
Chapter 9

Selection Inference

Chapter 7 described three ways to make selections in LAPIS — using the mouse, choosing a named
pattern from the library pane, and writing a TC pattern. This chapter1 describes a fourth way —
inferring selections from examples.

Two techniques are described:

• Selection guessing is the most general technique. It takes positive and negative examples
from the user and infers a TC pattern consistent with the examples, which is then used
to make the selection. At any time, the user can invoke an editing operation or a menu
command on the current selection, start a fresh selection somewhere else, or tell the system
to stop making inferences and add or remove selections manually with the mouse.

• Simultaneous editing is a form of selection guessing specialized for a common case in repet-
itive text editing: applying a sequence of edits to a group of text regions. Simultaneous
editing is a two-step process. The user first selects a group of records, such as lines or para-
graphs or postal addresses. This record selection can be made like any other selection —
using the mouse, writing a TC pattern, or using selection guessing. Once the desired records
have been selected, the system enters a mode in which inference is constrained to produce
exactly one selection in every record. The constraints of simultaneous editing permit fast
inference with few examples, so few in fact that simultaneous editing approaches the ideal
of one-example inference.

This chapter is divided into three parts. The first section describes the user interface techniques
of selection guessing and simultaneous editing. The second section details the implementation of
these techniques, showing in particular how region set data structures (Chapter 4) enable substan-
tial preprocessing and fast search for hypotheses. The last section describes two user studies, one
of simultaneous editing and the other of selection guessing.

9.1 User Interface

To use selection inference, the user must switch into a different selection mode, which affects how
mouse selections are interpreted. LAPIS has three selection modes:

1Portions of this chapter are adapted from earlier papers [MM01a, MM02].

221

222 CHAPTER 9. SELECTION INFERENCE

guessing mode

manual mode

simultaneous
editing
mode

Figure 9.1: The selection mode can be changed with either the Selection menu or toolbar buttons.

• Manual mode is the default selection mode. In this mode, mouse selections add and remove
regions from the current selection, and no inference is done. Manual selection mode was
described in Section 7.4.1.

• Guessing mode is the simplest but least efficient inference mode. In this mode, the user’s
mouse selections are interpreted as positive and negative examples. Whenever the user pro-
vides a new example, the system infers a pattern and changes the selection to match its
hypothesis.

• Simultaneous editing mode is a two-part mode. The first part behaves like guessing mode
while the user selects the records. In the second part, the user’s selections within the records
are treated as positive examples for inference constrained to make exactly one selection per
record.

The current selection mode can be changed either by the Selection menu or by a group of toolbar
buttons. Both are shown in Figure 9.1.

The selection mode only affects how mouse selections are handled. All other features of LAPIS
— editing commands, script commands, menu commands, pattern matching, etc. — can be in-
voked regardless of the current selection mode.

Introducing modes also introduces the danger of mode errors, i.e., performing an operation in
the wrong mode. LAPIS tries to alleviate this problem somewhat by making the current selection
mode prominent, displaying a dialog pane on the right side of the window (e.g., in Figure 9.2). In
simultaneous editing mode, the record set is highlighted in yellow, as a further visual cue to the
current mode. These techniques have not been sufficient to eliminate all mode errors, however.
Users in the user study occasionally tried to give examples without switching into inference mode.
In my own use of LAPIS, I occasionally forget to switch out of inference mode before trying to
make a single selection. Selection feedback makes mode errors quickly apparent, however.

One solution to mode errors would be a spring-loaded mode, such as a modifier key. For
example, holding down the Alt key while making a mouse selection might indicate that the selected
region should be used as an example, triggering inference on that selection. Modifier keys offer
less visible affordances than a toolbar mode, however, and manual mouse selection already uses
several modifier keys (Control and Shift) that might easily be confused with the inference modifier
key. Evaluating these tradeoffs on users is left for future work.

9.1. USER INTERFACE 223

9.1.1 Selection Guessing Mode

When the user enters selection guessing mode, a dialog pane appears on the right side of the
window (Figure 9.2(a)). The pane contains a help message and a small set of controls. Originally,
this dialog was popped up as a modeless dialog box window which floated over the LAPIS window,
but the floating window had two problems. First, users found that the window obscured their
work, and often felt the need to move or resize it to see what was underneath. Second, some users
assumed that the dialog box was modal, and hence had to be dismissed before they could interact
with the main LAPIS window again. Both problems were solved by moving the dialog into the
LAPIS window, at the cost of obscuring the library pane. The library pane is not usually needed
during inference. For the occasional cases when it is, a future version of LAPIS may merely shrink
it instead of hiding it completely, using a technique like Mozilla’s Sidebar.

In selection guessing mode, when the user starts a new selection by clicking or dragging, the
system uses the selected region as a positive example of the desired selection and infers a TC
pattern that is consistent with it. The inferred pattern is displayed both as additional selections in
the browser pane, and as a pattern in the pattern pane. Figure 9.2 illustrates this process.

If the inferred selection is wrong, the user can correct it in two ways. The first way is by giving
additional examples. Additional positive examples are given by adding regions to the selection
— holding down Control while clicking or dragging. Negative examples are given by removing
regions from the selection — holding down Control and clicking on the selected region. After each
example, the system updates its hypothesis to account for all the positive and negative examples
given so far.

