
An Evaluation of Strategies to Train More Efficient
Backward-Chaining Reasoners

Yue-Bo Jia
JiaY25@hsc.edu

Hampden-Sydney College
Hampden-Sydney, Virginia, USA

Gavin Johnson
gjohnson25@murraystate.edu

Murray State University
Murray, Kentucky, USA

Alex Arnold
alexarnold2024@u.northwestern.edu

Northwestern University
Evanston, Illinois, USA

Jeff Heflin
heflin@cse.lehigh.edu
Lehigh University

Bethlehem, Pennsylvania, USA

ABSTRACT
Knowledge bases traditionally require manual optimization to en-
sure reasonable performance when answering queries. We build on
previous work on training a deep learning model to learn heuristics
for answering queries by comparing different representations of
the sentences contained in knowledge bases. We decompose the
problem into issues of representation, training, and control and
propose solutions for each subproblem. We evaluate different con-
figurations on three synthetic knowledge bases. In particular we
compare a novel representation approach based on learning to max-
imize similarity of logical atoms that unify and minimize similarity
of atoms that do not unify, to two vectorization strategies taken
from the automated theorem proving literature: a chain-based and
a 3-term-walk strategy. We also evaluate the efficacy of pruning
the search by ignoring rules with scores below a threshold.

KEYWORDS
backward chaining, efficient queries, knowledge bases, meta-reasoning,
machine learning, neurosymbolic AI
ACM Reference Format:
Yue-Bo Jia, Gavin Johnson, Alex Arnold, and Jeff Heflin. 2023. An Evalua-
tion of Strategies to Train More Efficient Backward-Chaining Reasoners.
In Knowledge Capture Conference 2023 (K-CAP ’23), December 5–7, 2023,
Pensacola, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3587259.3627564

1 INTRODUCTION
Despite recent developments in machine learning—in particular,
the advent of large language models—deep learning methods nev-
ertheless continue to suffer from the perennial complaint that there
is no explanation of how they know or accomplish their given task.
At the same time, although symbolic methods can produce human-
readable proofs, these methods nevertheless have difficulty with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0141-2/23/12. . . $15.00
https://doi.org/10.1145/3587259.3627564

both performance and scale. The goal of neuro-symbolic AI [7] is
to combine the strengths of these two approaches while avoiding
the weaknesses of both.

This paper expands on the research of Arnold and Heflin to im-
prove the performance of backward-chaining reasoning on knowl-
edge bases using machine learning [1]. A knowledge base (KB) is a
collection of facts and rules with which we make inferences; back-
ward chaining is a traditional algorithm used to answer queries
about what is true given the information stored in a KB. Backward-
chaining, like inference procedures in general, is a type of search. In
theory, machine learning can be used to train a model that can guide
this search, thereby minimizing fruitless paths and backtracking.

Our contributions are to provide a framework for analyzing such
problems, use this framework to propose solutions, and evaluate
those solutions across three different synthetic KBs. In particular, we
compare a unification-based approach for embedding logical atoms
to vectorization strategies used for proof guidance in automated
theorem proving (ATP). We also evaluate the use of a pruning
strategy based on the predicted scores made by a trained neural
model.

2 BACKGROUND
2.1 Neuro-Symbolic AI
As mentioned above, neuro-symbolic approaches attempt to com-
bine the strengths of both machine learning and symbolic ap-
proaches. This approach is partly inspired by human cognition,
which can both handle large amounts of input data and also use
planning and reasoning to decipher and infer using that raw data
[10]. Work such as Deep Reinforcement Learning with Symbolic
Logics exemplifies the utility of this approach, in which the rigidity
and transparency of logical reasoning is used in training a neural
network to improve the ultimate safety and reliability of an au-
tonomous driving system [8]. In essence, the idea is to use symbolic
approaches to improve a machine learning system; previous work
on using neuro-symbolic AI to conduct logical reasoning also uses
this approach. For example, the approach used in “First Order Logi-
cal Neural Networks” attempts to train a neural network to directly
perform reasoning in place of a traditional symbolic reasoner [5];
while NELLIE attempts to emulate an expert system using neural
NLP models [12].

https://orcid.org/0009-0005-4581-837X
https://doi.org/10.1145/3587259.3627564
https://doi.org/10.1145/3587259.3627564
https://doi.org/10.1145/3587259.3627564


K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

Additionally, large language models (LLMs) allow machine learn-
ing models to traverse KBs consisting of facts, rules, and queries
that are composed in the manner of human language. In doing so,
we may implement both forward-chaining reasoners and backward-
chaining reasoners within the context of our written statements
in human-readable language(s) via LLMs. For instance, Google de-
veloped an LLM that implements backward-chaining in order to
determine proofs of statements from initially given premises [4].

