
Provenance in ORCHESTRA

Todd J. Green∗

University of California, Davis
Davis, CA USA

green@cs.ucdavis.edu

Grigoris Karvounarakis∗

LogicBlox ICS-FORTH
Atlanta, GA Heraklion, Greece

gregkar@gmail.com

Zachary G. Ives Val Tannen
University of Pennsylvania

Philadelphia, PA USA
{zives,val}@cis.upenn.edu

Abstract

Sharing structured data today requires agreeing on a standard schema, then mapping and cleaning all
of the data to achieve a single queriable mediated instance. However, for settings in which structured
data is collaboratively authored by a large community, such as in the sciences, there is seldom con-
sensus about how the data should be represented, what is correct, and which sources are authoritative.
Moreover, such data is dynamic: it is frequently updated, cleaned, and annotated. The ORCHESTRA

collaborative data sharing system develops a new architecture and consistency model for such settings,
based on the needs of data sharing in the life sciences. A key aspect of ORCHESTRA’s design is that the
provenance of data is recorded at every step. In this paper we describe ORCHESTRA’s provenance model
and architecture, emphasizing its integral use of provenance in enforcing trust policies and translating
updates efficiently.

1 Introduction

One of the most elusive goals of the data integration field has been supporting sharing across large, hetero-
geneous populations. While data integration and its variants (e.g., data exchange [9] and warehousing) are
being adopted in the enterprise, little progress has been made in integrating broader communities. Yet the need
for sharing data across large communities is increasing: most of the physical and life sciences have become
data-driven as they have attempted to tackle larger questions. The field of bioinformatics, for instance, has a
plethora of different databases, each providing a different perspective on a collection of organisms, genes, pro-
teins, diseases, and so on. Associations exist between the different databases’ data (e.g., links between genes
and proteins, or gene homologs between species). Unfortunately, data in this domain is surprisingly difficult to
integrate, primarily because conventional data integration techniques require the development of a single global
schema and complete global data consistency. Designing one schema for an entire community like systems
biology is arduous, involves many revisions, and requires a central administrator.

Even more problematic is the fact that the data or associations in different databases are often contradictory,
forcing individual biologists to choose values from databases they personally consider most authoritative or
trusted [23]. Such inconsistencies are not handled by data integration tools, since there is no consensus or
“clean” version of the data. Thus, scientists simply make their databases publicly downloadable, so users can
copy and convert them into a local format (using ad hoc scripts). Meanwhile the original data sources continue
to be edited. In some cases the data providers publish weekly or monthly lists of updates (deltas) to help others
keep synchronized. Today, few participants, except those with direct replicas, can actually exploit such deltas;

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Work performed while at the University of Pennsylvania
1

hence, once data has been copied to a dissimilar database, it begins to diverge from the original.
In order to provide collaborating scientists, organizations, and end users with the tools they need to share

and revise structured data, our group has developed a new architecture we term collaborative data sharing sys-
tems [18] (CDSSs) and the first implementation of a CDSS in the form of the ORCHESTRA system. The CDSS
provides a principled semantics for exchanging data and updates among autonomous sites, which extends the
data integration approach to encompass scientific data sharing practices and requirements—in a way that also
generalizes to many other settings. The CDSS models the exchange of data among sites as update exchange
among peers, which is subject to transformation (via schema mappings), filtering (based on trust policies re-
garding source authority), and local revision or replacement of data. As a prerequisite to assessing trust, the
CDSS records the derivation of all exchanged data, i.e., its provenance or lineage [5].

In this paper, we provide an overview of the basic operation of the ORCHESTRA CDSS, emphasizing its use
of data provenance for enforcing trust policies and for performing update exchange incrementally and efficiently.
This paper summarizes our main results from [14, 20, 21]; we mention further aspects of the system in Section 6.