In the first design of selection guessing, positive and negative examples were highlighted in
various colors, to help the user keep track of which examples had been given. Positive examples
were colored dark blue, in order to stand out against the light blue inferred selections, and negative
examples were pink. When example highlighting was tested in the user study, however, most
users didn’t understand what the different colors of blue and pink meant, so the feedback was
largely useless. In retrospect, example highlighting seems largely unnecessary. Negative examples
are irrelevant once they’ve been removed from the selection, and it seems unnecessary to recall
precisely which selections were positive examples. In any case, users in the study generally gave
only a few examples to correct a selection before giving up and trying to make the selection another
way. Little can be gained from highlighting a few examples in a special way, aside from visual
confusion. Positive and negative example highlighting was subsequently removed from LAPIS.

The second way to correct a selection is to choose an alternative hypothesis. When “Show
several guesses” is checked in the dialog pane, the help message is replaced by a list of hypotheses
that are consistent with the user’s examples (Figure 9.3). Each hypothesis is described by a TC
pattern, along with the number of regions it would select and a ranking score, which is described
in more detail later in this chapter. By default, the system chooses the highest-ranked hypothesis
as its guess. The user can click on any hypothesis in the list to switch to it and see its selection in
the browser pane. The hypothesis list does not include all possible hypotheses consistent with the
user’s examples, however. Additional examples may be needed to constrain the hypothesis space
sufficiently.

The hypothesis list also includes a “manual selection” choice, which inhibits inference and
treats the user’s last example as a manual correction on the previous selection. This feature was
motivated by user study observations. In principle, if the desired selection lies in the space of

224 CHAPTER 9. SELECTION INFERENCE

(a) user selects an example, "umut", with the mouse

(b) system infers a pattern and selects all matches to it

Figure 9.2: Making a selection by example in selection guessing mode.

9.1. USER INTERFACE 225

Figure 9.3: Selection guessing mode also offers a list of alternative hypotheses.

learnable hypotheses, then manual selection should be unnecessary, since the user’s corrections
would eventually converge on the right answer. In practice, however, users have no way to predict
how many examples might be needed to learn the desired selection, or whether the system can
learn it at all. As a result, as soon as an almost-correct hypothesis appeared, users expressed a
desire to make the system stop guessing and let them fix the exceptions manually.

If the desired selection is outside the system’s hypothesis space, inference will eventually fail
to find a hypothesis consistent with the examples. When inference fails, the system stops updating
its hypothesis and displays “unknown selection” as the pattern. The user can continue adding and
removing regions from the selection manually. If inference failed because an incorrect example
was given, the user can retract the example — e.g., if an incorrect positive example was given, the
user gives it as a negative example — and the system will resume trying to make inferences.

Once the desired selection has been made, the user can edit or apply text-processing tools to it,
as described in previous chapters. While the user is typing or deleting characters using an inferred
selection, no inference is done. When the user starts a new selection with the mouse, the set of
examples is cleared and the system generates a fresh hypothesis.

Inferred patterns can be edited by the user and run again. Once an inferred pattern has been
edited, however, the system stops doing inference and throws away the user’s examples, since the
edited pattern may no longer lie in the hypothesis space.

The selection guessing dialog pane includes another checkbox, “Highlight unusual selections
in red.” When this box is checked, the outliers of the inferred selection are highlighted in red.
Outlier highlighting is discussed in detail in Chapter 10.

226 CHAPTER 9. SELECTION INFERENCE

9.1.2 Simultaneous Editing Mode

Many repetitive editing tasks have a common form: a group of things all need to be changed in the
same way. Some examples from the PBD literature include:

• add “[author year]” to bibliographic citations [Mau94]

• reformat baseball scores [Nix85]

• change the styles of all section headings [Mye93]

Each of these tasks can be represented as an iteration over a list of text regions, called records
for lack of a better name, where the body of the loop performs a fixed sequence of edits on each
record. LAPIS addresses this class of tasks with simultaneous editing mode.

The first step in simultaneous editing is describing the record set, which is done by selecting all
the records. When the user enters simultaneous editing mode, LAPIS displays a dialog pane (Fig-
ure 9.4) which prompts the user to select the records. The user may use the mouse to give positive
and negative examples of records, using the same interaction techniques as selection guessing. The
user may also enter a pattern to select the records. An experienced user can shortcut this dialog
by selecting the records before entering simultaneous editing mode. If at least two nonzero-length
regions are selected when the user clicks on the Simultaneous Editing menu command or toolbar
button, then this selection is used as the record set.

Once the desired record set is selected, the user clicks on the Start Editing button in the dialog
pane to enter the second step of simultaneous editing mode. The selected record set becomes
highlighted in yellow, and the dialog pane changes to describe the new mode (Figure 9.5). Now,
when the user makes a selection in one record, the system automatically infers exactly one selection
in every other record. If the inference is incorrect on some record, the user can correct it by holding
down the Control key and making the correct selection, after which the system generates a new
hypothesis consistent with the new example. As in selection guessing, the user can edit with the
multiple selection at any time. The user is also free to make selections outside the yellow records,
but no inferences are made from those selections.

Figures 9.6–9.11 illustrate how simultaneous editing can be used to perform a common task
in Java and C++ programming: replacing each public field of a class (member variable in C++
terminology) with a private field and a pair of accessor methods getX and setX that respectively
get and set the value of the field.

In Figure 9.6, the user has selected “public” in one record, which causes the system to infer a
selection of “public” in the other records as well. The pattern pane displays the TC pattern that
matches this inference, "public".

The user deletes this selection, then places the insertion point at the end of the records to start
typing the get method: first pressing Enter to insert a new line, then indenting a few spaces, then
typing “public” to start the method declaration. Following multiple-selection editing rules, the
typed characters appear in every record (Figure 9.7). If typos are made, the user can back up and
correct them, using all familiar editing operations, including Undo. No inference occurs while the
user is typing.

Now the user is ready to enter the return type of the get method. The type is different for
each variable, so it can’t simply be entered at the keyboard. Instead, copy-and-paste must be used.

