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Apple A14: 
12 cores

4x Intel Xeon E7: 
72 coresAMD Epyc: 64 cores

Apple S4: 
2 cores

AMD Ryzen 
Threadripper: 

16 cores
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Parallel Hardware Today

nVidia 
GeForce 3090: 

10496 (CUDA) cores



Parallel Programming

functional

imperative

mutability (in-place updates)

manual memory management

race conditions

immutability

automatic memory management

deterministic by default

slow?

fast

?can parallel functional 
programming be 
fast and scalable
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deterministic by default

Parallel Programming
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functional

imperative

mutability (in-place updates)

manual memory management

race conditions 

slow?

fast

?can parallel functional 
programming be 
fast and scalable

high rate of allocation 
heavy reliance on GC

immutability 
automatic memory management 
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mutator collectormemory

memory

mutator

mutator collector

mutator
mutator

mutator
mutator

mutator
mutator

mutator

Sequential

Parallel



memory

collector
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mutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Sequential

Parallel

mutator collectormemory

Is there a better way?
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memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Disentanglement 
 

“concurrent tasks remain oblivious

to each other’s allocations”

Is there a better way?



MaPLe Compiler
• based on MLton, full Standard ML language, extended with


• parallel memory management based on disentanglement 

• used by 500+ students at CMU each year

github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

8
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Parallel ML 
Benchmark Suite

- over 30 state-of-the-art parallel algorithms

- ported from highly-optimized C++ benchmark suites  

(PBBS, GBBS, Ligra, PAM, ...)

- all disentangled

- MPL has excellent parallel time and space performance

- same memory footprint as C++ (on average)

- generally within 2x time of hand-optimized C++ 

- e.g. linefit (±5%), sparse matrix-vector mult (±10%),  
mergesort (1.3x), nearest-neighbors (1.7x), 
tokenization (1.7x), delaunay triangulation (2.3x)

github.com/mpllang/parallel-ml-bench

betweenness centrality

breadth-first search

minimum spanning tree

maximum independent set

low-diameter decomposition

triangle counting

delaunay triangulation

nearest neighbors

quickhull

2D range query

seam carving

raytracing

tinykaboom

GIF encode+decode

reverb

WAV encode+decode

tokenization

deduplication

grep

word-count

longest palindrome

suffix array 
dense+sparse matrix mult

integration


graphs


geometry


images


audio


text


numeric
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MPL (72 processors) 
vs


MLton (sequential baseline) 

14-60x speedup, often with

less space (average: -30%)
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linefit

mcss

msort(int64)

msort(string)

prime sieve

sparse-mxv

tokenization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Go/MPL Space Java/MPL Space

linefit

mcss

msort(int64)

msort(string)

prime sieve

sparse-mxv

tokenization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Go/MPL Time Java/MPL Time

MPL vs Java and Go 
(on 72 processors) 

average vs Go: 
  2x faster 
  30% less space 

average vs Java: 
  3x faster 
  4x less space

Time (relative to MPL) Space (relative to MPL)

7x

6x

11x
11x

7x

5x

18x

(higher is better for MPL)
  Go Time   Java Time   Go Space   Java Space



?can parallel functional 
programming be 
fast and scalable
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YES:
• MPL can outperform existing implementations 

of parallel languages


• MPL can compete with low-level optimized 
C++ code
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Disentanglement
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allocate

location X

use X use X

Disentanglement

- observed in efficient parallel code: 
concurrent tasks are oblivious to 
each other’s allocations

- arbitrary? no: 
guaranteed by 
determinacy-race-freedom 
[Westrick et al. 2020]

- in computation graph: 
allocation precedes use

betweenness centrality

breadth-first search

minimum spanning tree

maximum independent set

low-diameter decomposition

triangle counting

delaunay triangulation

nearest neighbors

quickhull

2D range query

seam carving

raytracing

tinykaboom

GIF encode+decode

reverb

WAV encode+decode

tokenization

deduplication

grep

word-count

longest palindrome

suffix array 
dense+sparse matrix mult

integration

linear regression
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How to utilize disentanglement 
for improved efficiency and scalability?