2.2 Proof Guidance
Unlike the neuro-symbolic approaches describe above, which at-
tempt to train a neural network to perform like a symbolic reasoner,
we aim to use machine learning to improve the performance and
scalability of a symbolic reasoning system. Our work more closely
resembles proof guidance in the automated theorem proving (ATP)
literature. This approach retains two import aspects of symbolic
AI: human readability and ensured safety. The “black box” nature
of deep learning methods make it harder to provide guardrails
for high impact/high risk decisions, but it is much easier to create
human-readable decisions and safety measures in symbolic systems
[9]. The worst case scenario in these kinds of frameworks is a less
efficient reasoner, not one with dangerous high-risk mistakes.

There are several examples of proof guidance in ATP. Wang et
al. [11] proposed to use Graph Convolutional Networks to identify
which mathematical statements were relevant to a given conjecture.
Jakubův and Urban’s ENIGMA is a learning-based method to train
a classification model to identify “useful and un-useful” clauses
for proof search [3]. Crouse et al. combine various embedding
strategies, including from ENIGMA, with a deep reinforcement
learning approach to proof search [2]. Our work follows from a
similar philosophy, but we note that query answering over KBs
does have significant differences from ATP. In particular, KBs are
usually described with less expressive logics, have much larger
vocabularies of symbols, and have an abundance of facts compared
to rules. Additionally, rather than just determining that a statement
is entailed, we are usually interested in a set of variable bindings
that constitute the answer to a query. Finally, KBs can be quite large.
When associated with an ontology of axioms, knowledge graphs,
can be seen as examples of large, real-world KBs containing billions
of statements [6].

2.3 Horn Logic and Backward Chaining
In Horn logic, a subset of first-order logic, all propositions are either
atoms—atomic propositions, or propositions without connectives—
or clauses, which take the form of a conditional with exactly one
atom as the consequent and the conjunction of arbitrarily many
atoms as the antecedent; the consequent is called the head, whereas
the antecedent is called the body. Following onArnold andHeflin [1],
we use Datalog’s syntax,1 in which the head is written on the left
and “:-” is used for implication. Likewise, we will use uppercase
letters to indicate variables and lowercase letters to indicate con-
stants.

The backward-chaining reasoning algorithm is founded on the
concept of unification. Two atoms are said to unify if one could
apply some substitution of terms to the variables such that the
1This syntax is based on Prolog.

two atoms would be made identical; for example, the propositions
𝑝 (𝑋,𝑌 ) and 𝑝 (𝑎, 𝑏) unify (with the substitution 𝑋/𝑎 and 𝑌/𝑏), but
the propositions 𝑝 (𝑎,𝑋 ) and 𝑝 (𝑏,𝑋 ) do not, as different constants
cannot be substituted for one another.

Given a query that consists of one or more subgoals —each an
atom—we can find an answer by successively performing Selective
Linear Definite (SLD) resolution with a subgoal in the query, and
a rule in the KB whose head unifies with the subgoal. The answer
can either be the query’s truth value if the query has no variables,
or a substitution for the query’s variables that would make it true.
The details of SLD resolution are not salient here; it suffices to
know that when a rule matches a subgoal, a new goal is created by
replacing the subgoal with the body of the rule, and the choice of a
subgoal and rule changes the ultimate outcome of this algorithm,.
Badly-chosen goal-rule pairs can result in failure to find an answer
or infinite loops. In Prolog, subgoals are typically evaluated from
left to right and rules are selected from top to bottom. With such
a guarantee, KB designers are expected to optimize their logical
statements. Such optimization can be difficult, however, as the range
of possible queries increase, and could create a significant workload
if two or more KBs must be integrated.

Arnold and Heflin’s approach therefore seeks to learn heuristics
for the choice of goal-rule pairs [1], training a model to classify
such pairs according to whether they are likely to lead to an answer
or not. They show that a guided reasoner using this strategy could
often achieve improvements of orders of magnitude onmost queries
using a small, randomly-generated KB.

3 APPROACH
3.1 Overview
We have identified three main issues that must be addressed in
order to train a more efficient reasoner: representation, training,
and control. Representation is the determination of how to express
symbolic information in a form that can be input to a neural archi-
tecture. Such architectures require inputs to be vectors of numbers.
Training is the mechanism by which the reasoner learns knowledge
to help guide decisions for future queries. For example, the system
might be trained by supervised learning or reinforcement learning.
Control determines how the knowledge is utilized. In particular, the
control mechanism dictates which choices the algorithm will make,
and when these choices will be made.

We now characterize Arnold and Heflin’s approach to training a
meta-reasoner [1],

(1) Representation: Use triplet loss to learn an embedding for
logical atoms that respects unification.

(2) Training: Use supervised learning to train a system that
can evaluate goal/rule pairs.

(a) Use forward-chaining to get candidate queries in the KB
for training.

(b) Use backward-chaining to answer the queries. For each
step, record the goal being attempted and rule applied.
Goal/rule pairs that eventually lead to a solution are as-
signed a positive label, while all other pairs are assigned a
negative label.



An Evaluation of Strategies to Train More Efficient Backward-Chaining Reasoners K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA

(c) Use supervised learning and a simple neural network to
learn a prediction (between 0 and 1, inclusive) that an
unseen goal/rule pair will lead to a solution.

