
Models for Incomplete and Probabilistic Information

Todd J. Green
University of Pennsylvania
tjgreen@cis.upenn.edu

Val Tannen
University of Pennsylvania

val@cis.upenn.edu

1 Introduction

This is an abbreviated version of [13] where proofs and additional results are discussed (available also from
http://db.cis.upenn.edu).

The representation of incomplete information in databaseshas been an important research topic for a long
time, see the references in [12], in Ch.19 of [2], in [21], as well as the recent [22, 20, 19]. Moreover, this work
is closely related to recently active research topics such as inconsistent databases and repairs [3], answering
queries using views [1], and data exchange [9]. The classic reference on incomplete databases remains [14]
with the fundamental concept ofc-table and its restrictions to simpler tables with variables. The most important
result of [14] is the query answering algorithm that defines an algebra onc-tables that corresponds exactly to the
usual relational algebra (RA). A recent paper [19] has defined a hierarchy of incomplete database models based
on finite sets of choices and optional inclusion. One of our contributions consists ofcomparisonsbetween the
models [19] and the tables with variables from [14].

Two criteria have been provided for comparisons among all these models: [14, 19] discussclosureunder
relational algebra operations, while [19] also emphasizescompleteness, specifically the ability to represent all
finite incomplete databases. We point out that the latter is not appropriate for tables with variables over an
infinite domain, and we contribute another criterion,RA-completeness, that fully characterizes the expressive
power ofc-tables.

We also introduce a new idea for the study of models that are not complete. Namely, we consider combining
existing models with queries in various fragments of relational algebra. We then ask how big these fragments
need to be to obtain a combined model that is complete. We givea number of suchalgebraic completionresults.

Early on, probabilistic models of databases were studied less intensively than incompleteness models, with
some notable exceptions [5, 4, 18, 7]. Essential progress was made independently in three papers [10, 16, 23]
that were published at about the same time. [10, 23] assume a model in which tuples are taken independently in
a relation with given probabilities. [16] assumes a model with a separate distribution for each attribute in each
tuple. All three papers attacked the problem of calculatingthe probability of tuples occurring in query answers.
They solved the problem by developing more general models inwhich rows contain additional information
(“event expressions”,“paths”,“traces”), and they noted the similarity with the conditions inc-tables.

We go beyond the problem of individual tuples in query answers by definingclosure under a query lan-
guage for probabilistic models. Then we develop a new model,probabilistic c-tables that addsto thec-tables
themselvesprobability distributions for the values taken by their variables. Here is an example of such a repre-
sentation that captures the set of instances in which Alice is taking a course that is Math with probability 0.3;

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Physics (0.3); or Chemistry (0.4), while Bob takes the same course as Alice, provided that course is Physics or
Chemistry and Theo takes Math with probability 0.85:

Student Course Condition
Alice x

Bob x x = phys ∨ x = chem
Theo math t = 1

x =







math : 0.3
phys : 0.3
chem : 0.4

t =

{

0 : 0.15
1 : 0.85

The concept of probabilisticc-table allows us to solve the closure problem by using the same algebra onc-tables
defined in [14].

We also give acompletenessresult by showing that probabilistic booleanc-tables (all variables are two-
valued and can appear only in the conditions, not in the tuples) can representanyprobabilistic database.

An important conceptual contribution is that we show that, at least for the models we consider, the prob-
abilistic database models can be seen, asprobabilistic counterparts of incomplete database models. In an
incompleteness model a tuple or an attribute value in a tuplemay or may not be in the database. In its proba-
bilistic counterpart, these are seen as elementary events with an assigned probability. For example, the models
used in [10, 16, 23] are probabilistic counterparts of the two simplest incompleteness models discussed in [19].
As another example, the model used in [7] can be seen as the probabilistic counterpart of an incompleteness
model one in which tuples sharing the same key have an exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for probabilisticc-tables will allow
us to solve the problem of calculating probabilities about query answers for any model that can be defined as a
probabilistic counterpart of the incompleteness models considered in [14, 19].

