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Boolean functionf/ C 1
Fourier expansion: the uniqgue multilinear polynomial
representation of a Boolean function
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Properties of Boolean functions

Low circuit complexity
Monotonicity

Linear threshold
Bounded

Block-multilinearity

Low degree

Small influence
Small variance

Homogeneity
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Block-multilinearity

A homogeneous Boolean function f with degree k is
Block-multilinear if we can partition the input variables

into k blocks S, ..., S, such that each monomial in the

Fourier expansion of f contains exactly 1 variable in
each block.

[Khot Naor 08, Lovett 10,

Kane Mekal3, Aaronson Ambainis15]
1 1 1 1
Sort(xl,xz,x3,x4)—5xlx2+Ex2x3+5x3x4—§xlx4
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Block-multilinearity

T

Theorem in [AA15] Let f:{-1,1}" @be any bounded
block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on
input x €{—1,1}", non-adaptively queries 20 (n/g2)1-1/k bits
of x, and then estimate the output of f within error € with
high probability. A\
Conjecture: This theorem works for
arbitrary polynomials

—1/k
nl 1/

Yes, via decoupling!



Block-multilinearity

T

Theorem in [AA15] Let f:{-1,1}" @be any bounded
block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on
input x €{—1,1}", non-adaptively queries 2°9)(n/e2)1-1/k bits
of x, and then estimate the output of f within error € with
high probability.

Quantum algorithm makes t queries to x e {—1,1}"

The probability that the algorithm accepts can be expressed as
a Boolean function with degree at most 2t.

The algorithm can be simulated by a classical algorithm with
O(n*-1/(21) queries.



Block-multilinearity

T

Theorem in [AA15] Let f:{-1,1}" @be any bounded
block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on
input x €{—1,1}", non-adaptively queries 2°9)(n/e2)1-1/k bits
of x, and then estimate the output of f within error € with
high probability.

Can we extend this algorithm to

arbitrary Boolean functions?

Yes, via decoupling!



Decoupling

~~~/

f decoupling . f

general function block-multilinear function
degree k degree k
n variables kn variables

(k blocks of n variables)
k copies of x
|

~)
I

1. f(x)= f(x,...,X)

~~J

2. f and f has similar properties



Examples of decoupling

f(Xl’Xz’X3): X1X2X3

f(yl,yz,y3,21,22,23,W1,W2,W3)

— 1 1 1 1 1 1
_ 6y122W3 T 6y1W223 T 621y2W3 T 621W2y3 T 6 W1y223 T 6W122y3



Examples of decoupling
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Block-multilinearity

A hemegeneous Boolean function f with degree k is
Block-multilinear if we can partition the input variables
into k blocks S, ..., S, such that each monomial in the

Fourier expansion of f contains at most 1 variable in
each block.

[KNO8, Lov10, KM13, AA15]



Block-multilinearity
T

Theorem in [AA15] Let f:{-1,1} @be any bounded
block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on

input xe{-1,1}", non-adaptively queries 2°9)(n/e2)1-1/k bits
of x, and then estimate the output of f within error € with
high probability.

FX)= F(X,...X)
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Block-multilinearity
T

neorem in [AA15] Let f:{-1,1}" @be any bounded

bloek-multiinear Boolean function with degree k.

nen there exists a randomized algorithm that, on

input xe{-1,1}", non-adaptively queries 2°9)(n/e2)1-1/k bits
of x, and then estimate the output of f within error € with

h

igh probability.

FX)= F(X,...X)
=11 >[-11] — F:{-1,1}" —[-C,C]?



Decoupling inequality
(k is the degree of f)
Theorem 1. Let ®:R*® - R*® be convex and non-decreasing.

E[D(] £(x™,..., X)) )< E[D(C, | F(x)])]

[de la Pefa 92]
Theorem 2. For all t >0,

Pri| £(x™,...,x¥)[>C.t]1<D Pr{| f(x)[> 1]

[Pefia Montgomery-Smith 95, Giné 98]
Comments:
O(k
1. C,,D, =k

2. The inputs can be any independent random variables with all
moments finite.

3. The reverse inequality also holds with some worse constants.
4. f does not need to be multilinear neccesarily



Decoupling inequality
(k is the degree of f)
Theorem 1. Let ®:R*® - R*® be convex and non-decreasing.

E[D(] F(x™,..., X)) )< E[D(C, | F(x)])]

[de la Pefa 92]
Theorem 2. For all t >0,

Pr| f(x™,...x")[>C t1<D Pr[| f(x)|>t]
[Pefia Montgomery-Smith 95, Giné 98]
Comments:

5. If fis a homogeneous function with Boolean input,
C, can be improved to 20, [Kwapien 87]

6. O=|-F - LFIL,<C, 111
p—> oo IFILSC NI




Block-multilinearity

Theorem in [AA15] Let f:{-1,1}" —[-1,1] be any bounded
block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on

input x €{—1,1}", non-adaptively queries 2°k)(n/e2)1-1/k bits
of x, and then estimate the output of f within error € with
high probability.

