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Fig. 1. To transmit a cloud-stored holographic image (a) and display on local devices, two natural solutions, one data transmission heavy, one local computation
heavy, shown in (b) and (c) respectively, can be adopted. For (b), due to the statistical di�erence between holograms and natural images, high bit-rates are
required for codecs (e.g., JPEG) to ensure reconstruction quality, which may introduce high latency under bandwidth-limited Internet. On the other hand, for
(c), shi�ing 100% of holographic phase retrieval computation to local reduces the latency, but inevitably elevates the energy costs on ba�ery-constrained edge
devices. To achieve the optimal latency/energy joint-performance, we propose a joint neural Phase Retrieval and Compression framework that partially shi�s
hologram computation to local devices while enabling transmission encoding with low bit-rates. (e) shows the simulated and captured display results.

Recent deep learning approaches have shown remarkable promise to enable
high �delity holographic displays. However, lightweight wearable display
devices cannot a�ord the computation demand and energy consumption
for hologram generation due to the limited onboard compute capability and
battery life. On the other hand, if the computation is conducted entirely
remotely on a cloud server, transmitting lossless hologram data is not only
challenging but also result in prohibitively high latency and storage.

In this work, by distributing the computation and optimizing the transmis-
sion, we propose the �rst framework that jointly generates and compresses
high-quality phase-only holograms. Speci�cally, our framework asymmetri-
cally separates the hologram generation process into high-compute remote
encoding (on the server), and low-compute decoding (on the edge) stages.
Our encoding enables light weight latent space data, thus faster and e�-
cient transmission to the edge device. With our framework, we observed
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a reduction of 76% computation and consequently 83% in energy cost on
edge devices, compared to the existing hologram generation methods. Our
framework is robust to transmission and decoding errors, and approach high
image �delity for as low as 2 bits-per-pixel, and further reduced average
bit-rates and decoding time for holographic videos.
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1 INTRODUCTION

Cloud-based video streaming has revolutionized the means of media
redistribution and consumption [Li et al. 2020]. Streaming services
have spanned through consumer platforms such as mobile or vir-
tual/augmented reality (VR/AR) devices (referred to as edge in this
paper). On the other hand, holographic displays are a promising
solution for future VR/AR, thanks to its low optical complexity and
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high visual realism [Maimone et al. 2017]. For the future, we en-
vision cloud-based holographic content streaming as an emerging
demand, similar to the current 2D displays. However, the currently
streamed media is commonly video sequences without a dedicated
means supporting holograms.

Holographic displays utilize light di�raction to create a virtual
3D image after a medium with special patterns is lit, which is nu-
merically computed or optically recorded for storing the light �eld
information of 3D scenes and called holograms. When considering
cloud based models for holographic displays, there are two direct
solutions: (1) the server does the hologram generation and streams
the phases to the edge, or (2) stream raw frames to the edge, which
then generate holograms locally. However, for (1), subtle hologram
compression loss may signi�cantly harm the reconstruction quality
since holograms are in phase domain [Jiao et al. 2018]. Ensuring
full quality may cause long latency in interactive scenarios. For
(2), edge devices are commonly unable to perform the demanding
phase retrieval computation, thus introducing computation latency
as well as extra battery consumption. For instance, a relatively
less demanding face detection app runs out of battery within 40
minutes on a mobile AR device [LiKamWa et al. 2014]. Thus, it
is essential to achieve both high-speed transmission to the edge
and low-latency computation on the edge. As consumer devices
are highly energy-constrained, this goal shall be generally realized
without high computation load on the edge.

In this paper, we present a novel neural-network-based hologram
generation and display framework that redistributes holographic
generation computation between the cloud server and the edge,
aiming to minimize both the necessary data transmission to the
edge and the computation on the edge. The heart of our framework
is a joint generation and compression of phase-only holograms,
ensuring desirable computation-compression balance. Our approach
asymmetrically separates the hologram generation process into
high-computation encoding (on the server), and low-computation
decoding (on the edge) stages. The encoding enables low latent space
data, thus fast transmission to the edge. Under a cloud-based setting,
the framework handles the computation which in turn lowers the
energy consumption on future consumer-level holographic display
devices. Consequently, we are able to achiever real-time high quality
holographic display on the edge.

Our framework directly encodes input amplitude images and
generates a compressed latent representation that can be decoded
on the edge. We adopt a hyper prior model from [Ballé et al. 2018]
that extracts side information to model the distribution of the en-
coded latent representation and a straight-through gradient estima-
tor [Bengio et al. 2013] to back-propagate the gradients from the
non-di�erentiable rounding operation. Instead of individual pixels,
we encode/decode the hologram from the deep latent spaces. In
a run-time cloud-edge system, only the highly compressed latent
vectors are transmitted through the network.

