
Computer Science Laboratory, SRI International

Formal Techniques for Analyzing Hybrid Systems

Ashish Tiwari

Techniques for Solving the Model Checking Problem

• Fixpoint over concrete semantics

• Fixpoint over abstract semantics with possibly CEGAR loop

• Certi�cate-based / Constraint-based

1

Fixpoint over Concrete Semantics

Temporal operators have a �xpoint semantics

Given a temporal formula φ, we �nd the set [φ] of all states s.t. all traces
starting from this set, satisfy φ
Consider the formula Fφ
Assume we have found the set [φ]
Now we need to �nd [Fφ]
We �nd [Fφ] iteratively:

• initially, ψ = [φ]
• add s to ψ if all states s′ one-step reachable from s are in ψ
• when ψ changes no more, return ψ

We can now determine if S |= Fφ by checking if Init ⊆ [Fφ]
2

Fixpoint Procedure for S |= Fφ

The previous �xpoint procedure calculates [Fφ] based on the following fact:

Fφ = φ ∨ Xφ ∨ X 2φ ∨ · · ·

3

Fixpoint over Concrete Semantics

Constructing the set [Gφ]
We iteratively build set of states ψ from where Gφ fails to hold.

• initially, ψ = ¬[φ]
• add s to ψ if some state s′ one-step reachable from s is in ψ
• when ψ changes no more, return ¬ψ

The above is based on:

Gφ = φ ∧ Xφ ∧ X 2φ ∧ · · ·
= ¬(¬φ ∨ EX¬φ ∨ EX 2¬φ ∧ · · ·)

And is known as backward analysis when applied to programs
4

Fixpoint over Concrete Semantics

For S |= Gφ, we have another procedure: compute all states that have to be in
φ:

• initially, ψ = Init
• add s′ to ψ if s′ is one-step reachable from some s ∈ ψ
• when ψ changes no more, check ψ ⊆ [φ]

This is known as forward analysis when applied to programs

Backward analysis is goal-directed, forward analysis is guided by the initial states

Exercise. Describe a �xpoint procedure for the U operator

5

Implementing Fixpoint over Concrete Semantics

explicit state model checkers: The set of states are represented explicitly

symbolic model checking: The set of states is represented symbolically

In both cases, the exact set, [φ], is computed

• every state in [φ] is in the computed representation

• every state in the computed representation is in [φ]

6

Fixpoint over Concrete Semantics

Works for �nite-state systems

No guarantee of convergence for in�nite-state systems

There can be classes of in�nite-state system for which certain representations
could be su�cient to capture [φ]
And where �xpoint computation, when performed over this representation,
always terminates

Example: Timed automata

7

Continuous-Time: Fixpoint over Concrete

The dynamics of continuous-time systems are speci�ed using di�erential
equations

The key step in model checking involves computing the one-step successor of a
set of states

Given an ODE system, d~x/dt = f (x), a set Init of initial states, and a time
bound T , �nd (a representation) for the set of states reached from Init in time
[0, T] following the given ODE dynamics.

Even if the ODEs are linear, and Init is convex, the set of states reachable in
[0, T] may not be convex.

SpaceEx: spaceex.imag.fr

8

Fixpoint over Abstract Semantics

The concrete system may be di�cult to analyze

We can then consider abstractions of the system

The goal of abstraction is to get a su�cient, but not necessary, check for
S |= φ, which is simpler to decide

The system Sa = (Xa,Fa, Ia) is an abstraction of Sa = (X,F, I) if there is an
abstraction mapping α : X 7→ Xa s.t. whenever s → s′ in S, we have
α(s)→ α(s′) in Sa.

Exercise. If PreImageα(α(φ)) = φ, then
(1) Sa |= G(α(φ)) implies S |= G(φ)
(2) Sa |= F (α(φ)) implies S |= F (φ)

9

Iterative �xpoint-based Method

Initial

Unsafe

....

• We can perform an iterative �xpoint method that works over an abstraction

• Can over-approximate at each step

• Abstract interpretation

Challenge: Finding a good abstract domain, which is easy to represent and
�push� through the dynamics
Computing good quality Pre/Post: symbolic if dynamics easy, and numerical o.w.