Disentanglement

idea: organize memory to reflect structure of parallelism: 
concurrent execution ⇔ memory separation



Nested Fork/Join Parallelism 

classic and popular (as programming model and/or execution model):

• Cilk, ParlayLib, Intel TBB, Microsoft TPL, OpenMP, Legion, Rayon, Fork/Join 

Java, Habanero Java, X10, multiLisp, Id, NESL, parallel Haskell, Manticore, 
Futhark, SML#, etc.

fork (spawn) join (sync)
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Task-Local Heaps

fork (spawn) join (sync)



fork (spawn)

merge heaps 
into parent

fresh empty heaps

join (sync)

Task-Local Heaps
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Disentangled Memory Management
• disentanglement: no cross-pointers 

(up-pointers are down-pointers are allowed)
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naturally

parallel

reorganize,

compact, etc.

inside subtree

• disentanglement: no cross-pointers 
(up-pointers are down-pointers are allowed) 

• subtree collection

Disentangled Memory Management



concurrent non-moving GC  
(no descendant pauses)
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• disentanglement: no cross-pointers 
(up-pointers are down-pointers are allowed) 

• subtree collection

• internal concurrent collections

naturally

parallel

reorganize,

compact, etc.

inside subtree

Disentangled Memory Management



LGC

- heaps local to one processor

- compactifying (copying) GC

CGC

- heaps with at least 2 active descendants

- concurrent non-moving mark-sweep

- snapshot-at-the-beginning (SATB)

Notes: 
• write barrier for remembered sets 

(for SATB, and down-pointers)

• never stops the world 
• no promotions necessary 
• LGC+CGC ➞ provable efficiency 

[Arora et al. 2021]
22
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Ensuring Disentanglement



Intuition

• if entangled, must be a read/write race 
• write: creates down-pointer 
• read: discovers data across

x

y

theorem   [Westrick et al. POPL 20] 
determinacy-race-free programs are disentangled

y = malloc() 
*x = y  
...

... 

... 
z = *x

Proof idea

• single-step invariant: 

if location X accessible without a race, then 
neighbors(X) are in root-to-leaf path


• carry invariant through race-free execution

24



fully general

disentangled

effectful and race-free

mutation-free

(e.g. purely functional)
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Entanglement Detection
Algorithm

• build computation graph during execution

• annotate allocated locations with current vertex

• check results of memory reads


• disentangled: result allocated before current vertex

• otherwise, entanglement detected

allocate

location X

use X use X

use X
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sound (no missed alarms) and complete (no false alarms)

provably efficient (work, span, and space)

[Westrick et al. ICFP 22]

Implementation and Evaluation: 
• nearly zero overhead (±5%) for both time and space

• read-barrier on mutable pointers only

• SP-order maintenance
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Writing Disentangled Programs
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purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation 
w/ “local” effects

only 10% more time+memory than hand-optimized

Writing Disentangled Programs

no need to know 
about disentanglement!

fun mergesort(X) = 
  if length(X) <= granularity then 
    quicksort(X) 
  else 
    let 
      val (L,R) = split(X) 
      val (sL,sR) = par(fn _ => mergesort(L), 
                        fn _ => mergesort(R)) 
    in 
      merge(sL,sR) 
    end



Writing Disentangled Programs
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purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

fast implementation 
w/ “local” effects

...

parentheses matching

max contiguous subsequence

prime sieve

sorting

order statistics

range query

graph search

connected components

shortest paths

minimum spanning forest

dynamic programming

hashing

...

15-210 (Undergrad Course) 
Parallel and Sequential


Data Structures and Algorithms

no need to know 
about disentanglement!
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purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation 
w/ “local” effects

mostly

Writing Disentangled Programs

fun forwardBFS(G,s) = 
  let 
    fun outEdges(u) = map(fn v => (u,v), neighbors(G,u)) 
    val parents = tabulate(numVertices(G), fn v => -1) 
    fun tryVisit(u,v) = 
      if compareAndSwap(parents,v,-1,u) then SOME(v) else NONE 
    fun search(F) = 
      if length(F) = 0 then () 
      else search(filterOp(tryVisit, flatten(map(outEdges, F)))) 
  in 
    tryVisit(s,s); 
    search(singleton(s)); 
    parents 
  end
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Summary
disentanglement 
- “concurrent tasks remain oblivious to each other’s allocations”

- common property, guaranteed by race-freedom, functional programming

- enables fully parallel memory management and GC


MaPLe implementation

- fast, scalable, and space-efficient

- competitive with low-level imperative code


Future / Ongoing work

- static enforcement of disentanglement (e.g. type system)

- dynamic “entanglement management”

- distributed computing

github.com/mpllang/mpl