A series of experiments with simulated cloud-edge frameworks
demonstrate our signi�cant advantage on low data transmission
(18× compression), low local computation cost, thus high energy

e�ciency (about 20%) , and robust-to-noise. Speci�cally, the recon-
struction quality remains similar when the compressed latent data is
contaminated by noise sampled from zero-mean normal distribution
with f between 0�01 and 0�5. The proposed framework enables de-
coding on client side at around 30 frames per second (single channel).
In summary, we present an end-to-end system that jointly optimizes
holographic transmission and computation for future cloud-based
platforms. Codes and data for this paper are available at this link1.
The presented research makes the following major contributions:

• A novel scheme for coupling hologram generation and com-
pression to reduce transmission latency from the remote
cloud servers.

• A neural framework with asymmetric distribution of compute
between remote servers and edge devices, which reduces com-
putational and energy cost at the edge devices, and achieves
e�cient decoding.

• Extensive evaluation of the framework’s e�ectiveness in sim-
ulation and on an experimental hardware prototype, and ex-
haustive assessment of the proposed framework’s robustness
to noise and scalability to holographic videos.

2 RELATED WORK

2.1 Computational Holography

Computer generated holography (CGH) numerically simulates the
complex optical wave propagation process from virtual objects. It
has the potential to reproduce focus [Choi et al. 2021; Shi et al. 2021]
and parallax cues [Chakravarthula et al. 2022], and also correct for
aberrations in the eye [Chakravarthula et al. 2021; Maimone et al.
2017]. A spatial light modulator (SLM) modulates the wavefront of
incident light in a holographic display. Existing SLMs unfortunately
cannot modulate both amplitude and phase, and hence a phase-only
SLM is typically used for its higher di�raction e�ciency. However,
this requires generating a phase-only hologram that can produce
the desired image intensity after propagation, which is indeed the
core challenge of computer generated holography.

Representing the target scene as a collection of point light sources
or polygonal meshes with individual emitters is a widely used rep-
resentation [Benton and Bove Jr 2008; Ogihara and Sakamoto 2015].
Point based methods treat each point in a point cloud as a spherical
light source and compute the corresponding interference pattern
at the hologram plane to generate the �nal hologram. On the other
hand, due to the popularity of polygon representation in computer
graphics pipelines, polygon based methods [Kim et al. 2008; Mat-
sushima 2005] often utilize Fast Fourier Transform (FFT) along with
an additional coordinate transformation to calculate the di�raction
patterns from tilted and shifted polygonal planes. However, both
methods demand heavy compute as they require a dense set of
primitives for representing a given scene. For enhancing the com-
putation e�ciency, various optimization techniques are proposed,
such as GPU parallelization [Chen and Wilkinson 2009; Masuda
et al. 2006; Petz and Magnor 2003], look-up tables [Kim and Kim
2008] with intermediate wavefront recording planes [Shimobaba
1https://github.com/HoloCompress/DPRC
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et al. 2009]. However, physically based methods typically face chal-
lenges in reproducing view-dependent e�ects [Zhang et al. 2017] in
3D scenes.

Meanwhile, image-based approaches generally o�er better com-
putational e�ciency and are favored for modeling occlusions and
other view-dependent e�ects [Chakravarthula et al. 2022; Padman-
aban et al. 2019]. Two popular image-based hologram approaches
are light�eld holograms and layer-based multifocal methods. Both
methods render a 3D scene either as a set of light�eld images from
multiple view points or a stack of images at multiple focal planes.
Calculation of holograms then is done by accumulating the wave-
fronts propagated from the image-based representation of the 3D
scene to the hologram plane.

In the past several years, great success is achieved by deep neural
networks in solving some of the di�cult problems in computer
vision and computer graphics. Recently, researchers have started
applying neural networks for solving the holographic phase re-
trieval problem, and a few application-speci�c CGH methods have
been proposed. For instance, neural networks have been applied to
holography [Choi et al. 2021; Eybposh et al. 2020; Peng et al. 2020;
Rivenson et al. 2018; Shi et al. 2021], ptychography [Boominathan
et al. 2018], coherent di�raction imaging (CDI) [Cherukara et al.
2018; Goy et al. 2018], and quantitative phase microscopy [Kellman
et al. 2019; Kemp 2018]. Image quality of holographic displays were
further improved by optimizing holograms in a hardware-in-the-
loop fashion [Chakravarthula et al. 2020a; Peng et al. 2020]. In this
work, we propose the �rst method devised for cloud-based con-
sumer holographic displays by jointly optimizing the image quality,
compute and data transmission.

2.2 Image Compression

Traditional image compression codecs, such as JPEG [Wallace 1992]
and JPEG2000 [Taubman and Marcellin 2013], consist of multiple
modules including transformations, quantization and entropy cod-
ing. In the JPEG compression standard, Discrete Cosine Transform
(DCT) is applied to each8 � 8 pixel patch extracted from the in-
put image, after which original information is transformed into
decorrelated coe�cients. Quantization is then applied to discard
less signi�cant information by truncating the coe�cient vectors.
Entropy coding is then used for lossless encoding of the information.
However, the individual modules of traditional image compression
codecs are di�cult to optimize jointly [Hu et al. 2021], thus limiting
the compression performance [Ma et al. 2020].