2 Overview of CDSS and ORCHESTRA

The CDSS model represents a natural next step in the evolution of ideas from data integration, peer data manage-
ment systems [17] (PDMS), and data exchange [9]. The PDMS model removes data integration’s requirement
of a single central schema: rather, the PDMS supports greater flexibility and schema evolution through multiple
mediated schemas (peers) interrelated by compositional schema mappings. Along a different dimension, data
exchange alleviates the tight coupling between data sources and queriable target data instance: it enables mate-
rialization of data at the target, such that queries over the target will be given the same answers as in traditional
virtual data integration.

As in the PDMS, the CDSS allows each data sharing participant to have an independent schema, related to
other schemas via compositional schema mappings. However, in a CDSS each participant (peer) materializes its
own database instance (as in data exchange). Through a variety of novel techniques we sketch in this paper and
describe in detail in [14, 20, 21], the CDSS enables the peer to autonomously control what data is in the instance
by applying updates and policies about which data is most trusted.1

2.1 The topology of data sharing: specifying how peers are related

A CDSS collaboration begins with a set of peer databases, each with its own schema and local data instance.
Each peer’s users pose queries and make updates directly to its local data instance.

Example 1: Consider (see Figure 1) a bioinformatics collaboration scenario based on databases of interest to
affiliates of the Penn Center for Bioinformatics. GUS, the Genomics Unified Schema covers gene expression,
protein, and taxon (organism) information; BioSQL, affiliated with the BioPerl project, covers very similar
concepts; and a third schema, uBio, establishes synonyms among taxa.2 Instances of these databases contain
taxon information that is autonomously maintained but of mutual interest to the others. For the purposes of
our example we show only one relational table in each of the schemas, as follows. Peer GUS associates taxon
identifiers, scientific names, and what it considers canonical scientific names via relation G(GID, NAM, CAN);
peer BioSQL associates its own taxon identifiers with scientific names via relation B(BID, NAM); and peer uBio
records synonyms of scientific names via relation U(NAM1, NAM2).

The participants of the CDSS collaboration specify relationships among their databases using schema mappings.
1Our implementation assumes relational schemas, but the CDSS model extends naturally to other data models such as XML [10].
2The real databases can be found at http://www.gusdb.org, http://bioperl.org, and http://www.ubio.org.

2

G(GID, NAM, CAN)

GUS

B(BID, NAM)

BioSQL

U(NAM1, NAM2)
uBio

m3

m1

m2

(m1) G(g, n, c)→ ∃b B(b, n)
(m2) G(g, n, c)→ U(n, c)
(m3) B(b, n1) ∧ U(n1, n2)→ B(b, n2)

Figure 1: Mappings among three bioinformatics databases

specified by m2. Mapping m3 is quite interesting: it stipulates data in BioSQL based on data in uBio but also on
data already in BioSQL. As seen in m3, relations from multiple peers may occur on either side. We also see that
individual mappings can be “recursive” and that cycles are allowed in the graph of mappings.
Schema mappings — expressed in ORCHESTRA using the well-known formalism of tuple-generating depen-
dencies (tgds) [2] — are logical assertions that the data instances at various peers are expected to jointly satisfy.
As in data exchange [9], a large class of mapping graph cycles can be handled safely, while certain complex
examples cause problems.

Thus, every CDSS specification begins with a collection of peers/participants, each with its own relational
schema, and a collection of schema mappings between some of these peers. Like the schemas, the mappings are
designed by the participants’ administrators. By joining ORCHESTRA, the participants agree to share the data
from their local databases. The sharing can be further modulated through the mappings, which should therefore
be subject to agreement between participants.

2.2 The semantics of query answers

Given a CDSS configuration of peers and schema mappings, the question arises of how data should be propa-
gated using the mappings, and what should be the answer to a query asked by one of the peers. The whole point
of data integration is for such an answer to use data from all the peers. In CDSS, we wish to accomplish this by
materializing at every peer an instance containing not only the peer’s locally contributed data, but also additional
facts that must be true, given the data at the other peers along with the constraints specified by the mappings.
Queries at a peer will be answered using this local materialized instance. However, while the mappings relating
the peers tell us which peer instances are together considered “acceptable,” they do not fully specify the complete
peer instances to materialize.

