
=297truemm =210truemm =1truein =1truein

'

&

$

%

Formally Analyzing Adaptive Flight Control

Ashish Tiwari

SRI International

333 Ravenswood Ave

Menlo Park, CA 94025

Supported in part by NASA IRAC NRA grant number: NNX08AB95A

Ashish Tiwari Symbolic Verification of Adaptive Systems: 1

'

&

$

%

System Development

Design — Verify

↓ |

↓ |

↓ |

Implementation — Verify

Focus here is on verification at the design phase of

Adaptive flight control systems

Ashish Tiwari Symbolic Verification of Adaptive Systems: 2

'

&

$

%

Adaptive Control Systems

Sensors

InputsController

Plant

Actuators Sensors

InputsController

Actuators

Plant

Learning Module

Simple Control System Adaptive Control System

Ashish Tiwari Symbolic Verification of Adaptive Systems: 3

'

&

$

%

Direct NN Adaptive Flight Control

xm xe xd

uad

xm

__
Reference

Model
PI Controller Dynamic

Inversion
Aircraft

Direct NN

r u

ux

.

.+

x

Adaptive: Additional red loop

To compensate for the unknown dynamics arising from aircraft damage

Ashish Tiwari Symbolic Verification of Adaptive Systems: 4

'

&

$

%

Verifying Adaptive System

Challenges:

• Unknown plant (aircraft) model

• Nonlinear functions (kernel functions)

• Unknown initial weights of the neural net

• Unknown assumptions

• Complexity of model: mixed discrete and continuous, dimension

Ashish Tiwari Symbolic Verification of Adaptive Systems: 5

'

&

$

%

Formal Verification

Formal verification gives correctness guarantees – for all possible behaviors

1. Build a model of the system

(a) Model each component – controller, aircraft, NN

(b) Model disturbances – nondeterminism, symbolic parameters

(c) Specify the property

2. Formally verify the system

You verify what you model

Ashish Tiwari Symbolic Verification of Adaptive Systems: 6

'

&

$

%

Why Formal Verification?

Why use formal verification?

1. Alternative to doing simulation and testing

2. Equivalent to doing an analytic proof

3. Do a new proof, or machine check/validate a hand proof

4. Verify different safety and stability properties

5. Redo proofs if design is changed

6. Applies to both design and implementation

7. Helps in certification

Ashish Tiwari Symbolic Verification of Adaptive Systems: 7

'

&

$

%

Bounded Verification

Typical verification approaches–

• iterative over-approximation of the reachable set

• abstraction

• smart simulations

Bounded Verification is a different technique for Safety and Stability

verification of Continuous and Hybrid dynamical systems

• Reduce verification problem to constraint solving

• Use modern constraint solvers to solve the constraint

Ashish Tiwari Symbolic Verification of Adaptive Systems: 8

'

&

$

%

Outline/Summary

1. Bounded Verification: Verification 7→ ∃∀ solving

2. Solving ∃∀ formulas

3. Analyzing adaptive flight control

3.1 Modeling Neural Network Direct MRAC

3.2 Verifying stability and invariance properties of the model using the

bounded verification technique

Sources for the Model:

• N. Nguyen and K. Krishnakumar, “An optimal control modification to model-reference

adaptive control for fast adaptation”, AIAA GNC 2008.

• Matlab scripts for simulating direct, indirect, and hybrid adaptive flight control (source:

Stephen A. Jacklin, NASA Ames)

Ashish Tiwari Symbolic Verification of Adaptive Systems: 9

'

&

$

%

Part I: Bounded Verification

Ashish Tiwari Part I: Bounded Verification: 10

'

&

$

%

Bounded Verification

A generic approach for analysis of continuous and hybrid dynamical systems

based on symbolic constraint solving

Key Observation: Verification = searching for right witness

Property Witness

Stability Lyapunov function

Safety Inductive Invariant

Liveness Ranking function

Controllability Controlled Invariant

How to find the right witness?