Recently, deep-learning-based models are extensively leveraged
to perform compression [Ballé et al. 2018; Ballé et al. 2017; Mentzer
et al. 2020; Minnen et al. 2018]. Balleet al.[2017] proposed a CNN
based end-to-end image compression method. However, the per-
formance of their fully factorized entropy model unfortunately de-
graded with statistical dependencies in latent representations. A
hyperprior model proposed in [Ballé et al. 2018] reduced the data
redundancy by exploiting the spatial dependencies. Minnenet al.
[2018] adopted an auto-regressive prior information to further mit-
igate the data redundancy. These models are e�ective yet slow as

the pixels are decoded sequentially, making them less applicable
for high-resolution images. More recent work by Mentzeret al.
[2020] utilizes Generative Adversarial Network (GAN) to achieve
appealing reconstruction quality with considerably low bit-rates.
Such image compression techniques cannot be directly applied for
phase hologram data as we demonstrate in this work. Moreover,
end-to-end compression pipelines have not been realized so far for
hologram data, which we believe will soon become important for
consumer holographic displays and holographic storage.

3 COMPUTER GENERATED HOLOGRAPHY

Computer generated holography (CGH) numerically simulates the
optical process of hologram recording and replay [Chakravarthula
et al. 2019]. A phase-only spatial light modulator (SLM) is typically
used in a holographic display for its light e�ciency. However, the
calculation of the phase pattern that results in an intended intensity
image is often challenging and computationally expensive. In this
section, we brie�y discuss holographic phase retrieval.

In a holographic display, as shown in Figure 2(c), the phase holo-
gramH displayed on an SLM modulates the phase of an incident co-
herent beam* B, which propagates over a distance3 in free space to
produce an interference pattern, whose intensity is the intended tar-
get image. Such interference pattern can be calculated by Rayleigh-
Sommerfeld (RS) scalar di�raction integral, given by
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While the above integral gives perhaps the most accurate scalar
di�raction �eld, it is computationally very expensive. Therefore,
various simplifying assumptions have been made to e�ciently com-
pute the RS integral. Herein, we adopt the band-limited angular
spectrum propagation model [Matsushima and Shimobaba 2009]:
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whereDb•D[ are the spatial frequencies andF ¹�º represents the
Fourier transform. Since only the intensity of the wave �eld is
observed by human eyes (or cameras), the observed image is given
by jbACj2 = j53

? ¹* B•Hºj2, wherej�j denotes the element-wise absolute
value. The holographic phase retrieval problem aims at �nding
a phase pattern that matches the resulting intensityjbACj2 match
a given target intensityjACj2. In other words, holographic phase
retrieval solves the following optimization problem:

H = arg min
H

L¹j bACj2• jACj2º• (3)
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Fig. 2. A simplified illustration for the cloud-edge collaborative holographic
displaying model. Prevalent solutions mainly adopt the strategy shown in
(a), where the phase data is computed at the edge side, while the proposed
framework enables a collaborative cloud-edge displaying solution, as shown
in (b). (c) shows a simplified holographic display model. When illuminated
by the coherent light source* B, the spatial light modulator (SLM) modulates
the phase of the light wave according to the hologramH. The modulated
light wave arrives at the target plane a�er propagating in space. The content
perceived by human eyes (or captured by cameras) is mainly from the
intensity of the complex wave field,i.e., mainly from the amplitudeÂC.

whereL denotes a custom penalty function.

Computing a phase-only hologram on a local device as illustrated
in Figure 2(a)+(c) requires computation of high-quality phase pat-
ternsH, such that the optically reconstructed imagebAC is close to
the given target imageAC. However, this demands a signi�cant com-
pute and power, and thus it is desirable to instead perform the phase
computation remotely and transmit to the edge device, especially
in case of wearable near-eye displays that are expected to work
all day long. To remove the latency bottleneck and maintain the
quality of phase transmission, we propose a learning-based joint
phase retrieval and compression framework to speci�cally tailor for
lightweight cloud-edge devices as illustrated in Figure 2(b)+(c). We
describe our joint phase retrieval and compression framework in
the following section.

4 JOINT NEURAL PHASE RETRIEVAL AND
COMPRESSION

In this section, we describe our joint hologram phase generation
and compression framework to achieve phase-only holograms that
use signi�cantly lower bits per pixel compared to the state of the art
CGH methods, but result in holographic images that are on par with
the existing optimization-based and neural network-based methods.
Speci�cally, we introduce a learned feature encoding and real-time
data decoding framework as illustrated in Section 4.1. Our frame-
work achieves signi�cantly lower transmission data volumes (from
the cloud), and low computational cost (in GFLOPs, on the edge),
without compromising the quality of reconstructed holographic im-
ages. In Section 4.2, we discuss in detail the latent code compression
and bit quantization scheme. In Section 4.3, we extend the proposed
framework to exploit the redundancies in consecutive video frames
for achieving higher transmission e�ciency on holographic videos.

