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1 Introduction

This is an abbreviated version of [13] where proofs and amdit results are discussed (available also from
http://db.cis.upenn. edu).

The representation of incomplete information in datab&sesbeen an important research topic for a long
time, see the references in [12], in Ch.19 of [2], in [21], adlw&s the recent [22, 20, 19]. Moreover, this work
is closely related to recently active research topics sscme@onsistent databases and repairs [3], answering
queries using views [1], and data exchange [9]. The clagferance on incomplete databases remains [14]
with the fundamental concept eftable and its restrictions to simpler tables with varigbléhe most important
result of [14] is the query answering algorithm that definegalgebra ore-tables that corresponds exactly to the
usual relational algebrdlA). A recent paper [19] has defined a hierarchy of incompletal@dese models based
on finite sets of choices and optional inclusion. One of ountrdoutions consists afomparisonsbetween the
models [19] and the tables with variables from [14].

Two criteria have been provided for comparisons among adéhmodels: [14, 19] discustosureunder
relational algebra operations, while [19] also emphasizespletenessspecifically the ability to represent all
finite incomplete databases. We point out that the latteotsappropriate for tables with variables over an
infinite domain, and we contribute another criteri@4-completenessthat fully characterizes the expressive
power ofc-tables.

We also introduce a new idea for the study of models that a@reamplete. Namely, we consider combining
existing models with queries in various fragments of relai algebra. We then ask how big these fragments
need to be to obtain a combined model that is complete. Weaginenber of suchlgebraic completionresults.

Early on, probabilistic models of databases were studiesl ilgensively than incompleteness models, with
some notable exceptions [5, 4, 18, 7]. Essential progressmreale independently in three papers [10, 16, 23]
that were published at about the same time. [10, 23] assunaalim which tuples are taken independently in
a relation with given probabilities. [16] assumes a modehwi separate distribution for each attribute in each
tuple. All three papers attacked the problem of calculativgprobability of tuples occurring in query answers.
They solved the problem by developing more general modeighich rows contain additional information
(“event expressions”,“paths”,“traces”), and they notied similarity with the conditions in-tables.

We go beyond the problem of individual tuples in query answsr definingclosure under a query lan-
guage for probabilistic models. Then we develop a new mguehabilistic c-tablesthat add€o thec-tables
themselvegrobability distributions for the values taken by theirighites. Here is an example of such a repre-
sentation that captures the set of instances in which Aficeking a course that is Math with probability 0.3;
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Physics (0.3); or Chemistry (0.4), while Bob takes the sagse as Alice, provided that course is Physics or
Chemistry and Theo takes Math with probability 0.85:

Student Course Condition

. math :0.3
Alice x S hvs 03 ¢ — 0: 0.15
Bob x x = phys vV x = chem B Ehgm 0'4 N 1: 0.85
Theo math t=1 o

The concept of probabilistic-table allows us to solve the closure problem by using theessigebra omr-tables
defined in [14].

We also give a&completenesgesult by showing that probabilistic booleariables (all variables are two-
valued and can appear only in the conditions, not in the fjfglan represerany probabilistic database.

An important conceptual contribution is that we show thateast for the models we consider, the prob-
abilistic database models can be seenpm@babilistic counterparts of incomplete database models. In an
incompleteness model a tuple or an attribute value in a togalg or may not be in the database. In its proba-
bilistic counterpart, these are seen as elementary evéifitawassigned probability. For example, the models
used in [10, 16, 23] are probabilistic counterparts of the simplest incompleteness models discussed in [19].
As another example, the model used in [7] can be seen as thahjlistic counterpart of an incompleteness
model one in which tuples sharing the same key have an exetosirelationship.

A consequence of this observation is that, in particulagrganswering for probabilistic-tables will allow
us to solve the problem of calculating probabilities abawgrgy answers for any model that can be defined as a
probabilistic counterpart of the incompleteness modetsiciered in [14, 19].