Ashish Tiwari Part I: Bounded Verification: 11

'

&

$

%

Finding the Witness

Key idea: Bounded search for witnesses of a specific form

High-level outline of the procedure:

1. Fix a form (template) for the witness function

Quadratic template: ax2 + by2

2. Existence of a witness (of the chosen form) is encoded as a constraint

∃a, b : ∀x, y : ax2 + by2 ≥ c⇒
d

dt
(ax2 + by2) < 0

3. Solve the constraint

Ashish Tiwari Part I: Bounded Verification: 12

'

&

$

%

Quick Introduction to Logic

Let V (a, b, x, y) := ax2 + by2

There exist values for a, b, c such that for all values of x, y, if

V (a, b, x, y) ≥ c, then V̇ < 0

∃a, b, c : ∀x, y : V (a, b, x, y) ≥ c ⇒
dV

dt
< 0

Add requirement that a, b, c are positive

∃a, b, c : a > 0 ∧ b > 0 ∧ c > 0 ∧ (∀x, y : V (a, b, x, y) ≥ c ⇒
dV

dt
< 0)

Tarski’s Result: These formulas can be solved

Ashish Tiwari Part I: Bounded Verification: 13

'

&

$

%

Safety Verification using Inductive Invariants

A discrete-time system always remains inside the set Safe(~x) of good states if

there is an inductive invariant Inv(~x) such that

Init : ∀~x : Init(~x) ⇒ Inv(~x)

Ind : ∀~x, ~x′ : Inv(~x) ∧ t(~x, ~x′) ⇒ Inv(~x′)

Safe : ∀~x : Inv(~x) ⇒ Safe(~x)

Template: Inv(~a, ~x)

Generated Constraint:

∃~a : ∀~x, ~x′ : (Init(~x) ⇒ Inv(~a, ~x)) ∧

(Inv(~a, ~x) ∧ t(~x, ~x′) ⇒ Inv(~a, ~x′)) ∧

(Inv(~a, ~x) ⇒ Safe(~x))

Ashish Tiwari Part I: Bounded Verification: 14

'

&

$

%

Safety Verification: Continuous-Time

A continuous-time system ~̇x = f(~x) always remains inside the set Safe(~x) of

good states if

there is an inductive invariant Inv(~a, ~x) such that

∃~a : ∀~x : (Init(~x) ⇒ Inv(~a, ~x)) ∧

(~x ∈ ∂Inv(~a, ~x) ⇒ f(~x) ∈ TInv(~a, ~x)) ∧

(Inv(~a, ~x) ⇒ Safe(~x))

The middle condition can be formulated for polynomial systems as: p ≥ 0 is

inductive if

∀(~x) : p(~x) = 0 ⇒ ~∇p(~x) · f(~x) ≥ 0

Ashish Tiwari Part I: Bounded Verification: 15

'

&

$

%

Digression

Unsound, but sound variant and even relatively complete variants exist

(A1) Init ⇒ p ≥ 0

(A2) p = 0 ⇒ Lf (p) ≥ 0

(A3) p ≥ 0 ⇒ Safe

(A4) p = 0 ⇒ ~∇p 6= 0

Reach(CDS) ⊆ Safe

Figure 1: Sound, but incomplete, rule for safety verification of polynomial

CDS CDS := (X,Init, f) and safety property Safe ⊆ X.

Relatively complete

Ashish Tiwari Part I: Bounded Verification: 16

'

&

$

%

Bounded Stability Verification

(S1) : Init ⇒ V ≥ 0

(S2) : V > 0 ⇒ dV
dt
< 0

(S3) : V ≤ 0 ⇒ φ

Init ⇒ F(φ)

(T1) : ¬φ ⇒ V > 0

(T2) : ¬φ ⇒ dV
dt
< 0

true ⇒ G(F(φ))

Figure 2: On the left, an inference rule for verifying that a continuous system

CDS := (X, f) eventually reaches φ starting from any state in Init. On the

right, an inference rule for verifying that a continuous system CDS := (X, f)

always eventually reaches φ.

Ashish Tiwari Part I: Bounded Verification: 17

'

&

$

%

Proving Bounded Stability

Constraints can also encode that some function is a Lyapunov function.

Some systems may not be globally stable

We can also generate assumptions on the inputs (subset of the global state

space) that will guarantee stability or safety

Idea: Use a template for the assumption

Ashish Tiwari Part I: Bounded Verification: 18

'

&

$

%

xd xu
AircraftController

NN
A G

Pick Template for G: V(x) = x x − k
T

Pick Template for A: xd < a x

Exist(a,k): Forall(x): x x − k > 0 and xd < ax implies d/dt(x x − k) < 0T

Exist(a,k): Exist(λ): (...)

