‘ Logical Interpretation I

Static Program Analysis Using Theorem Proving

Ashish Tiwari

Tiwari@csl.sri.com

Computer Science Laboratory
SRI International
Menlo Park CA 94025
http://www.csl.sri.com/ tiwari

\ Ideas partly contributed by all my collaborators /

Ashish Tiwari, SRI Combining Abstract Interpreters: 1

4 N
\The Problem.

Complex Systems: How to

e understand ?

e design ?

Examples:
e living cell, drug action
e software systems

e cmbedded systems

e cyber physical systems

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 2

4 N
The Only Way We Know'

Using formal mathematical models

Explored and analyzed using
Automated Deduction ?

Flashback: Use of deduction technology as Embedded Logical Engines
Resulted in SMT approaches

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 3

\What We Now Need: Part | I

Evidence: Embed the technology in tools

e Embedded System Design Tools: Matlab Simulink/Stateflow
e Software Development Tools
e Drug Design Tools

e Medical Devices

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 4

-

\What We Now Need: Part 11 I

Next Generation Automated Deduction Engine: Requirements—

Attributes Why Modern SMT Solvers
speed embedded use yes

support for theories symbols have meaning | yes

interface embedded use lacking

beyond satisfiability need more no

reduced expressiveness partly

stochastic reasoning no

-

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 5

4 N
Evidence.

Some case studies:

Application Formalism Core Technology | Example
Embedded Sys. | Hybrid Systems | Th. of Reals Transmission,
Powertrain
Systems Bio. Discrete Sys. SAT/MaxSAT Cell Signalling
Medical Devices | Continuous Sys. | Linear Arith. Insulin Control
Software Verif. C programs S Benchmarks,
Code Fragments

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 6

Part I.
Part II.
Part III.
Part I'V.

-

\ Outline of the TaIkI

Over-approximating V

Over-approximating V in a combination of theories

Approximating V, A, 3,V
Theory Anyone?

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 7

‘Example'
1X :=0;y :=0; z -= n;
2 while (*) {
3 if () {
4 X = X+1;
5 z = z-1;
6 } else {
7 y = y+1;
8 z = z-1;
9o]
10 }

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 8

/ Traditional Approach: Annotate & Check' \

1X :=0;y :=0; z -= n;

[z-x-y=nT
2 while (*) {

3 0fF (™) {

4 X = X+1;

5 z = z-1;
[z-Xx-y==n]

6 } else {

7 y = y+1;

8 z = z-1;

[z-x-y==n]
@}

N /

Ashish Tiwari, SRI Combining Abstract Interpreters: 9

4 N

Traditional Approach: Annotate & Check

Proof obligation generated:

r—x—y=nAz=x+1A2=2-1Ay =y

T
— z’—a:’—y’:n

z—x—y=n ANy =y+1ANZ=2-1AN2" =2z

T
— z’—a:’—y’:n

The theory T determined by semantics of the programming language.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 10

/ ‘ Example: Abstract Interpretation' \

[true]

1X :=0;y :=0; z -= n;
[t=0ANy=0Az=n]

2 while (*) {

| X!

4 X I= X+1;

5 z :=z-1; [(x=1Ay=0Az=n-1)]
6 } else {

7 y = y+1;

8 z =z-1; [(x=0Ay=1Az=n-1)]
9o 1}

[a=1Ay=0Az=n—-1)V(r=0Ay=1Az=n—-1)]
\\<p } 4///

Ashish Tiwari, SRI Combining Abstract Interpreters: 11

Example: Abstract Interpretation

(xr=1ANy=0ANz=n—-1)V(e=0ANy=1ANz=n—1)

Suppose we do not have V in our language

We can only represent conjunctions of atomic facts

We need to overapproximate

We need to find a conjunction of atomic formulas that 1s implied by both
r=1Ny=0ANz=n—lande=0Ay=1Az=n-—1

What is such a fact? r+y=1Nz=n—-1

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 12

-

Example: Abstract Interpretation

[true]
1X :=0;y :=0; z -= n;
[t=0ANy=0Az=n]
2 while () {
[=0ANy=0Az=n)V(z+y=1Az=n—-1)]

