Polynomial bounds for decoupling, with applications

Ryan O'Donnell, Yu Zhao
Carnegie Mellon University

Boolean functions

$$f: \{-1,1\}^n \longrightarrow \mathbb{R}$$

$$\operatorname{Maj}_{3}(x_{1}, x_{2}, x_{3}) = \begin{cases}
1 & \text{if at least two inputs are 1} \\
-1 & \text{if at least two inputs are -1}
\end{cases}$$

Maj₃
$$(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

Boolean functions

$$x_i^2 = 1$$

Fourier expansion: the unique multilinear polynomial representation of a Boolean function

$$f(x) = \sum_{S \subseteq [n]} \widehat{f}(S) \prod_{i \in S} x_i$$

Maj₃
$$(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

Properties of Boolean functions

Low circuit complexity

Monotonicity

Linear threshold

Bounded

Block-multilinearity

Low degree

Small influence

Small variance

Homogeneity

A homogeneous Boolean function f with degree k is Block-multilinear

A homogeneous Boolean function f with degree k is Block-multilinear if we can partition the input variables into k blocks $S_1, ..., S_k$

A homogeneous Boolean function f with degree k is Block-multilinear if we can partition the input variables into k blocks S_1 , ..., S_k such that each monomial in the Fourier expansion of f contains exactly 1 variable in each block.

[Khot Naor 08, Lovett 10,

Kane Meka13, Aaronson Ambainis15]

Sort
$$(x_1, x_2, x_3, x_4) = \frac{1}{2}x_1x_2 + \frac{1}{2}x_2x_3 + \frac{1}{2}x_3x_4 - \frac{1}{2}x_1x_4$$

$$S_1 = \{x_1, x_3\}, S_2 = \{x_2, x_4\}$$

Theorem in [AA15] Let $f: \{-1,1\}^n \rightarrow (-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

Conjecture: This theorem works for arbitrary polynomials

Yes, via decoupling!

Theorem in [AA15] Let $f: \{-1,1\}^n \to [-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

Quantum algorithm makes t queries to $x \in \{-1,1\}^n$

The probability that the algorithm accepts can be expressed as a Boolean function with degree at most 2t.

The algorithm can be simulated by a classical algorithm with $O(n^{1-1/(2t)})$ queries.

Theorem in [AA15] Let $f: \{-1,1\}^n \rightarrow (-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

Can we extend this algorithm to arbitrary Boolean functions?

Yes, via decoupling!

Decoupling

$$f \xrightarrow{\text{decoupling}} f$$

general function degree k n variables block-multilinear function degree k kn variables (k blocks of n variables)

$$1. f(x) = \tilde{f}(x,...,x)$$

2. f and f has similar properties

Examples of decoupling

$$f(x_1, x_2, x_3) = x_1 x_2 x_3$$

$$\widetilde{f}(y_1, y_2, y_3, z_1, z_2, z_3, w_1, w_2, w_3)$$

$$= \frac{1}{6} y_1 z_2 w_3 + \frac{1}{6} y_1 w_2 z_3 + \frac{1}{6} z_1 y_2 w_3 + \frac{1}{6} z_1 w_2 y_3 + \frac{1}{6} w_1 y_2 z_3 + \frac{1}{6} w_1 z_2 y_3$$

Examples of decoupling

Maj₃
$$(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

$$Maj_3(y_1, y_2, y_3, z_1, z_2, z_3, w_1, w_2, w_3)$$

$$= \frac{1}{6} Y_1 + \frac{1}{6} Z_1 + \frac{1}{6} W_1$$

$$+\frac{1}{6}Y_2 + \frac{1}{6}Z_2 + \frac{1}{6}W_2$$

$$+\frac{1}{6}Y_3 + \frac{1}{6}Z_3 + \frac{1}{6}W_3$$

$$-\frac{1}{12}y_{1}z_{2}W_{3} - \frac{1}{12}y_{1}W_{2}z_{3} - \frac{1}{12}z_{1}y_{2}W_{3} - \frac{1}{12}z_{1}W_{2}y_{3} - \frac{1}{12}W_{1}y_{2}z_{3} - \frac{1}{12}W_{1}z_{2}y_{3}$$

A homogeneous Boolean function f with degree k is Block-multilinear if we can partition the input variables into k blocks S_1 , ..., S_k such that each monomial in the Fourier expansion of f contains exactly 1 variable in each block.

[KN08, Lov10, KM13, AA15]

A homogeneous Boolean function f with degree k is Block-multilinear if we can partition the input variables into k blocks S_1 , ..., S_k such that each monomial in the Fourier expansion of f contains exactly 1 variable in each block.

