeness?
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Nonlinear Simplex-

The approach is reminiscent of Simplex

• Introduce slack variables s.t. all inequality constraints are of the form v > 0,
or w ≥ 0

P = 0, Q > 0, R ≥ 0 7→
P = 0, Q− ~v = 0, R− ~w = 0, ~v > 0, ~w ≥ 0

• Search for a polynomial p s.t.

P = 0 ∧Q = ~v ∧R = ~w ⇒ p = 0

~v > 0, ~w ≥ 0 ⇒ p > 0

• If we find such a p, return “unsatisfiable” else return “maybe satisfiable”
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How to search for p?

Witness for unsatisfiability p satisfies:

P = 0 ∧Q = ~v ∧R = ~w ⇒ p = 0 (1)

~v > 0, ~w ≥ 0 ⇒ p > 0 (2)

We need efficient sufficient checks

Sufficient check for Condition ??: p ∈ Ideal(P,Q− ~v,R− ~w)

Sufficient check for Condition ??: p is a positive polynomial over ~v, ~w

To search for p, compute the Gröbner basis for P making ~v, ~w smaller in the
ordering
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Example: Easy Instance

Consider E = {x3 = x, x > 2}.

x3 − x = 0, x− v − 2 = 0

(v + 2)3 − (v + 2) = 0, x− v − 2 = 0

v3 + 6v2 + 11v + 6 = 0, x− v − 2 = 0

⊥

Computing GB and projecting it onto the slack variables discovers the witness p
for unsatisfiability

May not work always ...
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Example: Harder Instance

Let I = {v1 > 0, v2 > 0, v3 > 0}.

v1 + v2 − 1 = 0, v1v3 + v2 − v3 − 2 = 0

v1 + v2 − 1 = 0, (1− v2)v3 + v2 − v3 − 2 = 0

v1 + v2 − 1 = 0, v2v3 − v2 + 2 = 0

This is a Gröbner basis.

There is an unsatisfiability witness p for this example, but we failed to find it.
Define v2v3 = v4 and make v2 � v4:

v1 + v2 − 1 = 0, −v2 + v4 + 2 = 0

v1 + (v4 + 2)− 1 = 0, −v2 + v4 + 2 = 0
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Nonlinear Simplex: Summary

• Turn all inequalities into equations by introducing slack variables

• Compute Gröbner basis of the equations

• If a positive polynomial is ever generated, return unsatisfiable

• If not, introduce new definitions to try different orderings and repeat
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Invariant Generation for Dynamical Systems

Problem: Given a continuous dynamical system, find its invariants.

Instance: Given CDS dx
dt = y, dy

dt = −x, find p s.t. dp
dt = 0

Solution: Make d(p) terms smaller than others.

d(x) = y, d(y) = −x, d(x2) = x ∗ d(x), d(y2) = y ∗ d(y)

y → d(x), x→ −d(y), x ∗ d(x)→ d(x2), y ∗ d(y)→ d(y2)

...completion...

d(x2) + d(y2) = 0

The invariant x2 + y2 = c is discovered
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Other Applications

There are plenty of other applications of rewriting

• Within SMT solvers: Due to incrementality and backtracking requirements,
completion-based decision procedures are preferred

• Program analysis/Logical interpretation: Uninterpreted functions is a common
abstraction

x := x ∗ y 7→ x := f(x, y)

x := x→ next 7→ x := next(x)

Equality assertion checking: equational reasoning/unification (STGs)
Interprocedural analysis: context unification

• Theorem proving: ordered resolution

• Rewriting
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Conclusion

From numeric-centric to symbolic-centric:
Rewriting an important symbolic approach

Future directions:

• Stochastic rewrite systems, SSA, Bayesian networks

• Approximate reachability using constraint solving/ abstractions

• Playing with orderings– more algorithms to be discovered?

Other topics:

• Confluence: Basic concepts?

• Learning: personalized therapeutics

• Dynamical systems
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