
'

&

$

%

Logic in Software, Dynamical and Biological Systems

Ashish Tiwari
SRI International

Menlo Park, CA 94025
tiwari@csl.sri.com

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 1

'

&

$

%

Problem Classes

From a logical perspective, we have three classes of problems:
Given description E, find/check some desired description E′ such that

1. E ⇔ E′

Example: Linear equation solving, Gröbner basis, theorem proving, computer
algebra

2. E ⇒ E′

Example: verification, abstraction, abstract interpretation, bounded synthesis

3. E′ ⇒ E

Example: learning, synthesis, diagnosis

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 2

'

&

$

%

Formal Methods

Model and analyze systems formally

Two aspects:

• Formal model of dynamical system

• Formal property specification language

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 3

'

&

$

%

Formal Models of Dynamical Systems

Modeling formalisms: Time and state space

Time T domain:

• discrete-time: N

• continuous-time: R

• hybrid-time: N× R

State space SS domain:

• discrete space: 2n × Nm

• continuous space: Rn

• hybrid space: 2n × Rm

Semantics: T 7→ SS

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 4

'

&

$

%

Outline

I. Continuous dynamical system verification 7→ ∃∀ solving

II. Hybrid system verification 7→ ∃∀ solving + discrete system verification

III. Component-based Synthesis 7→ ∃∀ solving

IV. ∃∀ Solvers

V. Systems Biology 7→ ∀ solving

VI. Program verification 7→ Approximating logical operators

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 5

'

&

$

%

Continuous Dynamical Systems

Tuple: 〈X, f, Inv〉 where

X: set of n real-valued variables

f: vector field; mapping Rn 7→ Rn

Inv: invariant region, subset of Rn

−0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

Example: CDS with

X := {x1, x2}

f(x1, x2) := (−x1 − x2, x1 − x2)

Inv := R2

Example CDS’s dynamics are given by:

dx1
dt

= −x1 − x2

dx2
dt

= x1 − x2

Semantics: A structure 〈Rn,→〉 where→ is
{(F (0), F (t1)) | ∀0 ≤ t ≤ t1 : dF (t)

dt = f(F (t)), F (t) ∈ Inv}

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 6

'

&

$

%

Continuous Dynamical Systems Reachability

Linear systems: d~x
dt = A~x+ b

Exact reachable sets can be computed when either

• A is diagonalizable with all rational eigenvalues

• A is diagonalizable with all purely imaginary rational eigenvalues

• A is nilpotent

In these cases, after suitable change of variables, reachable sets are semi-algebraic
and can be obtained using quantifier elimination

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 7

'

&

$

%

Certificate-Based Verification

A certificate for M |= φ is Φ such that

1. |= Φ⇒ φ

2. M |= Φ is locally checkable
M |= Φ reduces to a formula in the (underlying FO) logic

Examples:

Property φ Certificate Φ

safety inductive invariant

stability Lyapunov function

termination ranking function

controlled safety controlled inductive invariant

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 8

'

&

$

%

Certificate-Based Verification

Certificate-based verification reduces the verification problem to an ∃∀ formula.

M |= φ

⇑

∃Φ : ((M |= Φ) ∧ (Φ⇒ φ))

⇑

∃Φ : ∀~x : quantifier-free FO formula

⇑

∃~a : ∀~x : quantifier-free FO formula

The last step performed by choosing a template for Φ

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 9

'

&

$

%

Inductive Invariants for CDSs

Used to prove safety of CDSs

How to define inductiveness ?

A set I is inductive if

∀~x : ~x ∈ I ∧ ~x→ ~y ⇒ ~y ∈ I

Recall semantics of CDS has uncountably infinite→-successors for every state,
not defined constructively

([T.2003], [Prajna and Jadbabaie 2004],[Sankaranarayanan et al. 2004])

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 10

'

&

$

%

Inductiveness for CDSs

Example:

dx1
dt

= −x1 − x2

dx2
dt

= x1 − x2

Is x21 + x22 ≤ 0.5 inductive?

Intuition: Ensure vector field points inwards at all points on the boundary of the set

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 11

'

&

$

%

Lie Derivative

Let p := x21 + x22 − 0.5

The set p ≤ 0 is inductive if

p = 0 ⇒ dp

dt
< 0

∨ dp

dt
= 0 ∧ d

2p

dt2
< 0

∨ dp

dt
=
d2p

dt2
= 0 ∧ d

3p

dt3
< 0

. . .

where dp
dt := ~∇p · f is Lie derivative of p wrt f .

