Lightweight Structure in Text

Robert C. Miller

May 7, 2002
3:00 pm
NSH 3305

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Brad A. Myers, Co-chair
David Garlan, Co-chair
James H. Morris
Brian Kernighan, Princeton University

Copyright (© 2002 Robert C. Miller

This research was sponsored in part by NSF under grant number IR1-9319969, by the Army Research Office under
National Defense Science and Engineering Grant number DAAH04-95-1-0552, and by the USENIX Association.

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of any sponsoring party or the U.S.
Government.

Abstract

Pattern matching is very useful in automatic text processing, for searching, filtering, and trans-
forming text. Existing pattern languages, such as regular expressions and grammars, offer few
opportunities for reuse. Lightweight structure is a new approach that solves the reuse problem.
Lightweight structure has three parts: a model of text structure as contiguous segments of text, or
regions; an extensible library of structure abstractions (e.g., HTML elements, Java expressions, or
English sentences) that can be implemented by any kind of pattern or parser; and a region algebra
that allows structure abstractions to be composed and reused. Lightweight structure does for text
pattern matching what procedure abstraction does for programming, enabling the construction of
a reusable pattern library.

Lightweight structure has been implemented in LAPIS, a web browser/text editor that demon-
strates several novel applications of the idea:

e Text constraints is a new pattern language for composing structure abstractions, based on
the region algebra. Text constraint patterns are simple and high-level, and user studies have
shown that users can generate and comprehend them.

e Simultaneous editing uses multiple selections for repetitive text editing, in a way that is
more interactive and visual than keyboard macros or find-and-replace. Multiple selections
are inferred from examples given by the user, drawing on the lightweight structure library
to make fast, accurate, domain-specific inferences from very few examples. In user studies,
simultaneous editing required only 1.26 examples per selection, approaching the ideal of
1-example programming-by-demonstration.

e Outlier finding draws the user’s attention to inconsistent selections or pattern matches. Out-
lier finding can point out both possible false positives and possible false negatives. When
outlier finding was integrated into simultaneous editing and tested in a user study, it was
found to reduce user errors.

e Unix tools for structured text extend tools like gr ep and sor t with lightweight structure,
and the browser shell integrates a Unix command prompt into a web browser, offering new
ways to build pipelines and automate web browsing.

Theoretical contributions include a formal definition of the region algebra, the data structures and
algorithms that implement it efficiently, and a characterization of the classes of languages recog-
nized by region algebra expressions.

Lightweight structure enables efficient composition and reuse of structure abstractions defined
by various kinds of patterns and parsers, bringing improvements to pattern matching, text pro-
cessing, web automation, repetitive text editing, inference of patterns from examples, and error
detection.

Thesis Summary

Computer users are surrounded by text — personal documents, web pages, email messages, news-
group postings, program source code, data files, configuration files, event logs, and more. Even
with the rise of graphical user interfaces, multimedia personal computers, and broadband networks
with streaming video and audio, most of the information consumed and produced by computer
users still comes in textual form.

Text is full of structure designed to help readers understand and use the information it contains.
Figures 1-4 illustrate some of the structure found in email messages, web pages, and source code.
Some structure is explicitly labeled, like the headers of the email message in Figure 1; some is
more implicit, like the phone number and signature in the body of the message. Some structure
is formal and hierarchical, with every part appearing in a fixed, well-defined place, like the Java
language syntax in Figure 4; some is more informal, like the book titles and authors in Figure 2, or
the advertisement in Figure 3.

Often a document has several distinct layers of structure. For example, at the highest level,
Figure 2 is a list of books, with attributes like title, year, author, genre, and format. At a lower
level, the page is laid out as a table, with rows, columns, header cells, and data cells. At a still
lower level, not visible in the figure, the page is a tree of HTML markup elements, and at the
lowest level, a string of ASCII characters. All these layers of structure provide useful information
for understanding or processing the document.