3 0if () {

4 X = X+1;

5 z :=z-1; [(x=1Ay=0Az=n—-1)]
6 } else {

7 y = y+1;

8 z =z-1; [(x=0Ay=1Az=n-1)]
9o 1}

[+y=1Az=n-1)]

L y

Ashish Tiwari, SRI Combining Abstract Interpreters: 13

4 N

Hence, we need to over-approximate

(z4+y=1ANz=n—-1)Vae=0ANy=0Az=nmn)

(x+y=1ANz=n—-1) z+r+y=n

T
=
(x=0ANy=0Az2=n) = z4+T+y=n

This 1s exactly the invariant we had annotated by hand.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 14

‘ Logical Interpretation I

Abstract Interpretation over logical lattices

Lattices defined by
elements . some subset of formulas in T closed under A
partial order : some subset of =

A common class 1s strictly logical lattices:

elements : conjunction ¢ of atomic formulas in T'h

partialorder : ¢ LC ¢ if Thi=¢ = ¢

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 15

~

In any logical lattice

meet [(over-approximation of) logical and A ([A])

join L over-approximation of logical or [V/]

partial order C under-approximation of logical implies |=>]

1 11

projection over-approximation of logical exists |[d]

In strictly logical lattices:

meet] — A\

join L — ¢1| V]2 is the strongest ¢ € P s.t. ¢, N ¢ fori=1,2
. T

partial order C +— =

projection — [3]U.¢ is the strongest ¢’ € ¢ s.t. (FU.¢) N ¢’

Challenge: For what domains can we efficiently compute these operations?

Ashish Tiwari, SRI Combining Abstract Interpreters: 16

Over-Approximation of \V: Examples

e [Linear arithmetic with equality (Karr 1976)
Eg {z=0y=1}[V{z=1y=0} ={(z +y=1)}

e Linear arithmetic with inequalities (Cousot and Halbwachs 1978)
Eg. {z =0} {Vl{z =1} ={0 <z, <1}

e Nonlinear equations (polynomials) (Rodriguez-Carbonell and Kapur 2004)
Eg. {r =0}[V[{z =1} ={z(x — 1) = 0}

e Term Algebra (Gulwani, T. and Necula 2004)
Bg. {x =a,y = fa)}[V{z = b,y = f(b)} = {y = f(2)}

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 17

4 N

The join of two finite sets of facts need not be finitely presented. [Gulwani, T.
and Necula 2004]

UFS does not define a logical lattice

o1 = {a=0b}
¢2 = {fCL:CL, fb:baga:gb}
P1[V]py =

/\gfia = gf'b

The formula A, g f ‘a = ¢ f'b can not be represented by finite set of ground
equations.

Proof. It induces infinitely many congruence classes with more than one

\signature. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 18

Part I1. Over-Approximation in Union of Theories'

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 19

Combining Logical Interpreters: Motivation
x :=0;y :=0; X =C;y:i=C; x :=0;y :=0;
u:=0;v:=0; u:=cC,V:.:=C; u:=0;v:=0;
while (*) { while (*) { while (*) {
X:=u+1l; X :=G(u, 1); X:=u+l;
y:=1+v; y :=G(1, v); y:=1+v;
u := F(x); u := F(x); u:=7%
v :=F(y); v :=F(y); V=
} h h
assert(X =y) assert(X =y) assert(X =y)
2 =XraUXyFs 2 = XLyFs X =22raA
Th=Thras+Thyrs Th=Thyrs Th=Thra

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 20

Combining Logical Interpreters

Combining abstract interpreters is not easy [Cousot76]

For combining logical interpreters (over strictly logical lattices),

we need to combine:
o [V]

e |3

T
° =

Bad Example:

(x=0Ay=1) U (z=1Ay=0)
= z+y=1AClz]+Cly] = C|0] + C[1]

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 21

-

Terms(FE) =

Given two logical lattices, we define the logical product as:

elements : conjunction ¢ of atomic formulas in T'hq U T hs
ECE : FE=rpnurn EF and AlienTerms(E") C Terms(E)
AlienTerms(E) = subterms in F that belong to different theory

Eg. {r=F(a+1),y=atU{z=F0b+1),y=bt={x=Fy+1)} -

‘ Logical Product' \

all subterms in F/, plus all terms equivalent

to these subterms (in T'h1 UTho U E)

a+1)ANy=a = x=F(
(

—
Ny=a =
=

Ashish Tiwari, SRI

Combining Abstract Interpreters: 22

‘Combining the Preorder Test'

Combining satisfiability procedures

Nelson-Oppen combination method

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 23

‘Combining Join Operator'

Given procedures:

V], (E;, E.) : Computes E;[V]E, in lattice Lq
V1L, (E;, E.) : Computes E;[V]E, in lattice Lo

We wish to compute E; [V | FE, in the logical product L * Lo

Example.