Several sound checks, but no complete check in general

For special cases, finite complete checks exist

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 12

'

&

$

%

Example: Certificate-Based Safety

Example:
dx1
dt

= −x1 − x2
dx2
dt

= x1 − x2

Problem: If x1 ≤ 0.5 and x2 ≤ 0.5 initially, prove G(x2 ≤ 1)

Let us find a certificate of the form p ≤ 0 where p := ax21 + bx22 + c

We need to solve

∃a, b, c : ∀x1, x2 : (p = 0⇒ dp

dt
< 0) ∧

(x1 ≤ 0.5 ∧ x2 ≤ 0.5⇒ p ≤ 0) ∧

(p ≤ 0⇒ x2 ≤ 1)

We get p := x21 + x22 − 0.5. Proved.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 13

'

&

$

%

Certification-based Verification

Without Solving ∃∀

A Lyapunov function is a certificate for stability

We can discover Lyapunov functions by solving ∃∀ formulas

But even without solving ∃∀ formulas, we can determine stability of linear systems

Can we find useful invariants without solving ∃∀ formulas ?

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 14

'

&

$

%

Inductive Sets of Linear Systems

Without solving ∃∀ formulas

Consider d~x
dt = A~x

If ~c is a left eigenvector of A corr to λ, then

~cTA = λ~cT

Let p := ~cT~x, we have Initial

States

Bad / Unsafe

States

dp

dt
=

d~cT~x

dt
= ~cT

d~x

dt
= ~cTA~x = λ~cT~x = λp

Hence, p ≥ 0 and p ≤ 0 are inductive sets

The surface p = 0 is called a barrier certificate

Inductive sets for linear systems can be obtained by analyzing matrix A

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 15

'

&

$

%

Example: Certificate-based Verification w/o ∃∀

Example. Consider a cruise control:

v̇ = a

ȧ = −4v + 3vf − 3a+ gap

˙gap = −v + vf

where v, a is the velocity and acceleration of this car, vf is the velocity of car in
front, and gap is the distance between the two cars.

Prove that the cars will not crash when ACC mode is initiated in given set of states.
Solution: Use inductive invariant corr to the negative real eigenvalue of A.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 16

'

&

$

%

Hybrid Automata

A powerful modeling language

A finite collection of CDS with switching between them

Tuple 〈Q, (CDSq)q∈Q, E〉 where

Q: finite set of modes

CDSq: CDS 〈X, fq, Invq〉 within state q

E: subset of (Q× Rn)× (Q× Rn)

Semantics: A structure 〈Q× Rn,→〉 where→ is

E ∪ {(q, F (0), q, F (t1)) | ∀0 ≤ t ≤ t1 :
dF (t)

dt
= fq(F (t)), F (t) ∈ Invq}

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 17

'

&

$

%

Example: Hybrid Automata

Bouncing Ball: Ball under vertical free fall that loses 10% of its velocity when it
bounces off the ground

One mode q with variables X := {y, v} and dynamics:

dy

dt
= v

dv

dt
= −9.8

so, fq(y, v) := (v,−9.8) is the vector field

Discrete transition given by:

(q, (0, v), q, (0,−0.9 ∗ v))

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 18

'

&

$

%

Hybrid Automata Verification Problem

Semantics of hybrid automata are given as discrete state transition system (with
uncountably infinite state space)

Therefore, we can ask about the complexity of the model checking problem

Even reachability is undecidable

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 19

'

&

$

%

Classes of Hybrid Automata

Several subclasses of HA have been studied

Restrictions on the continuous dynamics and the discrete dynamics

Timed Automata: dx
dt = 1 for all x, in all modes

Guards of the form x− y ≤ c (Boolean combination)
Some clocks x can be reset x := 0

Linear Hybrid Automata: dx
dt = cx for all x, in all modes there are linear

constraints among the cx variables
Guards are linear constraint over X

Model checking problems are decidable for timed automata, but undecidable for
linear hybrid automata

Boundary is well studied

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 20

'

&

$

%

Analyzing Hybrid Automata

These decidable subclasses are too restrictive

Need sound, but incomplete, techniques for M |= φ

Generic approaches:

• Abstraction

• Deductive Methods

Concrete approaches:

• certificate-based verification: M |= Φ and Φ⇒ φ

• relational abstraction: M ⇒M ′ and M ′ |= φ

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 21

'

&

$

%

Relational Abstraction

Replace continuous dynamics by its relational abstraction

Relational abstraction of a dynamical system (X,→) is another dynamical system
(X,→) such that