[KN08, Lov10, KM13, AA15]

A homogeneous Boolean function f with degree k is Block-multilinear if we can partition the input variables into k blocks S_1 , ..., S_k such that each monomial in the Fourier expansion of f contains at most 1 variable in each block.

[KN08, Lov10, KM13, AA15]

Theorem in [AA15] Let $f: \{-1,1\}^n \rightarrow (-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

$$f(x) = \widetilde{f}(x,...,x)$$

Theorem in [AA15] Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

$$f(x) = \widetilde{f}(x,...,x)$$

$$f: \{-1,1\}^n \to [-1,1] \longrightarrow \widetilde{f}: \{-1,1\}^{kn} \to [-C,C]?$$

Decoupling inequality

(k is the degree of f)

Theorem 1. Let $\Phi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be convex and non-decreasing.

$$E[\Phi(|f(x^{(1)},...,x^{(k)})|)] \le E[\Phi(C_k|f(x)|)]$$
[de la Peña 92]

Theorem 2. For all t > 0,

$$\Pr[|\widehat{f}(x^{(1)},...,x^{(k)})| > C_k t] \le D_k \Pr[|f(x)| > t]$$

[Peña Montgomery-Smith 95, Giné 98]

Comments:

- $1. C_k, D_k = k^{O(k)}$
- 2. The inputs can be any independent random variables with all moments finite.
- 3. The reverse inequality also holds with some worse constants.
- 4. f does not need to be multilinear neccesarily

Decoupling inequality

(k is the degree of f)

Theorem 1. Let $\Phi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be convex and non-decreasing.

$$E[\Phi(|f(x^{(1)},...,x^{(k)})|)] \le E[\Phi(C_k|f(x)|)]$$
[de la Peña 92]

Theorem 2. For all t > 0,

$$\Pr[|\widehat{f}(x^{(1)},...,x^{(k)})| > C_k t] \le D_k \Pr[|f(x)| > t]$$

[Peña Montgomery-Smith 95, Giné 98]

Comments:

5. If f is a homogeneous function with Boolean input, C_k can be improved to $2^{O(k)}$. [Kwapień 87]

6.
$$\Phi = |\cdot|^p \longrightarrow ||f||_p \le C_k ||f||_p$$

$$p \to \infty \qquad ||f||_p \le C_k ||f||_p$$

Theorem in [AA15] Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

$$f \xrightarrow{f(x) = \widetilde{f}(x,...,x)} \widetilde{f} \xrightarrow{\varepsilon' = \varepsilon/C_k} \widetilde{f}/C_k$$

$$[-1,1] \qquad [-C_k,C_k] \qquad [-1,1]$$

Theorem in [AA15] Let $f: \{-1,1\}^n \to [-1,1]$ be any bounded block-multilinear Boolean function with degree k.

Then there exists a randomized algorithm that, on input $x \in \{-1,1\}^n$, non-adaptively queries $2^{O(k)}(n/\varepsilon^2)^{1-1/k}$ bits of x, and then estimate the output of f within error ε with high probability.

$$f \xrightarrow{f(x) = \widetilde{f}(x,...,x)} \widetilde{f} \xrightarrow{\varepsilon' = \varepsilon/C_k} \widetilde{f}/C_k$$

$$[-1,1] \qquad [-C_k,C_k] \qquad [-1,1]$$

Application 2: AA Conjecture

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge poly(Var[f]/k)$.

Def:
$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \prod_{i \in S} x_i$$

$$Var[f] = \sum_{S \neq \emptyset} \hat{f}(S)^2$$

$$Inf_i[f] = \sum_{S \ni i} \hat{f}(S)^2$$

$$MaxInf[f] = \max_{i \in [n]} \{Inf_i[f]\}$$

$$Maj_{3}(x_{1},x_{2},x_{3}) = \frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} - \frac{1}{2}x_{1}x_{2}x_{3}$$

$$Var[Maj_{3}] = 1$$

$$Inf_{i}[Maj_{3}] = \frac{1}{2}$$

$$MaxInf[Maj_{3}] = \frac{1}{2}$$

Application 2: AA Conjecture

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge poly(Var[f]/k).$

Suppose AA Conjecture holds:

- There exists some deterministic simulation of a quantum algorithm;
- 2. $P = P^{\#P}$ implies $BQP^A \subset AvgP^A$ with probability 1 for a random oracle A.