2 Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [kR{Zh. 19 of [2], and in [21]. A database that
provides incomplete information consists afet of possible instanceét one end of this spectrum we have the
conventional single instances, which provide “complefermation.” At the other end we have the setalif
allowable instances which provides “no information” at all “zero information.”

We adopt the formalism of relational databases over a fixeatebly infinite domairD. We use the un-
named form of the relational algebra. To simplify the natative will work with relational schemas that consist
of a single relation name of arity. Everything we say can be easily reformulated for arbitnahational
schemas. We shall need a notation for the setllofconventional) instances of this schema, i.e., all thedinit
n-ary relations oveb namelyN := {I | I C D", [ finite}

Definition 1: An incomplete(-information) database(i-databasefor short),Z, is a set of conventional in-
stances, i.e., a SUbSBIC N.

The usual relational databases correspond to the casesinhgd }. Theno-information or zero-information
databaseconsists ofill the relations:\.

Conventional relational instances are finite. HoweveraheeD is infinite incomplete databases are in
general infinite. Hence the interest in finite, syntactiogbresentations for incomplete information.

Definition 2: A representation systemconsists of a set (usually a syntactically defined “langljagiose
elements we call tables, and a functidiod that associates to each tatilean incomplete databasdod(7').

The classical reference [14] considers three representatistems:Codd tables v-tables andc-tables
v-tables are conventional instances in which variables p@ear in addition to constants frobv If 7" is a
v-table then

Mod(T') := {v(T) | v : Var(T) — D is a valuation for the variables @f}
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Codd tables are-tables in which all the variables are distinct. They cquoesl roughly to the current use
of nulls in SQL, whilev-tables model “labeled” or “marked” nullsc-tables arev-tables in which each tuple
is associated with a condition — a boolean combination ofbfties involving variables and constants. We
typically use the letterp for conditions. The tuple condition is tested for each vaduar and the tuple is
discarded from/(T) if the condition is not satisfied.

Example 1: Here is an example of atable.

S = T=yANz#2 MOd(S):{

r#1Vr#y

Several other representation systems have been propoae@dent paper [19]. We illustrate here three of
them and we discuss several others later?-fable is a conventional instance in which tuples are optionally
labeled with “?,” meaning that the tuple may be missing.oset-tablelooks like a conventional instance but
or-set values [15, 17] are allowed. An or-set vallie2, 3) signifies that exactly one of 1, 2, or 3 is the “actual”
(but unknown) value. Clearly, the two ideas can be combirieldlipng another representation systems that we
might (awkwardly) callor-set-?-tables(In [19] these three systems are denotedday RA andRé.)
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Example 2: Here is an example of an or-set-?-table.

1 2 (1,2) 1 2 1 1 2 2
T:=| 3 (1,2) (3,4) Mod(T") = 313’éi§’313’ égi
ws 4 5 |2 445 45

3 Completeness and Closure

“Completeness” of expressive power is the first obvious tijprego ask about representation systems. This
brings up a fundamental difference between the represemtsystems of [14] and those of [19]. The presence
of variables in a tablg’ and the fact thab is infinite means thaMod(7") may be infinite. For the tables
considered in [19]Mod(T) is always finite.

[19] defines completeness as the ability of a representaiistem to represent “all” possible i-databases.
For the kind of tables considered in [19] the question makese. But in the case of the tables with variables
in [14] this is hopeless for trivial reasons. Indeed, in sagbtems there are only countably many tables while
there are uncountably many i-databases (the subsets which is infinite). We will discuss separately below
finite completeneskr systems that only represent finite database. Meanwhkewill develop a different
yardstick for the expressive power of tables with varialties range over an infinite domain.

c-tables and their restrictiong-tables and Codd tables) have an inherent limitation: thdigality of the
instances ilMod(7") is at most the cardinality of. For example, the zero-information databagecannot
be represented witk-tables. It also follows that among the i-databases thatepresentable by-tables the
“minimal’-information ones are those consisting for somef all instances of cardinality up ta (which are
in fact representable by Codd tables witlrows). Among these, we make special use of the ones of céitdina
1:

Z, = {{t} | t € D*}.

