Synthesizing from Components'

‘Building from Blocks I

SRI International
333 Ravenswood Ave
Menlo Park, CA 94025

Joint work with Sumit Gulwani (MSR), Vijay Anand KorthikantJlUC),
Susmit Jha (UC Berkeley), Sanijit Seshia (UC Berkeley), Th®®turm
(Munich), Ankur Taly (Stanford), Ramarathnam Venkatedd&6R)

- /

MSR, Redmond Component-based Synthesis: 1

Component-Based Synthes]s

Problem How towire the components to synthesize@asiredsystem ?

- /

MSR, Redmond Component-based Synthesis: 2

/ Concrete Examplej \

Desired Systentpe. Components;’s

sort an array comparators

computexT*y modulo arithmetic ops

find rightmost one bitwise ops, arithmetic ops
computer?43 multiplication

L4

accept-regular language Buchi automata
safe hybrid system multiple operating modes

geometry construction | ruler-compass steps

deobfuscated code parts of obfuscated code
verification proof verification inference rules
\Questiom 3C :Vx : Fapec() = C(f1, f2,...)(2) /

MSR, Redmond Component-based Synthesis: 3

/ ‘Synthesis Problem Classﬂs \

“This is difficult”
“This is ill posed

“This iIstoo generato be solvable”

3C : V@ Fopec(x) = C(f1, f2,...) ()
Parameters that define tegnthesis problem
e composition operatof’
¢ class of specificationBp..

e class of component specificatiofis

Fixing thesynthesis problem
\fix these parameters, frepresentatioof Fypec, fi /

MSR, Redmond Component-based Synthesis: 4

4 A
Bounded Synthesii

Thesynthesis problens still hard

We make itfeasibleby replacing theinboundedjuantifier,3C', by abounded
guantifier

3C :Vx @ Fopec(x) = C(f1, f2,...)(2)
4

Jc : Vo 1 Fapec(z) = c(f1, f2, f3)(x), c in some finite set

This bounded synthesproblem is solved by deciding the/ formula

- /

MSR, Redmond Component-based Synthesis: 5

/ Straight-Line Program Synthesis' \

composition operator| function composition

components primitive functions

system complex function

Bounded synthesis version:
e fix length of program

e fix upper bound on number of each component

3P :Vx : Fgec(x) = P(z), P astraight-line program composirfgs
Y
dm @ Ve FSPGC(ZC) — fw(l)(fw(2) (fT('(S) (ZC)))

. /

MSR, Redmond Component-based Synthesis: 6

4 N

Example: Straight-Line Program Synthesis

Specification Evaluate polynomiad x h?2 +bx h + ¢
Budget two multiplication andwo addition operators

Finite search space

Synthesized Program
1. 01 ;= a xh;

2. 09 ;=01 + b;

3. 03 := 09 * h;

4. returnos + c;

Correctness(a « h +b) xh+c=a*h* +b*xh+c

N /

MSR, Redmond Component-based Synthesis: 7

-

Specification Turn-off rightmost contiguous 1 bits
Example:010101100 — 010100000

Example: Straight-Line Program Synthesis

Budget two addition and at modbur bitwise Boolean operators

Finite search space: Also need some constants

Synthesized Program
1. 00 :=x+ (—1);

2. 09 := 01|z;

3. 03 := 09 + 1;

4. returnos&zx;

Correctness on sample input:

\ 010101100 ~ 010101011 ~ 010101111 ~ 010110000 — 010100000 /

MSR, Redmond Component-based Synthesis: 8

/ ‘Loop-free Program Synthesij \

composition operator| function composition

components primitive functions,f-then-else

system complex function

Bounded synthesis version:
e fix length of program

e fix upper bound on number of each component includitgen-else

3P :Vx : Fgec(x) = P(z), P astraight-line program composirfgs
Y
dm Ve FSPGC(ZC) — fﬁ(e) (fw(l)(fw(ll)(xl)a fw(12) (ZC27 xl)))

. /

MSR, Redmond Component-based Synthesis: 9

-

Example: Loop-free Program Synthesis

Specification Obfuscated code
Example: We are given
I (h(x))
1f (x*(x+1)% 2 == 1) v :=1f(x) elsey := g(x)
elsey :=1f(g(x))
Components Budget, g, h, if-then-else
Synthesized Program

0 := g(x);
if (h(x)) v :=o0; elsey :=f(0);