9.1. USER INTERFACE 227

Figure 9.4: First step of simultaneous editing: selecting the records using unconstrained inference
(selection guessing).

Figure 9.5: Second step of simultaneous editing: the records turn yellow, and inference is now
constrained to make one selection in each record.

228 CHAPTER 9. SELECTION INFERENCE

Figure 9.6: Selecting “public” in one record causes the system to infer equivalent selections in the
other records.

Figure 9.7: Typing and deleting characters affects all regions.

9.1. USER INTERFACE 229

Figure 9.8: The user selects the types and copies them to the clipboard...

Figure 9.9: ... and then pastes the copied selections back.

230 CHAPTER 9. SELECTION INFERENCE

Figure 9.10: Changing the capitalization of the method name.

Figure 9.11: The final outcome of simultaneous editing.

9.1. USER INTERFACE 231

Figure 9.12: Commands on the Change Case menu change the capitalization of the selection.

The user first selects the type of one of the records, such as the “int” in “int x”. The system infers
the pattern Type and selects the types in the other fields (Figure 9.8). This shows an important
difference between simultaneous editing and selection guessing. In selection guessing, many other
hypotheses would also be consistent with the user’s example: "int", 2nd Word in Line,
2nd from last Word in Line, etc. In simultaneous editing, some of these hypotheses
can be discarded immediately because they do not make exactly one selection in each record. For
example, the literal string "int" does not appear in every record. Other generalizations are less
preferable because they are more complicated than Type.

The user then copies the selection to the clipboard, places the insertion point back after “pub-
lic”, and pastes the clipboard. Following multiple-selection editing rules, the system copies a list of
strings to the clipboard, one for each record, and pastes the appropriate string back to each record
(Figure 9.9). The one-selection-per-record bias helps here, too. Since the number of inferred selec-
tions always equals the number of records, there is no danger of trying to paste n copied selections
back to m insertion points (which would cause LAPIS to pop up an error dialog, as explained in
Section 7.5).

Note that the inference in Figure 9.9 is described as somewhere in edit34, which is not
a valid TC pattern. This is another difference between selection guessing and simultaneous editing.
In selection guessing, all inferences are TC patterns. In simultaneous editing, however, when the
user makes a selection in new text — text that has been typed or pasted since entering simultane-
ous editing mode — LAPIS does not bother to search for a TC pattern describing the selection.
Instead, it simply infers the selection that originally created the text, and displays an approximate
description of the selection in the pattern pane. This technique has significant performance ad-
vantages — in particular, it eliminates the need to continually reparse the document as the user is
editing, since new text need not be parsed. The tradeoff is that some inferences do not produce
valid TC patterns, which is not ideal for self-disclosure of the TC pattern language. Fast response
time seems to outweigh the value of self-disclosure, at least in this case.

Next, the user copies and pastes the name of the variable to create the method name (Fig-
ure 9.10). The lowercase variable name must be capitalized by applying a menu command that
capitalizes the current selection (Figure 9.12). Any menu command that applies to a selection can
be used in simultaneous editing mode.

232 CHAPTER 9. SELECTION INFERENCE

The rest of the get and set methods are defined by more typing and copy-and-paste com-
mands, until the final result is achieved (Figure 9.11). The user then switches back to manual
selection mode, and the yellow record highlighting disappears.

Simultaneous editing is more constrained than selection guessing, because its hypotheses must
have exactly one match in every record. But the one-selection-per-record bias delivers some pow-
erful benefits. First, it dramatically reduces the hypothesis search space, so that fewer examples
are needed to reach the desired selection. Second, the hypothesis search is faster. Since the record
set is specified in advance, LAPIS can preprocess it to find common substrings and library patterns
that occur at least once, significantly reducing the space of features that can be used in hypothe-
ses. As a result, where selection guessing might take several seconds to deliver a hypothesis,
simultaneous editing takes 0.4-0.8 sec, making it more suitable for interactive editing. Finally, the
one-selection-per-record constraint makes editing semantically identical to single-selection editing
on each record. In particular, a selection copied from one place can always be pasted somewhere
else in the record, since the source and target are guaranteed to have the same number of selections.

The keyboard can also be used to make selections in simultaneous editing mode. When the
user presses an arrow key, the system first clears most of the current selection, leaving only the
first example selected. This selection is then moved by the arrow key in the same way that a
conventional single-selection text editor would move it. The resulting selection is then treated as
an example to infer a new selection.

The practical result of this behavior is that the user can move the selection with the keyboard
while inference keeps the selections synchronized. For example, suppose the user places the cursor
before “int” in Figure 9.5, causing the system to infer a selection start of Type. Pressing the
right arrow key three times moves the initial example to the end of “int”, causing the system to
infer the selection end of Type. A more naive approach to multi-cursor keyboard navigation
would move all the cursors three characters to the right in lock step — leaving one in the middle
of “String” and the other in the middle of “float”.

Most conventional keyboard navigation is supported, including Home, End, Page Up, Page
Down, holding down Control to move by whole words, and holding down Shift to select a region.
The keyboard cannot currently be used to give multiple examples; doing so would require decou-
pling the keyboard cursor from the selection, so that it can be moved around independently to add
and remove selections.

9.2 Implementation

This section describes the algorithms used to infer selections from examples. Each mode, selection
guessing and simultaneous editing, uses a different algorithm. Like most learning algorithms, both
algorithms essentially search through a space of hypotheses for a hypothesis consistent with the
examples, but each algorithm uses a different hypothesis space and a different method of ranking
hypotheses, reflecting the different biases of the two modes.