To achieve low compute and high quality reconstructions on the
edge, we asymmetrically distribute the hologram generation be-
tween the cloud and edge devices. Speci�cally, the cloud servers
which have stronger computational resources generate alatent space
compressedreduced volume transmission data, which can be de-
coded on the edge device at signi�cantly lower compute and energy
cost. We illustrate our framework for joint phase retrieval and com-
pression in Figure 3 and all the involved notations are summarized in
Table 1 for clarity. Also note that the phase retrieval network (PRN)
modules comprise off �%• �?• � ?g, the coding related modules in-
clude a hyper-prior encoder/decoderf � � • � � gand the di�erentiable
quantizers includef&B•&=g, as illustrated in Figure 3.

Table 1. Table of variables

Symbol Data Type Dimension Description

AC Float � � , � 1 Target amplitude map

PC Float � � , � 1 Output from�%

H Float � � , � 1 Generated hologramH

v Float �
4 � ,

4 � 8 Latent space

z Float �
16 � ,

16 � 64 Hyper-latent

- Float �
4 � ,

4 � 8 Mean of the Gaussian model forv

2 Float �
4 � ,

4 � 8 Scale of the Gaussian model forv
bAC Float � � , � 1 Simulated reconstruction ofAC

v̂ Integer �
4 � ,

4 � 8 Quantizedv

ẑ Integer �
16 � ,

16 � 64 Quantizedz

2v Binary bits - Bitstream coded for̂v

2z Binary bits - Bitstream coded for̂z

-: The lengths of the bitstreams are dynamically changed according to the propability
distribution of the elements within the data.

4.1 Holographic Phase Retrieval

The overall phase retrieval module of our framework is illustrated
in Figure 3. Along with the phase retrieval as described in Equa-
tion (3), our phase retrieval network (PRN) also includes a feature
encoding� ? and a phase decoding� ? step. In the feature encod-
ing step, a target amplitudeAC is combined with a neural-network
initialized phase mapPC, predicted by the Initial Phase predictor
(�%) sub-network, to form a complex wave �eld that is numerically
propagated to the SLM plane. Then, latent featuresv of the propa-
gated holographic �eldf AB•PBgare encoded for compression and
transmission to the edge. In the decoding stage, the hologramH
is generated from the transmitted compressed featuresv. We now
discuss these two processes in detail hereunder.

Feature Encoding.Given a target image amplitude, we initialize
the unknown target image phasePCas predicted by the sub-network
�%(initial phase predictor), as shown in Figure 3. The complex-
valued wave �eldf AC•PCgat target plane is then numerically prop-
agated to the SLM plane, formulated by

f AB•PBg = 53
? ¹AC•PCº• (4)
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Fig. 3. Workflow of the proposed cloud-based holography framework. The modules within the framework are deployed separately on the cloud side and the
edge side. On the cloud side, a feature extraction and coding pipeline is performed. A�er obtaining the target amplitude mapAC, the initial phase predictor
�%predicts an initial phase distributionPC at the target plane. A complex wavefieldf AC•PCg is formed and propagated to the SLM plane via a simulated
propagation process53

? . Then, the propagated wavefieldf AB•PBgundergoes feature extraction performed by� ? , and the resulting latent vectorv is coded to
the bitstream2v . To e�iciently codev, its data distribution is modelled by a hyper encoder-decoderf � � • � � g, where a hyper-latentz is introduced and coded
into another bitstream2z. On the edge side, the final phase mapH is generated from the decoded̂v based on the probability distribution predicted from̂z.
Since the same probability distribution is required for entropy coding and decoding,� � is duplicated and deployed on the cloud side and each edge side.
PRN is an extracted sub-network that performs phase retrieval only. The grayscale phases for R,G,B channels are arranged in 3-channel color images for
visualization.

whereAB andPB denote the amplitude and phase at the SLM plane
respectively, and53

? ¹�•�º represents the band-limited angular spec-
trum (AS) propagation method as described in Equation (2). We
now use a feature encoder� ? to encode the complex wave �eld at
the SLM planef AB•PBg to a latent spacev. Speci�cally, we use a
multi-scale structural encoder for fully encoding the information
contained in the complex �eldf AB•PBg. We show a more detailed
illustration of the encoder in Figure 4. As can be seen, we adopt
several parallel branches in� ? to extract features fromf AB•PBgat
di�erent scales before producing the latent featuresv.

Phase Decoding.The SLM complex �eld features will be com-
pressed to signi�cantly reduce the data volume (Section 4.2). The
featuresv are used by the decoder� ? to recover the phase hologram
H. For the decoder sub-network, we employ a residual architecture
containing< residual blocks. Adopting residual blocks contributes
to an e�cient feature �ow and gradient �ow during the backward
propagation. We formulate decoding the phase hologramH from
the latent SLM �eld featuresv as follows:

H = � ? ¹vº” (5)

From the recovered phase hologramH, the reconstructed image
amplitude is computed as

bAC= j5� 3
? ¹1•Hºj• (6)

Fig. 4. Multi-scale encoder� % and residual decoder� ? . Within the encoder
� ? , multiple branches are designed for enabling be�er feature extraction
and more e�icient backward gradient flow.

where5� 3
? ¹�•�º denotes the backward wave propagation from the

SLM plane to the image plane.