Application 2: AA Conjecture, weak version

Let $f: \{-1,1\}^n \to [-1,1]$ be a Boolean function with degree at most k. Then $\mathsf{MaxInf}[f] \geq \mathsf{Var}[f]^2/\mathsf{exp}(k).$

Application 2: AA Conjecture, weak version

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge Var[f]^2/exp(k)$.

There exists an easy proof for block-multilinear function!!

$$f(y,z) = \sum_{i} y_{i}g_{i}(z)$$
First block

Rest variables

Then use hypercontractivity and Cauchy-Schwartz

Examples of decoupling

$$f(x_1, x_2, x_3) = x_1 x_2 x_3$$

$$\tilde{f}(y_1, y_2, y_3, z_1, z_2, z_3, w_1, w_2, w_3)$$

$$= \frac{1}{6} y_1 z_2 w_3 + \frac{1}{6} y_1 w_2 z_3 + \frac{1}{6} z_1 y_2 w_3 + \frac{1}{6} z_1 w_2 y_3 + \frac{1}{6} w_1 y_2 z_3 + \frac{1}{6} w_1 z_2 y_3$$

$$Var[\tilde{f}] = \frac{1}{k!} Var[f] \qquad Inf_{y_i}[\tilde{f}] = \frac{1}{k! \cdot k} Inf_{x_i}[f]$$

Application 2: AA Conjecture, weak version

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge Var[f]^2/exp(k)$.

$$f \longrightarrow \widetilde{f} / C_{k}$$

$$[-1,1] \qquad [-C_{k}, C_{k}] \qquad [-1,1]$$

$$\operatorname{Var}[\widetilde{f}] = \frac{1}{k!} \operatorname{Var}[f] \qquad \operatorname{Var}[\widetilde{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Var}[\widetilde{f}]$$

$$\operatorname{Inf}_{i}[\widetilde{f}] = \frac{1}{k! \cdot k} \operatorname{Inf}_{i}[f] \qquad \operatorname{Inf}_{i}[\widetilde{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Inf}_{i}[\widetilde{f}]$$

Application 2: AA Conjecture, weak version

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge Var[f]^2/exp(k log k).$

$$f \longrightarrow \widetilde{f} / C_{k}$$

$$[-1,1] \qquad [-C_{k},C_{k}] \qquad [-1,1]$$

$$\operatorname{Var}[\widetilde{f}] = \frac{1}{k!} \operatorname{Var}[f] \qquad \operatorname{Var}[\widetilde{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Var}[\widetilde{f}]$$

$$\operatorname{Inf}_{i}[\widetilde{f}] = \frac{1}{k! \cdot k} \operatorname{Inf}_{i}[f] \qquad \operatorname{Inf}_{i}[\widetilde{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Inf}_{i}[\widetilde{f}]$$

Summary of classical decoupling

Advantage:

Transfer a general function *f* to a block-multilinear function.

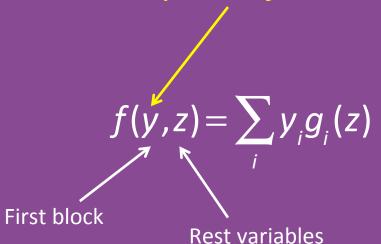
Disadvantage:

Introduce an exponential factor on k in decoupling inequality. \odot

Summary of classical decoupling

Sometimes we don't need the function to be all-blocks-multilinear.

We only need f to be a linear map on y.



Then use hypercontractivity and Cauchy-Schwartz

One-block-multilinear

A Boolean function f with degree k is one-block-multilinear if there exists a subset of the input variables S such that each monomial (except the constant term) in the Fourier expansion of f contains exactly 1 variable in S.

$$f(y,z) = \sum_{i} y_{i} g_{i}(z) \quad \text{Sort}(x_{1}, x_{2}, x_{3}, x_{4}) = \frac{1}{2} x_{1} x_{2} + \frac{1}{2} x_{2} x_{3} + \frac{1}{2} x_{3} x_{4} - \frac{1}{2} x_{1} x_{4}$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

Maj₃
$$(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

Partial decoupling, with polynomial bounds

Our result:

$$f \xrightarrow{\text{Partial decoupling}} f$$

general function degree k n variables One-block-multilinear function degree k

2n variables
(2 blocks of n variables)