In CDSS we follow established practice in data integration, data exchange and incomplete information
databases [1, 9] and use certain answers semantics: a tuple is “certain” if it appears in the query answer no
matter what data instances (satisfying the mappings) we apply the query to. In virtual data integration, the
certain answers to a query are computed by reformulating the query across all peer instances using the map-
pings, and combining the answers together from the local results computed at each peer. In CDSS, as in data
exchange, we materialize special local instances that can be used to compute the certain answers. This makes
query evaluation a fast, local process. We illustrate this with our running example.
Example 3: Suppose the contents of G, U , and B are as shown in Figure 2(a). Note that the mappings of Fig-
ure 1 are not satisfied: for example, G contains a tuple (828917, “Oscinella frit”, “Drosophila melanogaster”)
but B does not contain any tuple with “Oscinella frit” which is a violation of m1. Let us patch this by adding to
B a tuple (⊥1, “Oscinella frit”) where⊥1 represents the unknown value specified by ∃b in the mapping m1. We
call ⊥1 a labeled null. Adding just enough patches to eliminate all violations results in the data in Figure 2(b).5

5Note that sometimes patching one violation may introduce a new violation, which in turn must be patched; hence this process is
generally an iterative one, however under certain constraints it always terminates.

3

(m1) G(g, n, c)→ ∃b B(b, n)
(m2) G(g, n, c)→ U(n, c)
(m3) B(b, n1) ∧ U(n1, n2)→ B(b, n2)

Figure 1: Mappings among three bioinformatics databases

G :
GID NAM CAN

828917 Oscinella frit Drosophila melanogaster
2616529 Musca domestica Musca domestica

U : NAM1 NAM2

B :
BID NAM

4472 Periplaneta americana

(a) Tables from GUS, uBio, and BioSQL before update exchange. (U is empty.)

U :
NAM1 NAM2

Oscinella frit Drosophila melanogaster
Musca domestica Musca domestica

B :

BID NAM

4472 Periplaneta americana
⊥1 Oscinella frit
⊥1 Drosophila melanogaster
⊥2 Musca domestica

(b) Tables after update exchange. Shaded rows indicate newly-inserted tuples. (G is unchanged.)

Figure 2: Bioinformatics database instances before and after update exchange

Example 2: Continuing with Example 1, suppose it is agreed in this collaboration that certain data in GUS
should also be in BioSQL. This represented in Figure 1 by the arc labeled m1. The specification G(g, n, c) →
∃b B(b, n) associated with m1 is read as follows: if (g, n, c) is in table G, the value n must also be in some
tuple (b, n) of table B, although the value b in such a tuple is not determined. The specification just says that
there must be such a b and this is represented by the existential quantification ∃b. Here m1 is an example of
schema mapping. Two other mappings appear in Figure 1. Peer uBio should also have some of GUS’s data, as
specified by m2. Mapping m3 is quite interesting: it stipulates data in BioSQL based on data in uBio but also on
data already in BioSQL. As seen in m3, relations from multiple peers may occur on either side. We also see that
individual mappings can be “recursive” and that cycles are allowed in the graph of mappings.

Schema mappings (expressed in ORCHESTRA using the well-known formalism of tuple-generating dependen-
cies or tgds [2]) are logical assertions that the data instances at various peers are expected to jointly satisfy. As in
data exchange [9], a large class of mapping graph cycles can be handled safely, while certain complex examples
cause problems and are prohibited.

In summary, every CDSS specification begins with a collection of peers/participants, each with its own
relational schema, and a collection of schema mappings among peers. Like the schemas, the mappings are
designed by the administrators of the peers to which data is to be imported. (In addition, administrators also
supply trust policies, described in Section 3.) By joining ORCHESTRA, the participants agree to share the data
from their local databases. Mappings and trust policies provide a more detailed declarative specification of how
data is to be shared.

2.2 The semantics of query answers, and what must be materialized at each peer

Given a CDSS specification of peers and schema mappings, the question arises of how data should be propagated
using the declarative mappings, and what should be materialized at the target peer. Clearly, a user query posed
over a peer’s materialized instance should provide answers using relevant data from all the peers. This requires
materializing at every peer an instance containing not only the peer’s locally contributed data, but also additional

3

facts that must be true, given the data at the other peers along with the constraints specified by the mappings.
However, while the mappings relating the peers tell us which peer instances are together considered “acceptable,”
they do not fully specify the complete peer instances to materialize.