(3) Control:Modify the standard backward-chaining algorithm
so that at each step, the valid goal/rule pairs are sorted in de-
scending order of their predictions. Rules are applied to sub-
goals in this order (instead of left-to-right, top-to-bottom).

This paper looks at alternatives for each of these steps. First, we
consider two alternative representation mechanisms; these mech-
anisms were introduced for proof guidance in automated theo-
rem proving. Second, we consider an alternative way to produce
goal/rule scoring data that leads to more positive examples. Fi-
nally, we evaluate a change to the control policy that introduces a
minimum threshold score in order for a goal/rule pair to be applied.

3.2 Representation
The problem of representation is a necessary condition for any
solution to the overall problem; in order to apply machine learning,
we must be able to generate appropriate vector representations,
or embeddings, of logical propositions. Using ASCII, for example,
would not do: since the letters a and b are represented by adjacent
numbers, a neural network would then find these two letters to
be closer to one another than, say, a and z, whereas in reality this
relation is merely nominal.

3.2.1 Unification Embeddings. Arnold and Heflin [1] approach this
problem as follows: An atomic proposition consists of a predicate
and its arguments, each of which can be represented using a one-
hot encoding. The atomic proposition can then be represented by
concatenating the one-hot encoding for the predicate and each
argument; because the vectors must all be the same size, representa-
tions of atomic propositions with fewer than a specified maximum
number of arguments are padded with zeros. A neural network is
then trained to create “embeddings that respect unification,” maxi-
mizing the cosine similarity of embeddings of atoms that unify and
minimizing the cosine similarity of embeddings of atoms that do
not unify. The embedding for a rule is created by combining the
embeddings of its constituent atoms: the embeddings of the body
atoms are summed, and this is concatenated with the embedding of
the head atom. This guarantees that every rule has an embedding
of the same dimensions, regardless of how many antecedents it has.

It is not necessary to train a new embedding for a new KB.
Instead, we can rely on the fact that one can apply a renaming to
a KB without changing its semantics. Specifically, an embedding
that has been trained on a vocabulary of a specific number of
constants, variables, and predicates of varying arities can be reused
to reason with any KB that does not exceed the counts of any of
these symbol categories. For example, a vocabulary of a hundred
variables, hundreds of predicates, and hundreds of thousands of
constants should be suitable for many (though not all) KBs.

In their work, Arnold and Heflin show that this embedding
strategy makes a significant difference in comparison to using an
autoencoder to create embeddings from the one-hot vectors. Using
the same set of training examples, the guided reasoner trained
using autoencoder embeddings performs much worse than the
guided reasoner trained using their approach. This result, however,
naturally invites further comparison. Other work, particularly in the

theorem-proving literature, has also attempted to develop methods
for representing logical statements as vectors.

3.2.2 Alternative Vectorization Strategies. We identify two embed-
ding strategies for comparison with the unification embedding
strategy. Jakubův and Urban use an approach based on term walks
of length three [3]. They begin by representing a logical proposition
as a digraph in which edges exist between symbols adjacent in the
sentence; for example, given the proposition 𝑝 (𝑥,𝑦), there would
be an edge from 𝑝 to 𝑥 and 𝑝 to 𝑦, although 𝑥 and 𝑦 would not
themselves have an edge between them, and the parentheses are
ignored. They then enumerate every 3-term-walk in such a graph;
construct a vector of size |Σ|3, where Σ is the set of symbols; and
increment a determinate position in the vector by one for each
occurrence of a given triple of symbols.

We made three additional adjustments to (1) maintain fidelity to
the original application of this embedding strategy and (2) adapt
this strategy to our own problem. Because this embedding approach
varies with respect to the syntax used to express a proposition, we
chose to translate sentences from Datalog syntax to a disjunction of
clauses, which Jakubův and Urban uses in their work, and because
this approach also treats both negation and assertion as symbols
in their own right, we express implications as their equivalent
disjunctive statements. Thus, if a KB were to contain a sentence
such as 𝑝 (𝑎,𝑋 ) :- 𝑞(𝑋, 𝑎), we would instead represent this sentence
as +(¬𝑞(𝑋, 𝑎) ∨ +𝑝 (𝑎,𝑋 )) before applying Jakubův and Urban’s
approach. Figure 1 below depicts the digraph that would be created
from this proposition. Some examples of 3-term-walks are “+ ∨ ¬”
and “¬ 𝑞 𝑎”.

Figure 1: Digraph of the sentence +(¬𝑞(𝑋, 𝑎) ∨ +𝑝 (𝑎,𝑋 ))

Unfortunately, Jakubův and Urban’s embedding approach results
in embedding sizes that are cubic in the size of the vocabulary. The
vector for an axiom has a position for each possible three-termwalk,
and the value at this position is the number of times that sequence
occurs in the axiom. As mentioned above, for a vocabulary defined
by the set Σ, the vector must have |Σ|3 dimensions. Automated
theorem proving often requires relatively few symbols, whereas
capturing knowledge of even relatively constrained domains would
require unwieldy symbol sets. Representing a college directory,
for instance, would require at least one constant for each faculty
member and student; for a tiny college of only a hundred total



K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

people, this requirement would already result in an embedding
size of over one million, without even considering predicates and
variables. Thus, we reduce the size of the embedding by considering
the constraints of Datalog. In particular, 3-term-walks of Datalog
clauses expressed in the format we discuss above never begin with
a predicate, constant, or variable, all of which together account
for the majority of our symbol set; instead, it must always begin
with either +, ∨, or ¬. Thus, instead of a vector of size |Σ|3, we can
instead construct a vector of size 3 ∗ |Σ|2.