In addition, the simultaneous editing algorithm does considerably more preprocessing than the
selection guessing algorithm. Preprocessing allows much of the hypothesis space to be pruned
away before the user even starts giving examples, which allows each selection to be inferred faster.
The tradeoff is that the preprocessed information falls out of date as soon as the user edits the
document, so some extra work has to be done to refresh it. Furthermore, because of preprocessing,

9.2. IMPLEMENTATION 233

document positive examples negative examples

features

Feature
generation

Hypothesis
generation

Hypothesis
ranking

hypotheses

ranked hypotheses

Figure 9.13: Block diagram of selection-guessing algorithm.

simultaneous editing does not always infer a TC pattern; sometimes its inference is simply a region
set with no corresponding TC pattern. More will be said about this issue below.

9.2.1 Selection Guessing Algorithm

The inputs to the selection guessing algorithm are a document, a set of positive examples expressed
as a region set, and a set of negative examples, also a region set. The output is a ranked list of
hypotheses, each of which is a TC pattern that matches the positive examples and excludes the
negative examples.

In this algorithm, a feature is a TC expression of the form op F, where op is one of the TC
operators equals, just before, just after, starting, ending, in, or contains,
and F is either a literal or a pattern identifier. A hypothesis is a Boolean conjunction of features.

The algorithm has three main parts, illustrated in Figure 9.13:

• Feature generation takes the document and the positive examples and produces a collection
of features that match all the positive examples.

• Hypothesis generation takes the features and the positive examples and returns a list of hy-
potheses that match all the positive examples and exclude the negative examples.

• Hypothesis ranking takes the hypotheses and ranks them by a heuristic.

Each part is described below.

234 CHAPTER 9. SELECTION INFERENCE

Feature Generation

Two kinds of features are generated: library features derived from the pattern library, and literal
features discovered by examining the text of the positive examples.

Library features are generated by searching for every named pattern in the pattern library,
to produce the set of regions matching each pattern. This is actually the most time-consuming
part of the inference algorithm. Then, the seven relational operators equals, just before,
just after, starting, ending, in, and contains are applied to each library region set,
producing a region set representing all the regions that have the feature. Since these relations are
represented by rectangle collections, generating these region sets is fast (Chapter 4). The region
set for each feature is then intersected with the region set representing the positive examples.
Features which don’t match all the positive examples are discarded. Since the algorithm only
learns monotone conjunctions of features, only features that match all the positive examples are
useful for forming hypotheses.

Literal features are generated by combining the relational operators with literal strings. Instead
of the generate-and-test approach used for the library features, however, the generation of literal
features is driven by the text of the positive examples. Since useful features must match all the
positive examples, the generation algorithm searches for common substrings, i.e., substrings that
occur in or around all the positive examples. The generation technique for each relational operator
is slightly different. In the description that follows, the ith positive example is denoted by the
region xi[yi]zi, where the whole document is the string xiyizi and yi is the part of the document
selected by the region.

• equals: If all yi are identical, i.e. y = yi for all i, then generate the feature equals "y".

• starting: Find the common prefixes of all the yi, i.e., all strings p such that p is a prefix
of every yi. If two prefixes p and pq are equivalent in the sense that every occurrence of p
in the document is followed by q, then keep only the shorter prefix p. For example, “http” is
equivalent to “http://” if every occurrence of “http” in the document is followed by “://”. For
all remaining prefixes p, generate the feature starting "p".

• ending: Generate the common suffixes of the yi, using an algorithm analogous to start-
ing.

• just before: Generate the common prefixes of the zi.

• just after: Generate the common suffixes of the xi.

• contains: Find all common substrings of the yi using a suffix tree [Gus97]. A suffix tree
is a path-compressed trie into which all suffixes of a string have been inserted. In this case,
the suffix tree represents the set of common substrings of all yi examined so far. Figure 9.14
illustrates the algorithm. The algorithm starts by building a suffix tree from y1. (y1 may be
any positive example, but it’s useful to let y1 be the shortest yi to minimize the size of the
initial suffix tree.) For each remaining yi (2 ≤ i ≤ n), the suffixes of yi are matched against
the suffix tree one by one. Each tree node keeps a count of the number of times it was visited
during the processing of yi. This count represents the number of occurrences in yi of the
substring represented by the node. After processing yi, all unvisited nodes are pruned from

9.2. IMPLEMENTATION 235

rcm@cmu.edu$

cm
@cmu.edu$

u.edu$

m
@cmu.edu$

u.edu$

@cmu.edu$

u
.edu$

$

.edu$

edu$

du$

0

1

1

1

1

1

rcm@cmu.edu$

c 0

1

@cmu.edu$

u.edu$

1
m 0

1

@cmu.edu$

u.edu$

@cmu.edu$

1u 1

1

.edu$

$

.edu$

edu$

du$

2
m

c
u.edu$

m
u.edu$

@cmu.edu$

u

$

.edu$

edu$

du$

m

(a) (b) (c)

.edu$

Figure 9.14: Finding common substrings using a suffix tree. (a) Suffix tree constructed from
first example, rcm@cmu.edu; $ represents a unique end-of-string character. (b) Suffix tree after
matching against second example, ljc@cmu.edu. Each node is labeled by its visit count. (c)
Suffix tree after pruning nodes which are not found in ljc@cmu.edu. The remaining nodes
represent the common substrings of the two examples.

the tree, since the corresponding substrings never occurred in yi. After processing all yi in
this fashion, the only substrings left in the suffix tree must be common to all the yi. Generate
a feature contains "s" for each such substring s.

• in: No literal features of this form are generated, because in "literal" is usually
redundant with an equals feature.