In CDSS we follow established practice in data integration, data exchange and incomplete databases [1, 9]
and use certain answers semantics: a tuple is “certain” if it appears in the query answer no matter what data
instances (satisfying the mappings) we apply the query to. In virtual data integration, the certain answers to a
query are computed by reformulating the query across all peer instances using the mappings. In CDSS, as in
data exchange, we materialize special local instances that can be used to compute the certain answers. This
makes query evaluation a fast, local process. We illustrate this with our running example.

Example 3: Suppose the contents of G, U , and B are as shown in Figure 2(a). Note that the mappings of Fig-
ure 1 are not satisfied: for example, G contains a tuple (828917, “Oscinella frit”, “Drosophila melanogaster”)
but B does not contain any tuple with “Oscinella frit” which is a violation of m1. Let us patch this by adding to
B a tuple (⊥1, “Oscinella frit”) where⊥1 represents the unknown value specified by ∃b in the mapping m1. We
call ⊥1 a labeled null. Adding just enough patches to eliminate all violations results in the data in Figure 2(b).3

In order to support edits and accommodate disagreement among participants, CDSS incorporates mechanisms
for local curation of database instances. This allows CDSS users to modify or delete any data in their local
database, even data that has been imported from elsewhere via schema mappings. In this way, CDSS users
retain full control over the contents of their local database. The technical obstacle in supporting such a feature
is how to preserve a notion of semantic consistency with respect to the mappings, when such modifications may
introduce violations of the mappings.

Example 4: Refer again to Figure 2(b), and suppose that the curator of BioSQL decides that she is not interested
in house flies, and wishes to delete tuple B(⊥2, “Musca domestica”) from her local instance. Since, as we have
seen, this tuple was added to satisfy a mapping, the deletion of the tuple leads to a violation of some mapping.

To allow such local curation, CDSS stores deleted tuples in rejection tables, and newly inserted tuples in local
contribution tables, and converts user-specified mappings into internal mappings that take the contribution and
rejection tables explicitly into account. Alternatively, sometimes local curation corrects mistakes in the imported
data; if we wish for the corrections to be propagated back to the original source tuples, ORCHESTRA also
incorporates facilities for bidirectional mappings [20].

3 Trust policies and provenance

CDSS participants often need to filter data based how much they trust it (and its sources). In order to allow the
specification of such provenance-based trust policies, ORCHESTRA records the provenance of exchanged data,
i.e., “how data was propagated” during the exchange process.

The most intuitive way to picture CDSS provenance is as a graph having two kinds of nodes: tuple nodes,
one for each tuple in the system, and mapping nodes, where several such nodes can be labeled by the same
mapping name. Edges in the graph represent derivations of tuples from other tuples using mappings. Special
mapping nodes labeled “+” are used to identify original source tuples.

Example 5: Refer to Figure 3, which depicts the provenance graph corresponding to the bioinformatics example
from Figure 2 (we have abbreviated the data values to save space). Observe there is a “+” mapping node
pointing to G(26, Musc., Musc.); this indicates that it is one of the source tuples from Figure 2(a), present before
update exchange was performed. Next, observe that G(26, Musc., Musc.) is connected to U(Musc., Musc.) via a

3Note that sometimes patching one violation may introduce a new violation, which in turn must be patched; hence this process is
generally an iterative one, however under certain constraints it always terminates.

4

+

+

G :

82 Osci. Dros.

26 Musc. Musc.

m2

m2

U :

Osci. Dros.

Musc. Musc.

m1

m1

m3

m3

B :

44 Peri.

⊥1 Osci.

⊥1 Dros.

⊥2 Musc.

+

Figure 3: Graphical provenance representation for bioinformatics example

cyclic, with tuples involved in their own derivations. In general, when mappings are recursive, the provenance
graph may have cycles.