Crouse et al. proposed an alternative “chain-based” embedding
approach [2]. Similarly to Jakubuv and Urban, they begin by repre-
senting a logical proposition as a graph, as we depict in Figure 1,
albeit replacing every variable with the symbol ‘*’. Instead of enu-
merating term walks, they enumerate each “pattern,” or path of
symbols that begins at a predicate and bottoms out at a constant
or variable. An example of a pattern from Figure 1 would be “𝑝∗.”
In order to create a 𝑑-dimensional representation, they then ob-
tain the MD5 hash 𝑣 of each pattern and set the element of the
𝑑-dimensional vector at the position 𝑣 mod 𝑑 to the number of
occurrences of a pattern. Crouse et al. also distinguish between
patterns and their negations by doubling the size of the representa-
tion; a separate 𝑑-dimensional vector is constructed to count the
occurrences of pattern negations. Since our KB is expressed in Dat-
alog which does not allow functions, all of our patterns contain one
predicate and one constant or variable. Finally, because Crouse et
al. do not specify a particular embedding size, for the sake of com-
parison we choose 𝑑 such that the input size for the meta-reasoning
neural network will be the same as with the unification embedding
approach.

We identify two potential issues with the chain-based vectoriza-
tion strategy: (1) since all variables are replaced with the same sym-
bol, the representation does not distinguish between rules which
can be applied in fewer situations due to having the same variable
repeated, and rules which are more general; and (2) the hashing of
patterns means that completely unrelated patterns could have the
same representation.

3.3 Training
We have chosen to use a supervised learning approach to train
our models. To be consistent with Arnold and Heflin [1], we used
a simple neural model with one hidden layer. This hidden layer
has 30 units and uses a sigmoid activation function. The output
layer is a single unit with a sigmoid activation function. A Binary
Cross-Entropy function (also known as Binary Log Loss) computes
the loss for the model. In this paper, our main concern is how to
produce suitable training data for this network.

Arnold and Heflin [1] proposed to generate positive and negative
examples of goal/rule pairs. Given a set of training queries, they
executed a backward-chaining search and classified examples based
on the outcome of each path: if the path led to a solution, then for
each node (except the root) in the path, they created a training
example (𝑔, 𝑟, 1) for the subgoal 𝑔 and rule 𝑟 that led to the node. If
the path failed to find a solution, then a training example (𝑔, 𝑟, 0)
was created for each node. To ensure the search was not dependent
on a particular order of rules or rule bodies, these were randomized
with each choice. To ensure the search eventually terminated, a

Algorithm 1 BChainGuided(𝑔𝑜𝑎𝑙𝑠, 𝜃, 𝑑𝑒𝑝𝑡ℎ)

1: if 𝑔𝑜𝑎𝑙𝑠 = ∅ then
2: return 𝜃

3: else if 𝑑𝑒𝑝𝑡ℎ > 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ then
4: return fail
5: else
6: 𝑜𝑝𝑡𝑠 ← {(𝑔, 𝑟 ) |𝑔 ∈ 𝑔𝑜𝑎𝑙𝑠 and Unify(𝑔, head(𝑟 )) }
7: Sort 𝑜𝑝𝑡𝑠 by descend score(𝑔, 𝑟 ) for each (𝑔, 𝑟 ) ∈ 𝑜𝑝𝑡𝑠
8: for all (𝑔, 𝑟 ) ∈ 𝑜𝑝𝑡𝑠 do
9: if score(𝑔, 𝑟 ) < 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 then
10: return fail
11: end if
12: 𝜃 ′ ←Unify(𝑔, ℎ𝑒𝑎𝑑 (𝑟 ))
13: 𝑛𝑒𝑤𝑔← Subst(𝑏𝑜𝑑𝑦 (𝑟 ) ∪ 𝑔𝑜𝑎𝑙𝑠 − {𝑔}, 𝜃 ′)
14: 𝜃 ′ ← Compose(𝜃, 𝜃 ′)
15: if 𝑑𝑒𝑝𝑡ℎ < 𝐹𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝐷𝑒𝑝𝑡ℎ then
16: 𝑎𝑛𝑠 ← BChainGuided(𝑛𝑒𝑤𝑔, 𝜃 ′, 𝑑𝑒𝑝𝑡ℎ + 1)
17: else
18: 𝑎𝑛𝑠 ← BChainStd(𝑛𝑒𝑤𝑔, 𝜃 ′, 𝑑𝑒𝑝𝑡ℎ + 1)
19: end if
20: if 𝑎𝑛𝑠 ≠ 𝑓 𝑎𝑖𝑙 then
21: return 𝑎𝑛𝑠

22: end if
23: end for
24: end if
25: return 𝑓 𝑎𝑖𝑙

depth limit of 15 was set. All duplicates were removed and then
oversampling of the smaller class and downsampling of the larger
class were used to achieve a balanced set of examples.

