
Efficient and Scalable Parallel
Functional Programming Through

Disentanglement

Sam Westrick
Carnegie Mellon University

ML Workshop

Ljubljana, Slovenia

September 2022

1

Apple A14:
12 cores

4x Intel Xeon E7:
72 coresAMD Epyc: 64 cores

Apple S4:
2 cores

AMD Ryzen
Threadripper:

16 cores

2

Parallel Hardware Today

nVidia
GeForce 3090:

10496 (CUDA) cores

Parallel Programming

functional

imperative

mutability (in-place updates)

manual memory management

race conditions

immutability

automatic memory management

deterministic by default

slow?

fast

?can parallel functional
programming be
fast and scalable

3

deterministic by default

Parallel Programming

4

functional

imperative

mutability (in-place updates)

manual memory management

race conditions

slow?

fast

?can parallel functional
programming be
fast and scalable

high rate of allocation
heavy reliance on GC

immutability
automatic memory management

5

mutator collectormemory

memory

mutator

mutator collector

mutator
mutator

mutator
mutator

mutator
mutator

mutator

Sequential

Parallel

memory

collector

6

mutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Sequential

Parallel

mutator collectormemory

Is there a better way?

7

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Disentanglement
 

“concurrent tasks remain oblivious

to each other’s allocations”

Is there a better way?

MaPLe Compiler
• based on MLton, full Standard ML language, extended with

• parallel memory management based on disentanglement

• used by 500+ students at CMU each year

github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

8

9

Parallel ML
Benchmark Suite

- over 30 state-of-the-art parallel algorithms

- ported from highly-optimized C++ benchmark suites  

(PBBS, GBBS, Ligra, PAM, ...)

- all disentangled

- MPL has excellent parallel time and space performance

- same memory footprint as C++ (on average)

- generally within 2x time of hand-optimized C++

- e.g. linefit (±5%), sparse matrix-vector mult (±10%),  
mergesort (1.3x), nearest-neighbors (1.7x), 
tokenization (1.7x), delaunay triangulation (2.3x)

github.com/mpllang/parallel-ml-bench

betweenness centrality

breadth-first search

minimum spanning tree

maximum independent set

low-diameter decomposition

triangle counting

delaunay triangulation

nearest neighbors

quickhull

2D range query

seam carving

raytracing

tinykaboom

GIF encode+decode

reverb

WAV encode+decode

tokenization

deduplication

grep

word-count

longest palindrome

suffix array
dense+sparse matrix mult

integration

graphs

geometry

images

audio

text

numeric

tinykaboom
raytracer

range-query
mergesort

triangle-count
dense matmul

tokenization
grep

max-indep-set
palindrome

nearest nbrs
centrality

low-d-decomp
suffix-array

bfs
reverb
dedup

quickhull
delaunay

seam-carve

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

MPL (72 processors)
vs

MLton (sequential baseline)

14-60x speedup, often with

less space (average: -30%)

Speedup (higher is better) Space Blowup (lower is better)
tinykaboom

raytracer
range-query

mergesort
triangle-count

dense matmul
tokenization

grep
max-indep-set

palindrome
nearest nbrs

centrality
low-d-decomp

suffix-array
bfs

reverb
dedup

quickhull
delaunay

seam-carve

0 10 20 30 40 50 60 70

(7x)

linefit

mcss

msort(int64)

msort(string)

prime sieve

sparse-mxv

tokenization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Go/MPL Space Java/MPL Space

linefit

mcss

msort(int64)

msort(string)

prime sieve

sparse-mxv

tokenization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Go/MPL Time Java/MPL Time

MPL vs Java and Go
(on 72 processors)

average vs Go:
 2x faster
 30% less space

average vs Java:
 3x faster
 4x less space

Time (relative to MPL) Space (relative to MPL)

7x

6x

11x
11x

7x

5x

18x

(higher is better for MPL)
 Go Time Java Time Go Space Java Space

?can parallel functional
programming be
fast and scalable

12

YES:
• MPL can outperform existing implementations 

of parallel languages

• MPL can compete with low-level optimized 
C++ code

13

Disentanglement

14

allocate

location X

use X use X

Disentanglement

- observed in efficient parallel code: 
concurrent tasks are oblivious to 
each other’s allocations

- arbitrary? no: 
guaranteed by 
determinacy-race-freedom 
[Westrick et al. 2020]

- in computation graph: 
allocation precedes use

betweenness centrality

breadth-first search

minimum spanning tree

maximum independent set

low-diameter decomposition

triangle counting

delaunay triangulation

nearest neighbors

quickhull

2D range query

seam carving

raytracing

tinykaboom

GIF encode+decode

reverb

WAV encode+decode

tokenization

deduplication

grep

word-count

longest palindrome

suffix array
dense+sparse matrix mult

integration

linear regression

graphs

geometry

images

audio

text

numeric

15

How to utilize disentanglement
for improved efficiency and scalability?