TransitiveClosure(→) ⊆ →

Benefit:
Eliminates need for iterative fixpoint computation
Useful for proving safety properties, and establishing conservative safety bounds

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 22

'

&

$

%

Example: Relational Abstraction

For the continuous-time continuous-space dynamical system:

dx

dt
= −x

we have the following continuous-space discrete-time relational abstraction:

x→ x′ := 0 < x′ ≤ x ∨ x ≤ x′ < 0 ∨ x = x′ = 0

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 23

'

&

$

%

Computing Relational Abstractions

We can compute good quality relational abstractions of linear systems

Dynamics Relational Abstraction

ẋ = 1, ẏ = 1 x′ − x = y′ − y ∧ x′ ≥ x

ẋ = 2, ẏ = 3 (x′ − x)/2 = (y′ − y)/3 ∧ x′ ≥ x

~̇x = A~x (0 < p′ ≤ p) ∨ (p ≤ p′ < 0) ∨ (p = p′ = 0), where

p = ~cT~x, ~c eigenvector of AT corr. to negative eigenvalue

Similarly for eigenvector corr. to positive eigenvalue

Coarser abstraction for complex eigenvalues

Complete for timed, multirate, linear hybrid automata

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 24

'

&

$

%

Using Relational Abstraction

• Replace all continuous dynamics by its relational abstraction

• Result is uncountably infinite state discrete state transition system

• Use bounded model checker, or k-induction prover, or . . .

Key summary points:

• Differential equations induce uncountably-infinite successors

• Fixpoint approaches unsuitable

• Certificate-based verification for CDSs eliminates need for fixpoint

• Relational abstraction = lifting certificate-based methods from CDSs to
Hybrid Systems

• Fixpoint only on the discrete structure of the model

• In general, require ∃∀ solving, which can be avoided for linear ODE dynamics

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 25

'

&

$

%

Component-Based Synthesis

....

Problem: How to wire the components to synthesize a desired system ?

Given E, find E′ s.t. E′ ⇒ E

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 26

'

&

$

%

Synthesis: Concrete Examples

Desired System Fspec Components fi’s

sort an array comparators

compute x+y
2 modulo arithmetic ops

find rightmost one bitwise ops, arithmetic ops

compute x243 multiplication

accept ω-regular language Buchi automata

safe hybrid system multiple operating modes

geometry construction ruler-compass steps

deobfuscated code parts of obfuscated code

verification proof verification inference rules

Question: ∃C : ∀x : C(f1, f2, . . .)(x)⇒ Fspec(x)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 27

'

&

$

%

Synthesis Problem Classes

∃C : ∀x : C(f1, f2, . . .)(x)⇒ Fspec(x)

Parameters that define the synthesis problem:

• composition operator C

• class of specifications Fspec

• class of component specifications fi

Fixing the synthesis problem:
fix these parameters, fix representation of Fspec, fi

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 28

'

&

$

%

Bounded Synthesis

The synthesis problem is still hard

We make it feasible by replacing the unbounded quantifier, ∃C, by a bounded
quantifier

∃C : ∀x : C(f1, f2, . . .)(x)⇒ Fspec(x)

⇓

∃c : ∀x : c(f1, f2, f3)(x)⇒ Fspec(x), c in some finite set

This bounded synthesis problem is solved by deciding the ∃∀ formula

Examples: straight-line program synthesis, loop-free program synthesis, geometry
constructions synthesis

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 29

'

&

$

%

Examples: Synthesized Programs

RoundUpToTheNextHighestPowerOf2(x):

1. o1 := (x− 1)

2. o2 := (o1 � 1)

3. o3 := o1|o2

4. o4 := o3 � 2

5. o5 := o3|o4

6. o6 := o5 � 4

7. o7 := o5|o6

8. o8 := o7 � 8

9. o9 := o7|o8

10. o10 := o9 � 16

11. o11 := o9|o10

12. res := o10 + 1

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 30

'

&

$

%

Examples: Synthesized Programs

HigherOrderHalfOfxy(x, y):

1. o1 := x & 0xFFFF

2. o2 := x� 16

3. o3 := y & 0xFFFF

4. o4 := y � 16

5. o5 := o1 ∗ o3

6. o6 := o2 ∗ o3

7. o7 := o1 ∗ o4

8. o8 := o2 ∗ o4

9. o9 := o5 � 16

10. o10 := o6 + o9

11. o11 := o10 & 0xFFFF

12. o12 := o10 � 16

13. o13 := o7 + o11

14. o14 := o13 � 16

15. o15 := o14 + o12

16. res := o15 + o8

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 31

'