10

Fixpoint over Abstract Semantics

A large class of HS veri�cation tools are based on reachability computation
They try to be close to concrete (i.e. minimize approximation)
Forward, ignoring property
E.g., HyTech, Checkmate, ddt, PhaVer, SpaceEx

One signi�cant recent advance: zonotopes

11

Fixpoint over Abstract Semantics: CEGAR

To solve S |= φ
We can construct Sa, φa, such that abstraction is lossless on atomic predicates
of φ
Then, check Sa |= φa

If answer is �yes�, then we return �yes�

If answer is �no�, then we can

• try to determine if the trajectory that falsi�es φa is spurious

• if so, we can try to re�ne Sa
(Make it lossless on more predicates)

12

Abstractions

A canonical way to create an abstraction (Xa,Fa, Ia) of (X,F, I):
Partition X into subspaces, and each subspace is an abstract state

Xa = {X1,X2, . . .} where X is a disjoint union
⋃
iXi

De�ne Fa using the abstract one-step relation:

Xi →a Xj if ∃s ∈ Xi : ∃s′ ∈ Xj : s → s′

De�ne Ia: Xi ∈ Ia if there is a state s ∈ Xi s.t. s ∈ I

Partition s.t. predicates in property are union of abstract spaces

13

Abstractions

Abstractions can be used on discrete- and continuous-space systems

Consider a system with state space <2, partitioned w.r.t signs of x1, x2, p1, p2:

���
�

���
� ����

x2 = 0

x1 = 0

p1 = 0

p2 = 0

{x1 = 0, x2 < 0, p1 < 0, p2 > 0} #⇒ {x1 > 0, x2 < 0, p1 < 0, p2 > 0} if

∃x1, x2 : x1 = 0 ∧ x2 < 0 ∧ p1 < 0 ∧ p2 > 0 ∧ dx1
dt > 0

14

Abstraction-based Analysis

Two options:

Construct an abstraction, and then model check it

• HybridSAL approach

Interleave model checking (�xpoint computation) and abstraction computation

• Abstract Interpretation

15

Flavors of Abstraction

Abstraction: Map concrete system to an abstract system that has no less
behaviors

Choices:

• abstract state space: qualitative abstraction

• abstract the dynamics: relational abstraction

• abstract initial set and safe set

16

Flavor 1: Qualitative Abstraction

Map concrete state space to abstract state space and lift concrete dynamics to
abstract dynamics

Components of qualitative abstractor:

• abstraction mapping:
value of concrete variables 7→ value of predicates

• continuous dynamics 7→ abstract using qualitative reasoning

• discrete dynamics 7→ abstract using predicate abstraction

17

Flavor 1: Qualitative Abstraction

Partition concrete state space, e.g. <2, w.r.t signs of polynomials x1, x2, p1, and
p2.

���
�

���
� ����

x2 = 0

x1 = 0

p1 = 0

p2 = 0

There will be an abstract transition from x1 = 0 ∧ x2 < 0 ∧ p1 < 0 ∧ p2 > 0 to
x1 > 0 ∧ x2 < 0 ∧ p1 < 0 ∧ p2 > 0 if

∃x1, x2 : x1 = 0 ∧ x2 < 0 ∧ p1 < 0 ∧ p2 > 0 ∧ dx1
dt > 0

18

Flavor 1: Abstracting Discrete Transitions

Discrete Transition: (q,ψ(X), q′, New (X)), where

• q, q′: modes,

• ψ(X): enabling condition, and

• New (X): assignments to continuous variables.

Abstract Discrete Transition: ((q, φ1), (q′, φ2)) if the formula

∃X o, X : φ1(X o) ∧ ψ(X o) ∧ X = New (X o) ∧ φ2(X)

is satis�able.

19

Flavor 1: Features of Qualitative Abstraction

Abstract state space := 3P ×Q

Correctness The abstractions constructed by the algorithm are sound with
respect to the hybrid automata semantics.