We observed that the strategy above leads to sub-optimal scor-
ing. In particular, a path that eventually fails may include several
successful subgoals, but the strategy will assign all such goal/rule
pairs a score of 0, since they were used on a path that was ultimately
unsuccessful due to a completely unrelated goal. Thus we propose a
new strategy for producing training examples: if subgoal 𝑔 is even-
tually proven after applying rule 𝑟 , then example (𝑔, 𝑟, 1) is created,
otherwise, (𝑔, 𝑟, 0) is created. We note that identifying these exam-
ples while backward-chaining is non-trivial, and requires additional
bookkeeping.

We note that for the random KBs we created a branching factor
of 3 to 4 was typical, and a cutoff depth of 15 could lead to searches
that took several minutes to complete. To support faster generation
of training data we changed the depth limit to 5 after 50, 000 nodes
were expanded. Since the algorithm randomly selects which subgoal
to prove and which rule to prove it, these cutoffs could often prevent
the search from completing successfully. Therefore, when the search
fails to find even one successful path, we restart up to two times.

3.4 Control
Our modified backward-chaining algorithm is shown in Algo-

rithm 1. Like the standard algorithm, it performs a depth-first search
by selecting a goal and a rule to achieve. In particular, it considers
all subgoals (as opposed to just the first) and all rules with heads
that unify with these subgoals. Each such (𝑔, 𝑟 ) pair of goal 𝑔 and



An Evaluation of Strategies to Train More Efficient Backward-Chaining Reasoners K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA

unifying rule 𝑟 is then scored by the meta-reasoning model and the
options are sorted by descending score (line 7). Thus, the highest
scoring (𝑔, 𝑟 ) is used to continue the search, and if backtracking is
required, the next highest will be attempted. A new set of subogals
is formed by removing 𝑔 from the original goals and preprending
the body of 𝑟 . The algorithm is then called recursively. To avoid
infinite search, we use a cutoff limit𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ; in our experiments
this was set to 10.

Our control strategy has additional points of interest. First, be-
cause our strategy can consider any current subgoal at any point
in the tree, the potential branching factor is much larger than that
of standard backward-chaining. Furthermore, if rules with more
than one body atom are regularly applied, this branching factor can
continue to grow at deeper levels. In the rare case where the model
is unable to choose the right rules early on, the search space can
expand rapidly. To limit this, we have instituted a 𝐹𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝐷𝑒𝑝𝑡ℎ,
such that the algorithm will switch over to a standard backward-
chaining search once the depth is reached (line 15). In our experi-
ments, this depth is set to 5.

We have also experimented with pruning (𝑔, 𝑟 ) pairs that appear
to be very unlikely to be useful. If 𝑆𝑐𝑜𝑟𝑒 (𝑔, 𝑟 ) < 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 then the
path is immediately terminated (line 9). Note, since we are process-
ing (𝑔, 𝑟 ) pairs in descending order of score, once we encounter
one pair that is below the threshold, all remaining pairs will also
be below the threshold. When we wish to compare this strategy to
one without minimum rule scoring, we simply set the 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒

threshold to 0; this will consider all matching (𝑔, 𝑟 ) pairs.

4 EVALUATION
We conduct experiments to compare the different vectorization
strategies and to compare the impact of minimum scoring on per-
formance. We evaluate the different system configurations on three
different sizes of randomly generated KBs: 100 statements, 150
statements and 200 statements. For each configuration, we run 100
queries that are distinct from the queries used to generate training
data.

When generating random KBs, we use a probability distribution
to determine the form of each statement: there is a 80% chance of a
fact, and 20% chance of a rule. The body of a rule can have one to
four atoms, where shorter bodies are more likely. We use the same
randomly generated vocabulary for all three KBs: 10 predicates
with arities from one to four, 10 variables, and 100 constants. The
properties of our randomKBs are given in Table 1. Since our training
and test queries are extracted from the facts the can be derived from
the KB, we report the number of inferred facts, as determined by a
forward-chaining process to compute the deductive closure.

Statements Non-inferred Facts Inferred Facts
100 82 11
150 122 718
200 161 468

Table 1: Properties of the three KBs evaluated

We trained the unification embeddings using the vocabulary of
the 150 statement KB and randomly generated atoms. Since we

Name Embedding MinScore
Standard n/a n/a
Unification Unification 0.00
3-term-walk 3-term-walk 0.00
Chain-based Chain-based 0.00
Unification-Min-Score Unification 0.01
Chain-based-Min-Score Chain-based 0.01

Table 2: The five configurations evaluated

used the same vocabulary for the other two KBs, this embedding
can be applied to the other KBs without having to map them into
the vocabulary.