Provenance graphs form the basis of our ORCHESTRA implementation, and we explain in [14] how they
can be computed during data exchange and stored in an RDBMS together with exchanged data. Underlying the
graphical model, however, is another, equivalent perspective on CDSS provenance based on a powerful frame-
work of semiring-annotated relations [15, 10]. These are algebraic structures that arise naturally with database
provenance. This framework has the virtue of uniformly capturing as special cases many other provenance mod-
els that have been proposed in the literature (such as the why-provenance of [4], the data warehousing lineage
of [7], the provenance captured in the Perm system [12] and the Trio lineage of [3]). Moreover, they capture
a variety of computations of annotations such as trust scores, probabilities, counts, security access levels or
derivability of tuples in a data exchange result.

By putting all these models on equal footing, we are able to make precise comparisons of various kinds—
we can compare their relative informativeness, for example, or study their various interactions with the query
optimization process [13]. In particular, it allows us to explain precisely why the ORCHESTRA provenance (also
called how-provenance) is strictly more informative than any of these. Provenance annotations also turn out to
be useful in formulating efficient algorithms for update exchange, as we explain in Section 4 and in more detail
in [14, 19].

Using such data provenance information, we can compute trust scores for exchanged data, based on CDSS
users beliefs about the trustworthiness of source data and mappings. Trust policies can then be expressed essen-
tially as selection predicates on provenance. They allow CDSS administrators to specify which data is “trusted”,
depending on its provenance.

Example 6: Some possible trust policies in our bioinformatics example:

• Peer BioSQL distrusts any tuple B(b, n) if the data came from GUS and n = “Musca domestica,” and
trusts any tuple from uBio.

• Peer BioSQL distrusts any tuple B(b, n) that came from mapping m3.

Once specified, the trust policies are incorporated in the update exchange process: when the updates are being
translated into a peer P’s schema they are accepted or rejected based on P’s trust conditions.

The example above illustrates Boolean trust policies, which specify a black-or-white classification of tuples
as either (completely) trusted or (completely) untrusted, depending on their provenance and contents. In fact,
CDSS also allows richer forms of ranked trust policies in which trust scores are computed for tuples indicating
various “degrees of trust.” When a conflict is detected among data from multiple sources (for example, by a
primary key violation), these scores can be used to resolve the conflict by selecting the tuple with the highest
trust score and discarding those with which it conflicts.

5

Figure 3: Provenance graph for bioinformatics example

EVALUATE TRUST OF {
FOR [B $x] <$p [] <-+ [$y]
WHERE $p = m1 OR $p = m3
INCLUDE PATH [$x] <-+ [$y]
RETURN $x

} ASSIGNING EACH leaf_node $y {
CASE $y in G and

$y.n = "Musc." : SET false
DEFAULT : SET true

} ASSIGNING EACH mapping $p($z) {
CASE $p = m3 : SET false
DEFAULT : set $z

}

Figure 4: A provenance query in ProQL

mapping node labeled m2. This indicates that U(Musc., Musc.) was derived using G(26, Musc., Musc.) with m2.
Also, notice that B(⊥2, Musc.) has a derivation from G(26, Musc., Musc.) via mapping m1. Finally, note that
B(⊥2, Musc.) also has a second derivation, from itself and U(Musc., Musc.) via mapping m3. The graph is thus
cyclic, with tuples involved in their own derivations. In general, when mappings are recursive, the provenance
graph may have cycles.

Provenance graphs form the basis of our ORCHESTRA implementation, and [14] shows how they can be
computed during data exchange and stored together with exchanged data. Underlying the graphical model,
however, is another, equivalent perspective on CDSS provenance, based on a framework of semiring-annotated
relations [15, 10]. These are algebraic structures that arise naturally with database provenance. Their two
operations correspond to joint use of data (represented in the graph model by the incoming edges into a mapping
node) and to alternative use of data (represented in the graph model by the incoming edges into a tuple node).
M-semirings [19] extend those structures with unary functions to capture mappings. The semiring framework
has the virtue of uniformly capturing as special cases many other data provenance models from the literature
(e.g., lineage [7], why-provenance [4], and Trio lineage [3]). By putting all these models on equal footing, we
are able to make precise comparisons of various kinds: e.g., their relative informativeness, or their interactions
with query optimization [12]. In particular, we can explain precisely why ORCHESTRA’s provenance is strictly
more informative than the other models. Moreover, we see that ORCHESTRA provenance captures the most
general semiring computations and thus can be specialized to compute events (hence probabilities), scores,
counts, security access levels, etc, as we discuss in Section 5 and [21]. Provenance annotations also assist in
formulating efficient algorithms for update exchange, as we explain in Section 4 and [14, 20].