2 Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [12],in Ch. 19 of [2], and in [21]. A database that
provides incomplete information consists of aset of possible instances. At one end of this spectrum we have the
conventional single instances, which provide “complete information.” At the other end we have the set ofall
allowable instances which provides “no information” at all, or “zero information.”

We adopt the formalism of relational databases over a fixed countably infinite domainD. We use the un-
named form of the relational algebra. To simplify the notation we will work with relational schemas that consist
of a single relation name of arityn. Everything we say can be easily reformulated for arbitraryrelational
schemas. We shall need a notation for the set ofall (conventional) instances of this schema, i.e., all the finite
n-ary relations overD namelyN := {I | I ⊆ D

n, I finite}

Definition 1: An incomplete(-information) database(i-database for short),I, is a set of conventional in-
stances, i.e., a subsetI ⊆ N .

The usual relational databases correspond to the cases whenI = {I}. Theno-information or zero-information
databaseconsists ofall the relations:N .

Conventional relational instances are finite. However, becauseD is infinite incomplete databases are in
general infinite. Hence the interest in finite, syntactical,representations for incomplete information.

Definition 2: A representation systemconsists of a set (usually a syntactically defined “language”) whose
elements we call tables, and a functionMod that associates to each tableT an incomplete databaseMod(T).

The classical reference [14] considers three representation systems:Codd tables, v-tables, andc-tables.
v-tables are conventional instances in which variables can appear in addition to constants fromD. If T is a
v-table then

Mod(T) := {ν(T) | ν : Var(T) → D is a valuation for the variables ofT}

2

Codd tables arev-tables in which all the variables are distinct. They correspond roughly to the current use
of nulls in SQL, whilev-tables model “labeled” or “marked” nulls.c-tables arev-tables in which each tuple
is associated with a condition — a boolean combination of equalities involving variables and constants. We
typically use the letterϕ for conditions. The tuple condition is tested for each valuation ν and the tuple is
discarded fromν(T) if the condition is not satisfied.

Example 1: Here is an example of ac-table.

S :=
1 2 x

3 x y x = y ∧ z 6= 2
z 4 5 x 6= 1 ∨ x 6= y

Mod(S) =

{

1 2 1
3 1 1

,
1 2 2
1 4 5

, . . . ,
1 2 77
97 4 5

, . . .

}

Several other representation systems have been proposed ina recent paper [19]. We illustrate here three of
them and we discuss several others later. A?-table is a conventional instance in which tuples are optionally
labeled with “?,” meaning that the tuple may be missing. Anor-set-table looks like a conventional instance but
or-set values [15, 17] are allowed. An or-set value〈1, 2, 3〉 signifies that exactly one of 1, 2, or 3 is the “actual”
(but unknown) value. Clearly, the two ideas can be combined yielding another representation systems that we
might (awkwardly) callor-set-?-tables.(In [19] these three systems are denoted byR?, RA andRA

?.)

Example 2: Here is an example of an or-set-?-table.

T :=

1 2 〈1, 2〉
3 〈1, 2〉 〈3, 4〉

〈4, 5〉 4 5 ?
Mod(T) =







1 2 1
3 1 3
4 4 5

,
1 2 1
3 1 3

,

1 2 2
3 1 3
4 4 5

, . . . ,
1 2 2
3 2 4







3 Completeness and Closure

“Completeness” of expressive power is the first obvious question to ask about representation systems. This
brings up a fundamental difference between the representation systems of [14] and those of [19]. The presence
of variables in a tableT and the fact thatD is infinite means thatMod(T) may be infinite. For the tables
considered in [19],Mod(T) is always finite.