We generated training data and trained each meta-reasoner as
described in Section 3.3. The number of goal/rule examples prior to
balancing for each KB was 639, 5181, and 3622. For consistency, we
used the same simple network architecture for all representation
strategies: a two-layer network with sigmoid activation functions
(see Section 3.3 for details). Each representation strategywas trained
for 1000 epochs on each KB. We note that the term-walk strategy
in particular takes an order of magnitude longer to train than the
other strategies.2 This is due to the larger number of parameters
of the model: even with our small vocabulary of 10 predicates, 10
variables and 100 constants, a rule requires a vector with 45387
dimensions!3 In contrast, the unification and chain-based strate-
gies can represent the same rule in 40 dimensions. The different
models achieve different training losses: for example, with the 100
statement KB, the term-walk representation gets to a training loss
of below 0.1 in 200 epochs, and eventually reaches below 0.05. We
believe the significantly larger number of parameters is what allows
it to achieve this, but we also suspect that the model is severely
overfitting (more on that issue later). The chain-based and unifi-
cation approaches are only able to achieve training losses of near
0.25. This suggests that improvements can be achieved by using
network architectures with larger layers and/or more layers.

In order to test each configuration, we ran 100 test queries using
the algorithm described in Section 3.4. We evaluated each rep-
resentation with and without a 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 cutoff of 0.1, We used
𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 10 and 𝐹𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝐷𝑒𝑝𝑡ℎ = 5 for all configurations. The
standard reasoner is a backward-chaining reasoner that always
evaluates subgoals from left-to-right and matches rules from top to
bottom (i.e., the same evaluation order that Prolog uses). Of course,
this configuration did not have a fallback depth.

Our first observation is that both chain-based and 3-term-walk
failed on many queries when the𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 cutoff was used. When
this occurred they often terminated search with much fewer nodes
explored than otherwise, but given that they would fail to correctly
answer a query, we excluded these configurations from further
consideration. We hypothesize that these failures are the result
of overfitting. The queries failed because useful paths received
scores under the𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 value of 0.01, meaning the model was
(mistakenly) very confident that they would not lead to solutions,
2It takes nearly 7 hours on a laptop with a 2.10 GHz Intel processor, an NVIDIA
GeoForce MX550 GPU and 32GB of memory to train a 3-term-walk model on our
simple network for 1000 epochs.
3The calculation accounts for three logical symbols, in addition to predicates, variables,
and constants for a total vocabulary size of 123.



K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

The fact In the case of 3-term-walk, this hypothesis is supported
by the fact that the model has many more parameters and that the
training loss reached diminishing returns far more quickly than the
other representations.

In what follows, we generally compare five configurations: Stan-
dard, Unification, 3-term-walk, Chain-based, and Unification-Min-
Score; we include the Chain-based-Min-Score configuration for the
the 150 statement KB, as it did not fail on any answerable query.
These configurations are summarized in Table 2.

An overall summary of the results is displayed in Figure 2. This
chart plots the average number of nodes explored by each configu-
ration on each KB. The error bars indicate standard deviations over
all of the queries. Test queries that the standard reasoner failed to
answer due to the maximum depth limit were excluded from these
results; there are 95, 100, and 94 successful queries for the 100, 150,
and 200 statement KBs, respectively. We additionally note that for
the 200 statement KB, both the chain-based and the 3-term-walk
approaches timed out on one query—although it was a different
query in each case—that the unification and standard reasoner suc-
cessfully answered. There are a few general observations from this
graph: first all meta-reasoning approaches are able to do much
better than the standard reasoner for the 100 statement KB. The
larger KBs require much larger searches for all reasoners, and when
just averages are considered, the meta-reasoners appear to perform
worse than the standard reasoner. We also see large standard de-
viations, however, and when we look more closely at the data, a
different picture emerges.

Figure 3 shows the median number of nodes explored for each
configuration on each KB. Here it is clearly shown that for typical
queries, all of the trained meta-reasoners are able to reduce the
search by several orders of magnitude. This means that the large
averages are due to outliers. For this reason, we now analyze the
data by looking at detailed comparisons across each KB.

First, consider the 100 statement KB. Table 3 shows the mean
nodes expanded, median nodes expanded, number of queries better
than the standard reasoner and number of queries worse than
the standard reasoner. All four meta-reasoning system explore on
average ≈ 2.8 nodes, which is 4𝑥 fewer than the number of nodes
explored by the standard reasoner. Chain-based and 3-term-walk
performed slightly better than the unification strategy (both with
and without minimum scoring): there were three queries where
they searched four nodes instead of six. Each of the meta-reasoning
system performed better than the baseline on 28 (out of 100) queries.
None of them performedworse on any queries. We note that this KB
only had 11 additional facts in its deductive closure, and as a result
there could be significant similarities between the training and test
queries. In such a case, all of the trained models would be able to
become almost perfect reasoners, with little to no backtracking,