Using such data provenance information, we can compute trust scores for exchanged data, based on CDSS
users’ beliefs about the trustworthiness of source data and mappings. Trust policies can then be expressed to
control the flow of data through mappings, allowing CDSS administrators to specify which tuples are “trusted”
or “distrusted,” depending on their provenance.

Example 6: Some possible trust policies in our bioinformatics example:

• Peer BioSQL distrusts any tuple B(b, n) if the data came from GUS and n = “Musca domestica,” and
trusts any tuple from uBio.

• Peer BioSQL distrusts any tuple B(b, n) that came from mapping m3.

Once specified, the trust policies are incorporated into the update exchange process: when the updates are being
translated into a peer P’s schema they are accepted or rejected based on P’s trust conditions.

The example above illustrates Boolean trust policies, which classify all tuples as either (completely) trusted
or (completely) untrusted, depending on their provenance and contents. In fact, CDSS also allows richer forms
of ranked trust policies in which trust scores are computed for tuples indicating various “degrees of trust.” When
a conflict is detected among data from multiple sources (for example, by a primary key violation), these scores
can be used to resolve the conflict by selecting the tuple with the highest trust score and discarding those with

5

which it conflicts. Fortunately, our same semiring-based provenance information can be used to evaluate either
Boolean or ranked trust, as well as—possibly contradictory—trust policies of different CDSS peers without
recomputing data exchange solutions [21].

4 Dynamic operation and update exchange

Given that ORCHESTRA performs query answering on locally materialized data instances, this raises the ques-
tion of data freshness in the peer instances. The CDSS approach sees data sharing as a fundamentally dynamic
process, with frequent “refreshing” data updates that need to be propagated efficiently. This process of dy-
namic update propagation is called update exchange. It is closely related to the classical view maintenance
problem [16].

Operationally, CDSS functions in a manner reminiscent of revision control systems, but with peer-centric
conflict resolution strategies. The users located at a peer P query and update the local instance in an “offline”
fashion. Their updates are recorded in a local edit log. Periodically, upon the initiative of P’s administrator,
P requests that the CDSS perform an update exchange operation. This publishes P’s local edit log, making it
globally available via central or distributed storage [27]. This also subjects P to the effects of the updates that
the other peers have published (since the last time P participated in an update exchange). To determine these
effects, the CDSS performs incremental update translation using the schema mappings to compute correspond-
ing updates over P’s local instance: the translation finds matches of incoming tuples to the mappings’ sources,
and applies these matchings to the mappings’ targets to produce outgoing tuples (recall the “patching” process
in Example 3).

Doing this on updates means performing data exchange incrementally, with the goal of maintaining peer
instances satisfying the mappings. Therefore, in CDSS the mappings are more than just static specifications:
they enable the dynamic process of propagating updates.

Example 7: Refer again to Figure 2(b), and suppose now that the curator of uBio updates her database by adding
another synonym for the fruit fly: U(“Oscinella frit”, “Oscinella frit Linnaeus”). When this update is published,
it introduces a violation of mapping m3 that must again be “patched.” The update translation process therefore
inserts a corresponding tuple into BioSQL: B(⊥1, “Oscinella frit Linnaeus”).

Propagating the effects of insertions to other peers is a straightforward matter of applying techniques from [16].
Deletions are more complex, both in terms of propagating them downstream (to instances mapped from the ini-
tial deletion) and optionally upstream (to sources of a derived, now-deleted tuple).