Relative Completeness Let φ be a QF fmla over X (in <) that represents the
set of reachable states and P = Poly(φ). Let ψ be the reachable set
computed by the algorithm with seed P. If the saturation process terminates,
then ψ = φc.

Note further that:

• Abstractions can be re�ned by adding more polynomials,

• Only simple computational steps involved.

20

Flavor 1: Qualitative Abstraction Example

Thermostat:
q = off : dxdt = −x
q = on : dxdt = 100− x
g12 = x ≤ 70
g21 = x ≥ 80
I(off) = x > 68
I(on) = x < 82
partition x by
0, 68, 70, 80, 82

70 < x < 80

q = off

68 < x < 70

q = on

q = off

70 < x < 80

 x = 70

q = on

q = on

 x = 80

80 < x < 82

q = off

68 < x < 70

q = on

q = onq = off

 x = 70

80 < x < 82 x = 80

q = off

21

Flavor 1: Qualitative Abstraction Issues

• Very coarse

• How to �nd good predicates ?

Can we improve the quality of abstraction?

22

Flavor 2: Relational Abstraction

Abstracting the dynamics, not the state space

• creates a discrete in�nite-state abstraction

• does not abstract the state-space;
only the ODE transitions are over-approximated by discrete transitions:
~x → ~x ′ if there is a solution F of the ODE s.t. F (0) = ~x and F (t) = ~x ′ for
some t ≥ 0

• HybridSAL �nds an over-approximation → without �nding F
• completely automatic for linear ODEs

Implemented in the HybridSal Relational Abstracter

23

Flavor 2: Relationalizing Continuous Dynamics

Replace d~x
dt by a relation that de�nes how the initial state relates to the �nal state

d~x
dt = f (~x) (1)
⇓

R (~x, ~y) if ~y = F (t), ~x = F (0), Ḟ = f (2)

Example:

dx
dt = −x (3)
⇓

R (x, y) if (x ≤ y < 0) ∨ (0 < y ≤ x) ∨ (x = y = 0) (4)

24

Flavor 2: Relational Abstraction Examples

continuous-time continuous-space continuous-space discrete-time
concrete system relational abstraction

ẋ = 1, ẏ = 1 x ′ − x = y′ − y ∧ y′ ≥ y
ẋ = 2, ẏ = 3 (x ′ − x)/2 = (y′ − y)/3 ∧ y′ ≥ y
dx
dt = −x x ≥ x ′ > 0 ∨ x ≤ x ′ < 0 ∨ x = x ′ = 0
dx
dt = −x + y max(|x|, |y|) ≥ max(|x ′|, |y′|) ∧
dy
dt = −x − y x2 + y2 ≥ x ′2 + y′2
d~x
dt = A~x (cT~x ≥ cT ~x ′ > 0 ∨

cT~x ≤ cT ~x ′ < 0 ∨
cT~x = cT ~x ′ = 0) ∧ . . .

25

Flavor 2: WHY Relational Abstraction

Concept: Analyze hybrid systems by �rst replacing ODEs by their relational
abstraction

Why is this a good idea?

• separation of concerns

◦ use knowledge from control/system theory/linear algebra/Lyapunov
functions/barriers to construct high-quality relationalizations of ODEs

◦ then use veri�cation techniques for in�nite-state systems

• accuracy improves as we get closer to decidable classes

◦ relationalization is lossless for timed automata, LHAs

◦ almost lossless for other decidable classes of CDSs

• good quality abstractions automatically computed for linear ODEs

• generalizes to timed relational abstraction etc.

26

Flavor 2: Relational Abstraction Challenge

Is it possible to compute relational abstractions?

We do not want to abstract discrete-time transition relations, because model
checkers (and static analyzers) can handle them

Is it possible to compute relational abstractions of continuous-time dynamics?