Hence,Z;, consists ofall the one-tuple relations of arity. Note thatZ, = Mod(Z;) whereZ;, is the Codd
table consisting of a single row éfdistinct variables.

Definition 3: An i-databas€ is RA-definableif there exists a relational algebra querguch thatZ = ¢(Z),
wherek is the arity of the input relation name §n



Theorem 4: If 7 is ani-database representable by-&ableT, i.e.,Z = Mod(T'), thenZ is RA-definable.

Hence,c-tables are in some sense “no more powerful” than the relatialgebra. But are they “as power-
ful”? This justifies the following:

Definition 5: A representation system 7184-completeif it can represent anR.A-definablei-database.

Since Z;, is itself ac-table the following is an immediate corollary of the fundamtal result of [14] (see
Theorem 11 below). It also states that the converse of Thedrbolds.

Theorem 6: c-tables aréR.A-complete.
We now turn to the kind of completeness considered in [19].
Definition 7: A representation system fimitely complete if it can represent any finité database.

The finite incompleteness of ?-tables, or-set-tablesgbRgables and other systems is discussed in [19]
where a finitely complete representation system cdlihg‘,qp is also given (we do not discu%g‘ropfurther here).
Is finite completeness a reasonable question-fables,v-tables, and Codd tables? In general, for such tables
Mod(T) is infinite (all that is needed is a tuple with at least onealzlg and with an infinitely satisfiable
condition). To facilitate comparison with the systems i8][ve definefinite-domainversions of tables with
variables.

Definition 8: A finite-domain c-table @-table, Codd table) consists ot-dable (-table, Codd tabl€) together
with afinite dom(z) C D for each variable: that occurs irf".

Note that finite-domain Codd tables are equivalent to otaddes. Indeed, to obtain an or-set table from a
Codd table, one can see dom as an or-set and substitute it forin the table. Conversely, to obtain a Codd
table from an or-set table, one can substitute a fresh \ariator each or-set and define d¢m) as the contents
of the or-set.

It is easy to see that finite-domairtables are finitely complete. In fact, this is true even f@ fragment
of finite-domainc-tables which we will calbooleanc-tables where the variables take only boolean values and
are only allowed to appear in conditions (never as attribatees).

Theorem 9: Booleanc-tables are finitely complete (hence finite-domaitables are also finitely complete).

If we additionally restrict boolean-tables to allow conditions to contain onigue or a single variable which
appears in no other condition, then we obtain a representayistem which is equivalent to ?-tables.

Definition 10: A representation system @osedunder a query language if for any quepyand any tablel
there is a tabld” that representg(Mod(7T')).

This definition is from [19]. In [2], astrongrepresentation system is defined in the same way, with tihéisint
addition that7” should becomputablefrom 7" andgq. It is not hard to show, using general recursion-theoretic
principles, that there exist representation systems (ewes that only represent finiiedatabases) which are
closed as above but not strong in the sense of [2]. Howewecdhcrete systems studied so far are either not
closed, or if they are closed, as in the theorem below, theptbof provides also the algorithm required by the
definition of strong systems. Hence, we see no need to irgst the distinction.

Theorem 11 ([14]): c-tables are closed under the relational algebra. (The saowé works for finite-domain
c-tables, and even booleartables.)



4 Algebraic Completion

None of the incomplete representation systems we have sdanis closed under the full relational algebra.

Proposition 12 ([14, 19]): Codd tables and-tables are not closed under e.g. selection. Or-set tahbbfirzdte
v-tables are also not closed under e.g. selection. ?-tatdesoaclosed under e.g. join.

We have seen that “closing” minimal-information one-rowd@dables (see before Definition &1, Zs, .. .},
by relational algebra queries yields equivalence withctitebles. In this spirit, we will investigate “how much”
of the relational algebra would be needed to complete ther odpresentation systems considered. We call this
kind of resultalgebraic completion

Definition 13: If (7, Mod) is a representation system afids a query language, then the representation system
obtained by closing” under. is the set of table§(T",q) | T € T, q € L} with the functionMod: 7 x L — N
defined byMod(7, q) := ¢(Mod(T)).