Structure has value not only for reading and understanding text, but also for manipulating it
— searching, editing, filtering, transforming, or rearranging its elements. An email user may want
to find the message from Joe with his phone number in it. A book shopper may want to limit the
books to a certain genre or format. A web surfer may want to strip advertisements from a web

from
From: |Joe Smith date ;
To: Rob Miller J ,Jn ©

Date: [Thu, 31 Jan 2002/20:32:10 -0500
Subject: vacation

Call me at/505-393-2002]

signature k

Figure 1: An email message with some of its structure labeled.

phone number

Displaying items 1 - 50 of 241

Date Download
Description Added |Category| Format
book ‘The Young Forester' by Zane
N ung ¥ 01/07/2002Adventure(Doc ‘
Grey (Zipped) —
Teaching in Southeast Asia 12/24/2001 Adventure/MobiPocket
{The Deerslayej‘ by James
. Fenimore Cooper (1841) 12/10/2001Adventure Doc format
title 'The_ Deerslayer' by James 121 0/2001Adventure’@|¢«/
Fenimore Cooper (1841)]
The Lost City"by Joseph E. 12/10/2001Adventurs|Plucker
Badger, Jr.

"The Pathfinder, or The Inland
Sea' by James Fenimore Cooper| | 12/10/2001 dventure‘%

1240) s B
— \ |

author genre

year

Figure 2: A web page that lists electronic books available for downloading.

1dluY! - ALY
YAHOOINEWS &
advertisement price of 4 {as §
"\ 5 0Bs for the price of] { g4 KA
Ty Exclusive Offer! Click For Details!
user Hello Guest] [My Yahool- News Alerts - Sian In
Yahoo! News - Thursday, O
._ " : o MlNewsSmnes -
date
hyperlink
Figure 3: A web page from Yahoo.
public booh?an 1:SF'Iat O {
method ‘>} return isCrisp ; method name
e
P pub'l'ic’[RegionEnumerati on\ \r'eg'i ons\ O 1
return new RegionEnumeration () {
pub'l"ic Region first (O {
return Region.this;
3 "\ statement

public Region next (O {

expression

public Region firstFast () {
return Region.this;

¥

Figure 4: Part of a Java program.

page. A programmer may want to find the methods that return nul | and edit them to throw an
exception instead.

These manipulations require some way to describe the structure to be manipulated, such as
books, advertisements, or Java methods.. Previous systems have generally chosen one of two well-
known mechanisms for describing text structure: grammars or regular expressions. Grammars
are well suited to describing formal, hierarchical structure imposed on an entire document, like
programming language syntax or document markup. Grammars are used by syntax-directed pro-
gram editors like Gandalf [HN86] and the Cornell Program Synthesizer [RT89], and by markup
languages like SGML [Gol90] and XML [W3CO00]. Regular expressions, on the other hand, are
well-suited for matching local or informal structure, like phone numbers or email addresses, but
lack the expressive power to describe hierarchical structure. Regular expressions are used heavily
by awk [AKW88] and Perl [WCS96].

The problem with previous approaches to structure description is that they provide little op-
portunity for reuse, especially between the two approaches. Perl programmers struggle to describe
HTML elements with complex regular expressions, despite the fact that grammar-based HTML
parsers already encapsulate that knowledge. A grammar-based XML tool cannot take apart an
email address like r cm@s. cmu. edu that appears in an XML document, because the parts of
the address are not explicitly marked up. Yet a regular expression could handle this task easily.

This thesis describes a new approach to structure description that solves the problem of reuse:
lightweight structure. Lightweight structure allows a system’s basic structure concepts to be de-
fined by a variety of mechanisms — grammars, regular expressions, or in fact any kind of pattern
or parser. These structure concepts can then be composed and reused, regardless of the mechanism
used to define them.

The lightweight structure approach has three parts:

1. a model of text structure as contiguous segments of text called regions. Each of the labeled
rectangles in Figures 1-4 is a region.

2. an extensible library of structure abstractions. A structure abstraction is a named concept,
like a word, a sentence, or a phone number. Every label in Figures 1-4 is a plausible structure
abstraction. A structure abstraction can be defined by any kind of parser or pattern. The
output of a structure abstraction is the set of all regions in the text that belong to the concept
— e.g., the set of words, the set of sentences, or the set of Java expressions.

3. an algebra for combining sets of regions, based on relations like before, after, in, and con-
tains. The algebra allows structure abstractions to be composed to create new abstractions.

The ability to compose and reuse structure abstractions is the most powerful aspect of lightweight
structure. Suppose the library includes a hyperlink abstraction defined by an HTML parser, and
an email address abstraction defined by a regular expression. Lightweight structure allows these
abstractions to be composed to find hyperlinks that contain email addresses, without modifying
either of the constituent abstractions. The resulting composition, which might be called an email
link, can be put back in the library as a new abstraction.