&

$

%

Solving ∃∀ Problems

When dynamics are not linear, and when dealing with other domains/synthesis, we
need ∃∀ solvers

Approaches:

• eliminating quantifiers, e.g. qepcad, virtual substitution

• replacing ∀ quantifiers by ∃ using duality theorems, such as Farkas Lemma
and Positivstellensatz

• cleverly enumerating instances of the ∃ quantifier, CEG-∃∀ Solving

• using numerical methods based on semidefinite programming

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 32

'

&

$

%

∃∀ Solving: Semidefinite Programming

Special class of ∃∀ problems:

minimize cTx

subject to F0 +
∑m

i=1 xiFi ≥ 0

where c ∈ Rm and F0, . . . , Fm ∈ Rn×n are symmetric matrices.

Logical reading of the feasibility instance:

∃x∀y : yT (F0 +
m∑
i=1

xiFi)y ≥ 0

Convex optimization/Interior point methods

Abstract to these solvable classes

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 33

'

&

$

%

∃∀ Solving: Sum-of-Squares Programming

Another class of ∃∀ problems that reduce to SDP programming:

minimize cTx

subject to P0(y) +
∑m

i=1 xiPi(y) is 0 (or SOS), . . .,

where c ∈ Rm and P0, . . . , Pm ∈ R[y]

Approximate logical reading of the feasibility instance:

∃x∀y : (P0 +
m∑
i=1

xiPi) ≥ 0 ∧ · · ·

Not applicable to ∃x∀y : (P0(x, y) ≥ 0 ∧ P1(x, y) ≥ 0⇒ P2(x, y) ≥ 0)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 34

'

&

$

%

∃∀ Solving: Counter-Example Guided Solver

CE guided iterative procedure for solving ∃~u : ∀~x : φ(~u, ~x)

1. Guess ~u0 for ~u

2. (Verification) Check if

∀~x : φ(~u0, ~x)

3. If true, then return ~u0

4. Get counterexample ~x0, add it to X

5. (Finite Synthesis) Find new ~u0 such that

∃~u0 :
∧

~x0∈X

φ(~u0, ~x0)

6. If unsatisfiable, return False, else goto Step 2

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 35

'

&

$

%

∃∀ Solving: Distinguishing Input

Solving ∃~u : ∀~x : φ(~u, ~x)

1. X := some finite set of choices for ~x

2. Find two values ~u1, ~u2 that work for X , but differ on some ~x0

∃~u1, ~u2, ~x0 : (
∧
~x∈X

(φ(~u1, ~x) ∧ φ(~u2, ~x))) ∧ (φ(~u1, ~x0) 6⇔ φ(~u2, ~x0))

3. If satisfiable, we add ~x0 to X and go to (2)

4. If unsatisfiable, then find one program that works for X

∃~u1 :
∧
~x∈X

φ(~u1, ~x)

5. If satisfiable, verify and return ~u1

6. Otherwise, return “unsatisfiable”

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 36

'

&

$

%

∃∀ Solving: A Nonsymbolic Solver

A third algorithm for solving ∃~u : ∀~x : φ(~u, ~x)

1. Find finite set X of good values for ~x

2. Synthesize ~u0 that works for finite set X

3. Verify that ~u0 works on randomly sampled inputs

We can perform Step (2) using intelligently enumerating values for ~u

Geometry synthesis

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 37

'

&

$

%

Biology

Enormous amounts of data being generated

• DNA sequencing: Fully sequencing genomes is rapid and easy

• DNA microarray: Which genes are being transcribed

• Proteomics: Which proteins are present

• Flow cytometry: Concentration in individual cells

And how to use it to predict clinical observations and phenotypes?

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 38

'

&

$

%

Systems Biology

Model-based development

Also, a common feature in embedded system design

Goal: Models can help

• perform in-silico experiments

• guide wet lab experiments

• suggest novel drug targets

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 39

'

&

$

%

Nutrient Sets

Goal: Starting from the genome, find nutrient sets on which that organism will
grow

• Sequence genome of the organism

• Extract genes

• Predict metabolic network

• Predict growth on nutrient sets

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 40

'

&

$

%

Metabolic Network: Rewriting-based Modeling

Petrinets: Ground AC rewrite systems with 1 AC symbol

Example:

a1 : A+B → C +D

a2 : C +A → E

The numeric parameters a1, a2 capture relative affinity/preference/ likelihood

Typical metabolic networks have 1000’s of reactions and metabolites

Also used to model other biochemical reactions: cell signaling

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 41

'