{z=a+Ly=f(@)}V{z=b-1y=f(0)} = {y=/,(1+2)}

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 24

-

Base Joins

Quant Elim

Return

-

Purify+NOSat

LR-Exchange

~

‘Combining Join Operators'
z=a—1,y= f(a) z=b—1,y= f(b)
z=a—-1 y=fla) z=b-1 y= [
a=(a,b) a=(a,b) b=I(ab) b=/{a,b)
Joinrg a Joingy g
(a,b) =1+ 2 y = f({a,b))
QEypara
y=f(1+2)

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 25

-

Required to compute transfer function for assignments

E = [3]|(E, V) if E is the least element in lattice L s.t.
o 'L E
e Vars(E)NV =1

Examples:

=
=
B
(f(z=1) <y)

Existential Quantification Operator' \

raa:(z<ahNa<y)=(r<y)

vra: (z = f(a) Ny = f(f(a)) =(y=f(z))
LAasura,bc:(a<b<yANz=c+1lAa=ffbAc=fb) =

\How to construct |3 | axyp using [F]p4 and [Ty gp? /

Ashish Tiwari, SRI Combining Abstract Interpreters: 26

/ ‘Combining QE Operators' \

Problem a<b<y,z=c+1l,a= ffb,c=fb {a,b,c}

Purify+NOSat a<b<y,z=c+1 a= ffb,c= fb

QSat — c—z—1

QSat a+— fc o

Base QEs QELA QEUF
a<y,z=c+1 a= fc

Substitute c—z—1,a— fc

\Return flz—1) <y /

Ashish Tiwari, SRI Combining Abstract Interpreters: 27

Part I11. Approximating Vv, A, H,VI

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 28

1
2
3

-

\Quantified Abstract Domalin I

array-init(A,n)
for ((=0; i<n; 1++) {
Alil =0
}
[VE(OO<Ek<n = Ak]=0)]

/

Ashish Tiwari, SRI Combining Abstract Interpreters: 29

1

-

array-init(A,n)

Array Initialization

for ((=0; i <n; 1++) {

(=1 A A0]=0)V (=2 A A[0] =0 A A[l] = 0)

Ali] = 0

Let us write it out as a quantified fact.

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 30

-

Array Initialization

array-init(A,n)
1 Ffor (G=0; i<n; 1++) {

(i=1AVk(k=0 = Alk]=0))V

(1=2 AVEk(k=0 = A[k]=0) A Vk(k=1 = A[k] =0))
2 Ali] =0
3}

Too many quantified facts...let us merge them into one.

i =2 AVE(___ = A[k] = 0)

____shouldbe k=0 |V] k =

0<k<1l=(k=0Vk=1)
N /

Ashish Tiwari, SRI Combining Abstract Interpreters: 31

1

-

Array Initialization

array-init(A,n)

for ((=0; i <n; 1++) {
i=1AVk(k=0 = Alk]=0)V
i =2AVE(0<k<2 = Alk]=0)

Ali] = 0

Now we need to join two quantified facts.

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 32

4 N

Array Initialization

i=1 V] i =2
Vk(k =0= Alk] = 0) VE(O <k < 2= Alk] =0)
1 <1 <2
Vk(____= Alk] = 0)

Obviously, ___should be k£ = 0|A]0 < k < 2.

k = 01s no good.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 33

4 N

Array Initialization

i=1 (V] i =2
Vk(k =0= Alk] = 0) VE(O <k <2= Alk] =0)

Hmmm, ____ should be

i=1=k=0[Ali=2=0<k<?2

Let us see if the answer satisfies this.