Hypothesis Generation

After generating features that match the positive examples, the algorithm forms conjunctions of
features to produce hypotheses consistent with all the examples. Since a selection must have a
clearly defined start point and end point, not all conjunctions of features are useful hypotheses, so
the algorithm reduces the search space by forming kernel hypotheses. A kernel hypothesis takes
one of the following forms:

• a single feature which fixes both the start and end, i.e. equals F. As a kernel hypothesis,
this feature is represented simply by the pattern F.

• a conjunction of a start-point feature (starting F or just after F) with an end-
point feature (ending G or just before G). As a kernel hypothesis, this conjunction
is represented as a TC pattern of the form

236 CHAPTER 9. SELECTION INFERENCE

from start/end of F
to start/end of G

All possible kernel hypotheses are generated from the feature set. Kernel hypotheses that are
inconsistent with the positive examples are then discarded.

If there are negative examples, then additional features are added to each kernel hypothesis to
exclude them. Features are chosen greedily to exclude as many negative examples as possible.
For example, after excluding negative examples, a kernel hypothesis Link might become the final
hypothesis

Link contains "cmu.edu"
just-before Linebreak

Kernel hypotheses that cannot be specialized to exclude all the negative examples are discarded.
This simple algorithm is capable of learning only monotone conjunctions. This is not as great

a limitation as it might seem, because many of the concepts in the pattern library incorporate
disjunction (e.g. UppercaseLetters vs. Letters vs. Alphanumeric). It is easy to
imagine augmenting or replacing this simple learner with a disjunctive normal form learner, such
as the one used by Cima [Mau94].

Hypothesis Ranking

After generating a set of hypotheses consistent with all the examples, there remains the problem of
choosing the best hypothesis — in other words, defining the preference bias of the learner. Most
learning algorithms use Occam’s Razor, preferring the hypothesis with the smallest description,
in this case, the fewest number of features in its conjunction. Since hypotheses can include li-
brary features, however, many hypotheses seem equally simple. Which of these hypotheses should
be preferred: Word, JavaIdentifier, or JavaExpression? The algorithm supplements
Occam’s Razor with a heuristic I call regularity.

The regularity heuristic was originally designed for inferring record sets for simultaneous edit-
ing. It is based on the observation that simultaneous editing records often contain regular features,
features that occur a fixed number of times in each record. For instance, most postal addresses
contain exactly one postal code and exactly three lines. Most HTML links have exactly one start
tag, one end tag, and one URL.

It is easy to find features that occur a regular number of times in all the positive examples. Not
all of these features may be regular in the entire record set, however, so the algorithm finds a set of
likely regular features by the following procedure. For each feature contains F that is regular
in the positive examples (i.e., where F occurs exactly nF times in each positive example), count
the number of times DF that F occurs in the entire document. Assuming for the moment that F
is a regular feature that occurs only in records, then there must be DF /nF records in the entire
document. Call DF /nF the record count prediction made by F .

Let M be the record count predicted by the most features, in other words, the mode of the
record count predictions for all features F . If M is unique and integral, then the likely regular
features are the features that predicted M . If M is not unique, or M is not an integer, then the
algorithm abandons the regularity heuristic, and falls back to Occam’s Razor, ranking hypotheses
by the number of features.

9.2. IMPLEMENTATION 237

The upshot of this procedure is that a feature is kept as a likely regular feature only if other
features predict exactly the same number of records. Features which are nonregular, occurring
fewer times or more times in some records, will usually predict a fractional number of records and
be excluded from the set of likely regular features.

For example, suppose the user is trying to select the peoples’ names and userids in the list
below, and has given the first two items as examples (shown underlined):

Acar, Umut (umut)
Agrawal, Mukesh (mukesh)
Balan, Rajesh Krishna (rajesh)
Bauer, Andrej (andrej)

The two examples have several regular features in common, among them:

• "," (comma), which occurs exactly once in each example;

• CapitalizedWord, which occurs twice;

• Word, which occurs 3 times;

• Parentheses, which occurs once.

Note that CapitalizedWord and Word are regular only in the two examples, not in the entire
set of names.

Computing the record count prediction NF /nF for these features gives:

• comma: 4

• CapitalizedWord: 4.5

• Word: 4.33

• Parentheses: 4

The record count predicted by the most features is 4, so the likely regular features would be comma
and Parentheses. This example is oversimplified, since the pattern library would find other
features as well.

In addition to features of the form contains F, which look for regularity inside the exam-
ples, the algorithm also checks for regularity in features describing the context of the examples
— before, after, and around.. The features just before F and just after F are consid-
ered regular if every positive example contains the same number of occurrences of F (just like
contains F). The feature in F is considered regular if every positive example is in a different
instance of F.

Likely regular features are used to test hypotheses by assigning a higher preference score to
a hypothesis if it is in greater agreement with the likely regular features. A useful measure of

238 CHAPTER 9. SELECTION INFERENCE

agreement is the category utility, which was also used in Cima [Mau94]. The category utility of a
hypothesis H and a feature F is given by

U(H,F) = P (H|F)P (F |H)

=
P (H ∩ F)2

P (H)P (F)

where P (F) is the probability of having feature F , P (H) is the probability of satisfying the hy-
pothesis H , and P (H ∩ F) is the probability of satisfying both the feature and the hypothesis.
If a hypothesis and a feature are in perfect agreement, then the category utility is 1; if they are
logical complements, then the category utility is 0. The probabilities can be estimated by drawing
a sample of size N and counting the number of instances that satisfy H , F , or both:

U(H,F) =
(NHF /N)2

(NH/N)(NF /N)

=
N2

HF

NHNF

When category utility is used in selection guessing, these counts are defined as follows:

• NH is the number of matches to the hypothesis H;

• NF = DF /nF is the number of records predicted by likely regular feature F ;

• NHF is the number of matches to hypothesis H that contain exactly nF occurrences of likely
regular feature F .