Examples of partial decoupling

$$f(x_1, x_2, x_3) = x_1 x_2 x_3$$

$$\widehat{f}(y_1, y_2, y_3, z_1, z_2, z_3)$$

$$= y_1 z_2 z_3 + z_1 y_2 z_3 + z_1 z_2 y_3$$

Examples of partial decoupling

Maj₃
$$(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

$$\widehat{\text{Maj}_{3}}(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3})$$

$$= \frac{1}{2}y_{1} + \frac{1}{2}y_{2} + \frac{1}{2}y_{3}$$

Examples of partial decoupling

$$\text{Maj}_3(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

$$\widehat{\mathsf{Maj}_{3}}(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3})$$

$$= \frac{1}{2}y_{1} + \frac{1}{2}y_{2} + \frac{1}{2}y_{3} - \frac{1}{2}y_{1}z_{2}z_{3} - \frac{1}{2}z_{1}y_{2}z_{3} - \frac{1}{2}z_{1}z_{2}y_{3}$$

kf(x) = f(x,x) for homogeneous case only

$$Var[f] \le Var[f] \le kVar[f]$$

$$\inf_{y_i}[f] = \inf_{x_i}[f] \quad \inf_{z_i}[f] \le (k-1)\inf_{x_i}[f]$$

Partial decoupling, with polynomial bounds

Our result:

Theorem 1. Let $\Phi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be convex and non-decreasing.

$$E[\Phi(|f(y,z)|)] \leq E[\Phi(C_k|f(x)|)]$$

Theorem 2. For all t > 0,

$$\Pr[|f(y,z)| > C_k t] \leq D_k \Pr[|f(x)| > t]$$

With constants:

$$D_{k} = k^{O(k)} \qquad C_{k} = \begin{cases} O(k^{3/2}) \\ O(k) \end{cases}$$

 $C_k = \begin{cases} O(k^2) & \text{Boolean} \\ O(k^{3/2}) & \text{Boolean, homogeneous} \\ O(k) & \text{standard Gaussian} \end{cases}$

Application 2: AA Conjecture, weak version

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge Var[f]^2/exp(k)$.

$$f \longrightarrow \widehat{f} / C_{k}$$

$$[-1,1] \qquad [-C_{k}, C_{k}] \qquad [-1,1]$$

$$\operatorname{Var}[\widehat{f}] \ge \operatorname{Var}[f] \qquad \operatorname{Var}[\widehat{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Var}[\widehat{f}]$$

$$\operatorname{MaxInf}[\widehat{f}] \le k \operatorname{MaxInf}[f] \qquad \operatorname{Inf}_{i}[\widehat{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Inf}_{i}[\widehat{f}]$$

Application 2: AA Conjecture

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge Var[f]^2/poly(k)$.

$$f \longrightarrow \widehat{f} / C_{k}$$

$$[-1,1] \qquad [-C_{k}, C_{k}] \qquad [-1,1]$$

$$\operatorname{Var}[\widehat{f}] \ge \operatorname{Var}[f] \qquad \operatorname{Var}[\widehat{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Var}[\widehat{f}]$$

$$\operatorname{MaxInf}[\widehat{f}] \le k \operatorname{MaxInf}[f] \qquad \operatorname{Inf}_{i}[\widehat{f}/C_{k}] = \frac{1}{C_{k}^{2}} \operatorname{Inf}_{i}[\widehat{f}]$$

Application 2: AA Conjecture

Let $f: \{-1,1\}^n \rightarrow [-1,1]$ be a Boolean function with degree at most k. Then

 $MaxInf[f] \ge Var[f]^2/poly(k)$.

The conjecture holds for one-block-multilinear functions.

$$f(y,z) = \sum_{i} y_{i}g_{i}(z)$$

Comparisons

Full decoupling

Partial decoupling

Block-multilinear

$$C_k = \exp(k)$$

 $Var[f] \approx exp(-O(k))Var[f]$

$$f(x) = \widetilde{f}(x, ..., x)$$

General inputs with all finite moments

One-block-multilinear

$$C_k = \operatorname{poly}(k)$$

 $Var[f] \le Var[f] \le kVar[f]$

$$kf(x) = f(x,x)$$

for homogeneous case only

Boolean or Gaussian

The rest of my talk

- 1. Application 3: Tight bounds for DFKO Theorems
- 2. Proof sketch for our decoupling inequalities

Application 3: Tight bounds for DFKO Theorems

DFKO Inequality: [Dinur Friedgut Kindler O'Donnell 07]