Lightweight structure does for text pattern matching what procedural abstraction does for pro-
gramming. It provides a uniform interface, analogous to a procedure calling convention, that en-
ables the creation of genuine abstractions with encapsulation and information hiding. Abstractions

4

need not be shoehorned into one particular description language with limited expressive power.
Instead, a structure abstraction can be expressed in any kind of pattern language, including context-
free grammars, regular expressions, and region algebra expressions. Alternatively, an abstraction
can be implemented by some process, such as a hand-coded scanner, a Turing machine, or even
a human being doing manual selection with a mouse. Different ways of implementing a structure
abstraction may have different properties in terms of performance, cost, or robustness, but func-
tionally they are the same. To put it concretely, a user can use the hyperlink abstraction in a pattern
without knowing how it is implemented, in the same way that a C programmer can call st r cpy
without knowing the details of its implementation. Lightweight structure enables the construction
of a reusable text pattern library analogous to a function library.

Lightweight structure has the added advantage that the abstractions in the library are available
at all times. Abstractions like phone numbers, URLs, and sentences can be used regardless of
whether the user is looking at a web page, an email message, or a Java program.

Applications

Lightweight structure has a wide range of possible applications, a number of which are explored
in this dissertation:

e Pattern matching. The region algebra serves as a basis for a new pattern language, called
text constraints (TC), that permits the composition and reuse of lightweight structure ab-
stractions. Because TC patterns can use structure abstractions as primitives, they are more
high-level than pattern languages that refer only to characters, such as regular expressions
and grammars. As as result, TC patterns tend to be simpler, and easier to read and write. A
user study showed that users can successfully read and write TC patterns.

e Unix-style text processing. A cornerstone of the Unix environment is its basket of generic
tools, like gr ep and sor t, that can be combined into pipelines and scripts to solve text-
processing problems without writing a custom program. Unfortunately, these tools can be
hard to apply to richly structured text like web pages, source code, and structured data files,
because the tools generally assume that the input is an array of lines. Lightweight structure
allows this limitation to be overcome, so that generic Unix-like tools can be used to filter or
sort other kinds of structure, like the books in Figure 2 or the Java methods in Figure 4.

e Web automation. More and more information comes to users from the World Wide Web,
and more and more work is done by interacting with services through the Web rather than
running applications locally. Lightweight structure makes it easier for a user to script web
interactions — clicking on hyperlinks, filling in and submitting forms, and extracting struc-
tured data from web pages — so that repetitive browsing activities can be automated, and
web-based services and information sources can be incorporated into other programs.

o Repetitive text editing. Text editing is full of repetitive tasks. The region set model of
lightweight structure provides a new way of performing these tasks: multiple-selection edit-
ing. Multiple-selection editing allows the user to edit multiple regions in a document at the
same time, with the same commands as single-selection editing. Selections can be made by

the mouse, by lightweight structure abstractions, or by writing a pattern. Multiple-selection
editing is more interactive than other approaches to repetitive editing, like keyboard macros
or find-and-replace, and lightweight structure makes it easier to describe the desired selec-
tions.

e Inferring patterns from examples. Many applications of text pattern matching can
be improved by learning the patterns from examples, among them information extrac-
tion [KWD97, Fre98] and repetitive text editing by demonstration [WM93, Mau94, Fuj98,
LWDWO1]. Previous systems learned from fixed, low-level structure concepts, like words
and numbers. Lightweight structure provides a library of high-level concepts, so inferences
can directly refer to HTML or Java syntax without having to learn it first. This advantage
is exploited by two techniques described in this thesis. The first is an algorithm that infers
TC patterns from positive and negative examples. The inferred patterns can be used for any
of the applications described previously, including Unix-style text processing, web automa-
tion, and adding more abstractions to the library. The second technique, called simultaneous
editing, is expressly designed for repetitive text editing. Simultaneous editing is multiple-
selection editing where the multiple selections are inferred from examples, using not only
lightweight structure but also a special heuristic for repetitive editing to make very accu-
rate inferences with very few examples. Simultaneous editing has been found to be fast and
usable by novices, closely approaching the ideal of 1 example per inference.

e Error detection. Outlier finding is a new way to reduce errors by drawing the user’s atten-
tion to inconsistent lightweight structure. Outlier finding can point out both possible false
positives and possible false negatives in a pattern match or multiple selection. When outlier
finding was integrated into simultaneous editing, it was found to reduce user errors.