Theorem 14 (RA-Completion): Closing Codd tables unde¥ PJU queries and closing-tables underSP
gueries produceR.A-complete systems in both cases.

We give now a set of analogous completion results for thesfirdise.

Theorem 15 (Finite-Completion): Closing or-set-tables undétJ queries, closing finite-tables unde®.J or
ST P queries, and closing ?-tables un@eA queries produces finitely complete systems.

5 Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database modelswvill assume thathe
domain of value® is finite. Infinite domains of values are certainly interesting in ficas; for some examples
see [16, 22, 19]. Moreover, in the case of incomplete datsbhag&e have seen that they allow for interesting
distinctions® However, finite probability spaces are much simpler thamitefiones and we will take advantage
of this simplicity. We leave for future investigations thesuies related to probabilistic databases over infinite
domains.

We wish to model probabilistic information using a probaypispace whose possible outcomes are all the
conventional instances. Recall that for simplicity we asswa schema consisting of just one relation of atity
The finiteness ob) implies that there are only finitely many instancés; D™.

By finite probability space we mean a probability space (see e.g. [8) F,P[ ]) in which the set of
outcomes() is finite and theo-field of eventsF consists ofall subsets of). We shall use the equivalent
formulation of pairg (2, p) where(2 is the finite set of outcomes and where thgcome probability assignment
p:Q — [0,1] satisfiesy ., p(w) = 1. Indeed, we tak@[A] = > 4 p(w).

Definition 16: A probabilistic(-information) database (or p-database is a finite probability space whose
outcomes are all the conventional instances, i.e., a(paip) where ;.\, p(I) = 1.

Demanding the direct specification of such probabilistitadases is unrealistic because there2areossible
instances, wher&/ := |D|", and we would need that many (minus one) probability valiiésis, as in the case
of incomplete databases we defipmbabilistic representation systemsconsisting of “probabilistic tables”
(prob. tables for short) and a functidiod that associates to each prob. telbla probabilistic databasdod(T").
Similarly, we definecompletenesgfinite completeness is the only kind we have in our setting).

INote however that the results remain tru®ifs finite; we just require an infinite supply vériables



To define closure under a query language we face the follopinglem. Given a probabilistic database
(N, p) and a query; (with just one input relation name), how do we define the podla assignment for the
instances i (A)? It turns out that this is a common construction in probgbilieory: image spaces.

Definition 17: Let (£2,p) be a finite probability space and Igt: Q — Q' whereQ)' is some finite set. The
imageof (2, p) underf is the finite probability spac&’, p') wheré p' (') := > f(w)=w PW).

Again we consider as query languages the relational algatdaits sublanguages defined by subsets of
operations.

Definition 18: A probabilistic representation systemdwsedunder a query language if for any queyand
any prob. tablé” there exists a prob. tablE that representg(Mod(T')), the image space &flod(7") underg.

6 Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for probabilisticdeis of databases [23, 10,
11, 6] (they are called “independent tuple representatidi20]). Such tables are the probabilistic counterpart
of ?-tables where each “?” is replaced by a probability vakample 3 below shows such a table. The tuples
not explicitly shown are assumed tagged with probabilityr Berefore, g-?-table is a mapping that associates
to eacht € D™ a probability valuep,.

To define theMod function we use another common construction from proligtiieory: product spaces.

Definition 19: Let (21,p1),- .., (2, pn) be finite probability spaces. Thegiroduct is the spacg; x --- x
Qn, p) Whereé p(wy, ..., wy) == pr(w1) - - pp(wp).

Given ap-?-tableT := {p,||t € D"} consider the finite probability spade, := ({true, false}, p) where
p(true) := p, andp(false) = 1 — p, and then the product spaée:= [[,.pn B;.

We can think of its set of outcomes (abusing notation, we @il this setP also) as the set of functions
from D™ to {true, false}, in other words, predicates d*. There is an obvious functiofi : P — N that
associates to each predicate the set of tuples it mapsd@nd this gives us p-database, namely the image of
P underf, which we define to b&lod(T).