• For linear ODEs, both real and complex left eigenvectors yield high quality
relational abstractions

• For nonlinear ODEs, there are generic methods that are not fully automated

27

Flavor 2: Computing Relational Abstractions

Suppose dynamics are d~x
dt = A~x

• Compute left eigenvector ~cT of A
~cTA = λ~cT

• Note that
d(~cT~x)
dt = ~cT d~xdt = ~cTA~x = λ~cT~x

• Thus, we can relate the initial value of cT~x and its future value cT~x ′ as
follows:

0 < ~cT~x ′ ≤ ~cT~x ∨ 0 > ~cT~x ′ ≥ ~cT~x ∨ 0 = ~cT~x ′ = ~cT~x
if λ < 0. And if λ > 0, then ~x, ~x ′ swap places.

This idea generalizes to d~x
dt = A~x + ~b

28

Flavor 2: Computing Relational Abstractions Example

dx
dt = x − 2y
dy
dt = −2x + y

A matrix has 2 real eigenvalues: −1 and 3
Two left eigenvectors: (1, 1) and (1, −1)
Relational abstraction:

(0 < x ′ + y′ ≤ x + y ∨ x + y ≤ x ′ + y′ < 0 ∨ x + y = x ′ + y′ = 0) ∧
(0 > x ′ − y′ ≥ x − y ∨ x − y ≥ x ′ − y′ > 0 ∨ x − y = x ′ − y′ = 0)

Note: left eigenvectors are potential barrier certi�cates
29

Computing Relational Abstractions 2

Suppose dynamics are d~x
dt = A~x

Suppose we have generated relations for all real eigenvalues

Now suppose there is a complex eigenvalue a+ bι

• Find two vectors ~cT and ~dT such that(
d~cT ~x
dt
d~dT ~x
dt

)
=
(
a −b
b a

)(d~cT ~x
dt
d~dT ~x
dt

)

• Thus, the values of ~cT~x and ~dT~x spiral in (or spiral out) if a < 0
(respectively if a > 0)

• Hence, we can relate their initial values to their future values

(~cT~x)2 + (~dT~x)2 ≥ (~cT~x ′)2 + (~dT~x ′)2

if a < 0, and the inequalities are reversed if a > 0
30

Computing Relational Abstractions 2: Example

dx
dt = −2x + 5y
dy
dt = −2x − 4y

A matrix has 2 complex eigenvalues: −3± 3ι
Two left eigenvectors: (1 + ι, 2− ι) and its conjugate

Relational abstraction:

(0 < (x ′ − y′)2 + (x ′ + 2y′)2 ≤ (x − y)2 + (x + 2y)2) ∨
(x ′ − y′)2 + (x ′ + 2y′)2 = (x − y)2 + (x + 2y)2 = 0

Note: more potential barrier certi�cates
31

Flavor 2: Computing Relational Abstractions 3

Suppose dynamics are d~x
dt = A~x

Now suppose there exists p(~x) and q(~x) s.t.
dp
dt = c dq

dt = d
for some constants c, d

• The value of p and q change linearly with time

• A relational abstraction Rcrate(~x, ~x ′) of d~xdt = A~x is:

p′ − p
c = q′ − q

d ≥ 0

32

Flavor 2: Computing Relational Abstractions 4

If R1(~x, ~x ′) and R2(~x, ~x ′) are two relational abstractions of the same system, then
R1(~x, ~x ′) ∧ R2(~x, ~x ′) is also a relational abstraction of that system

So, we compute di�erent relational abstractions for the same linear system based
on its di�erent (left) eigenvectors

And return the conjunction of those relations as the �nal relational abstraction

33

Relational Abstraction of Hybrid Systems

Given a hybrid system, its relational abstraction can be constructed as follows:

• replace continuous dynamics in each mode by its relational abstraction

• keep state space and discrete transitions unchanged

Verify safety property on the relational abstraction

Using in�nite bounded model checking and k-induction

34

Verifying Relational Abstractions

One step of the abstract model can describe

a continuous evolution followed by a discrete transition

~x →t
cont ~y →disc ~z

I.e., do not need to consider two contiguous 'continuous' steps

Hence, we can use small depths when performing in�nite bounded model
checking

Depth 1 is su�cient to verify safety of continuous systems

35

Flavor 2: Technical Issues

Poor support for nonlinear in SMT solvers (used for In�nite bounded model
checking and k-induction)