LAPIS

These applications have been implemented in a system called LAPIS,* a web browser and text
editor that supports lightweight structure. A screenshot of LAPIS is shown in Figure 5. The major
new features of LAPIS are:

e Multiple selections. Multiple regions of text can be selected at the same time, using pattern
matching, inference, or manual selection with the mouse. Multiple selections can be used to
extract, filter, sort, replace, and edit text in a document.

e Structure library. LAPIS includes an extensible library of structure abstractions, shown on
the right side of Figure 5 under the heading “Named Patterns.” The default library includes
HTML syntax defined by an HTML parser, Java syntax defined by a Java parser, and a variety
of concepts like words, sentences, lines, phone numbers, and email addresses, defined by
regular expressions and TC patterns. The library can be extended by plugging in new parsers,
writing patterns, inferring patterns from examples, or making selections manually with the
mouse.

1LAPIS stands for Lightweight Architecture for Processing Information Structure.

[®-+ LAPIS - LAPIS Quick-Start Instructions
File Edit Go Selection Scripts Tools Debug Help

o

aoc ape
abcg abcg
abe: abe

S EICHETEIPEY

'

B View As: [HTML ~ |

Quick Start Instructions

LAPIS is a web browser and text editor with several new features that enable users to
browse and manipulate web pages and text files automatically. The new features are
described briefly in the following sections.

e Pattern Matching. LAPIS lets you highlight multiple bits of text on a web page,
using pattern matching, mouse selection, or both, To make multiple selection
easier, LAPIS includes a library of built-in patterns and parsers, as well as a
novel pattern language called fext constraints.

® Tools. LAPIS includes a collection of text-processing tools, such as filtering,
sorting, and replacing,

® Commands. ¥ou can run Tcl commands and external programs from LAPIS,
and automate interactions with web sites,

¢ Simultaneous Fditing. LAPIS is also a text editor, After selecting a group of
text regions, you can edit all the regions simultaneously, letting LAPIS
automatically generalize your edits across all the selected regions.
Simultaneous editing handles many of the same tasks as keyboard macros, but
in & way that is more usable and more domain-specific.

MNote: LAPIS is nota full-powered web browser. Although LAPIS can display HTML,
follow hyperlinks, and submit forms, it does not support Javascript, Java applets,
cookies, ¥ML, C55, etc.

Go to the LAPIS home page,

Send comments or questions to Rob Miller (rem@cs.cmu.edu)

I

Go || Clear

g Pattern:
2| |Sentence just after Link

i| 5 regions selected

s

[
Command: file:f home/ rcm/ lapis/ doc/ quick-start.himl
1

Add— || Delete

Wamed Patterns:

& [Business
@[3 Characters
@ 3 English
@[3 Sentence
& [Z) word
& [HTML
@ Internet
@] Java
@ 7 Layout
§ O 5tyle
Bold
& [£] Heading
@[3 italic
&[5 Link
Underlined

Feedback |

Figure 5: The LAPIS web browser/text editor, which demonstrates how lightweight structure can

be used in a text-processing system.

e TC pattern language. The TC pattern language allows abstractions from the library to
be composed and reused. Figure 5 shows an example of a TC pattern, Sent ence | ust
after Link. TC patterns are used to make multiple selections, add abstractions to the
structure library, specify the arguments of script commands, and display feedback about
inferences.

e Scripting language. LAPIS includes a scripting language, based on Tcl, that can be used to
write text-processing scripts using the structure library and TC patterns.

e Browser shell. Script commands can also be invoked interactively, using a novel user in-
terface called a browser shell. The browser shell integrates the command interpreter into
a web browsing interface, using the LAPIS command bar to enter commands, the browser
pane to display output, and the browsing history to manage the history of outputs. External
command-line programs can also be invoked through this interface, allowing existing Unix
tools to be interleaved with LAPIS script commands. The browser shell also offers a new
way to construct Unix-style pipelines, described in more detail in Chapter 8.

e Inference. LAPIS can infer patterns from positive and negative examples given with the
mouse. Inferences are displayed both as multiple selections and as TC patterns. Inferred
patterns can be used for editing or invoking commands, or placed into the structure library
as new abstractions.

e Outlier finding. When LAPIS is inferring patterns from examples, it uses outlier finding to
highlight unusual matches to the inferred pattern, so that the user can check them for possible
errors. The outlier finder can also be invoked directly by the user to find possible errors in
any multiple selection, including selections made by library abstractions or patterns written
by the user.