Phase Retrieval Penalty Functions.The phase retrieval network
(PRN) is trained to minimize the reconstruction errorL A between
the reconstructed imagebACand the target imageAC. Note that asbAC
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is reconstructed from the hologramH, supervision onbAC imposes
constraints onH as well. We use Mean Squared Error (MSE) as a per-
pixel penalty and Muti-scale Structural Similarity (MS-SSIM) [Wang
et al. 2003] as a perceptual metric. We use learned perceptual error
metrics including LPIPS-VGG [Zhang et al. 2018] and Watson-DFT
[Czolbe et al. 2020] to further improve the reconstruction quality
for a human observer. Therefore, the overall optimization penalty
function is calculated as follows:

L A = L mse¸ UmssL mss¸ UvggL vgg ¸ UwdftL wdft• (7)

where L mse, L mss, L vgg and L wdft denote MSE, MS-SSIM loss,
LPIPS-VGG loss and Watson-DFT loss respectively, andUmss, Uvgg,
and Uwdft denote the corresponding balance weights. The VGG
network-based lossL vgg is calculated as

L vgg =
Õ

;

F ; j jq; ¹bACº � q; ¹ACº j j22• (8)

whereq; represents;C� layer of a pre-trained VGG-19 [Simonyan
and Zisserman 2015] network.L vgg is adopted to achieve �ner
details in the reconstructed image by penalizing the features at mul-
tiple layers from the VGG-19 network. However, as stated in [Czolbe
et al. 2020], a pre-trained network optimized for classi�cation task
tends to underestimate the perceptual in�uence of graphical artifacts
such as noise. Besides, [Czolbe et al. 2020] demonstrates that a gen-
eration network optimized using LPIPS-VGG loss might introduce
noticeable artifacts in the reconstruction results. As Watson-DFT
function proposed in [Czolbe et al. 2020] is more sensitive to fre-
quency changes, as would be for a human observer, we adopt it to
further improve the reconstruction quality.

4.2 Latent Compression

The usage of encoder and decoder sub-networks within the phase
retrieval stage, as discussed above in Section 4.1, already reduces
the number of elements to be processed to about half. Although the
latent spacev is about half in size compared to the targetAC, the
data volume needed for transmitting the �oating point values of the
SLM �eld featuresv from the remote server to the edge device is still
very large. For example, storing the featuresv of a single-channel
phase hologramH with resolution1080� 1920costs about32MB in
space. This necessitates a compression framework for lightweight
storage, transmission and processing.

As a high data precision demands a high bit-rate to encode infor-
mation, the latent spacev needs to be quantized before being coded
into binary bits, so that the elements become more discretized and
require less bits. Therefore, as shown in Figure 3, a quantizer&B
is introduced to quantizev to v̂. Simultaneously, to utilize entropy
coding methods for achieving e�cient coding, the data distribution
of the elements in̂v needs to be modelled. Since the actual mar-
ginal distribution of%̂v jAC of v̂ is unknown, a hyperprior network
proposed in [Ballé et al. 2018], formed byf � � • � � g, is equipped to
model the data distribution as an entropy model?v̂. To make the full
framework able to be optimized in an end-to-end manner, the bit-
rate needs to be e�ectively measured or estimated in a di�erentiable
manner and the di�erentiable alternatives for the real rounding
operations are incorporated. Besides, di�erent from learning based

compression methods [Ballé et al. 2018; Mentzer et al. 2020; Minnen
et al. 2018] that pursue an exact reconstruction of the input to the
feature encoder, we utilize� ? to directly generate a di�erent output,
i.e., a phase-only hologramH, from the transmittedv̂. We annotate
the entire frameworkDual Phase Retrieval and Compression
(DPRC). The details of each module are described below.

Quantization.For using �nite bits to encode data losslessly, dis-
cretization is needed to make the symbols coming from a discrete set
[Gray 2011]. Rounding is a commonly used discretization technique.
However, a real rounding operation is not di�erentiable. Inspired by
[Theis et al. 2017], we adopt a di�erentiable alternative&B, which
is de�ned as

v̂ = &B¹vº

= B6¹»v¼ �vº ¸ v•
(9)

where&B denotes the quantizer with stop-gradient operationB6¹�º
that blocks gradients �owing into its argument and»�¼represents
rounding operation. By using&B, the rounding operation is exerted
as usual in both training and test process, and gradients ofv̂ directly
�ow to � ? , which means the rounding operation is bypassed in back-
propagation. Although there are other smooth approximations for
rounding, adopting&B is helpful to resolve the mismatch problem
introduced by using smooth rounding approximations for training
but using real rounding for inference stage.