[19] defines completeness as the ability of a representationsystem to represent “all” possible i-databases.
For the kind of tables considered in [19] the question makes sense. But in the case of the tables with variables
in [14] this is hopeless for trivial reasons. Indeed, in suchsystems there are only countably many tables while
there are uncountably many i-databases (the subsets ofN , which is infinite). We will discuss separately below
finite completenessfor systems that only represent finite database. Meanwhile,we will develop a different
yardstick for the expressive power of tables with variablesthat range over an infinite domain.

c-tables and their restrictions (v-tables and Codd tables) have an inherent limitation: the cardinality of the
instances inMod(T) is at most the cardinality ofT . For example, the zero-information databaseN cannot
be represented withc-tables. It also follows that among the i-databases that arerepresentable byc-tables the
“minimal”-information ones are those consisting for somem of all instances of cardinality up tom (which are
in fact representable by Codd tables withm rows). Among these, we make special use of the ones of cardinality
1:

Zk := {{t} | t ∈ D
k}.

Hence,Zk consists ofall the one-tuple relations of arityk. Note thatZk = Mod(Zk) whereZk is the Codd
table consisting of a single row ofk distinct variables.

Definition 3: An i-databaseI isRA-definable if there exists a relational algebra queryq such thatI = q(Zk),
wherek is the arity of the input relation name inq.

3

Theorem 4: If I is ani-database representable by ac-tableT , i.e.,I = Mod(T), thenI is RA-definable.

Hence,c-tables are in some sense “no more powerful” than the relational algebra. But are they “as power-
ful”? This justifies the following:

Definition 5: A representation system isRA-completeif it can represent anyRA-definablei-database.

SinceZk is itself ac-table the following is an immediate corollary of the fundamental result of [14] (see
Theorem 11 below). It also states that the converse of Theorem 4 holds.

Theorem 6: c-tables areRA-complete.

We now turn to the kind of completeness considered in [19].

Definition 7: A representation system isfinitely complete if it can represent any finitei-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other systems is discussed in [19]
where a finitely complete representation system calledRA

prop is also given (we do not discussRA
propfurther here).

Is finite completeness a reasonable question forc-tables,v-tables, and Codd tables? In general, for such tables
Mod(T) is infinite (all that is needed is a tuple with at least one variable and with an infinitely satisfiable
condition). To facilitate comparison with the systems in [19] we definefinite-domainversions of tables with
variables.

Definition 8: A finite-domain c-table (v-table, Codd table) consists of ac-table (v-table, Codd table)T together
with afinite dom(x) ⊂ D for each variablex that occurs inT .

Note that finite-domain Codd tables are equivalent to or-settables. Indeed, to obtain an or-set table from a
Codd table, one can see dom(x) as an or-set and substitute it forx in the table. Conversely, to obtain a Codd
table from an or-set table, one can substitute a fresh variable x for each or-set and define dom(x) as the contents
of the or-set.

It is easy to see that finite-domainc-tables are finitely complete. In fact, this is true even for the fragment
of finite-domainc-tables which we will callbooleanc-tables, where the variables take only boolean values and
are only allowed to appear in conditions (never as attributevalues).

Theorem 9: Booleanc-tables are finitely complete (hence finite-domainc-tables are also finitely complete).

If we additionally restrict booleanc-tables to allow conditions to contain onlytrue or a single variable which
appears in no other condition, then we obtain a representation system which is equivalent to ?-tables.

Definition 10: A representation system isclosedunder a query language if for any queryq and any tableT
there is a tableT ′ that representsq(Mod(T)).

This definition is from [19]. In [2], astrongrepresentation system is defined in the same way, with the significant
addition thatT ′ should becomputablefrom T andq. It is not hard to show, using general recursion-theoretic
principles, that there exist representation systems (evenones that only represent finitei-databases) which are
closed as above but not strong in the sense of [2]. However, the concrete systems studied so far are either not
closed, or if they are closed, as in the theorem below, then the proof provides also the algorithm required by the
definition of strong systems. Hence, we see no need to insist upon the distinction.

Theorem 11 ([14]): c-tables are closed under the relational algebra. (The same proof works for finite-domain
c-tables, and even booleanc-tables.)