Eliminate Forall(x)

Solve for all variables

k = 60, a = 5, ...
(This proves bounded stability of the system)

Ashish Tiwari Part I: Bounded Verification: 19

'

&

$

%

Controllability Verification

Our approach can be used to synthesize controllers that preserve safety

and/or stability

A continuous-time system ~̇x = f(~x, ~u) can be made to remain inside the set

Safe(~x) of good states if

there is an controlled inductive invariant CInv(~a, ~x) such that

∃~a : ∀~x : (Init(~x) ⇒ CInv(~a, ~x)) ∧

(~x ∈ ∂CInv(~a, ~x) ⇒ ∃~u : f(~x, ~u) ∈ TCInv(~a, ~x)) ∧

(CInv(~a, ~x) ⇒ Safe(~x))

Similarly for controlled Lyapunov function

Ashish Tiwari Part I: Bounded Verification: 20

'

&

$

%

Overview of Bounded Verification

Given continuous dynamical system, and optionally property Safe:

• Guess a template Inv(~a, ~x)

◦ For stability, this will be a Lyapunov function

◦ For safety, this will be an inductive invariant

• Guess a template for the assumption A(~b, ~x) (if any)

• Generate the ∃∀ verification condition: ∃~a,~b : ∀~x : A(~b, ~x) ∧ · · · ⇒ φ

◦ Formula φ states that Inv is a Lyapunov fn/inductive invariant

• Solve the formula to get values for ~a and ~b

Ashish Tiwari Part I: Bounded Verification: 21

'

&

$

%

Related Work

The bounded verification approach encompasses

• Template-based invariant generation (Sankaranarayanan et al., Kapur)

• Barrier certificates (Prajna et al.)

• Constraint-based approach for verification (Gulwani et al.)

Bounded verification is the dual of bounded falsification

(aka bounded model checking)

The real problem is

deciding ∃∀ formulas over the reals

Ashish Tiwari Part I: Bounded Verification: 22

'

&

$

%

Part II: Solving ∃∀ formulas

Ashish Tiwari Part II: Solving ∃∀ formulas: 23

'

&

$

%

Solving ∃∀ formulas

Bounded verification: verification of hybrid systems 7→ checking validity of

∃~u : ∀~x : φ

When φ is over polynomials, this is decidable (e.g. QEPCAD)

More practically, use heuristics to decide ∃~u : ∀~x : φ

1. Eliminate ∀: ∃~u : ∀~x : φ 7→ ∃~u : ∃~λ : φ′

2. Search for ~u and ~λ over a finite domain using SMT (bit vector) solver

Ashish Tiwari Part II: Solving ∃∀ formulas: 24

'

&

$

%

Step 1: ∃∀ to ∃

For linear arithmetic, Farkas’ Lemma eliminates ∀

∀~x : p1 ≥ 0 ∧ p2 ≥ 0 ⇒ p3 ≥ 0, iff

∃~λ : p3 = λ1p1 + λ2p2 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0

For nonlinear, we can still use this and be sound, but incomplete

We can partially regain completeness by using Positivstellensatz

Ashish Tiwari Part II: Solving ∃∀ formulas: 25

'

&

$

%

Step 2: ∃ to Bit-Vectors

Farkas Lemma/Posit. : ∃∀ 7→ ∃

Solving the ∃ formula

One approach: Search for solutions in a finite range using bit-vector decision

procedures

∃u ∈ R : (u2 − 2u = 3 ∧ u > 0)

⇐ ∃u ∈ Z : (u2 − 2u = 3 ∧ u > 0)

⇐ ∃u ∈ Z : (−32 ≤ u < 32 ∧ u2 − 2u = 3 ∧ u > 0)

⇐ ∃~b ∈ B6 : (u ∗ u− 2 ∗ u = 3 ∧ u > 0)

We use Yices to search for finite bit length solutions for the original nonlinear

constraint
~b = 000011

Ashish Tiwari Part II: Solving ∃∀ formulas: 26

'

&

$

%

Overall Approach

Given hybrid system HS and optionally property Safe:

• Guess a template for witness Inv(~u, ~x)

• Generate the verification condition: ∃~u : ∀~x : φ

• Solve using either QEPCAD or

◦ Eliminate ∀ using Farkas’ Lemma: ∃~u : ∃~λ : ψ

◦ Guess sizes for ~u, ~λ: ∃ ~bvu : ∃ ~bvλ : ψ′

◦ Ask Yices to search for solutions

• If a satisfying assignment is found, system proved safe

Ashish Tiwari Part II: Solving ∃∀ formulas: 27

'

&

$

%

Part III.I

Modeling NN Direct

Model Reference Adaptive Control

Ashish Tiwari Part III.I: Modeling Direct MRAC: 28

'

&

$

%

NN Direct Model Reference Adaptive Control

xm xe xd

uad

xm

__
Reference

Model
PI Controller Dynamic

Inversion
Aircraft

Direct NN

r u

ux

.