For each hypothesis, the category utility is averaged across all likely regular features to compute a
score between 0 and 1, which is shown (as a percentage) in the Score column in Figure 9.2(b).

9.2.2 Simultaneous Editing Algorithm

We now turn to the algorithm used in simultaneous editing mode. The inputs to the algorithm are
a document, a set of records, and a set of positive examples with at most one example per record.
Negative examples are not used in this algorithm. The output is a region set that selects exactly
one region in every record, plus a human-readable description of the region set, which is usually
but not always a TC pattern.

The algorithm is split into three parts (Figure 9.15):

• Feature generation takes the set of records as input and generates a list of useful features as
output. Unlike the selection guessing algorithm, which repeats feature generation every time
an new example is given, feature generation takes place only once, when the user first enters
simultaneous editing mode.

• Hypothesis generation takes the positive examples and the feature list and searches for a
region set consistent with the examples. The search is repeated whenever the user gives a
new positive example.

9.2. IMPLEMENTATION 239

document positive examples

feature
list

Feature
generation

Hypothesis
generation

Update

hypothesis

document
edits

records
corrections

Preprocessing Interactive editing

Figure 9.15: Block diagram of simultaneous editing algorithm.

• Update occurs when the user edits the records by inserting, deleting, or copying and pasting
text. The update algorithm takes the user’s edit action as input and modifies the feature list
to update it.

Each of these parts is described below.

Feature Generation

Simultaneous editing uses a different set of features than selection guessing. In simultaneous
editing, a feature is a region set that has at least one region in each record, and no regions outside
any records. Initially, the algorithm generates two kinds of features: library features derived from
the pattern library, and literal features discovered by examining the text of the records.

Library features are found by matching every named pattern in the pattern library, then dis-
carding any patterns that do not have at least one match in every record. This is justified by two
assumptions: first, that every hypothesis in simultaneous editing must have at least one match
in every record; and second, that all hypotheses will be represented as conjunctions of features.
Given these two assumptions, only features that match somewhere in every record will be useful
for constructing hypotheses. The region set matching each named pattern is also intersected with
in record, where record is the set of records, in order to eliminate matches that lie outside
the record set.

By similar reasoning, the only useful literal features are substrings that occur at least once in
every record. The common substrings of the records are found using a suffix tree, the same way
that contains features are found for selection guessing.

After generating library features and literal features, the features are sorted in order of prefer-
ence. This step essentially determines the preference bias of the learning algorithm. Placing the
most-preferred features first makes the hypothesis search simpler. When the features are ordered,
the search can just scan down the list of features and stop as soon as it finds the feature it needs to
satisfy the examples, since this feature is guaranteed to be the most preferred consistent feature.

Features are classified into three groups for the purpose of preference ordering:

240 CHAPTER 9. SELECTION INFERENCE

• unique features, which occur exactly once in each record;

• regular features, which occur exactly n times in each record, for some n > 1; and

• varying features, which occur a varying number of times in each record.

A feature’s classification is not predetermined. Instead, it is found by counting occurrences in the
records being edited. For example, in Figure 9.4, Type is unique because it occurs exactly once
in every record. Regular features are commonly found as delimiters. For example, if the records
are IP addresses like 127.0.0.1, then “.” is a regular feature. Varying features are typically tokens
like words and numbers, which are general enough to occur in every record but do not necessarily
follow any regular pattern.

Unique features are preferred over the other two kinds. A unique feature has the simplest
description: the feature name itself, like Type. By contrast, using a regular or varying feature in a
hypothesis requires specifying the index of a particular occurrence, such as 5th Word. Regular
features are preferred over varying features, because regularity of occurrence is a strong indication
that the feature is relevant to the internal structure of a record.

Within each kind of feature, library features are preferred over literal features. Among literal
features, longer literals are preferred to shorter ones. Among library features, however, no ordering
is currently defined. In the future, it would be useful to let the user specify preferences between
patterns in the library, so that, for instance, Java features could be preferred over character-class
features.

To summarize, feature generation orders the feature list in the following order, with most pre-
ferred features listed first:

1. unique library patterns

2. unique literals

3. regular library patterns

4. regular literals

5. varying library patterns

6. varying literals

Within each group of library patterns, the order is arbitrary. Within each group of literals, longer
literals are preferred to shorter.

Hypothesis Generation

Hypothesis generation takes the user’s positive examples and the feature list, and attempts to gen-
erate a region set consistent with the examples. Unlike the selection guessing algorithm, however,
only one hypothesis is returned by this search. This decision was made so that the hypothesis
search would be as fast as possible, allowing simultaneous editing to have the best possible re-
sponse time.

9.2. IMPLEMENTATION 241

The search process works as follows. Using the first positive example, called the seed example,
the system scans through the feature list, testing the seed example for membership in each feature’s
region set. When a matching feature F is found, the system constructs one or more candidate
descriptions representing the particular occurrence that matched, depending on the type of the
feature:

• if F is a unique feature, then the candidate description is just F.

• if F is a regular feature, then the candidate description is either ith F or jth from last
F, whichever index is smaller.

• if F is a varying feature, then two candidate descriptions are generated: ith F and jth
from last F.

These candidate descriptions are tested against the other positive examples, if any. The first con-
sistent description found is returned as the hypothesis.

The output of the search process depends on whether the user is placing an insertion point
(e.g. by clicking the mouse) or selecting a region (e.g. by dragging). If all the positive examples
are zero-length regions, then the system assumes that the user is placing an insertion point, and
searches for a point description. Otherwise, the system searches for a region description.