&

$

%

Stochastic Firing: Chemical Master Equation

Strategy for firing rewrite rules: stochastic

Physics-based models of biochemical reaction networks: stochastic Petrinets

Semantics is given using the CME

X: set of metabolites, |X| = n; e.g. X = {A,B,C,D,E}
R: set of reactions

r: a reaction, element of Nn; e.g. A+ C → E 7→ [−1, 0,−1, 0, 1]

P : map from N+n × R+ 7→ [0, 1]

dP (X, t)

dt
=

∑
r∈R

a(P (X − r, t), r)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 42

'

&

$

%

Stochastic Firing: Example

a1 : A+B → C +D a2 : C +A → E

Evolving probability distribution:

A=2,B=1,C=D=E=0 A=1,B=0,C=1,D=1,E=0 A=0,B=0,C=0,D=1,E=1

1 1 0 0

2 1/2 1/2 0

3 1/4 1/2 1/4

4 1/8 3/8 1/2

5

6 0 0 1

Difficulty: Not enough data to know how to compute a
Does not scale

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 43

'

&

$

%

Deterministic Firing: Mass Action Dynamics

Approximation of CME using ordinary differential equations

a1 : A+B → C +D a2 : C +A → E

ODE model using mass action dynamics:

dA(t)

dt
= −a1 ∗A(t) ∗B(t)− a2 ∗A(t) ∗ C(t)

dB(t)

dt
= −a1 ∗A(t) ∗B(t)

dC(t)

dt
= −a2 ∗A(t) ∗ C(t) + a1 ∗A(t) ∗B(t)

dD(t)

dt
= a1 ∗A(t) ∗B(t)

dE(t)

dt
= a2 ∗A(t) ∗ C(t)

Issue: (i) approximate (ii) Still need a1, a2

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 44

'

&

$

%

Nondeterministic Firing: Rewriting

Preferable because we do not need extra parameters

Organism grows if it can produce biomass compounds starting from nutrients

This is a reachability question

Petrinet reachability is decidable, but inefficient

Example: If A,B are nutrients, and E is a biomass compound, then:

2A+B → A+ C +D → E +D

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 45

'

&

$

%

Reachability: Via Constraint Solving

We can perform approximate reachability via constraint solving

Example:

A+B → C +D C +A → E

Constraints: Suppose initial state is 2A+B, we want to reach D + E

A : −r1 − r2 + 2 = 0

B : −r1 + 1 = 0

C : r1 − r2 = 0

D : r1 − 1 = 0

E : r2 − 1 = 0

If D + E is reachable from 2A+B, then above constraints are satisfiable

This is called Flux Balance Analysis

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 46

'

&

$

%

Nutrient Sets for E.Coli

We have used constraint solving for finding (minimal) nutrient sets for E.Coli

Exact Reachability is defined as the least fixpoint

Flux Balance Analysis: an overapproximation of the reachability relation

We developed a constraint-based approach that captures reachability more
accurately than FBA

Results:
(1) About 75% accuracy with experimental results
(2) Predicted growth of E.Coli on cynate as both Carbon and Nitrogen source,
which was experimentally verified
(3) Can compute all minimal nutrient sets for E.Coli

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 47

'

&

$

%

Logic in Software Verification

1 x := 0; y := 0; z := n;

2 while (*) {
3 if (*) {
4 x := x+1;

5 z := z-1;

6 } else {
7 y := y+1;

8 z := z-1;

9 }
10 }

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 48

'

&

$

%

Traditional Approach: Annotate & Check

1 x := 0; y := 0; z := n;

[z + x + y == n]

2 while (*) {
3 if (*) {
4 x := x+1;

5 z := z-1;

[z + x + y == n]

6 } else {
7 y := y+1;

8 z := z-1;

[z + x + y == n]

9 }
10 }

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 49

'

&

$

%

Traditional Approach: Annotate & Check

Proof obligation generated:

z + x+ y = n ∧ x′ = x+ 1 ∧ z′ = z − 1 ∧ y′ = y

T⇒ z′ + x′ + y′ = n

z + x+ y = n ∧ y′ = y + 1 ∧ z′ = z − 1 ∧ x′ = x

T⇒ z′ + x′ + y′ = n

The theory T determined by semantics of the programming language.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 50

'

&

$

%

Example: Abstract Interpretation

[true]

1 x := 0; y := 0; z := n;