~~~/

f f(x)z}(x,...,x)> f e'=¢/C f/C

— 20(k)

[—1,1] [-C,,C,] . [—1,1]




Block-multilinearity

Theorem in [AA15] Let f:{-1,1}" —[-1,1] be any bounded
bloek-multiinear Boolean function with degree k.

Then there exists a randomized algorithm that, on

input x €{—1,1}", non-adaptively queries 2°)(n/e2)1-1/k bits
of x, and then estimate the output of f within error € with
high probability.

~~~/

f f(x)z}(x,...,x)> f e'=¢/C f/C

— 20(k)

[—1,1] [-C,,C,] . [—1,1]




Application 2: AA Conjecture
Let f:{—1,1}" —[—1,1] be a Boolean function

with degree at most k. Then
MaxInf[f] = poly(Var[f]/k).

Def: fx)=). fS)[]x Maj, (X, X,, X, )= 2x, +2x, +2x, = 1x,x,X,

Scln] ~ ieS
Var[f]= Zf(S)Z Var[Maj,]=1
S#J
Inf [f1=D_ f(S)’ LIRSS,

S3i

MaxInf[ f1=max{Inf [f]} Maxinf[Maj, ]=;

ie[n]



Application 2: AA Conjecture

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = poly(Var[f]/k).

Suppose AA Conjecture holds:

1. There exists some deterministic simulation of a
guantum algorithm;

2. P =P* implies BQPAC AvgP# with probability 1
for a random oracle A.



Application 2: AA Conjecture,
weak version

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/exp(k).



Application 2: AA Conjecture,
weak version

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/exp(k).

There exists an easy proof for block-multilinear
function!!

fly,2)=) yg.(2)

)

]
First block \ Then use hypercontractivity and Cauchy-Schwartz
Rest variables



Examples of decoupling
f(Xl,XZ,X3)=X1X2X3
fly,y,.v,,2,,2,2,w, ,w,,w,)

— 41 1 1 1 1 1
_ 6y122W3 T 6y1WZZ3 T 6zly2W3 T 621W2y3 T 6 W1y223 T 6W122y3

Varlf]=-=Varlf]  Inf [f]=——Inf, (/]



Application 2: AA Conjecture,
weak version

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/exp(k).

~~/

f > f -f/ Ck
[_111] [_Ck’Ck] [_1)1]
Var[}]:%Var[f] Var[}/Ck]:%Var[;‘]

k

~ 1 ~ 1 =
Infl[f]:mlnfl[f] Infl[f/Ck]:FInfl[f]

k



Application 2: AA Conjecture,
weak version

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/exp(k log k).

f - f -f/C,
- 1 ~ 1 ~
Var[f]:ﬂ rlf] Var[f/Ck]=FVar[f]

k

~ 1 ~ 1 =
Infl[_f]:mlnfl[f] Infl[f/Ck]:FInfl[f]

k



Summary of classical decoupling

Advantage:

Transfer a general function f to a block-
multilinear function.

Disadvantage:

Introduce an exponential factor on k in
decoupling inequality. ®



Summary of classical decoupling

Sometimes we don’t need the function to be all-
blocks-multilinear.

We only need f to be a linear map on y.

/

fly,2)=> ya(2)

N\

First block Then use hypercontractivity and Cauchy-Schwartz

Rest variables



One-block-multilinear

A Boolean function f with degree k is one-block-
multilinear if there exists a subset of the input
variables S such that each monomial (except the
constant term) in the Fourier expansion of f
contains exactly 1 variable in S.

1 1 1 1
Sort(x_,x ,X.,X )=—XX_ +—XX,+—XX ——X X

f(y,Z):Zyigi(z) 17727737740 51T T 5T T 53T 5T

: 1 1 1 1
Maj, (x,,X,,X,)= Exl +EX2 +EX3 —Exlxzxg



Partial decoupling,
with polynomial bounds

Our result:

f Partialdecouplin}g }

general function One-block-multilinear function
degree k degree k
n variables 2n variables

(2 blocks of n variables)



Examples of partial decoupling

f(Xl,XZ,X3)= X1X2X3

fly,y,,v,,2,2,,2.)

= y12223 T Zly223 T leZy3



Examples of partial decoupling

- —1 1 1y 1
MaJ3(X1'X2’X3)_ 2X1 t 2X2 t 2X3 2X1X2X3

—

Maj,(y,.Y,,Y,,2,,2,,2,)

— 1 1 1
_2y1+2y2+2y3



Examples of partial decoupling

- —1 1 1y 1
MaJ3(X1'X2’X3)_ 2X1 t 2X2 t 2X3 2X1X2X3

Maj.(y..y,,Y,,2,,2,,2,)
— 1 1 1 1 1 1
_2y1+2y2+2y3 2y12223 221)/223 zzlzzya

kf(x)= f(x,x) for homogeneous case only