So, HybridSal provides linear option:

x2 + y2 ≤ x ′2 + y′2 7→ |x| ≤ |x ′|+ |y′| ∧ |y| ≤ |x ′|+ |y′|

Mode invariants not enforced in the relational abstraction

Can create timed RA for sampled data systems, but BMC depth increases

HybridSal provides command-line options that can improve precision

36

Flavor 3: Aligned Abstraction

Safety veri�cation problem has three components:

• System, de�ning state space and dynamics

• Initial states

• Unsafe states

Abstraction-based methods always abstract the system

Can we abstract the initial and unsafe sets ?

37

Flavor 3: New Abstraction Technique

Replace Init by Inita where Init ⊆ Inita
Replace Unsafe by Unsafea where Unsafe ⊆ Unsafea
in a way that the veri�cation problem (Inita, S,Unsafea) is easily solved

System

Init Unsafe

System

Unsafe
Init

a
a

38

Flavor 3: Aligned Sets

Consider S: dxdt = −x + y − z, dy
dt = −x − 3y+ z, dz

dt = 2
Consider initial region Init: x + y ∈ [2, 4], z = 0
Consider unsafe region Unsafe: x + y ≥ 1, z ≥ 2

The expressions x + y and z are aligned because

d
dt (x + y) = −x + y − z + (−x − 3y+ z) = −2(x + y)

d
dtz = 2 = 2

Hence, z(t) = z(0) + 2t and (x + y)(t) = (x + y)(0)e−2t

p is aligned if ṗ = constant or ṗ = λp

39

Flavor 3: Aligned Safety Veri�cation

If the initial and unsafe sets are speci�ed only using aligned expressions, we call it
aligned safety veri�cation problem

The aligned problem is decidable

initial/unsafe set aligned: the expression de�ning its boundary changes
monotonically in a speci�c way

dx
dt = −x + y − z, dy

dt = −x − 3y+ z, dz
dt = 2

Aligned: Init: x + y ∈ [2, 4], z = 0; Unsafe: x + y ≥ 1, z ≥ 2
Not Aligned: Init: x ∈ [2, 3], y = 1, z = 0; Unsafe: x ≥ 1, y ≥ 1, z ≥ 2

40

Flavor 3: Decision Procedure for Aligned Problems

We try to �nd T : the time when the system reaches an unsafe state
First �nd all constraints on T
If constraints satis�able, return unsafe
If constraints unsatis�able, return safe

Consider the aligned expression z
initially z = 0 and in the unsafe region z ≥ 2
Therefore, T ≥ 1

Consider the aligned expression x + y
initially x + y ∈ [2, 4] and in the unsafe region x + y ≥ 1
Therefore, 4e−2T ≥ 1, i.e., T ≤ ln(4)/2

The constraint T ≥ 1 and T ≤ ln(4)/2 is unsatis�able.
Hence, the system is safe

41

Flavor 3: Correctness For Aligned Instances

Soudness is immediate:
Soundness: If the procedure returns safe, then the system is truely safe

Completeness requires a technical condition:
Completeness: If the procedure returns unsafe, then the system really is unsafe

42

Flavor 3: Finding Aligned Directions

Given the system dynamics, can we �nd the set of aligned directions?

For e.g., how do we �nd the expressions (x + y) and z given the ODEs

dx
dt = −x + y − z, dydt = −x − 3y+ z, dzdt = 2

We use the eigenstructure of the A matrix

(x + y) = [1, 1, 0] ∗ [x ;y; z], and [1, 1, 0] is a left eigenvector of the A matrix
corr. to eigenvalue −2

z = [0, 0, 1] ∗ [x ;y; z], and [0, 0, 1] is a left eigenvector of the A matrix corr. to
eigenvalue 0

43

Flavor 3: Extending to Unaligned Instances

Counter-Example Guided Abstraction Re�nement:

• Find aligned directions

• Abstract to an aligned instance

• Solve the aligned instance

• If safe, then done

• If unsafe, then use the counterexample to re�ne the aligned abstraction

44

Flavor 3: CEGAR for Unaligned Safety Veri�cation

Init

Unsafe

Init

Unsafe

Over−Init

Over−Unsafe

Init

Unsafe

Over−Init

Over−Unsafe

Init

Over−Init

Unsafe

Over−Unsafe

1

2

Init

Over−Init

Unsafe

Over−Unsafe

1

2

Init

Over−Init

Unsafe

Over−Unsafe

1

2

1

2

Remove regions, not points
The more aligned directions, the better the algorithm performs

45

Flavor 2: Relational Abstraction Revisited

Can we improve precision of abstraction?

Improving precision of relational abstraction by piecewise linear approximation of
exponential and trigonometric functions

Let p be the linear form corr to left eigenvector of A. Let t be the time variable.
Let λ > 0.

(dpdt = λp) ⇒ p′ = peλ(t′−t) ⇒ ln(p′)− ln(p) = λ(t′ − t)

The above �relational abstraction� is nonlinear. We use a piecewise linear lower
and upper approx for ln

46

Flavor 2: Piecewise Linear Approx for ln

Relational abstraction:

lnlb(p′)− lnub(p) ≤ λ(t′ − t) ≤ lnub(p′)− lnlb(p)

where the lower- and upper-bound approxs are:

ln(x)

x

e−2e−1 e0 e1

Improve precision by increasing number of intervals

47

Flavor 2: Improving Rel Abs for Complex Case

Recall (p′2 + q′2)0.5 = (p2 + q2)0.5eλ(t′−t)

Hence we get a relational abstraction:

ln(p′2 + q′2)0.5 − ln(p2 + q2)0.5 = λ(t′ − t)

Again, using the piecewise linear approx. for ln:

lnub(p′2 + q′2)0.5 − lnlb(p2 + q2)0.5 ≥ λ(t′ − t)
lnlb(p′2 + q′2)0.5 − lnub(p2 + q2)0.5 ≤ λ(t′ − t)

We can additionally also use piecewise linear approximations of the 2-norm
function:

max(|x|, |y|) ≤ (x2 + y2)0.5 ≤ |x|+ |y|

This relates amplitude with time
48

Flavor 2: Relating Phase and Time

Recall:

p′ = (p2 + q2)0.5ea(t′−t) cos(b(t′ − t) + tan−1(q/p))
q′ = (p2 + q2)0.5ea(t′−t) sin(b(t′ − t) + tan−1(q/p))

If ω denotes the phase,
then:

b(t′ − t) = ω(p′, q′)− ω(p, q)

We need piecewise linear
approximations of the ω
Can get bounds based on
sign of p, q, p − q

time

x

p

−p

q

−q

-2

-1

0

1

2

int0
p ≥ q

q ≥ 0

2π
8b

int1
q ≥ p

p ≥ 0

2 2π
8b

int2
q ≥ −p

−p ≥ 0

3 2π
8b

int3
−p ≥ q

q ≥ 0

4 2π
8b

int4
−p ≥ −q

−q ≥ 0

5 2π
8b

int5
−q ≥ −p

−p ≥ 0

6 2π
8b

int6
−q ≥ p

p ≥ 0

7 2π
8b

int7
p ≥ −q

−q ≥ 0

2π
b

49

Certi�cate-based Veri�cation

Eliminate iterative �xpoint search

Directly search for proofs

50

Safety Veri�cation using Inductive Invariants

Consider showing S |= G(Safe)
A discrete-time system always remains inside the set Safe(~x) of good states if
there is an inductive invariant Inv(~x) such that

∀~x : Init(~x) ⇒ Inv(~x)
∀~x, ~x ′ : Inv(~x) ∧ t(~x, ~x ′) ⇒ Inv(~x ′)

∀~x : Inv(~x) ⇒ Safe(~x)

How to �nd such an Inv?