[x = 0 ∧ y = 0 ∧ z = n] ∃x, y, z : x = 0 ∧ y = 0 ∧ z = n

2 while (*) {
3 if (*) {
4 x := x+1;

5 z := z-1; [(x = 1 ∧ y = 0 ∧ z = n− 1)]

6 } else {
7 y := y+1;

8 z := z-1; [(x = 0 ∧ y = 1 ∧ z = n− 1)]

9 }
[(x = 1 ∧ y = 0 ∧ z = n− 1)∨(x = 0 ∧ y = 1 ∧ z = n− 1)]

10 }

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 51

'

&

$

%

Example: Abstract Interpretation

Suppose we can only use conjunctions of atomic facts

We need to overapproximate

• the ∃ quantifier

• the ∨ operator

We need to find a conjunction of atomic formulas that is implied by

• ∃x, y, z : x = 0 ∧ y = 0 ∧ z = n ∧ x = x+ 1 ∧ z = z − 1 ∧ y = y

−→ x = 1 ∧ y = 0 ∧ z = n− 1

• (x = 1 ∧ y = 0 ∧ z = n− 1) ∨ (x = 0 ∧ y = 1 ∧ z = n− 1)

−→ x+ y = 1 ∧ z = n− 1

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 52

'

&

$

%

Example: Abstract Interpretation

[true]

1 x := 0; y := 0; z := n;

[x = 0 ∧ y = 0 ∧ z = n]

2 while (*) {
[(x = 0 ∧ y = 0 ∧ z = n) ∨ (x+ y = 1 ∧ z = n− 1)]

3 if (*) {
4 x := x+1;

5 z := z-1; [(x = 1 ∧ y = 0 ∧ z = n− 1)]

6 } else {
7 y := y+1;

8 z := z-1; [(x = 0 ∧ y = 1 ∧ z = n− 1)]

9 }
[(x+ y = 1 ∧ z = n− 1)]

10 }

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 53

'

&

$

%

Hence, we need to over-approximate

((x+ y = 1 ∧ z = n− 1) ∨ x = 0 ∧ y = 0 ∧ z = n)

(x+ y = 1 ∧ z = n− 1)
T⇒ z + x+ y = n

(x = 0 ∧ y = 0 ∧ z = n)
T⇒ z + x+ y = n

We get the loop invariant z + x+ y = n.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 54

'

&

$

%

Logical Interpretation

Abstract Interpretation over logical lattices

Lattices defined by

elements : some subset of formulas in T closed under ∧
partial order : some subset of T⇒

A common class is strictly logical lattices:

elements : conjunction φ of atomic formulas in T

partial order : φ v φ′ if T |= φ⇒ φ′

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 55

'

&

$

%

In any logical lattice

meet u 7→ (over-approximation of) logical and ∧ (d∧e)

join t 7→ over-approximation of logical or d∨e
partial order v 7→ under-approximation of logical implies b⇒c
projection 7→ over-approximation of logical exists d∃e

In strictly logical lattices:

meet u 7→ ∧
join t 7→ φ1 d∨e φ2 is the strongest φ ∈ Φ s.t. φi

T⇒ φ for i = 1, 2

partial order v 7→ T⇒
projection 7→ d∃e U.φ is the strongest φ′ ∈ Φ s.t. (∃U.φ)

T⇒ φ′

Challenge: For what domains can we efficiently compute these operations?

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 56

'

&

$

%

Over-Approximation of ∨: Examples

• Linear arithmetic with equality (Karr 1976)
Eg. {x = 0, y = 1} d∨e {x = 1, y = 0} = {(x+ y = 1)}

• Linear arithmetic with inequalities (Cousot and Halbwachs 1978)
Eg. {x = 0} d∨e {x = 1} = {0 ≤ x, x ≤ 1}

• Nonlinear equations (polynomials) (Rodriguez-Carbonell and Kapur 2004)
Eg. {x = 0} d∨e {x = 1} = {x(x− 1) = 0}

• Term Algebra (Gulwani, T. and Necula 2004)
Eg. {x = a, y = f(a)} d∨e {x = b, y = f(b)} = {y = f(x)}

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 57

'

&

$

%

UFS does not define a logical lattice

The d∨e of two finite sets of facts need not be finitely presented. [Gulwani, T.
and Necula 2004]

φ1 ≡ {a = b}

φ2 ≡ {fa = a, fb = b, ga = gb}

φ1 d∨e φ2 ≡
∧
i

gf ia = gf ib

The formula
∧

i gf
ia = gf ib can not be represented by finite set of ground

equations.