To search for a point description, the system transforms the seed example, which is just a
character offset b, into two region rectangles: (b, b, b, +∞), which represents all regions that start
at b, and (−∞, b; b, b), which represents all regions that end at b. The search then tests these region
rectangles for intersection with each feature in the feature list. Candidate descriptions generated
by the search are transformed into point descriptions by prefixing point just before or
point just after, depending on which region rectangle matched the feature, and then the
descriptions are tested for consistency with the other positive examples.

To search for a region description, the system first searches for the seed example using the basic
search process described above. If no matching feature is found — because the seed example does
not correspond precisely to a feature on the feature list — then the system splits the seed example
into its start point and end point, and recursively searches for point descriptions for each point.
Candidate descriptions for the start point and end point are transformed into a description of the
entire region by wrapping them with from...to..., and then tested for consistency with the
other examples.

This search algorithm is capable of generalizing a selection only if it starts and ends on a
feature boundary. For literal features, this is not constraining at all. Since a literal feature is a
string that occurs in all records, every substring of a literal feature is also a literal feature. Thus
every position in a literal feature lies on a feature boundary. To save space, only maximal literal
features are stored in the feature list, and the search phase tests whether the seed example falls
anywhere inside a maximal literal feature.

Update

In simultaneous editing, the user is not only making selections, but also editing the document.
Editing has two effects on inference. First, every edit changes the start and end offsets of regions, so
the region sets used to represent features become incorrect. Second, editing changes the document

242 CHAPTER 9. SELECTION INFERENCE

0 1 2 3 4 5 6 7

0

1

2

3

4

t r a m p l e

t

a

m

e

old file
offsets

new file
offsets

Figure 9.16: Coordinate map translating offsets between two versions of a document. The old
version is the word trample. Two regions are deleted to get the new version, tame.

content, so the precomputed features may become incomplete or wrong. For example, after the
user types some new words, the precomputed Word feature becomes incomplete, since it doesn’t
include the new words the user typed. The update algorithm addresses these two problems.

From the locations and length of text inserted or deleted, the updating algorithm computes a
coordinate map, a relation that translates a character offset prior to the change into the equiva-
lent character offset after the change. (Coordinate maps were described in Section 6.2.12.) The
coordinate map can translate coordinates in either direction. For example, Figure 9.16 shows the
coordinate map for a simple edit. Offset 3 in trample corresponds to offset 2 in tame, and vice
versa. Offsets with more than one possible mapping in the other version, such as offset 1 in tame,
are resolved arbitrarily; LAPIS picks the largest value.

Since the coordinate map for a group of insertions or deletions is always piecewise linear, it
is represented as a sorted list of the endpoints of each line segment. If a single edit consists of m
insertions or deletions (one for each record), then this representation takes O(m) space. Evaluating
the coordinate map function for a single offset takes O(log m) time using binary search.

A straightforward way to use the coordinate map is to scan down the feature list and update the
start and end points of every feature to reflect the change. If the feature list is long, however, and
includes some large feature sets like Word or Whitespace, the cost of updating every feature
after every edit may be prohibitive. LAPIS takes the reverse strategy: instead of translating all
features up to the present, the user’s examples are translated back to the past. The system main-
tains a global coordinate map representing the translation between original document coordinates
when the feature list was generated and the current document coordinates. When an edit occurs,
the updating algorithm computes a coordinate map for the edit and composes it with this global
coordinate map. When the user provides examples for a new selection, the examples are translated
back to the original document coordinates using the inverse of the global coordinate map. The
search algorithm generates a consistent description for the translated examples. The generated de-
scription is then translated forward to current document coordinates before being displayed as a
selection.

An important design decision in a simultaneous editing system that uses domain knowledge,
such as Java syntax, is whether the system should attempt to reparse the document while the user is
editing it. On one hand, reparsing would allow the system to track all the user’s changes and reflect

9.3. USER STUDIES 243

those changes in its descriptions. On the other hand, reparsing is expensive and may fail if the
document is in an intermediate, syntactically incorrect state. LAPIS never reparses automatically
in simultaneous editing mode. The user can explicitly request reparsing with a menu command,
which effectively restarts simultaneous editing using the same set of records. Otherwise, the feature
list remains frozen in the original version of the document. One consequence of this decision is that
the human-readable descriptions returned by the inference algorithm may be misleading because
they refer to an earlier version.

This design decision raises an important question. If the feature list is frozen, how can the user
make selections in newly-inserted text, which didn’t exist when the feature list was built? This
problem is handled by the update algorithm. Every character typed in simultaneous editing mode
adds a new literal feature to the feature list, since typed characters are guaranteed to be identical
in all the records. Similarly, pasting text from the clipboard creates a special feature that translates
coordinates back to the source of the paste and tries to find a description there. When a hypothesis
uses one of these features created by editing, the feature is described as “somewhere in editN”,
which can be seen in Figure 9.9.

A disadvantage of this scheme is that the housekeeping structures – the global coordinate map
and the new features added for edits – grow steadily as the user edits. This growth can be slowed
significantly by coalescing adjacent insertions and deletions, although LAPIS does not yet include
this optimization. Another solution might be to reparse when the number of edits reaches some
threshold, doing the reparsing in the background on a copy of the document in order to avoid
interfering with the user’s editing. In practice, however, space growth doesn’t seem to be a serious
problem. For most tasks, the user spends only a few minutes in a simultaneous editing session,
not the hours that are typical of general text editing. After leaving simultaneous editing mode, the
global coordinate map and the feature list can be discarded.