.+

x

Sources:

• N. Nguyen and K. Krishnakumar, “An optimal control modification to

model-reference adaptive control for fast adaptation”, AIAA GNC 2008.

• Matlab scripts for simulating direct, indirect, and hybrid adaptive flight

control (source: Stephen A. Jacklin, NASA Ames)

Ashish Tiwari Part III.I: Modeling Direct MRAC: 29

'

&

$

%

Step 1: Modeling Direct MRAC

~x: 3 × 1 vector of roll, pitch, and yaw rates of the aircraft.

~u: 3 × 1 vector of aileron, elevator, and rudder inputs.

~z: 3 × 1 trim state vector of angle of attack, angle of sideslip, and engine

throttle.

The dynamics of the aircraft are given by

~̇x = A~x+B~u+G~z + f(~x, ~u, ~z) (1)

where A,B,G are known matrices in <3×3 and f represent the unknown term

(caused by uncertainty or damage to the aircraft).

Ashish Tiwari Part III.I: Modeling Direct MRAC: 30

'

&

$

%

Step 1: Modeling Direct MRAC

We tried to build a continuous dynamical system model

State space: xm, intxe, x, L, β, f

˙xm = Am(xm − r)

˙intxe = xm − x

ẋ = Am(xm − r) +Kp(xm − x) +Kiintxe − L′β + f

L̇ = −Γβ(intxT
e K

−1

i + (xm − x)TK−1

p (I +K−1

i))

β̇ = . . .

ḟ = . . .

Constants : Γ, Kp, Ki, Am,

Unknown/Symbolic Parameters : r, f , ḟ

Ashish Tiwari Part III.I: Modeling Direct MRAC: 31

'

&

$

%

Step 1: Modeling Direct MRAC

r commanded value for x

xm desired value for x, calculated using reference model

x actual value for x, determined by the damaged aircraft

xe error, xm − x

intxe integral of the error,
∫
xe

L weights of the NN

β fixed functions, L′β = adaptive control term

f Damaged dynamics, f = ẋ− ẋu

ue Kpxe +Kiintxe

ẋd ˙xm + ue − uad

L̇ weight update / neural net learning

Ashish Tiwari Part III.I: Modeling Direct MRAC: 32

'

&

$

%

Step 1: Modeling Direct MRAC: Issues

Dynamics for β: β̇ = . . .

• There are two options here:

Option 1. Use β from the NASA Matlab scripts

Option 2. Leave β as unknown symbolic parameters

• If we use Option 1

There is an algebraic loop on u: u(t) depends on u(t)

Leads to complications – not pursued further.

• If we use Option 2

Analysis independent of β

Need assumption on β (to capture damaged dynamics f)

Used in [NguyenKrishnakumar08]

Ashish Tiwari Part III.I: Modeling Direct MRAC: 33

'

&

$

%

Step 1: Modeling Direct MRAC: Issues

Dynamics of f : ḟ = . . .

• Dynamics of damaged aircraft:

ẋ = Au~x+Bu~σ + Fu~u+ f(~x, ~σ, ~u)

f is unknown

• ḟ is also unknown

• We leave f and ḟ as unknown symbolic parameters

• We wish to prove properties of the system for any f , ḟ

• Which is not possible, hence need assumptions

We will verify . . . assuming that . . .