51

Safety Veri�cation using Inductive Invariants

Pick a template T (~a, ~x) for the inductive invariant
Generated Constraint:

∃~a : ∀~x, ~x ′ : (Init(~x)⇒ T (~a, ~x)) ∧
(T (~a, ~x) ∧ t(~x, ~x ′)⇒ T (~a, ~x ′)) ∧
(T (~a, ~x)⇒ Safe(~x))

52

Safety Veri�cation: Continuous-Time

A continuous-time system ~̇x = f (~x) always remains inside the set Safe(~x) of
good states if
there is an inductive invariant T (~a, ~x) such that

∃~a : ∀~x : (Init(~x)⇒ T (~a, ~x)) ∧
(~x ∈ ∂T (~a, ~x)⇒ f (~x) ∈ TT (~a, ~x)) ∧
(T (~a, ~x)⇒ Safe(~x))

The middle condition can be formulated for polynomial systems as: p ≥ 0 is
inductive if

∀(~x) : p(~x) = 0⇒ ~∇p(~x) · f (~x) ≥ 0

53

Soundness and Completeness Issues

Sound, but incomplete, rule for safety veri�cation of polynomial CDS S with
dynamics dX/dt = f (X) and initial states Init:

(A1) Init⇒ p ≥ 0
(A2) p = 0⇒ Lf (p) ≥ 0
(A3) p ≥ 0⇒ Safe
(A4) p = 0⇒ ~∇p 6= 0

Reach(S) ⊆ Safe

Relatively complete

54

Inductiveness Using Lie Derivative

Let p := x2
1 + x2

2 − 0.5
The set p ≤ 0 is inductive if

p = 0 ⇒ dp
dt < 0

∨ dpdt = 0 ∧ d
2p
dt2 < 0

∨ dpdt = d2p
dt2 = 0 ∧ d

3p
dt3 < 0

. . .
where dp

dt := ~∇p · f is Lie derivative of p wrt f .

Several sound checks, but no complete check in general

For special cases, �nite complete checks exist
55

Details

Constraint-based approach for analysis of hybrid systems

Key idea: Bounded search for certi�cate of a speci�c form

Constraint-Based Veri�cation:

1. Fix a form (template) for the certi�cate
Progress function, ax2 + by2, for reachability
Invariant set, ax2 + by2 ≥ 0, for safety

2. Once the form is �xed, existence of a certi�cate reduces to existence of
template variables a, b, . . .:

3. Overall formula takes the form:

∃a, b, . . . : ∀x, y, . . . : · · ·
4. We solve the ∃∀ formula to �nd values for a, b, . . .

56

Certi�cate-based Veri�cation

Key Observation: Veri�cation = searching for right witness

Property Witness

Stability Lyapunov function
Safety Inductive Invariant
Liveness Ranking function
Controllability Controlled Invariant

57

Certi�cate-Based Veri�cation

Certi�cate-based veri�cation reduces the veri�cation problem to an ∃∀ formula.

M |= φ
⇑

∃Φ : ((M |= Φ) ∧ (Φ⇒ φ))
⇑

∃Φ : ∀~x : quanti�er-free FO formula

⇑
∃~a : ∀~x : quanti�er-free FO formula

The last step performed by choosing a template for Φ

58

Example: Certi�cate-Based Safety

Example:
dx1
dt = −x1 − x2

dx2
dt = x1 − x2

Problem: If x1 ≤ 0.5 and x2 ≤ 0.5 initially, prove G(x2 ≤ 1)

Let us �nd a certi�cate of the form p ≤ 0 where p := ax2
1 + bx2

2 + c

We need to solve

∃a, b, c : ∀x1, x2 : (p = 0⇒ dp
dt < 0) ∧

(x1 ≤ 0.5 ∧ x2 ≤ 0.5⇒ p ≤ 0) ∧
(p ≤ 0⇒ x2 ≤ 1)

We get p := x2
1 + x2

2 − 0.5. Proved.
59

Certi�cation-based Veri�cation Without ∃∀

A Lyapunov function is a certi�cate for stability

We can discover Lyapunov functions by solving ∃∀ formulas

But even without solving ∃∀ formulas, we can determine stability of linear
systems

Can we �nd useful invariants without solving ∃∀ formulas ?