The target audience for LAPIS, and indeed for the entire lightweight structure approach, covers
a wide spectrum of computer users. Programmers can plug in a parser for their favorite pro-
gramming language or data format, and then use it with any of the features of LAPIS: pattern
matching, multiple-selection editing, scripting, even inference and error detection. Power users
who are not necessarily programmers can describe structure by writing TC patterns or inferring
them from examples, and then manipulate structured text with Unix-style text-processing com-
mands and multiple-selection editing. Even casual or novice users can benefit from LAPIS: the
user studies described in this thesis show that users can understand and use simultaneous editing
and outlier finding without learning anything about lightweight structure.

LAPIS is targeted primarily at three domains: HTML web pages, Java source code, and plain
text. The examples in this dissertation are drawn from these domains. Other text formats can
also be processed, as long as their structure can be described by parsers, regular expressions, or
TC patterns. LAPIS is not particularly useful for processing binary formats like Microsoft Word
documents, but neither are Perl or awk. However, nothing precludes incorporating aspects of
the lightweight structure approach, or particular techniques like simultaneous editing and outlier
finding, into a monolithic word-processing application like Microsoft Word.

address

Shi nki chi Ar aki Dani el Avrahami

1120 No. La Salle 5904 Phillips Ave.

#18F Pi ttsburgh PA 15217

Chicago IL 60610 USA

USA

M chael Babi sh Ravi n Bal akri shnan

212 Upson Hal | Depar nent of Conputer Science

Ithaca NY 14853 University of Toronto

USA 10 King's Coll ege Road
Toronto ON MbS 34
Canada

M chel Beaudoui n-Laf on
Lfi - Bat 490

Uni versite De Paris-Sud
Orsay Cedex 91405
France

4 Enmerson .
Palo Alto CA 94306

address- line

Figure 6: Not all useful abstractions can be represented by a contiguous region. In this plain text
file laid out in two columns, each address actually consists of several discontiguous regions. The
closest we can get in the lightweight structure model is address-line.

Limitations

The lightweight structure approach is designed for recognizing and exploiting structure, not cre-
ating or validating it. For example, a phone number abstraction can recognize phone numbers,
but it cannot produce a template of a phone number for the user to fill in, or guarantee that all
phone numbers in a document are formatted the same way. The grammar-based approach used by
syntax-directed editors and SGML/XML is better suited to these tasks.

The model of structure as contiguous regions in a one-dimensional string can capture most
kinds of text structure, but not all. In particular, some aspects of two-dimensional layout are
impossible to represent with contiguous one-dimensional regions. Figure 6 shows a plain text file
of postal addresses laid out as two columns. In this format, an address is not a single contiguous
region in the file. Instead, each address is split across multiple lines, and the lines of one address are
interleaved with the lines of another. There is no way to define a structure abstraction that returns
each address as a single unit, corresponding to the address label shown in the figure. The closest
we can get is the address-line abstraction shown in the figure, which returns the individual lines of
the addresses but doesn’t group them together. A similar problem is encountered with the column
concept in HTML tables, since HTML specifies tables in row-major order. Although the model
described in this thesis cannot represent these cases, it may be possible to extend the model; more
will be said about this possibility in the conclusion. Regular expressions and grammars cannot
express the address abstraction either, for the same reasons.

Like regular expressions and context-free grammars, the region algebra has limits on the classes
of languages that it can recognize. The recognition power of the region algebra is not fixed, how-
ever, but rather depends on the power of the abstractions being composed. For example, algebra
expressions over regular abstractions can recognize only regular languages, but algebra expres-
sions over context-free abstractions can recognize more than just context-free languages. These
results are proven in Chapter 5.

Contributions

My thesis statement is:

Lightweight structure enables efficient composition and reuse of structure abstractions
defined by various kinds of patterns and parsers, bringing improvements to pattern
matching, text processing, web automation, repetitive text editing, inference of pat-
terns from examples, and error detection.

This dissertation makes contributions in a number of areas. Some contributions are theoretical:

a model of text structure as region sets, which allow a variety of structure description mech-
anisms (regular expressions, grammars, or any kind of parser) to be encapsulated as simple
abstractions;

an algebra for region sets that enables structure abstractions to be composed and reused;

data structures and algorithms for efficient representation of region sets and implementation
of the region algebra;

theoretical results about the classes of languages recognized by the region algebra;
algorithms for inferring patterns from examples using lightweight structure;

algorithms for outlier finding that detect inconsistent pattern matches using lightweight
structure.