4

4 Algebraic Completion

None of the incomplete representation systems we have seen so far is closed under the full relational algebra.

Proposition 12 ([14, 19]): Codd tables andv-tables are not closed under e.g. selection. Or-set tables and finite
v-tables are also not closed under e.g. selection. ?-tables are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see before Definition 5){Z1, Z2, . . .},
by relational algebra queries yields equivalence with thec-tables. In this spirit, we will investigate “how much”
of the relational algebra would be needed to complete the other representation systems considered. We call this
kind of resultalgebraic completion.

Definition 13: If (T , Mod) is a representation system andL is a query language, then the representation system
obtained by closingT underL is the set of tables{(T, q) | T ∈ T , q ∈ L} with the functionMod : T ×L → N
defined byMod(T, q) := q(Mod(T)).

Theorem 14 (RA-Completion): Closing Codd tables underSPJU queries and closingv-tables underSP

queries producesRA-complete systems in both cases.

We give now a set of analogous completion results for the finite case.

Theorem 15 (Finite-Completion): Closing or-set-tables underPJ queries, closing finitev-tables underPJ or
S+P queries, and closing ?-tables underRA queries produces finitely complete systems.

5 Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database modelswe will assume thatthe
domain of valuesD is finite. Infinite domains of values are certainly interesting in practice; for some examples
see [16, 22, 19]. Moreover, in the case of incomplete databases we have seen that they allow for interesting
distinctions.1 However, finite probability spaces are much simpler than infinite ones and we will take advantage
of this simplicity. We leave for future investigations the issues related to probabilistic databases over infinite
domains.

We wish to model probabilistic information using a probability space whose possible outcomes are all the
conventional instances. Recall that for simplicity we assume a schema consisting of just one relation of arityn.
The finiteness ofD implies that there are only finitely many instances,I ⊆ D

n.
By finite probability space we mean a probability space (see e.g. [8])(Ω,F , P[]) in which the set of

outcomesΩ is finite and theσ-field of eventsF consists ofall subsets ofΩ. We shall use the equivalent
formulation of pairs(Ω, p) whereΩ is the finite set of outcomes and where theoutcome probability assignment
p : Ω → [0, 1] satisfies

∑

ω∈Ω p(ω) = 1. Indeed, we takeP[A] =
∑

ω∈A p(ω).

Definition 16: A probabilistic(-information) database (or p-database) is a finite probability space whose
outcomes are all the conventional instances, i.e., a pair(N , p) where

∑

I∈N p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealistic because there are2N possible
instances, whereN := |D|n, and we would need that many (minus one) probability values.Thus, as in the case
of incomplete databases we defineprobabilistic representation systemsconsisting of “probabilistic tables”
(prob. tables for short) and a functionMod that associates to each prob. tableT a probabilistic databaseMod(T).
Similarly, we definecompleteness(finite completeness is the only kind we have in our setting).

1Note however that the results remain true ifD is finite; we just require an infinite supply ofvariables.

5

To define closure under a query language we face the followingproblem. Given a probabilistic database
(N , p) and a queryq (with just one input relation name), how do we define the probability assignment for the
instances inq(N)? It turns out that this is a common construction in probability theory: image spaces.

Definition 17: Let (Ω, p) be a finite probability space and letf : Ω → Ω′ whereΩ′ is some finite set. The
imageof (Ω, p) underf is the finite probability space(Ω′, p′) where2 p′(ω′) :=

∑

f(ω)=ω′ p(ω).

Again we consider as query languages the relational algebraand its sublanguages defined by subsets of
operations.

Definition 18: A probabilistic representation system isclosedunder a query language if for any queryq and
any prob. tableT there exists a prob. tableT ′ that representsq(Mod(T)), the image space ofMod(T) underq.

6 Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for probabilistic models of databases [23, 10,
11, 6] (they are called “independent tuple representation in [20]). Such tables are the probabilistic counterpart
of ?-tables where each “?” is replaced by a probability value. Example 3 below shows such a table. The tuples
not explicitly shown are assumed tagged with probability 0.Therefore, ap-?-table is a mapping that associates
to eacht ∈ D

n a probability valuept.
To define theMod function we use another common construction from probability theory: product spaces.