Proof. It induces infinitely many congruence classes with more than one signature.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 58

'

&

$

%

Combining Logical Interpreters: Motivation

x :=0; y := 0; x := c; y := c; x :=0; y := 0;
u := 0; v := 0; u := c; v := c; u := 0; v := 0;
while (*) { while (*) { while (*) {

x := u + 1; x := G(u, 1); x := u + 1;
y := 1 + v; y := G(1, v); y := 1 + v;
u := F(x); u := F(x); u := *;
v := F(y); v := F(y); v := *;

} } }
assert(x = y) assert(x = y) assert(x = y)

Σ = ΣLA ∪ ΣUFS Σ = ΣUFS Σ = ΣLA

T = TLA + TUFS T = TUFS T = TLA

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 59

'

&

$

%

Combining Logical Interpreters

Combining abstract interpreters is not easy [Cousot76]

For combining logical interpreters (over strictly logical lattices),
we need to combine:

• d∨e

• d∃e

• T⇒

Example:

(x = 0 ∧ y = 1) d∨e (x = 1 ∧ y = 0)

= x+ y = 1 ∧ C[x] + C[y] = C[0] + C[1]

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 60

'

&

$

%

Logical Product

Given two logical lattices, we define the logical product L1 ∗ L2 as:

elements : conjunction φ of atomic formulas in T1 ∪T2

E v E′ : E ⇒T1∪T2 E
′ and AlienTerms(E′) ⊆ Terms(E)

AlienTerms(E) = subterms in E that belong to different theory

Terms(E) = all subterms in E, plus all terms equivalent

to these subterms (in T1 ∪T2 ∪ E)

Eg. {x = F (a+ 1), y = a} d∨e {x = F (b+ 1), y = b} = {x = F (y + 1)} since:

x = F (a+ 1) ∧ y = a ⇒ x = F (y + 1)

x = F (b+ 1) ∧ y = b ⇒ x = F (y + 1)

x = F (a+ 1) ∧ y = a ⇒ y + 1 = a+ 1

x = F (b+ 1) ∧ y = b ⇒ y + 1 = b+ 1

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 61

'

&

$

%

Combining the⇒ Test

Combining satisfiability procedures

Nelson-Oppen combination method

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 62

'

&

$

%

Combining d∨e Operators

Given procedures:

d∨e L1(El, Er)

d∨e L2
(El, Er)

We wish to compute El d∨e Er in the logical product L1 ∗ L2

Example.

{z = a− 1, y = f(a)} d∨e {z = b− 1, y = f(b)} = {y = f(1 + z)}

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 63

'

&

$

%

Combining d∨e Operators

z = a− 1, y = f(a) z = b− 1, y = f(b)

Purify+NOSat z = a− 1 y = f(a) z = b− 1 y = f(b)

LR-Exchange a = 〈a, b〉 a = 〈a, b〉 b = 〈a, b〉 b = 〈a, b〉

Base d∨e d∨e LA d∨e UF

〈a, b〉 = 1 + z y = f(〈a, b〉)

Quant Elim d∃e UF∗LA

Return y = f(1 + z)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 64

'

&

$

%

The d∃e Operator

Required to compute transfer function for assignments

E = d∃e LV : (E′) if E is the least element in lattice L s.t.

• E′ vL E

• V ars(E) ∩ V = ∅

Examples:

• d∃e LAa : (x < a ∧ a < y) = (x < y)

• d∃e UFa : (x = f(a) ∧ y = f(f(a))) = (y = f(x))

• d∃e LA∗UFa, b, c : (a < b < y ∧ z = c+ 1 ∧ a = ffb ∧ c = fb) =

(f(z − 1) < y)

How to construct d∃e LA∗UF using d∃e LA and d∃e UF ?

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 65

'

&

$

%

Combining d∃e Operators

Problem a < b < y, z = c+ 1, a = ffb, c = fb {a, b, c}

Purify+NOSat a < b < y, z = c+ 1 a = ffb, c = fb

QSat → c 7→ z − 1

QSat a 7→ fc ←

Base d∃e d∃e LA d∃e UF

a < y, z = c+ 1 a = fc

Substitute c 7→ z − 1, a 7→ fc

Return f(z − 1) < y

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 66

'

&

$

%

Quantified Abstract Domain

Lifting base logical domains to quantified domains

array-init(A,n)

1 for (i = 0; i < n; i++) {
2 A[i] = 0

3 }
[∀k(0 ≤ k < n ⇒ A[k] = 0)]