Ashish Tiwari Part III.I: Modeling Direct MRAC: 34

'

&

$

%

Step 1: Final Model

ẋe = −Kpxe −Kiintxe + L′β − f

˙intxe = xe

L̇ = −Γβ(intxT
e K

−1

i + (xm − x)TK−1

p (I +K−1

i))

β̇ = f1

ḟ = f2

state variables xe, intxe, L, β, f

unknown parameters f1, f2

fixed parameters Γ,Kp,Ki

Ashish Tiwari Part III.I: Modeling Direct MRAC: 35

'

&

$

%

Step 1: Simulating the Original Model

Standard PI Controller without adaptation:

0 5 10 15 20 25 30 35 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30 35 40
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35 40
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Roll rate Pitch rate Yaw rate

Pitch command : Roll and Yaw respond bcos of aymmetric damage

Response unacceptable due to excessive roll and yaw rates

Ashish Tiwari Part III.I: Modeling Direct MRAC: 36

'

&

$

%

Step 1: Simulating the Model with MRAC

Standard MRAC Controller using learning rate Γ = 104:

0 5 10 15 20 25 30 35 40
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0 5 10 15 20 25 30 35 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−4

Roll rate Pitch rate Yaw rate

Pitch command : Roll and Yaw respond bcos of aymmetric damage

Tracking performance improves drastically

High-frequency oscillations in yaw, lesser in pitch, roll channel

Ashish Tiwari Part III.I: Modeling Direct MRAC: 37

'

&

$

%

Step 1.5: Simulating the Original Model

Adaptation based on estimating f :

0 5 10 15 20 25 30 35 40
−8

−6

−4

−2

0

2

4

6

8
x 10

−4

0 5 10 15 20 25 30 35 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−5

Roll rate Pitch rate Yaw rate

Pitch command : Roll and Yaw respond bcos of aymmetric damage

Tracking performance improves drastically

Any High-frequency oscillations?

Ashish Tiwari Part III.I: Modeling Direct MRAC: 38

'

&

$

%

Part III.I

Verifying NN Direct

Model Reference Adaptive Control

Ashish Tiwari Part III.2: Verifying Direct MRAC: 39

'

&

$

%

Step 2: Verifying the Model

We first verify that error remains bounded assuming that the NN works

properly

Assumption (uad − f) is bounded Template: ||L′β − f ||2 ≤ a

Assumption ||xe|| exceeds bound Template: ||xe||
2 > c

Guarantee Exists a Lyapunov function Template: ||xe||
2 + b||intxe||

2

Generated formula: ∃a, b, c : ∀xe, intxe, L, β, f : . . .

Values computed by the constraint solver: b = 10, 25c > a > 0

Assuming L′β − f is bounded, the error xe eventually remains bounded –

irrespective of β, f, L, ḟ , . . .

Ashish Tiwari Part III.2: Verifying Direct MRAC: 40

'

&

$

%

Step 2: Verifying the Model

The above property holds even under a different assumption.

Assumption ||xe||
||uad−f || exceeds bound ||xe||

2 > c||uad − f ||2

Guarantee Exists a Lyapunov function ||xe||
2 + b||intxe||

2

Generated formula: ∃b, c : ∀xe, intxe, L, β, f : . . .

Values computed by the constraint solver: b = 10, 25c > 1

The error xe always eventually drops below a constant factor of the NN

approximation error – irrespective of β, f, L, ḟ , . . .

Ashish Tiwari Part III.2: Verifying Direct MRAC: 41

'

&

$

%

Step 2: Verifying the Model

Can we show that the weights L also eventually remain bounded ?

Assume f = L∗′β

Assume β is bounded ||β||2 ≤ e

Assume ||xe|| exceeds bound ||xe||
2 > a

Prove Exists an invariant ||xe||
2 + b||intxe||

2 + c||L− L∗||2 ≤ d

Generated formula: ∃a, b, c, d, e : ∀xe, intxe, L, β, f : . . .

Values computed by the constraint solver:

b = 10, c = 1

2200
, 20(d− a)2e < 11a2

When ||xe||
2 > a, then the set ||xe||

2 + b||intxe||
2 + c||L− L∗||2 < d is an

invariant – assuming β2 is bounded by e.

Ashish Tiwari Part III.2: Verifying Direct MRAC: 42

'

&

$

%

Step 2: Verifying the Model

Can we show that the weights L also eventually remain bounded ?

Assume f = L∗′β

Assume (uad − f) is bounded ||L′β − f ||2 ≤ e

Assume ||xe|| exceeds bound ||xe||
2 > a

Prove Exists an invariant ||xe||
2 + b||intxe||

2 + c||L− L∗||2 ≤ d

Generated formula: ∃a, b, c, d, e : ∀xe, intxe, L, β, f : . . .