Definition 19: Let (Ω1, p1), . . . , (Ωn, pn) be finite probability spaces. Theirproduct is the space(Ω1 × · · · ×
Ωn, p) where3 p(ω1, . . . , ωn) := p1(ω1) · · · pn(ωn).

Given ap-?-tableT := {pt‖t ∈ D
n} consider the finite probability spaceBt := ({true, false}, p) where

p(true) := pt andp(false) = 1 − pt and then the product spaceP :=
∏

t∈Dn Bt.
We can think of its set of outcomes (abusing notation, we willcall this setP also) as the set of functions

from D
n to {true, false}, in other words, predicates onDn. There is an obvious functionf : P → N that

associates to each predicate the set of tuples it maps totrue and this gives us ap-database, namely the image of
P underf , which we define to beMod(T).

We define now another simple probabilistic representation system calledprobabilistic or-set-tables (p-or-
set-tables for short). These are the probabilistic counterpart of or-set-tables where the attribute values are, instead
of or-sets, finite probability spaces whose outcomes are thevalues in the or-set.p-or-set-tables correspond to a
simplified version of the ProbView model presented in [16], in which plain probability values are used instead
of confidence intervals.

Example 3: A p-or-set-tableS, and ap-?-tableT .

S :=
1 〈2 : 0.3, 3 : 0.7〉
4 5

〈6 : 0.5, 7 : 0.5〉 〈8 : 0.1, 9 : 0.9〉
T :=

1 2 0.4
3 4 0.3
5 6 1.0

A p-or-set-table determines an instance by choosing an outcome in each of the spaces that appear as attribute
values,independently. Recall that or-set tables are equivalent to finite-domain Codd tables. Similarly, ap-or-
set-table corresponds to a Codd tableT plus for each variablex in T a finite probability space dom(x) whose

2It is easy to check that thep′(ω′)’s do actually add up to 1.
3Again, it is easy to check that the outcome probability assignments add up to 1.

6

outcomes are inD. This yields ap-database, again by image space construction, as shown moregenerally for
c-tables next in section 7.

Query answering The papers [10, 23, 16] have considered, independently, theproblem of calculating
the probability of tuples appearing in query answers. This doesnot mean that in generalq(Mod(T)) can be
represented by another tuple table whenT is somep-?-table andq ∈ RA (neither does this hold forp-or-
set-tables). This follows from Proposition 12. Indeed, if the probabilistic counterpart of an incompleteness
representation systemT is closed, then so isT . Hence the lifting of the results in Proposition 12 and other
similar results.

Each of the papers [10, 23, 16] recognizes the problem of query answering and solves it by developing a
more general model in which rows contain additional information similar in spirit to the conditions that appear
in c-tables (in fact [10]’s model is essentially what we call probabilistic booleanc-tables, see next section). We
will show that we can actually use a probabilistic counterpart to c-tables themselves together with the algebra
on c-tables given in [14] to achieve the same effect.

7 Probabilistic c-tables

Definition 20: A probabilistic c-table (pc-tablesfor short) consists of ac-tableT together with afinite proba-
bility spacedom(x) (whose outcomes are values inD) for each variablex that occurs inT .

To get a probabilistic representation system consider the product spaceV :=
∏

x∈Var(T) dom(x). The
outcomes of this space are in fact thevaluationsfor thec-tableT ! Hence we can define the functiong : V →
N , g(ν) := ν(T) and then defineMod(T) as the image ofV underg.

Similarly, we can talk about booleanpc-tables,pv-tables and probabilistic Codd tables (the latter related
to [16], see previous section). Moreover, thep-?-tables correspond to restricted booleanpc-tables, just like
?-tables.

Theorem 21: Booleanpc-tables are complete (hencepc-tables are also complete).