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 67

'

&

$

%

Array Initialization

array-init(A,n)

1 for (i = 0; i < n; i++) {
(i = 1 ∧ A[0] = 0) ∨ (i = 2 ∧ A[0] = 0 ∧ A[1] = 0)

2 A[i] = 0

3 }

Let us write it out as a quantified fact.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 68

'

&

$

%

Array Initialization

array-init(A,n)

1 for (i = 0; i < n; i++) {
(i = 1 ∧ ∀k(k = 0 ⇒ A[k] = 0)) ∨
(i = 2 ∧ ∀k(k = 0 ⇒ A[k] = 0) ∧ ∀k(k = 1 ⇒ A[k] = 0))

2 A[i] = 0

3 }

Too many quantified facts...let us merge them into one.

i = 2 ∧ ∀k(⇒ A[k] = 0)

should be k = 0 b∨c k = 1 :

0 ≤ k ≤ 1⇒ (k = 0 ∨ k = 1)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 69

'

&

$

%

Array Initialization

array-init(A,n)

1 for (i = 0; i < n; i++) {
i = 1 ∧ ∀k(k = 0 ⇒ A[k] = 0) ∨
i = 2 ∧ ∀k(0 ≤ k < 2 ⇒ A[k] = 0)

2 A[i] = 0

3 }

Now we need to d∨e of two quantified facts.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 70

'

&

$

%

Array Initialization

i = 1 d∨e i = 2

∀k(k = 0⇒ A[k] = 0) ∀k(0 ≤ k < 2⇒ A[k] = 0)

1 ≤ i ≤ 2

∀k(⇒ A[k] = 0)

Obviously, should be k = 0 b∧c 0 ≤ k < 2.

k = 0 is no good.

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 71

'

&

$

%

Array Initialization

i = 1 d∨e i = 2

∀k(k = 0⇒ A[k] = 0) ∀k(0 ≤ k < 2⇒ A[k] = 0)

1 ≤ i ≤ 2

∀k(⇒ A[k] = 0)

Actually, should be

i = 1⇒ k = 0 b∧c i = 2⇒ 0 ≤ k < 2

Let us see if the answer satisfies this.

0 ≤ k < i⇒ (i = 1⇒ k = 0 ∧ i = 2⇒ 0 ≤ k < 2)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 72

'

&

$

%

The Quantified Domain

E ∧
∧
i

∀Ui(Fi⇒ ei)

where E, F , e are members of three base domains, requires

Function Description

E1 d∨e E2 join of E1 and E2

E1 d∧e E2 meet of E1 and E2

d∃e x.E eliminate x from E

E1 b⇒c E2 partial order test comparing E1 and E2

(E1 b∨c E2)/E under-approximate E ⇒ (E1 ∨ E2)

(E1⇒ E′1) b∧c (E2⇒ E′2) underapprox. (E1⇒ E′1) ∧ (E2⇒ E′2)

b∀c x.(E ⇒ E′) underapproximate ∀x(E ⇒ E′)

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 73

'

&

$

%

Logical Interpretation: Summary

• Logical lattices are good candidates for thinking about and building abstract
interpreters

Logical Interpretation : d∨e , d∃e ,⇒
Logical Product : Combination Algorithms

Quantified Extension : b∨c , b∧c , b∀c , abduction

• The assertion checking problem for program classes:

◦ Is related to T-unification

◦ Unification type determines complexity

◦ Interprocedural analysis needs context unification

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 74

'

&

$

%

Summary

CDS HS Synthesis Syst Bio. S/W

↓ ↓ ↓ ↓ ↓
(M |= φ)? (M |= φ)? (M? |= φ) (M |= φ)? (M |= φ)?

↓ ↓ ↓ ↓ ↓
M |= φ′, M ⇒M ′, ∃∀ψ ∀ψ M |= φ′,

φ′ ⇒ φ M ′ ⇒ φ φ′ ⇒ φ

↓ ↓ ↓ ↓ ↓
∃∀ψ ∃∀ψ, M ′ |= φ Logical Interp.

↘ ↓ ↙ ↓ ↓
∃∀ solver ∀ solver Approx. ops

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 75

'

&

$

%

Conclusion

SMT Solvers have revolutionalized solving of ∀ formulas

Possible directions of evolution:

• ∃∀ SMT Solvers

• Approximating SMT Solvers

• SMT+ and SMT- Solvers

• Probabilistic SMT Solvers

Ashish Tiwari, SRI Intl. Logic in Software, Dynamical and Biological Systems: 76