60

Inductive Sets of Linear Systems

Consider d~xdt = A~x
If ~c is a left eigenvec-
tor of A, then

~cTA = λ~cT

Let p := ~cT~x, we
have

Initial

States

Bad / Unsafe

States

dp
dt = d~cT~x

dt = ~cT d~xdt = ~cTA~x = λ~cT~x = λp

Hence, p ≥ 0 and p ≤ 0 are inductive sets

The surface p = 0 is called a barrier certi�cate

Inductive sets for linear systems can be obtained by analyzing A
61

Example: Certi�cate-based Veri�cation w/o ∃∀

Example. Consider a cruise
control:

v̇ = a
ȧ = −4v + 3vf − 3a+ gap

˙gap = −v + vf
where v, a is the velocity and acceleration of this car, vf is the velocity of car in
front, and gap is the distance between the two cars.

Prove that the cars will not crash when ACC mode is initiated in given set of
states.
Solution: Use inductive invariant corr to the negative real eigenvalue of A.

62

Example: Certi�cate-Based Safety

Example:
dx1
dt = x2

dx2
dt = −x1

Problem: If x1 = 1 and x2 = 0 initially, prove G(x1 ≤ 1)

Let us �nd a certi�cate of the form p ≤ 0 where p := ax2
1 + bx2

2 + c

We need to solve

∃a, b, c : ∀x1, x2 : (p = 0⇒ dp
dt ≤ 0) ∧

(x1 = 1 ∧ x2 = 0⇒ p ≤ 0) ∧
(p ≤ 0⇒ x1 ≤ 1)

We get p := x2
1 + x2

2 − 1. Proved.
63

Example of Certi�cate-based Veri�cation

Consider the system:

dx1
dt = −x1 − x2
dx2
dt = x1 − x2 + xd

Initially: x1 = 0, x2 = 1

Property: |x1| ≤ 1 always

Guess

• Template for witness W := ax2
1 + bx2

2 + c
• Template for assumption A := |xd| < d

64

Example Continued

Veri�cation Condition: ∃a, b, c, d : ∀x1, x2, xd :
x1 = 0 ∧ x2 = 1 ⇒ W ≤ 0

A ∧W = 0 ⇒ dW
dt < 0

W ≤ 0 ⇒ |x1| ≤ 1

Ask contraint solver for satis�ability of above formula

Solver says: a = 1, b = 1, c = −1, d = 1
x1 = 0 ∧ x2 = 1 ⇒ x2

1 + x2
2 − 1 ≤ 0

|xd| < 1 ∧ x2
1 + x2

2 − 1 = 0 ⇒ 2x1(−x1 − x2) + 2x2(x1 − x2 + xd) < 0
x2
1 + x2

2 − 1 ≤ 0 ⇒ |x1| ≤ 1

This proves that |x1| ≤ 1 always.
65

Barrier Certi�cates

A function B : X 7→ R is a barrier for S = (X, [dX/dt = f (X)], Init) and unsafe
Unsafe if

• B(x) ≤ 0 for every x ∈ Init
• B(x) > 0 for every x ∈ Unsafe
• Lf (B)(x) < 0 for every x s.t. B(x) = 0

For hybrid systems, have one barrier certi�cate for each mode, and insist the
value of the certi�cate remain ≤ 0 after discrete transitions

66

Finding Barrier Certi�cates

Pick a template for B and check existence of polynomial P, a positive number ε,
SOS polynomials Sunsafe, Sinit s.t.

• B(x)− ε − Sunsafe(x)Unsafe(x) is a SOS

• −B(x)− Sinit(x)Init(x) is a SOS

• −Lf (B)(x)− P(x)B(x) is a SOS

If we �x P, then the above can be solved using semide�nite programming (SDP)

67

Notes

• Constraint-based approach can also be used for synthesis

◦ E.g. synthesizing the guards for when the robot should switch from one
mode to another

• HybridSAL currently does not support:

◦ Probabilistic Extension
◦ Composition

◦ Constraint-based approach

68