Other contributions fall into the category of new languages and system designs:

the TC pattern language, based on the region algebra, which allows users to write simple,
readable text patterns using structure abstractions;

a command language that extends Unix-style text processing to richly-structured text like
web pages and source code;

the browser shell, which integrates a command prompt into the web browsing interaction
model.

Finally, several contributions are made to user interface design:

techniques for making multiple selections in text using the mouse, pattern matching, or both;
techniques for interactive text editing using multiple selections;
techniques for giving examples of text patterns using mouse selection;

techniques for showing feedback about inference using both multiple selections and TC
patterns;

techniques for displaying region sets in a document with highlighting;

10

techniques for reducing user errors by highlighting unusual selections or pattern matches to
draw the user’s attention;

heuristics for inference in repetitive editing by demonstration, which along with lightweight
structure produce accurate inferences with few examples.

Thesis Overview

Chapter 2 surveys related work. Then the heart of the dissertation is divided into two parts. The
first part describes lightweight structure itself:

Chapter 3 defines the region set model and the region algebra, and shows how higher-level
pattern-matching operators can be defined in terms of the core algebra.

Chapter 4 shows how the region set model and algebra can be implemented efficiently.

Chapter 5 proves some results about the expressive power of the region algebra, characteriz-
ing the classes of languages recognized by region algebra expressions that use various kinds
of structure abstractions.

The second part discusses applications of lightweight structure:

Chapter 6 describes text constraints (TC), the user-level pattern language based on the region
algebra.

Chapter 7 introduces the LAPIS web browser/text editor. A key feature of LAPIS is its
support for multiple selections, represented by a region set. This chapter describes how
multiple selections are made in LAPIS using the mouse, the pattern library, and TC patterns.
A user study tested all three selection mechanisms, focusing in particular on the readability
and writability of TC patterns.

Chapter 8 describes the text-processing commands built into LAPIS. LAPIS includes com-
mands that are similar to familiar Unix text-processing tools like gr ep and sort, but are
more useful on richly-structured text like HTML and source code. This chapter also de-
scribes the browser shell, which integrates a command interpreter into the web browsing
model, and shows how LAPIS can be used to automate interactions with web sites.

Chapter 9 explains how LAPIS infers multiple selections from examples using two different
techniques: selection guessing and simultaneous editing. Two user studies included in this
chapter show that selection guessing and simultaneous editing help even on small repetitive
tasks, and are more effective than another repetitive-text-editing system, DEED [Fuj98].

Chapter 10 explains how outlier finding is used in LAPIS to highlight possible errors in a
selection. A user study showed that outlier highlighting reduced the tendency of users to
overlook inference errors.

Finally, Chapter 11 reviews the contributions of the dissertation and outlines some future direc-

tions.

11

Bibliography

[AKWSS]

[Fre9s8]

[Fujos]

[Gol90]

[HNS6]

[KWD97]

[LWDWO1]

[Mau94]

[RT89]

[W3C00]

[WCS96]

[WMO3]

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming
Language. Addison-Wesley, 1988.

Dayne Freitag. Machine Learning for Information Extraction in Informal Domains.
PhD thesis, Computer Science Department, Carnegie Mellon University, November
1998.

Yuzo Fujishima. Demonstrational automation of text editing tasks involving multiple
focus points and conversions. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI *98), pages 101-108, 1998.

Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

Nico Habermann and David Notkin. Gandalf: Software development environments.
IEEE Transactions on Software Engineering, 12(12):1117-1127, December 1986.

Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence (1JCAI), pages 729-737, 1997.

Tessa Lau, Steven Wolfman, Pedro Domingos, and Daniel S. Weld. Learning repeti-
tive text-editing procedures with SMARTedit. In Henry Lieberman, editor, Your Wish
Is My Command: Giving Users the Power to Instruct Their Software, pages 209-226.
Morgan Kaufmann, 2001.

David Maulsby. Instructible Agents. PhD thesis, Department of Computer Science,
University of Calgary, 1994.

Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator: A System for
Constructing Language-Based Editors. Springer-Verlag, 1989.

W3C. Extensible markup language (XML) 1.0. http://www.w3.0rg/TR/2000/REC-
xml-20001006, October 2000. second edition.

Larry Wall, Tom Christensen, and Randal L. Schwartz. Programming Perl. O’Reilly,
2nd edition, 1996.

lan H. Witten and Dan Mo. TELS: Learning text editing tasks from examples. In
Allen Cypher, editor, Watch What | Do: Programming by Demonstration, pages 183—
204. MIT Press, 1993.

12