Correctness: Equivalence of two loop-free programs

N

/

MSR, Redmond Component-based Synthesis: 10

4 N

‘Loop-free Program Synthesij

Jm: Va . Fspec(w> — fﬂ'(e) (fw(l)(fw(ll)(xl)a fﬂ'(12) (562,161)))

Enumerate all possible programs and check

Enumerate all permutatiomsand check

Checking if a synthesized program is the desired progranvésiacation
problem

Bounded Synthesis iteratively performverification

\But we canearnfrom failures ... /

MSR, Redmond Component-based Synthesis: 11

4 N
=\ Solvers'

Bounded Synthesis> 3V solving

How to solvedu : Vx : ¢ formulas?
Al Counter-example guided iterative solver

A2 Distinguishing input solver

e Applies even wheip not fully known

A3 Numerical solver

. /

MSR, Redmond Component-based Synthesis: 12

/ Al: Solving 3V¢I \

Counter-example guided iterative procedure for sohdig vV : ¢(u, T)
1. Guessi, for u
2. (Verification) Check if
VI @ ¢(up, T)
3. If true, then returniy

4. Get counterexamplé,, add it toX
5. (Finite Synthesis) Find newg such that

Tty : /\ ¢ (o, Zo)

ToeX

Q Go to Step 2 /

MSR, Redmond Component-based Synthesis: 13

Al: Counter-example Guided lterative 3V Solving'

Needs a backengluantifier-free solver

That can returmounterexamples

We use arEMT solver

The structure of, and additional knowledge about whaencodes, is used
optimize the above procedure to expeditevergence

Related Work Sketch, Aha

Reference Synthesis of loop-free programs, PLDI 2011

- /

MSR, Redmond Component-based Synthesis: 14

/ A2: Distinguishing Input Solver' \

Solving3du : V& : ¢(u, T)
1. X := some finite set of choices far

2. Findtwo programghat work for X, butdiffer on somezr

Jidy, o, o ¢ ([\ (@1, F) A ¢(ida, D)) A ($(i1, 7o) ¥ (i, Zo))

TeX
3. If satisfiable, we add, to X and go to (2)

4. If unsatisfiable, then findneprogram that works foX
i+ N\ (i, ©)
reX

5. If satisfiable, returni;

Otherwise, return “not synthesizable” /

MSR, Redmond Component-based Synthesis: 15

/ ‘AZ: Properties of the A2 Solve:' \

The second algorithm for solvingi : V' : ¢(u, T)
e Does not need theill specificationof the desired program

e We only need the knowledge of the specification on theXset

e Does not perform theerificationstep

An interativeimplementation of A2:
1. Tool asks user for thexpected output on inpui,

2. Tool synthesizes internallyvo programghat work correctly for
X = {%y}, but differ on inputr;

3. Tool asks user for thexpected output on input;

QAdd 21 1o X and repeat /

Component-based Synthesis: 16

MSR, Redmond

\A3: Nonsymbolic 3V Solver'

A third algorithm for solvingdu : V& : ¢(u,)

1. Findfinite setX of input-output pair®f the specification
2. Synthesizgprogram that work$or finite setX

3. Verify the synthesized prograom randomly sampled inputs

We solved Step (2) using &MT solverpreviously

We can avoid the SMT solver and instead

1. hierarchical program synthesiirst synthesizénigh-level components

2. enumerate composition of high-level componenigied bygoal

- /

MSR, Redmond Component-based Synthesis: 17

4 N

Specification Construct a triangle, given its base, a base angle and stime of
other two sides.

Example: Synthesis Without Symbolic Reasoning

ComponentsRuler compass constructions

Formal specificationGiven pointsp, po and numbers, r, find pointp

Gpre = 1T > length(pi,ps)
ngOSt = Angle(p7p17p2) =a A length(papl) + length(p,pg) =r

Construction

L1 := ConstructLineGivenAngleLine(L,a);

C1 := ConstructCircleGivenPointLength(p1,r);
(p3,p4) := LineCircleIntersection(L1,C1);

L2 := PerpendicularBisector2Points(p2,p3);

\pS .= LineLinelntersection(L1,L2); /

MSR, Redmond Component-based Synthesis: 18

4 N

Example: Geometry Construction Synthesis

Step 1 find concrete input-output pair consistent with specifarati

L = Line((81.62,99.62), (99.62,83.62))
r = &8.07
a = 0.81 radians

Compute output for this inpup := (131.72, 103.59)
Step 2 Start enumerating partial programs built usingeatended library