0<k<i=(=1=k=0Ni=2=0<k<2)

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 34

‘The Quantified Domain'

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 35

4 N

‘The Interface'
Function Description
E1[V]FEs join of F; and Fs
E1[N|Es meet of £y and Fy
dlx. E eliminate z from F
E1 |=] FEs partial order test comparing F; and Fs
(E1|V]FE2)/E under-approximate £/ = (Fy V F»)
(Fy = E))|A|(Ey = E)) underapprox. (Fh = F1) A (Es = E))
\V|x.(E = E') underapproximate Vo (FE = E’)

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 36

How are Under-Approximations Computed?'

Under-approximation operators == Abduction

Given environment F and observation I, generate an explanation F" such that

EANF = F abduction

F' = (FE=F) underapproximation

We start with over-approximations and then refine them using abduction.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 37

/ I\/Iagic' \

i=1 V] i=2
Vk(k = 0= Alk] = 0) VE(O < k < 2= Alk] = 0)

Hmmm, ____ should be
i=1=k=0[Ali=2=0<k<?2
Compute

i=1Ak=0[V]i=2A0<k<2

Join on linear arithmetic returns

\ 1<i1<2A0< k<1 /

Ashish Tiwari, SRI Combining Abstract Interpreters: 38

Part IV. Theory Anyone? I

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 39

Part I. Invariant Checking I

Program: A directed graph whose edges are labelled with:

e r:=¢
o 1 ="
e skip

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 40

/ ‘Example' \

Given the following program and assertion z — x — y = n at the end, check if
assertion 1s an invariant of the program.
1X :=0; y :=0; z = n; O
2 while (*) { X:=0
3 if () | O
4 X = X+1; y:=0
5 z = z-1; <5_
6 } else { £-=n
7 y = y+l; it y++
8 z = z-1;
9 } skip
10 }

\\\; assert(z - X -y =n)

Ashish Tiwari, SRI Combining Abstract Interpreters: 41

Invariant Checking via Backward Propagation

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 42

/ [n-0-0=n]] \

1X =0;y :=0; z = n;

[z-x-y=n]
2 while (*) {

[z-x-y=n]

3 0fF (™) {

4 X = X+1;

5 z = z-1;
[z-x-y=n]

6 } else {

7 y = y+l;

8 z = z-1;

[z-x-y=n]
o]
[z-x-y=n]

) Y

Ashish Tiwari, SRI Combining Abstract Interpreters: 43

Simple Programs using Linear Arithmetic'

Program P : Simple program using expression language of linear arith.

Assertion : linear arithmetic equality

In this case,

e At each point, we have a conjunction of linear equations
e Such a conjunct can have at most n non-redundant equations

e Therefore fixpoint converges in at most n iterations

Linear arithmetic equality invariant checking on simple programs is in PTIME

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 44

/ Invariant Checking for Unitary Theories' \

€1 = es 18 an invariant at point 7 if every program path to 7 gives an

interpretation o (for program variables) s.t. 0 = e; = es

Let 01,09, ... be all the interpretations reachable at

Let o0 be mgur(e1, es). For all 4,

€10 =T €205
Implies o 1s more general than o;
Implies oo; =1 0;
Implies xo0; =1 x0; for all

Implies xo = x 1s an invariant

If e; = e5 is an invariant, then mgur(eq, e2) is an invariant in the simple

rogram model

Ashish Tiwari, SRI Combining Abstract Interpreters: 45

/ Invariant Checking for Unitary Theories' \

Program P : Expression language of a unitary theory

Assertion . e1; = es, where e; are terms in the unitary theory

In this case,
e At each point, we have a conjunction of equations

e Such a conjunct can have at most n non-redundant equations (use

unification)

e Therefore fixpoint converges in at most n iterations

Invariant checking of equalities on simple programs over unitary theories is in

N /

Ashish Tiwari, SRI Combining Abstract Interpreters: 46

/ Example: A Simple Program over UFSI

[c=c]
1U I=C; V I= C;
[u=v]

2 while (*) {
|F(u) = F(v)] which iIs the same as [u=v]

3 u = F(u);
4 v = F(V);
[uv="v]

5 }
[u="v]

Note that v = v 1s an invariant since all the following interpretations are

models of it;

\ (u—c,v—c), (ur— Fe,v— Fc), (u— FFe,u— FFc), ...