We define now another simple probabilistic representatystesn calledorobabilistic or-set-tables (p-or-
set-tables for short). These are the probabilistic copatéof or-set-tables where the attribute values are,adste
of or-sets, finite probability spaces whose outcomes argahges in the or-setp-or-set-tables correspond to a
simplified version of the ProbView model presented in [16]which plain probability values are used instead
of confidence intervals.

Example 3: A p-or-set-tableS, and ap-?-tableT".

1 (2:0.3,3:0.7) 1 2|04
S = 4 5 T:= 3 403
(6:0.5,7:0.5) (8:0.1,9:0.9) 5 6 1.0

A p-or-set-table determines an instance by choosing an ogtaosech of the spaces that appear as attribute
values,independently Recall that or-set tables are equivalent to finite-domaidd_tables. Similarly, a-or-
set-table corresponds to a Codd tabl@lus for each variable in 7" a finite probability space dofa) whose

%It is easy to check that the (w’)’s do actually add up to 1.
3Again, it is easy to check that the outcome probability assignts add up to 1.



outcomes are if). This yields ap-database, again by image space construction, as showngaioeeally for
c-tables next in section 7.

Query answering The papers [10, 23, 16] have considered, independentlypribi@lem of calculating
the probability of tuples appearing in query answers. Tloiesthot mean that in general(Mod(7")) can be
represented by another tuple table whens somep-?-table and; € RA (neither does this hold fgp-or-
set-tables). This follows from Proposition 12. Indeed,hié tprobabilistic counterpart of an incompleteness
representation system is closed, then so i. Hence the lifting of the results in Proposition 12 and other
similar results.

Each of the papers [10, 23, 16] recognizes the problem ofygaeswering and solves it by developing a
more general model in which rows contain additional infaiiorasimilar in spirit to the conditions that appear
in c-tables (in fact [10]'s model is essentially what we calllpabilistic booleare-tables, see next section). We
will show that we can actually use a probabilistic countdrpac-tables themselves together with the algebra
on c-tables given in [14] to achieve the same effect.

7 Probabilistic c-tables

Definition 20: A probabilistic c-table (pc-tablesfor short) consists of a-tableT together with dinite proba-
bility spacedom(z) (whose outcomes are valueslin for each variabler that occurs iril".

To get a probabilistic representation system consider thbdyst spacé” := [, Var(T) dom(z). The
outcomes of this space are in fact freduationsfor the c-tableT! Hence we can define the functign: V' —
N, g(v) := v(T) and then defindod(T") as the image o¥ underg.

Similarly, we can talk about booleasc-tables,pv-tables and probabilistic Codd tables (the latter related
to [16], see previous section). Moreover, th&-tables correspond to restricted boolgartables, just like
?-tables.

Theorem 21: Booleanpc-tables are complete (henge-tables are also complete).
The previous theorem was independently observed in [20].
Theorem 22: pc-tables (and booleape-tables) are closed under the relational algebra.

The proof of this theorem gives in fact an algorithm for comsting the answer asyadatabase itself, repre-
sented by ac-table. In particular this will work for the models of [10, 183] or for models we might invent by
adding probabilistic information te-tables or to the representation systems considered in TH interesting
result of [6] about the applicability of an “extensional'gatithm to calculating answer tuple probabilities can
be seen also as characterizing the conjunctive querdsich for anyp-?-tableT” are such that the-tableg(7")
is in fact equivalent to some-?-table.

8 Conclusion

We reviewed some old and some new examples of representwtgtams for incomplete and probabilistic
databases. We discussed notions of expressive complet@meswe gave a new notion of completeness, called
RA-completeness, which makes sense in the case of infiniteidem@&/e introduced the concept of algebraic
completion and gave some results showing that extendingeveaodels by various fragments of the relational
algebra yields complete models. Finally, we showed how gividistic representation systems can be seen as
probabilistic counterparts of incomplete representasypstems, and as an example we proposed a probabilistic
representation system callpe-tables, which we showed to be closed and complete.
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