Values computed by the constraint solver:

b = 10, c = 1

2200
, (d− a)e < 1210a2

When ||xe|| > a, then the set ||xe||
2 + b||intxe||

2 + c||L− L∗||2 < d is an

invariant – assuming (L− L∗)′β is bounded.

Ashish Tiwari Part III.2: Verifying Direct MRAC: 43

'

&

$

%

Step 2: Verifying the Model: Issues

• Constraint solver: ∃∀ formulas over the reals

◦ Our implementation: fast, but incomplete

? Poor in handling squares

? Can not solve all the constraints

◦ QEPCAD: slow and unreliable, but complete

• Automation of template generation

◦ difficult in general

◦ possible for NN adaptive flight control systems

• Automating model extraction

Ashish Tiwari Part III.2: Verifying Direct MRAC: 44

'

&

$

%

Other Case Studies

The same approach used to verify bounded stability of a flight controller from:

T. Lee and Y. Kim, “ Nonlinear adaptive flight control using backstepping and

neural networks controller”, J. of Guidance, Control, and Dynamics:24(4),

2001.

The method has also been used to verify traditional control systems and other

hybrid dynamical systems

• adaptive cruise control in automobiles

• models from systems biology

• human blood glucose metabolism model

Ashish Tiwari Part III.2: Verifying Direct MRAC: 45

'

&

$

%

Recap: Overall Approach

xd xu
AircraftController

NN
A G

Pick Template for G: V(x) = x x − k
T

Pick Template for A: xd < a x

Exist(a,k): Forall(x): x x − k > 0 and xd < ax implies d/dt(x x − k) < 0T

Exist(a,k): Exist(λ): (...)

Eliminate Forall(x)

Solve for all variables

k = 60, a = 5, ...
(This proves bounded stability of the system)

Ashish Tiwari Part III.2: Verifying Direct MRAC: 46

'

&

$

%

Part IV

Discussion and Conclusion

Ashish Tiwari Part IV: Discussion and Conclusion: 47

'

&

$

%

What is novel in the technique?

Computer Science

• The template+constraint-solving approach is different from the usual

verification approaches

◦ reachability

◦ abstraction

• Bounded Falsification (BMC) vs. Bounded Verification

Control

• The approach is standard, but the novelty is in generating more precise

constraints and using symbolic solvers for testing their feasibility

Ashish Tiwari Part IV: Discussion and Conclusion: 48

'

&

$

%

Why is the technique so effective?

• This is the classical approach – only slightly modified to

◦ generate more precise constraints

◦ that can be non-convex

◦ solved using modern solvers such as

? fast constraint solvers called SMT solvers

? complete symbolic solver like QEPCAD

replacing optimization by feasibility or satisfiability

• Systems have several invariants/Lyapunov functions – that can be searched

using few templates

• Correct systems have simple witnesses

• Robust technique does not require any careful tuning or a smart user

Handles unknown parameters

Ashish Tiwari Part IV: Discussion and Conclusion: 49

'

&

$

%

Future Work

• Modeling and Analysis

◦ Complete analysis of NN direct MRAC

◦ Analyze other variants of direct MRAC

◦ Analyze indirect and hybrid NN adaptive flight control

• Add automation for template generation for this specific domain

• Improve automation for constraint solving

Ashish Tiwari Part IV: Discussion and Conclusion: 50

'

&

$

%

Tool

We have generic prototype implementations for:

• Generating constraint from continuous dynamical model: Given a CDS and

templates, generates an ∃∀ constraint

• Eliminating ∀ quantifier: Given an ∃∀ constraint, eliminates the ∀ and

return an ∃ formula

• Solver for ∃ formulas

• Off-the-shelf tool QEPCAD

Ashish Tiwari Part IV: Discussion and Conclusion: 51

'

&

$

%

Tool Development: Issues

• Constraint generation only for safety verification

◦ Need constraint generation for stability verification

◦ May need a careful study of the underlying proof rule

• Extracting CDS model from a more intuitive front-end description ?

• Solver for ∃∀ constraints

◦ Need to balance completeness and efficiency

◦ Domain-specific heuristics

Ashish Tiwari Part IV: Discussion and Conclusion: 52

'

&

$

%

Conclusion

• We are verifying designs of NN adaptive flight control systems

• The bounded verification approach

◦ reduces verification to ∃∀ constraint solving

Ashish Tiwari Part IV: Discussion and Conclusion: 53