Downstream propagation involves identifying which tuples in a derived instance are dependent on the tu-
ple(s) we are deleting and have no alternate derivations from the remaining source tuples. The algorithms of [16]
provide one solution, involving deleting and attempting to re-derive all dependent tuples. Provenance enables
a more efficient algorithm [14], which determines if a tuple has alternative derivations, avoiding unnecessary
deletions and rederivations.

Upstream propagation requires determining the sources of a derived tuple, and removing (some of) them,
so that this tuple is no longer derivable through the mappings. This problem is closely related to the view
update problem [8], and raises the possibility of side effects: if a source tuple is removed, additional tuples that
were derived from it and were not among the users’ deletions may also be deleted. Traditionally, we disallow
updates whenever the database integrity constraints do not guarantee side-effect-free behavior (a very restrictive
approach in practice). In ORCHESTRA we provide a more flexible approach. We use provenance to check at
run-time whether some deletion propagation would cause side effects to any other peer specified by the user.
We only propagate to the sources those deletions that do not cause side effects, while we handle the remaining
deletions through the rejection tables (Section 2.2). This allows much greater levels of update propagation in
practice.

6

5 Querying provenance

To this point, we have described the internal uses of provenance in a CDSS. However, provenance is also useful
to CDSS end-users as they perform data curation and other manual tasks. Unfortunately, the complexity of
provenance graphs can often make it difficult for such users to explore the provenance of data items they are
interested in. Moreover, curators may not be interested in the complete provenance of some items, but only
derivations involving certain mappings or peers they consider authoritative.

For these reasons, we have designed and implemented ProQL [21], a query language for provenance. ProQL
can help curators or other CDSS users explore and navigate through provenance graphs, based on as little
information as they have in their disposal, through the use of path expressions. It also allows them to focus
only on parts of the graph which are of interest to them. ProQL builds upon the fact that our provenance model
generalizes a variety of annotation computations, such as trust scores, probabilities, counts, security access levels
or derivability. In particular, ProQL allows CDSS users to specify “source” annotations for tuple and mapping
nodes in these graphs and uses those to compute annotations for derived tuples of interest.

Example 8: The query shown in Figure 4 illustrates some of these features. First, it matches all derivations of
tuples in B (of any length, as indicated by←+) whose last step involves mappings m1 and m3. Then, it specifies
that any derivations through m1 as well as tuples in G with name “Musc.” are untrusted, while everything else is
trusted (essentially, these are the trust policies from Example 6). Applied on the provenance graph of Figure 3,
it determines that the tuples B(44, “Peri.”), B(⊥1, “Osci.”) are trusted, while the remaining tuples in B are
untrusted.

More details about the syntax of ProQL, as well as indexing techniques to optimize provenance query processing
can be found in [21].

6 Related work

In this paper we surveyed briefly the core update exchange and provenance facilities of ORCHESTRA, as orig-
inally presented in [14, 20], and the provenance query language of [21]. Other major features of the sys-
tem include a distributed conflict reconciliation algorithm [27], a distributed storage and query engine [28], a
keyword-based query system incorporating rankings and user feedback [25]. Related work on incremental up-
date optimization appears in [13]. Data sharing with conflict update resolution policies is studied in [22]. The
semiring framework for ORCHESTRA’s provenance model was introduced in [15], and further elaborated in [10]
and [12].

With hindsight, we find misleading the term “how-provenance” (originating in a footnote of [15] and popu-
larized in [5]). It allows for an interpretation according to which this is yet another provenance model, parallel
to why- and where-provenance [4]. As we saw, the semiring framework encompasses many previously proposed
provenance models. This includes where-provenance as soon as we annotate other data elements beyond tuples,
as shown in [10] (see also [26]).

Recognizing the limitations of why-provenance, [6] introduces route-provenance, which is closest to the
provenance model used in ORCHESTRA, albeit used for a different purpose—debugging schema mappings. Our
model maintains a graph from which provenance can be incrementally recomputed or explored, whereas in [6]
the shortest route-provenances are recomputed on demand. [5] contains many more references on provenance
that space does not allow us to mention here.