The previous theorem was independently observed in [20].

Theorem 22: pc-tables (and booleanpc-tables) are closed under the relational algebra.

The proof of this theorem gives in fact an algorithm for constructing the answer as ap-database itself, repre-
sented by apc-table. In particular this will work for the models of [10, 16, 23] or for models we might invent by
adding probabilistic information tov-tables or to the representation systems considered in [19]. The interesting
result of [6] about the applicability of an “extensional” algorithm to calculating answer tuple probabilities can
be seen also as characterizing the conjunctive queriesq which for anyp-?-tableT are such that thec-tableq̄(T)
is in fact equivalent to somep-?-table.

8 Conclusion

We reviewed some old and some new examples of representationsystems for incomplete and probabilistic
databases. We discussed notions of expressive completeness, and we gave a new notion of completeness, called
RA-completeness, which makes sense in the case of infinite domains. We introduced the concept of algebraic
completion and gave some results showing that extending weaker models by various fragments of the relational
algebra yields complete models. Finally, we showed how probabilistic representation systems can be seen as
probabilistic counterparts of incomplete representationsystems, and as an example we proposed a probabilistic
representation system calledpc-tables, which we showed to be closed and complete.

7

References

[1] S. Abiteboul and O. M. Duschka. Complexity of Answering Queries Using Materialized Views. InPODS,
pages 254–263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison–Wesley, Reading, MA, 1995.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent query answering in inconsistent
databases.TPLP, 3(4-5):393–424, 2003.

[4] D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational data model. InEDBT, 1990.

[5] R. Cavallo and M. Pittarelli. The Theory of Probabilistic Databases. InVLDB, pages 71–81, 1987.

[6] N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. InVLDB, 2004.

[7] D. Dey and S. Sarkar. A Probabilistic Relational Model and Algebra.ACM TODS, 21(3):339–369, 1996.

[8] R. Durrett. Probability: Theory and Examples. Duxbury Press, 3rd edition, 2004.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query answering. In
ICDT, pages 207–224, London, UK, 2003. Springer-Verlag.

[10] N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integration of Information Retrieval and
Database Systems.ACM TODS, 14(1):32–66, 1997.

[11] E. Grädel, Y. Gurevich, and C. Hirch. The Complexity ofQuery Reliability. InPODS, 1998.

[12] G. Grahne.The Problem of Incomplete Information in Relational Databases, volume 554 ofLecture Notes
in Computer Science. Springer-Verlag, Berlin, 1991.

[13] T. J. Green and V. Tannen. Models for Incomplete and Probabilistic Information. InIIDB, 2006.

[14] T. Imieliński and W. Lipski, Jr. Incomplete Information in Relational Databases.J. ACM, 31(4), 1984.

[15] T. Imieliński, S. A. Naqvi, and K. V. Vadaparty. Incomplete objects — a data model for design and
planning applications. InSIGMOD, pages 288–297, 1991.

[16] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. ProbView: a Flexible Probabilistic
Database System.ACM TODS, 22(3):419–469, 1997.

[17] L. Libkin and L. Wong. Semantic representations and query languages for or-sets.J. Computer and System
Sci., 52(1):125–142, 1996.

[18] F. Sadri. Modeling Uncertainty in Databases. InICDE, pages 122–131. IEEE Computer Society, 1991.

[19] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working Models for Uncertain Data. InICDE,
2006.

[20] D. Suciu and N. Dalvi. Foundations of probabilistic answers to queries (tutorial). InSIGMOD, 2005.

[21] R. van der Meyden. Logical Approaches to Incomplete Information: A Survey. In J. Chomicki and
G. Saake, editors,Logics for Databases and Information Systems. Kluwer, 1998.

[22] J. Widom. Trio: A System for Integrated Management of Data, Accuracy, and Lineage. InCIDR, 2005.

[23] E. Zimányi. Query evaluation in probabilistic databases.Theoretical Computer Science, 171(1–2), 1997.

8