Step 3 Evaluate if intermediate objects generated by the pantanmam are
goodand try other choices in Step (2) otherwise

- /

MSR, Redmond Component-based Synthesis: 19

-

Geometry Construction Synthesis

Evaluting effect of making searcipal directed

Points generated by goal-directed search

Points generated by brute-force search

-

" depth'0 (Input) " . " depth O (Input) :
250 L depth 1 | K) < < depth 1
depth2 [J % ’ : depth 2 [
depth 3 * 100 . depth 3 *
depth 4 3 depth 4
200 L depth 5 (Output) @ | “i 7 depth
» i depth 6 (Qutput) @
j‘E Cy . S
150 | 5O ke B
.
> 100 |) E. > -
) T
50 b H* 0F ‘ k
" T
of
S X
ol 3
.50 -
1 1 1 1 1 1 1 1 1 1 1
-50 0 50 100 150 200 250 -50 0 50 100
X X

Points visited in a goal-directed search (left) and a bfatee search (right).

/

MSR, Redmond

Component-based Synthesis: 20

\ Geometry Construction Synthesij

e Extended librarys forward search

o Encodes knowledge / concept taught in class

e Goal directnesss backward search

o Corresponds to reasoning student expected to do

e Sample input-output points generated usignericaltechniques

- /

MSR, Redmond Component-based Synthesis: 21

‘Switching Logic Synthesij

Given amultimodal dynamical system

Synthesizeconditions for switching between modsgch that some
requirements are met

- /

MSR, Redmond Component-based Synthesis: 22

/ Example: Driving a Robot' \

o0 The goal is to drive the robot starting frdnmi t to
Reach while remaining insidé&af e:

AN
AN

:

lnit = (ze[-1,1],y=0,v,=0, v, =0
3 0 : Reach := (y > 10)
Safe := (|z| <3)

Using the 2 modes:

e Mode 1: Force applied ifil, 1)-direction

dx dv, | dy dv,, |
— = Ug, — = 1 = Uy, —5 — Uy, — — 1L—=7
dt dt dt 77 dt Y
e Mode 2: Force applied if+1, 1)-direction
dx dv, dy dv
=V = —1—vz, — =y, —yzl—vy

dt

\ a7 dt

MSR, Redmond Component-based Synthesis: 23

/ Example: Driving a Robot' \

We synthesize aon-deterministic controlleia set of different possible
switchings that each satisfy the requirem8at eUReach.

Two possibldrajectories:

\How to discover the correct switching logic? /

Component-based Synthesis: 24

MSR, Redmond

\Switching Logic Synthesij

Jswitching conditions Vstate variables correctness
We can agairboundthe search for switching conditions

But that is abadsolution

Need to go back teerification

- /

MSR, Redmond Component-based Synthesis: 25

‘Verification Techniques'

1. Reachability-Based Verification

2. Abstraction-Based Verification

3. Certificate-Based Verification

Key ObservationVerification = searching forght certificate

Property | Witness/Certificate

Stability | Lyapunov function

Safety Inductive Invariant

Liveness| Ranking function

. /

MSR, Redmond Component-based Synthesis: 26

/ Certificate-Based Verification' \

Verifying property P in systemsS' :=
JC : Cis a certificate foP in S

Can do aboundedsearch forC'
Also known as theonstraint-based approach

Certificates for Synthesis Problem

Property | Witness/Certificate

Safety Controlledinductive Invariant

Stability | ControlledLyapunov function

- /

MSR, Redmond Component-based Synthesis: 27

‘Bounded Synthesis of Switching Logi’

Given multimodal dynamical system, and propesaf e:

e Guess templates for the certificate for controlled-safety

e Generate théa,b,...:Vz,y,...: ¢

e Solvethe formula to get values far, b, . . .

- /

MSR, Redmond Component-based Synthesis: 28

-

3V Solvers'

Needdu : Vx : ¢ solvers for the reals

We can use the same ideas as before

e Symbolic NumericApproach:

-

o Symbolic: Acombinationof QEPCAD, redlog, slfqo eliminate innet

o Numeric: Gradient descerto find « from resulting formula

e |terative learninglteratively prune outu values based osimulations

/

MSR, Redmond

Component-based Synthesis: 29

4 N
Conclusion'

e Synthesis3V solving

e Bounded synthesidMake problem tractable by makinga finite
guantification

e Component-based Synthesis
e Various approaches twlveJV depending on application

e Switching logic synthesis : search foontrolled certificates

- /

MSR, Redmond Component-based Synthesis: 30