Var|[ f] SVar[}] <kVar| f]
inf [f1=Inf [f] Inf [f1<(k—1)inf [f]



Partial decoupling,
with polynomial bounds

Our result:
Theorem 1. Let ®:R* —>R* be convex and non-decreasing.

E[D(| fly,2) ) SEID(C, | F(x)])]
Theorem 2. For all t >0,
Pr[| f(y,z)|>C t]<D Pr[| f(x)[>t]

With constants: poly(k)
|0(k*) |Boolean

J/\

D =k C. =:|0(k**)| Boolean, homogeneous

|O(k) |standard Gaussian




Application 2: AA Conjecture,
weak version

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/exp(k).

f - f -f/C,
[_11 1] [_Ck ICk: [_1) 1]
Var[ ]2 Var[ ] Var[}/Ck]=%Var[;‘]

k

— —~ 1 —
MaxInf[ f]< kMaxInf[ f] Inf,[f/Ck]:Flnf,[f]

k



Application 2: AA Conjecture

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/poly(k).

~

f > f > f / Ck
[~1,1] [-C,,C,. [—1,1]

Var[ ]2 Var[ ] Var[}/Ck]=%Var[;‘]

k

— —~ 1 —
MaxInf[ f]< kMaxInf[ f] Inf,[f/Ck]:Flnf,[f]

k




Application 2: AA Conjecture

Let f:{—1,1}" —[—1,1] be a Boolean function
with degree at most k. Then

MaxInf[f] = Var[f]?/poly(k).

The conjecture holds for one-block-multilinear
functions.

fly.2)=2 y4,2)



Comparisons

Full decoupling Partial decoupling
Block-multilinear One-block-multilinear
C, =exp(k) C, =poly(k)
Var[}] =~ exp(—O0(k))Var[ f] Var[f]< Var[;‘] <kVar| f]
)= F(X,wrr X) kf(x)= £(x,x)
for homogeneous case only
: Gengrfal Inputs Boolean or Gaussian
with all finite moments




The rest of my talk

1. Application 3: Tight bounds for DFKO
Theorems

2. Proof sketch for our decoupling inequalities



Application 3:
Tight bounds for DFKO Theorems

DFKO |neq uality; [Dinur Friedgut Kindler O’Donnell 07]

f:R" — R apolynomial with degree k
Standard Gaussian/Boolean inputs (for Boolean, MaxInf[ f]
is small)

Var[f]=1

Pr(| £ > t]> exp(—O(t?k 158K))

Pri| f[>t]1<exp(—O(t*))

A gap of log k

There exists some function f such that

Pr[| f |>t] < exp(—O(t°k?))



Application 3:
Tight bounds for DFKO Theorems

Pri| £(y,2)|> t]= exp(~O(k +t2))

(by hypercontractivity)

Pr| f(y,z)[>C t]1<D Pr[| f(x)[>t]
Gaussian case: C_ =0(k),D, = k°" = exp(O(klogk))

Pr[| f [>t]= exp(—O(t’k?))



Proof sketch for Gaussian case

Theorem 1. Let ®:R*° - R* be convex and non-decreasing.

E[D(| fly,2) ) <E[D(C, | F(x)])]

fy,2)=Y.c flay+b2)

a’+b’=1 ay+bz~N(0,1)

Zlcl_lzCk:O(k)




Proof sketch for Gaussian case

Theorem 1. Let ®:R*° - R* be convex and non-decreasing.

E[D(| fly,2) ) <E[D(C, | F(x)])]

£ (1 £y, 2)])]=E cb( Zc,f(a,.y+b,.z)j

VAN

Z%E :q)(‘ckf(a,-y"'biz)_‘)}
i|

e o{c, )

Jofc ).




Proof sketch for Gaussian case

Theorem 1. Let ®:R*° - R* be convex and non-decreasing.

E[D(| fly,2) ) <E[D(C, | F(x)])]

fya)=Ycflaytbs)  FX=xx, fly.2)=yz,+yz,
" f(al,y+bl,z) — ((:7,,y1 +bizl)(aiy2 +bl,zz)

a’+b° =1
I : ylzz +y221 =
Z| c.|=C_=0(k) z‘cl,afyly2 + z‘cial,bl_(ylz2 +y.z )+ z‘cl,bl,zzlz2
ca’ =0 Zciaibi =1 z,cl.bl.2 =0

i
a k

Best choice we got: —=—
i

i



Summary

Main result:

Prove the decoupling inequalities for one-block
decoupling with polynomial bounds.

Applications:

1. Generalize a randomized algorithm to arbitrary
Boolean functions with the same query complexity;

2. Give an easy proof for the weak version of AA
Conjecture. Show that AA Conjecture holds iff it holds
for all one-block-multilinear functions;

3. Prove the tight bounds for DFKO Theoremes.



Future direction

. One-block decoupling inequalities are tight
with Gaussian inputs. What about Boolean

case?

. Can we generalize them to arbitrary inputs
with all moments finite?

. Do the reverse inequalities hold?

4. Prove (or disprove) AA Conjecture for one-

block-multilinear functions.



Thank you!