~

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 47

-

SolvePCP((u1,v1), ..., (uk, vk)):

1 x:=u(e); y:=wv1i(e);

2 while (*) {

3 it () {

4 x:=us(x); y:=uv2(y);
5 }elsit () {
6
I

Disequality Invariant Checking is Undecidable

r:=u3(x); y:=v3(y);
}oelsif () {

8 -

9 } else {

10 r:=ug(x); y:=vk(y);
11 }

12 }

_ [z#y1 -

Ashish Tiwari, SRI Combining Abstract Interpreters: 48

Disjunctive Equality Invariant Checking is coNP-ha

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 49

/Solve3SAT(¢): \

cp:=0; -3 ¢, :=0; // All clauses set to O
it (™) {

All clauses containing b; set to 1
} else {

All clauses containing —-b; set to 1
}
it () {

All clauses containing b, set to 1
} else {

All clauses containing —-b, set to 1
}

[ci=0Ve=0V---Ve¢,=01];

\Invariant holds 1ff at least one clause 1s not satisfied for each assignment /

Ashish Tiwari, SRI Combining Abstract Interpreters: 50

Equality Invariant Checking over UFS+LAI

Recall the unification connection: For a simple program P over UFS+LA

F(a)+ F(b) = F(z) + F(a + b — x) is an invariant of P iff
T = a V x = b1s an invariant of P

Recursively using the same idea, we can write one equation e; = es s.t.
e1 = eo 18 an invariant of P iff

O=c;VO=cyV---VO0=c¢,, 1s an invariant of P
But checking this disjunctive assertion is coNP-hard

This proof generalizes to theories that can encode disjunction such as
r=aVzr=>

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 51

\Simple Programs over UFS+LAI

Equality assertion checking is coNP-hard

We can show that it 1s decidable

The reason 1is that this theory is finitary

Hence backward propagation + unification can be shown to terminate
The argument generalizes to all convex and finitary theories

The result also generalizes richer program models that include assume
disequality nodes

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 52

Richer Program I\/Iodels'

Additional edge labels:

e Assume(e; # e3)
e Assume(e; = €9)

e Call(P)

If we include conditionals, then even for simple programs using simple
expression language (either UFS or LLA), invariant checking is undecidable

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 53

‘Summary of Results I

Unification type of theory Complexity of Examples

of program expressions | assertion checking

Strict Unitary PTIME fa, uf
Bitary coNP-hard fa+uf, c
Finitary-Convex Decidable fa+uf +c+ac

Figure 1: Results for simple programs. Row 4 holds even for disequality
guards.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 54

4 N
Summary'

e [ogical lattices are good candidates for thinking about and building abstract

interpreters
e [ogical lattices can be combined in a new and important way
Logical Products:
o Logical product is more powerful than direct or reduced product

o QOperations on logical lattices can be modularly combined to yield
operations for logical products

o Using ideas from the classical Nelson-Oppen combination method

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 55

-

-

e The assertion checking problem:

Summary'

o Equations in an assertion can be replaced by its complete set of
T'h-unifiers for purposes of assertion checking

o Assertion checking over “lattices” defined by combination of two logical
lattices can be hard, even when it 1s in PTime for the lattices defined by
individual theories

o Finitary T h-unification algorithm implies decidability of assertion
checking for the logical lattices defined by T'h

/

Ashish Tiwari, SRI Combining Abstract Interpreters: 56

Summary'

e Base Abstract Domain — Quantified Abstract Domain
e Require a rich interface from the base domain

e Ability to compute over- and under-approximations of various logical
operators

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 57

‘Big Picture'

Applications: Memory Safety ()
Quantifi ed Abstract Domain ()
Combination Domain: Logical Product ()
;H
| |
Base Domainswithrich API () () ()

. /

Ashish Tiwari, SRI

Combining Abstract Interpreters: 58

4 N
‘Philosophy'

Next Generation Automated Deduction Engine: Requirements—

Attributes Why Modern SMT Solvers
speed embedded use yes

support for theories symbols have meaning | yes

interface embedded use lacking

beyond satisfiability need more lacking

reduced expressiveness partly

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 59