Bit-rate Estimation.Sincev̂ is discretized, it can be coded loss-
lessly by introducing a probability model%̂v of v̂ and using an en-
tropy coding method such as arithmetic coding [Rissanen and Lang-
don 1981]. According to Shannons rate-distortion theory [Cover
and Thomas 2006], the bit-rate for codinĝv by the entropy model
%̂v is lower-bounded by

' v̂ = Ev̂� %̂vjAC
»� ;>62%̂v ¹v̂º¼” (10)

If v̂ is perfectly coded,i.e., the entropy model%̂v exactly matches the
actual marginal distribution of̂v (the unknown distribution%̂v jAC),
the bit-rate is minimized. For modeling%̂v, we choose a conditional
Gaussian model adopted in [Minnen et al. 2018] for capturing the
spatial dependencies within̂v, given by

%̂EjÎ � N ¹ - •diag¹2 ºº” (11)

- •2 are mean and scale for the Gaussian model, which are estimated
by a hyperprior sub-network denoted as� � and� � in Figure 3.̂z is a
quantized hyper-latent representation that is encoded by� � from v.
The hyper-latent̂z is introduced to capture the spatial dependencies
within v and make the elements inv conditionally independent.
Di�erent from [Mentzer et al. 2020], which utilizes two separate sub-
networks for predicting- and2 , we use a smaller sub-network� �
for predicting both- and2 to reduce the computational cost of the
decoding process. Although the auto-regressive decoding procedure
proposed in [Minnen et al. 2018] shows better performance, it is
ine�cient as it sequentially decodes the pixels. Considering the
time e�ciency, we adopt the decoding method used in [Ballé et al.
2018; Ballé et al. 2017], by which all of the elements are recovered
in parallel via convolutional layers. Aŝz is needed for predicting
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Fig. 5. Process for jointly compressing consecutive holographic video frames.
The framework receives) frames and encodes the frames into a set of
latent space using the same feature encoding process. Then a joint latent
representation is constructed and fed into the latent compression modules
to obtain the bitstream for transmission.

the parameters of the Gaussian model for decodingv̂ from the bit-
stream2v, it is coded to a another bitstream2z and transmitted.
Then the bit-rate consumed by2z is estimated by

' ẑ = E»� ;>62%̂z¹ẑº¼

= E»� ;>62%̂zjv̂ ¹&= ¹� � ¹v̂ººº¼•
(12)

where&= denotes a simulated quantization by additive i.i.d. uniform
noise as it has the same width as the quantization bins (one) [Ballé
et al. 2016].%̂z is modeled by a factorized entropy model [Ballé
et al. 2017], for which the detailed derivation are provided in the
supplementary material.

Rate-Generation Loss.After the compression modules are intro-
duced, the DPRC framework is trained with the loss given in Equa-
tion (13), which exhibits a trade-o� between hologram generation
quality and the bit cost.

L 2 = ' ¸ UAL A

= ¹' v̂ ¸ ' ẑº ¸ UAL A”
(13)

whereUA is used to adjust the role of the reconstruction loss term
to achieve di�erent quality levels of the produced holograms with
various degrees of data volume reduction.

4.3 Redundancy-based Holographic Video Compression

Considering the prevalence of video transmission [Li et al. 2020] and
similarities existed in consecutive frames, we design a prototype for
compressing holographic video frames to further reduce the average
volume of each frame. As shown in Figure 5, the framework com-
presses) frames jointly using a conditional entropy model on top
of the latent representationf v ¹8ºgÇ ) � 1

8=C generated for) frames in
parallel. Since the latent representationv ¹8º generated from a com-
plex �eld is highly di�erent from natural images, optical �ow-based
transformation commonly adopted in natural video compression
becomes less feasible. This is due to the di�culty of accurately pre-
dicting the optical �ow between every two adjacent elements in
f v ¹8ºgÇ ) � 1

8=C , which usually have no obvious semantic structures.
Additionally, as utilizing optical �ows will require extra bits to store

�ow maps, we choose to construct a joint latent representationv)
from f v ¹8ºgÇ ) � 1

8=C without �ow based transformation. Speci�cally,
v) is constructed by

v) = �f v ¹Cº•v ¹Ç 1º � v ¹Cº• ”””•v ¹Ç ) � 1º � v ¹Ç ) � 2ºg• (14)

where� denotes concatenation. Equation (14) shows thatv) con-
tains the untouched latent spacevCand the residuals between ev-
ery two frames with indices in»C• Ç) � 1¼. Storing residuals for
f v ¹8ºgÇ ) � 1

8=Ç 1 is bene�cial for further reducing the data volume since
there are usually subtle di�erences between consecutive frames.
v) then undergoes the latent compression procedure given in Sec-
tion 4.2. Speci�cally, we quantizev) to v̂) and predict the param-
eters of the probability model for elements within̂v) . Later,v̂) is
coded by the entropy coding module utilizing the predicted proba-
bility models. During the decoding stage, the latent representations
for each frame are sequentially recovered and fed into the phase
decoder� ? to generate corresponding holograms.

5 IMPLEMENTATION

Here, we discuss the implementation of our DPRC framework and
the prototype display used for experimental evaluation. Please refer
to the Supplementary Material for additional details and a detailed
discussion.