 $f: \mathbb{R}^n \to \mathbb{R}$ a polynomial with degree kStandard Gaussian/Boolean inputs (for Boolean, MaxInf[f] is small) Var[f] ≥ 1

$$\Pr[|f| > t] \ge \exp(-O(t^2k^2\log k))$$

 $\Pr[|f| > t] \le \exp(-O(t^2))$

There exists some function *f* such that

$$\Pr[|f| > t] \le \exp(-O(t^2k^2))$$

Application 3: Tight bounds for DFKO Theorems

$$\Pr[|f(y,z)| > t] \ge \exp(-O(k+t^2))$$
(by hypercontractivity)

$$\Pr[|f(y,z)| > C_k t] \leq D_k \Pr[|f(x)| > t]$$

Gaussian case: $C_k = O(k), D_k = k^{O(k)} = \exp(O(k \log k))$

 $\Pr[|f|>t] \ge \exp(-O(t^2k^2))$

Proof sketch for Gaussian case

Theorem 1. Let $\Phi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be convex and non-decreasing.

$$E[\Phi(|f(y,z)|)] \leq E[\Phi(C_k|f(x)|)]$$

$$\widehat{f}(y,z) = \sum_{i} c_{i} f(a_{i}y + b_{i}z)$$

$$a_{i}^{2} + b_{i}^{2} = 1 \qquad a_{i}y + b_{i}z \sim N(0,1)^{n}$$

$$\sum_{i} |c_{i}| = C_{k} = O(k)$$

Proof sketch for Gaussian case

Theorem 1. Let $\Phi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be convex and non-decreasing.

$$E[\Phi(|f(y,z)|)] \leq E[\Phi(C_k|f(x)|)]$$

$$E[\Phi(|f(y,z)|)] = E\left[\Phi\left(\left|\sum_{i} c_{i} f(a_{i} y + b_{i} z)\right|\right)\right]$$

$$\leq \sum_{i} \frac{|c_{i}|}{c_{k}} E\left[\Phi\left(\left|C_{k} f(a_{i} y + b_{i} z)\right|\right)\right]$$

$$= \sum_{i} \frac{|c_{i}|}{c_{k}} E\left[\Phi\left(C_{k} |f(x)|\right)\right]$$

$$= E\left[\Phi\left(C_{k} |f(x)|\right)\right]$$

Proof sketch for Gaussian case

Theorem 1. Let $\Phi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be convex and non-decreasing.

$$E[\Phi(|f(y,z)|)] \leq E[\Phi(C_k|f(x)|)]$$

$$\begin{aligned}
\widehat{f}(y,z) &= \sum_{i} c_{i} f(a_{i}y + b_{i}z) & f(x) &= x_{1}x_{2} \quad \widehat{f}(y,z) &= y_{1}z_{2} + y_{2}z_{1} \\
f(a_{i}y + b_{i}z) &= (a_{i}y_{1} + b_{i}z_{1})(a_{i}y_{2} + b_{i}z_{2}) \\
a_{i}^{2} + b_{i}^{2} &= 1
\end{aligned}$$

$$\begin{aligned}
y_{1}z_{2} + y_{2}z_{1} &= \\
\sum_{i} |c_{i}| &= C_{k} = O(k)
\end{aligned}$$

$$\begin{aligned}
\sum_{i} c_{i}a_{i}^{2}y_{1}y_{2} + \sum_{i} c_{i}a_{i}b_{i}(y_{1}z_{2} + y_{2}z_{1}) + \sum_{i} c_{i}b_{i}^{2}z_{1}z_{2} \\
\sum_{i} c_{i}a_{i}^{2} &= 0
\end{aligned}$$

$$\begin{aligned}
\sum_{i} c_{i}a_{i}^{2} &= 0
\end{aligned}$$

$$\begin{aligned}
\sum_{i} c_{i}a_{i}b_{i} &= 1
\end{aligned}$$
Best choice we got:
$$\frac{a_{i}}{b_{i}} &= \frac{k}{i}
\end{aligned}$$

Summary

Main result:

Prove the decoupling inequalities for one-block decoupling with polynomial bounds.

Applications:

- 1. Generalize a randomized algorithm to arbitrary Boolean functions with the same query complexity;
- 2. Give an easy proof for the weak version of AA Conjecture. Show that AA Conjecture holds iff it holds for all one-block-multilinear functions;
- 3. Prove the tight bounds for DFKO Theorems.

Future direction

- 1. One-block decoupling inequalities are tight with Gaussian inputs. What about Boolean case?
- 2. Can we generalize them to arbitrary inputs with all moments finite?
- 3. Do the reverse inequalities hold?
- 4. Prove (or disprove) AA Conjecture for oneblock-multilinear functions.

Thank you!