Now, consider the results of the more complex 150 statement
KB as displayed in Table 4. This reinforces the observation from
above that although the means of each the meta-reasoners was
worse than the standard reasoner, the medians are significantly
better. The standard reasoner had a median of 144, 366 while the
other reasoners have medians of 4 or 5. This means that for most
queries, the meta-reasoners were able to find solutions with very
little search. However, because these systems consider many more
possible paths, when themeta-reasonermakes incorrect predictions,

the search can increase significantly, greatly increasing the mean.
All of the meta-reasoners had at least one query that explored
over 13 million nodes, while the standard reasoner’s maximum
was only 899, 922. We note that in terms of nodes explored, on
average, without the min-score cutoff the unification approach
performs best, followed by the 3-term-walk and then the chain-
based method. With the min-score cutoff, however, the mean nodes
explored are drastically reduced to significantly fewer than the
standard reasoner; here, the chain-based approach fared better than
the unification approach. When considering the number of queries
better or worse than the standard reasoner, however, we observe a
trade-off: although the Chain-based-Min-Score approach solves 66
queries faster compared to Unification-Min-Score’s 62, the former
also solves 17 queries slower in comparison to the latter’s 10. These
results are followed by the approaches that do not use the Min-
Score cutoff: Unification with 50 queries better than the standard,
3-term-walk with 51, and and Chain-based with 45.

Finally, we look at the 200 statement KB, as displayed in Table 5,
Due to the random nature of the KB, despite having more rules and
facts than the 150 statement KB, it had few inferred facts (468 v. 718,
see Table 1), Despite being a larger KB, queries can be answered
more quickly. For example, the standard reasoner had a mean of
≈ 62, 000 nodes, while the mean was nearly 4𝑥 as many on the
smaller 150 statement KB. We attribute this in part to random
chance ordering the rules and facts in a fairly efficient way for the
training queries that were selected. The most notable observation
is that similar to the experiment for the 150 statement KB, all of
the meta-reasoners had a significantly better number of median
nodes explored than the standard: 4 vs. over 32,000. These results
appear to be the least ambiguous: the unification approach appears
decisively superior to the 3-term-walk and chain-based approach
in terms of mean nodes explored, outperforming even the standard.
It had only one query that performed worse than the standard, and
with the Min-Score cutoff, the approach performed even better,
with a five-fold decrease in the mean nodes explored and with zero
queries that performed worse than the standard. By contrast, the
3-term-walk and chain-based results are more comparable to their
performance on the 150 statement KB, with mean node counts in
the millions and a more significant number of queries on which
they performed worse than the standard.

In summary, the data shows that there are significant opportu-
nities for meta-reasoners to make search for query answers more
efficient, often reducing the number of nodes explored by several
orders of magnitude. This effect is more likely with larger KBs, but
there are factors other than the size of a KB that play a role as well.
Unfortunately, there are occasional outliers that result in extremely
poor performance, and these outliers can greatly inflate the average
number of nodes explored. Future work is needed to more closely
examine these outliers and design solutions that can eliminate or
minimize them.

Of the approaches we evaluated, Unification-Min-Score is the
most promising. It improves over standard on more queries than the
other systems. 3-term-walk is worse than unification, but generally
better than chain-based. However, training time is excessive and
there is potential of overfitting. Furthermore, our goal is to eventu-
ally be able to answer queries over KBs with billions of statements
and millions of constants. Since 3-term-walk produces vectors with



An Evaluation of Strategies to Train More Efficient Backward-Chaining Reasoners K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA

Figure 2: Mean nodes explored with standard deviation

Figure 3: Median nodes explored

Embedding Method Mean Nodes Median Nodes Queries Better Queries Worse

Standard 13.1 3 N/A N/A
Unification 2.9 3 28 0
3-term-walk 2.8 3 28 0
Chain-based 2.8 3 28 0
Unification-Min-Score 2.9 3 28 0

Table 3: Performance of the guided reasoner for the 100 rule KB

a dimensionality that is polynomial in the size of the vocabulary,
it cannot scale to such purposes. It is a reasonable approach for
automated theorem proving, where the vocabularies are small and
the axioms are complex, but not for query-answering on large KBs.
Chain-based is a reasonable alternative that seems to work well
in both automated theorem proving and KB query answering, but

is still out-performed by Unification embeddings when applied to
Datalog KBs.

5 CONCLUSION
We have considered the problem of training reasoners to perform
more effective search for query answers over medium-sized KBs.



K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

Embedding Method Mean Nodes Median Nodes Queries Better Queries Worse

Standard 244,366.5 146368 N/A N/A
Unification 2,895,708.2 4 50 19
3-term-walk 3,904,373.5 4 51 18
Chain-based 4,554,967.1 6 45 38
Unification-Min-Score 94,388.2 4 62 7
Chain-based-Min-Score 19,863.6 6 66 17

Table 4: Performance of the guided reasoner for the 150 rule KB

Embedding Method Mean Nodes Median Nodes Queries Better Queries Worse

Standard 62,235.8 32628.5 N/A N/A
Unification 1,002.6 4 59 1
3-term-walk 1,177,214.1 4 57 15
Chain-based 1,658,454.2 4 58 6
Unification-Min-Score 187.1 4 60 0

Table 5: Performance of the guided reasoner for the 200 rule KB

There are three sub-problems: representation, training, and control.
We have evaluated three different representation strategies and con-
sidered two variations of control. By evaluating the configurations
on KBs of three different sizes, we have determined that the trained
meta-reasoners are often able to outperform a baseline backward-
chaining reasoner, but that there are sometimes a small number
of outlier queries that are several orders of magnitude worse. Us-
ing a unification approach for vectorizing symbolic statements is
promising, often showing improvements on more queries than the
3-term-walk and chain-based alternatives. We suggest that this
difference comes from the nature of the backward-chaining algo-
rithm, whose success or failure is determined by whether atoms can
unify with one another. Furthermore, this appears to be the only
vectorization approach that can consistently benefit from using a
minimum score threshold to prune some paths without search. For
the other representation strategies, it can incorrectly prune useful
paths, leading to failed queries.