Disentanglement

idea: organize memory to reflect structure of parallelism: 
concurrent execution ⇔ memory separation

Nested Fork/Join Parallelism

classic and popular (as programming model and/or execution model):

• Cilk, ParlayLib, Intel TBB, Microsoft TPL, OpenMP, Legion, Rayon, Fork/Join

Java, Habanero Java, X10, multiLisp, Id, NESL, parallel Haskell, Manticore,
Futhark, SML#, etc.

fork (spawn) join (sync)

16

17

Task-Local Heaps

fork (spawn) join (sync)

fork (spawn)

merge heaps
into parent

fresh empty heaps

join (sync)

Task-Local Heaps

18

19

Disentangled Memory Management
• disentanglement: no cross-pointers 

(up-pointers are down-pointers are allowed)

20

naturally

parallel

reorganize,

compact, etc.

inside subtree

• disentanglement: no cross-pointers 
(up-pointers are down-pointers are allowed)

• subtree collection

Disentangled Memory Management

concurrent non-moving GC  
(no descendant pauses)

21

• disentanglement: no cross-pointers 
(up-pointers are down-pointers are allowed)

• subtree collection

• internal concurrent collections

naturally

parallel

reorganize,

compact, etc.

inside subtree

Disentangled Memory Management

LGC

- heaps local to one processor

- compactifying (copying) GC

CGC

- heaps with at least 2 active descendants

- concurrent non-moving mark-sweep

- snapshot-at-the-beginning (SATB)

Notes:
• write barrier for remembered sets 

(for SATB, and down-pointers)

• never stops the world
• no promotions necessary
• LGC+CGC ➞ provable efficiency 

[Arora et al. 2021]
22

23

Ensuring Disentanglement

Intuition

• if entangled, must be a read/write race
• write: creates down-pointer
• read: discovers data across

x

y

theorem [Westrick et al. POPL 20]
determinacy-race-free programs are disentangled

y = malloc()
*x = y
...

...

...
z = *x

Proof idea

• single-step invariant: 

if location X accessible without a race, then
neighbors(X) are in root-to-leaf path

• carry invariant through race-free execution

24

fully general

disentangled

effectful and race-free

mutation-free

(e.g. purely functional)

25

Entanglement Detection
Algorithm

• build computation graph during execution

• annotate allocated locations with current vertex

• check results of memory reads

• disentangled: result allocated before current vertex

• otherwise, entanglement detected

allocate

location X

use X use X

use X

26

sound (no missed alarms) and complete (no false alarms)

provably efficient (work, span, and space)

[Westrick et al. ICFP 22]

Implementation and Evaluation:
• nearly zero overhead (±5%) for both time and space

• read-barrier on mutable pointers only

• SP-order maintenance

27

Writing Disentangled Programs

28

purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation
w/ “local” effects

only 10% more time+memory than hand-optimized

Writing Disentangled Programs

no need to know
about disentanglement!

fun mergesort(X) =
 if length(X) <= granularity then
 quicksort(X)
 else
 let
 val (L,R) = split(X)
 val (sL,sR) = par(fn _ => mergesort(L),
 fn _ => mergesort(R))
 in
 merge(sL,sR)
 end

Writing Disentangled Programs

29

purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

fast implementation
w/ “local” effects

...

parentheses matching

max contiguous subsequence

prime sieve

sorting

order statistics

range query

graph search

connected components

shortest paths

minimum spanning forest

dynamic programming

hashing

...

15-210 (Undergrad Course)
Parallel and Sequential

Data Structures and Algorithms

no need to know
about disentanglement!

30

purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation
w/ “local” effects

mostly

Writing Disentangled Programs

fun forwardBFS(G,s) =
 let
 fun outEdges(u) = map(fn v => (u,v), neighbors(G,u))
 val parents = tabulate(numVertices(G), fn v => -1)
 fun tryVisit(u,v) =
 if compareAndSwap(parents,v,-1,u) then SOME(v) else NONE
 fun search(F) =
 if length(F) = 0 then ()
 else search(filterOp(tryVisit, flatten(map(outEdges, F))))
 in
 tryVisit(s,s);
 search(singleton(s));
 parents
 end

31

Summary
disentanglement
- “concurrent tasks remain oblivious to each other’s allocations”

- common property, guaranteed by race-freedom, functional programming

- enables fully parallel memory management and GC

MaPLe implementation

- fast, scalable, and space-efficient

- competitive with low-level imperative code

Future / Ongoing work

- static enforcement of disentanglement (e.g. type system)

- dynamic “entanglement management”

- distributed computing

github.com/mpllang/mpl