ORCHESTRA builds upon foundations established by PDMS (e.g., [17]) and data exchange [24, 9]. In [11],
the authors use target-to-source tgds to express trust. We support a more flexible trust model where each peer
may express different levels of trust for other peers, and trust conditions compose along paths of mappings.
Moreover, our approach does not increase the complexity of computing a solution.

7

7 Conclusions

The ORCHESTRA project represents a re-thinking of how data should be shared at large scale, when differences
of opinion arise not only in the data representation, but also which data is correct. It defines new models and algo-
rithms for update exchange, provenance, trust, and more. Our initial prototype system demonstrates the feasibil-
ity of the CDSS concept, and we are releasing it into open source at code.google.com/p/penn-orchestra.
We believe that many opportunities for further research are enabled by our platform. For example, we believe
there are many interesting avenues of exploration along derivations, conflicting data, data versions, etc. We also
feel it would be worthwhile to explore integrating probabilistic data models into the CDSS architecture.

Acknowledgements. We thank the other members of the ORCHESTRA team, particularly Nicholas Taylor,
Olivier Biton, and Sam Donnelly, for their contributions to the effort; and the Penn Database Group and Wang-
Chiew Tan for their feedback. This work was funded in part by NSF IIS-0447972, IIS-0513778, IIS-0713267,
and CNS-0721541, and DARPA HRO1107-1-0029.

References
[1] S. Abiteboul and O. Duschka. Complexity of answering queries using materialized views. In PODS, Seattle, WA, 1998.
[2] C. Beeri and M. Vardi. A proof procedure for data dependencies. JACM, 31(4), October 1984.
[3] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs: Databases with uncertainty and lineage. In VLDB, 2006.
[4] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of data provenance. In ICDT, 2001.
[5] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases: Why, how, and where. Foundations and Trends in Databases,

1(4), 2009.
[6] L. Chiticariu and W.-C. Tan. Debugging schema mappings with routes. In VLDB, 2006.
[7] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing environment. ACM TODS, 25(2), 2000.
[8] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views. TODS, 7(3), 1982.
[9] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query answering. TCS, 336, 2005.

[10] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: Queries and provenance. In PODS, 2008.
[11] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W.-C. Tan. Peer data exchange. In PODS, 2005.
[12] T. J. Green. Containment of conjunctive queries on annotated relations. In ICDT, 2009.
[13] T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable differences. In ICDT, 2009.
[14] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update exchange with mappings and provenance. In VLDB, 2007.
[15] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, Beijing, China, June 2007.
[16] A. Gupta and I. S. Mumick, editors. Materialized Views: Techniques, Implementations and Applications. The MIT Press, 1999.
[17] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data management systems. In ICDE, March 2003.
[18] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. ORCHESTRA: Rapid, collaborative sharing of dynamic data. In CIDR, January

2005.
[19] G. Karvounarakis. Provenance in Collaborative Data Sharing. PhD thesis, University of Pennsylvania, 2009.
[20] G. Karvounarakis and Z. G. Ives. Bidirectional mappings for data and update exchange. In WebDB, 2008.
[21] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data provenance. In SIGMOD, 2010.
[22] L. Kot and C. Koch. Cooperative update exchange in the Youtopia system. In Proc. VLDB, 2009.
[23] P. Mork, R. Shaker, A. Halevy, and P. Tarczy-Hornoch. PQL: A declarative query language over dynamic biological schemata. In

American Medical Informatics Association (AMIA) Symposium, 2002, November 2002.
[24] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Translating web data. In VLDB, 2002.
[25] P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer, Z. Ives, F. Pereira, and S. Guha. Learning to create data-integrating

queries. In VLDB, 2008.
[26] V. Tannen. Provenance for database transformations. In EDBT, 2010. Keynote talk; slides available on the author’s homepage.
[27] N. E. Taylor and Z. G. Ives. Reconciling while tolerating disagreement in collaborative data sharing. In SIGMOD, 2006.
[28] N. E. Taylor and Z. G. Ives. Reliable storage and querying for collaborative data sharing systems. ICDE, 2010.

8