DPRC Framework.We implemented the entire DPRC framework
in PyTorch [Paszke et al. 2019], with the neural network trained in
two stages, and on800images from the DIV2K dataset [Timofte
et al. 2017]. Speci�cally, the sub-network for phase retrieval (PRN) is
trained with the penalty function de�ned in Equation (7) in the �rst
stage, and the full pipeline is trained using the rate-generation loss
as described in Equation (13) in the second stage. During training,
we adopt a rate constraining strategy [Mentzer et al. 2020] to avoid
any drastic reduction in bit-rate. The entropy coding/decoding is
implemented based on the rANS (Range Asymmetric Numeral Sys-
tem) [Duda 2014] coder provided by CompressAI library [Bégaint
et al. 2020].

Prototype Display.Our hardware prototype used a HOLOEYE Leto
LCoS re�ective SLM with a pixel pitch of6”4` m and1080� 1920pixel
resolution. We use a 4F relay system with an aperture at the Fourier
plane to �lter any higher di�raction orders arising from the double
phase encoded holograms. The virtual SLM after the 4F system relays
the images directly onto the camera sensor for measurements. We
use two Pentax 645n 75mm lenses for constructing our 4F system and
a Canon Rebel t6i camera sensor body (without the lens attached) for
measuring the displayed images for quality assessment. The camera
has an output resolution of 6000 × 4000 and a pixel pitch of 3.72
` m, well above the pitch of our SLM. The SLM is controlled as an
external monitor and the hologram phase patterns are transferred
and displayed on it via the HDMI port of the graphics card. This
SLM is illuminated by a collimated and linearly polarized beam from
a single optical �ber that is coupled to three laser diodes. The laser
diodes emit at wavelengths 450 nm, 520 nm and 638 nm and are
controlled in a color �eld sequential manner.
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Target image WirtingerSGD DoublePhase HoloNet Ours (PRN)

Fig. 6. Reconstruction images from holograms produced by di�erent methods. Highlighted insets are zoom-ins for detailed visualization. Numerical analysis
is shown in Table 2.

6 EVALUATION
We validate our DPRC framework with several objective metrics for
transmission and reconstruction quality. Speci�cally, we evaluate
our framework's phase retrieval quality in Section 6.1, e�ectiveness
in transmission data volume/latency reduction in Section 6.2, and
edge-side compute/energy cost in Section 6.3. Furthermore, we also
analyze the intra-system performance in Section 6.4 and several
ablation studies in Section 6.5 to evaluate our system e�cacy. We
also validate the applicability of our framework and its performance
on video sequences in Section 6.6. Finally, we demonstrate our
method on experimental hardware prototype display and assess its
performance in Section 6.7.

6.1 Phase Retrieval �ality
Objective Metrics.We use four metrics to evaluate the quality

of reconstructed images from the retrieved phase holograms: peak
signal-to-noise ratio (PSNR) and the recently proposed FLIP [Ander-
sson et al.2020] as di�erence evaluators, and the structural similarity
index (SSIM) [Wang et al. 2004] and LPIPS [Zhang et al. 2018] as
perceptual error metrics. Speci�cally, LPIPS measures the di�erence
between features as computed by a pre-trained VGG [Simonyan
and Zisserman 2015] network for any given two images, and FLIP
similarly evaluates the perceptual di�erence by also considering the
principles of human perception and incorporates dependencies on
viewing distance and pixel size. A higher score is desired for PSNR
and SSIM, whereas a lower is desired for LPIPS and FLIP. We evalu-
ate our phase retrieval network (PRN) against the state-of-the-art
non-iterative methods including Double Phase Amplitude Coding
[Maimone et al. 2017] and HoloNet [Peng et al. 2020], and the itera-
tive method WirtingerSGD [Chakravarthula et al. 2019; Peng et al.
2020] running for500iterations. The metrics are evaluated on100
test images from the DIV2K dataset [Timofte et al. 2017] and the
corresponding results are reported in Table 2.

Table 2. Reconstruction performance for phase retrieval

Method PSNR" SSIM" LPIPS# FLIP# Time (s)

WirtingerSGD 34.3434 0.9596 0.1299 0.0318 247.88
DoublePhase 25.6460 0.7538 0.4291 0.18440.013
HoloNet 29.7014 0.9114 0.2394 0.17540.027
Ours (PRN) 30.4155 0.9237 0.2006 0.1637 0.027

Top two results are highlighted. Results for Time are calculated for generat-
ing 3-channel holograms.

Results.As shown in Table 2, WirtingerSGD shows the highest
reconstruction quality on all four error metrics. However, iterative
hologram computation takes more than200s per frame. Among the
other three real-time methods (less than 0.1s/frame), PRN shows
the highest reconstruction quality among all the reported metrics.
For instance, PRN is the only method achieving a PSNR¡ 30, with a
runtime of less than1•9000of WirtingerSGD iterative optimization.
DoublePhase on the other hand produces the lowest reconstruction
quality, as evidenced by its low PSNR and SSIM values,i.e., 25”65
and0”7538respectively. For LPIPS and FLIP metrics, the numerical
results in Table 2 show a similar trend to PSNR and SSIM. Visual
comparisons validating the above scores are provided in Figure 6.
Additional examples and the corresponding di�erence visualizations
produced by FLIP can be found in the Supplementary Material.