There are several avenues to continue this work. Given the vari-
ability across KBs, it is important to evaluate our approach on more
KBs, and to look not just at random KBs, but also real-world KBs.
Questions remain as to how best address the outliers: can these
be reduced by adding more or larger layers to the neural network,
or will changes to the control strategy be needed? One factor we
mentioned is the search can have a much larger branching fac-
tor than that of a standard backward-chaining reasoner because
instead of considering just one goal at any step, any goal can be
considered. This suggests that an improvement might be possible
by first evaluating and sorting the goals. Other important topics for
future work include handling queries with multiple answers and
transferring learning from one or more KBs to a new KB.

ACKNOWLEDGMENTS
This work was conducted as part of an REU site supported by the
National Science Foundation under Grant No. CNS- 2051037.

REFERENCES
[1] Alex Arnold and Jeff Heflin. 2022. Learning a More Efficient Backward-Chaining

Reasoner. In Tenth Annual Conference on Advances in Cognitive Systems (ACS-
2022). Cognitive Systems Foundation, Arlington, VA, 12 pages.

[2] Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina
Cornelio, Pavan Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Wit-
brock, and Achille Fokoue. 2021. A Deep Reinforcement Learning Approach to
First-Order Logic Theorem Proving. 35th AAAI Conference on Artificial Intelli-
gence, AAAI 2021 7 (2021), 6279–6287. arXiv:1911.02065

[3] Jan Jakubův and Josef Urban. 2017. ENIGMA: Efficient Learning-Based Infer-
ence Guiding Machine. In Intelligent Computer Mathematics, Herman Geuvers,
Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (Eds.). Springer
International Publishing, Cham, 292–302.

[4] Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran.
2023. LAMBADA: Backward Chaining for Automated Reasoning in Natural
Language. arXiv:2212.13894 [cs.AI]

[5] Boonserm Kijsirikul and Thanupol Lerdlamnaochai. 2016. First-Order Logical
Neural Networks. International Journal of Hybrid Intelligent Systems 2, 4 (2016),
253–267. https://doi.org/10.3233/his-2005-2403

[6] Natasha Noy, Yuqing Gao, Anshu N. Jain, Anantha Narayanan, Alan Patterson,
and Jamie Taylor. 2019. Industry-scale knowledge graphs. Commun. ACM 62
(2019), 36 – 43. https://api.semanticscholar.org/CorpusID:153314008

[7] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. 2021.
Neuro-Symbolic Artificial Intelligence: Current Trends. arXiv:2105.05330 [cs.AI]

[8] Iman Sharifi, Mustafa Yildirim, and Saber Fallah. 2023. Towards Safe Autonomous
Driving Policies using a Neuro-Symbolic Deep Reinforcement Learning Approach.
arXiv:2307.01316 [cs.RO]

[9] Amit Sheth, Manas Gaur, Kaushik Roy, Revathy Venkataraman, and Vedant
Khandelwal. 2022. Process Knowledge-Infused AI: Toward User-Level Explain-
ability, Interpretability, and Safety. IEEE Internet Computing 26, 5 (2022), 76–84.
https://doi.org/10.1109/MIC.2022.3182349

[10] Amit Sheth, Kaushik Roy, and Manas Gaur. 2023. Neurosymbolic AI- Why, What,
and How. arXiv preprint arXiv:2305.00813 (2023).

[11] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. 2017. Premise Selection for
Theorem Proving by Deep Graph Embedding. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems (Long Beach, Califor-
nia, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 2783–2793.

[12] Nathaniel Weir and Benjamin Van Durme. 2023. Dynamic Generation
of Grounded Logical Explanations in a Neuro-Symbolic Expert System.
arXiv:2209.07662 [cs.CL]

Received 4 September 2023

https://arxiv.org/abs/1911.02065
https://arxiv.org/abs/2212.13894
https://doi.org/10.3233/his-2005-2403
https://api.semanticscholar.org/CorpusID:153314008
https://arxiv.org/abs/2105.05330
https://arxiv.org/abs/2307.01316
https://doi.org/10.1109/MIC.2022.3182349
https://arxiv.org/abs/2209.07662

	Abstract
	1 Introduction
	2 Background
	2.1 Neuro-Symbolic AI
	2.2 Proof Guidance
	2.3 Horn Logic and Backward Chaining

	3 Approach
	3.1 Overview
	3.2 Representation
	3.3 Training
	3.4 Control

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