Dicussion.Although WirtingerSGD produces the highest recon-
struction quality, it is prohibitively time ine�cient in practice for
real-time and interactive applications. On the other hand, our PRN
phase retrieval network produces appealing results on all four met-
rics, as shown in Table 2, while demonstrating low running time.
As for the reconstructed images, the holograms generated by PRN
and WirtingerSGD produce apparently less artifacts than the only
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Fig. 7. Compression rate and quality curves of reconstruction results. Bpp represents bits per pixel used to encode the compressed holograms and + denotes
compression. Note that results for (1-LPIPS) are given for consistency. X-/y-axis shows Bpps and the mean of quality values over 100 test images.Larger is
be�er for the values shown in y-axis and lower is be�er for Bpp. The enlarged plot in each sub-figure is provided for be�er visualizing the performance
for several alternatives.

other neural network-based approach HoloNet, especially in areas
with �at textures as can be observed in Figure 6. These experiments
validate that PRN achieves a better balance between quality opti-
mization and time e�ciency for holographic phase retrieval.

6.2 Transmission E�iciency

To make the proposed DPRC adapt to di�erent Internet conditions,
we trained our model with three quality levels by settingUA to 1
(DPRC; ), 5 (DPRC< ), and10(DPRC� ), respectively, and analyze the
results here.

Metrics and Conditions.Using bit-rates as the metric, we compare
three DPRC-derived variants with two standard compression codecs
includingJPEG[Wallace 1992] andWebP2, and three learning-based
image compression methods includingHyperprior[Ballé et al. 2018],
JointAuto[Minnen et al. 2018], andHiFiC[Mentzer et al. 2020].

Unlike our DPRC framework, holograms generated using other al-
ternative conditions need to be compressed before transmission. To
this end, we generate holograms using di�erent methods discussed
in Section 6.1, and thoroughly compare compression withJPEG
and other neural network-based codecs. Speci�cally, we evaluate
three conditions:WirtingerSGD + JPEG, HoloNet + JPEG, andPRN +
JPEG. Figure 7 shows the rate-performance curves for the average
values on100evaluation images. The compression performance is
evaluated as the number of bits per pixel (bpp). Among the neural
network-based compression frameworks, we use the pre-trained
models provided by the authors ofHiFiC, and the compressAI imple-
mentations[Bégaint et al. 2020] forHyperpriorandJointAuto, so that
all of the implementations are implemented on PyTorch platform
[Paszke et al. 2019]. Since [Ballé et al. 2018; Mentzer et al. 2020;
Minnen et al. 2018] are trained on RGB images, the holograms for
three channels are combined before applying the above methods.
2http://code.google.com/speed/webp/

Results.Figure 7 shows the statistical results of the above men-
tioned compression experiments. The DPRC condition shows signif-
icant performance gains over all other conditions (for example, >5
higher PSNR than all other conditions for the same Bpp levels). Note
that DPRC always achieves lower than5 Bpp, hence the short red
curves.DPRC; achieves 27.42dB for PSNR and around 0.9 for SSIM
with only 1.3 bpp ( 0.43 bpp per channel). In other words, DPRC
demonstrates the reconstruction quality with an18� compression
ratio compared to the typical 24-bit Bitmap format. To achieve sim-
ilar reconstruction quality,HoloNet + JPEGconsumes around7�
more bits andWirtingerSGD + JPEGneeds about10� more bits.

Among the alternative conditions,HoloNet + JPEGcompression
shows the highest quality whenBpp � 5. As shown in Figure 7, it
can also be observed that theJPEGcodec signi�cantly degrades the
hologram reconstruction quality when bit-rates are lower than7,
especially for the LPIPS metric. Moreover,WirtingerSGD + JPEG
provides signi�cantly worse reconstruction quality than other com-
pression alternatives at considerably lower bit-rates. Besides, it can
be seen that the performance forWirtingerSGD + WebPis similar
to that for WirtingerSGD + JPEGand shows only a small range of
quality/bit-rate change. For holograms computed using our PRN
network and compressed using learning-based methods (i.e. the
three conditions includingPRN + HyperPrior, PRN + JointAutoand
PRN + HiFiC), the PSNR is lower than15dB and SSIM is lower than
0”5, although the lowest bit-rates are achieved.

Sampled evaluation results are visualized in Figure 8. It can be
seen thatJPEGcompression introduces noticeable artifacts in the
reconstructed images whenever the bit-rates approachDPRC� or
higher. Additionally, Figure 9 provides example reconstructions
from compressed holograms using theHyperPrior, JointAutoand
HiFiCmethods, and compare against our DPRC method. Speci�cally,
in Figure 9, the results are produced with both the highest and the
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