9.3 User Studies

Selection guessing and simultaneous editing were tested with a pair of user studies, described in
this section.

The first study evaluated simultaneous editing, which was actually the first of the two selection
inference modes to be designed and implemented. At the time the study was done, the user inter-
face for simultaneous editing was somewhat different. The most significant difference affected the
first step of simultaneous editing, in which the user selects the records. Because selection guessing
had not been implemented yet, the records had to be selected a different way, by choosing a named
pattern from the library pane. As a result, the dialog boxes were worded differently. Screenshots
of the original dialog boxes are included in the description of the study below.

The second study evaluated selection guessing, using one of the tasks used in the simultaneous
editing task, so that some comparisons can be made between the two techniques.

9.3.1 Simultaneous Editing Study

The first study was designed to evaluate the usability of simultaneous editing on small repetitive
editing tasks. The study compared simultaneous editing with manual (single-cursor) editing along
two quantitative dimensions: time to complete the task, and errors in the finished product. Manual

244 CHAPTER 9. SELECTION INFERENCE

Figure 9.17: The Simultaneous Editing dialog box used in the user study.

editing was chosen as the basis for comparison because the users were already experts in manual
editing, and manual editing would often be the natural alternative for these small tasks. Still, it is
also desirable to compare simultaneous editing with other research approaches. Two of the tasks
used in the study were borrowed from the user study of another programming-by-demonstration
system, DEED [Fuj98], allowing the performance of simultaneous editing on those tasks to be
compared with the performance of DEED.

In the version of LAPIS tested in this study, entering simultaneous editing mode popped up a
dialog box window instead of a dialog pane. This dialog box (Figure 9.17) prompted the user to
select the record set using one of the existing selection methods — mouse, pattern, or library. For
all the tasks in the user study, the record set could be selected using a library pattern (either Line
or Paragraph), so it was not necessary to teach users the TC pattern language.

Procedure

Eight users were found by soliciting campus job newsgroups (cmu.misc.jobs and
cmu.misc.market). All were college undergraduates with substantial text-editing experience
and varying levels of programming experience (5 described their programming experience as “lit-
tle” or “none,” and 3 as “some” or “lots”). Users were paid $5 for participation.

Users first learned about simultaneous editing by reading a tutorial and trying the examples.
The tutorial led the user through two example tasks, showing step by step how the tasks could be
performed with simultaneous editing. The tutorial tasks are shown in Figures 9.18 and 9.19. The

9.3. USER STUDIES 245

1. Let a set of state variables R be null. Let a sequence of pieces of input s contain only the goal
input. Let a piece of input i be the goal input.
2. Add state variables vj’s in REF(i) to R, if not included already.
3. If R is null, end the phase.
4. Search the piece of input p that immediately precedes i in the source input.
5. If p is not found, i.e., the search reaches the beginning of the source input, add the pieces of
input that initialize vj’s in R to the head of s, and end the phase.
6. If C = DEF(p) * R is not null, add p to the head of s, remove vj’s in C from R, let i be p, and go
to 2.
7. Let i be p, and go to 4.

↓
(1) Let a set of state variables R be null. Let a sequence of pieces of input s contain only the goal
input. Let a piece of input i be the goal input.
(2) Add state variables vj’s in REF(i) to R, if not included already.
(3) If R is null, end the phase.
(4) Search the piece of input p that immediately precedes i in the source input.
(5) If p is not found, i.e., the search reaches the beginning of the source input, add the pieces of
input that initialize vj’s in R to the head of s, and end the phase.
(6) If C = DEF(p) * R is not null, add p to the head of s, remove vj’s in C from R, let i be p, and go
to 2.
(7) Let i be p, and go to 4.

Figure 9.18: Tutorial task 1: change the numbering of a list.

tutorial part lasted less than 10 minutes for all but one user, who spent 30 minutes exploring the
system.

After the tutorial, each user performed three tasks with simultaneous editing. The three tasks
are shown in their entirety in Figures 9.20–9.22. All tasks were obtained from other authors:
tasks 1 and 2 from Fujishima [Fuj98] and task 3 from Nix [Nix85]. After performing a task with
simultaneous editing, users repeated the same task in manual selection mode, but only on the first
three records to avoid unnecessary tedium. Users were instructed to work carefully and accurately
at their own pace. All users were satisfied that they had completed all tasks, although the finished
product sometimes contained undetected errors, a problem discussed further below.

LAPIS was instrumented to capture all selections made by the user, all inferences made by the
system, and all editing actions. An experimenter also observed all the sessions and made notes.
No audio or video recordings were made.

Results

Aggregate times for each task are shown in Table 9.1. No performance differences were seen
between programmers and nonprogrammers.

Following the analysis used by Fujishima [Fuj98], the leverage obtained with simultaneous
editing can be estimated by dividing the time to edit all records with simultaneous editing by the
time to edit just one record manually. This ratio, which I call equivalent task size, represents the
number of records for which simultaneous editing time would be equal to manual editing time

246 CHAPTER 9. SELECTION INFERENCE

Date: 01/10/97
Sender: Taro Yamada
Subject: Workshop Info

Date: 01/14/97
Sender: Hanako Takada
Subject: Lunch

Date: 01/15/97
Sender: Takashi Takahashi
Subject: Agenda

Date: 01/17/97
Sender: Kazuo Tanaka
Subject: Internet & AI

Date: 01/17/97
Sender: Yuzo Fujishima
Subject: Paper Review

↓
Workshop Info (Taro)
Lunch (Hanako)
Agenda (Takashi)
Internet & AI (Kazuo)
Paper Review (Yuzo)

Figure 9.19: Tutorial task 2: reformat email message headers into a short list.

Task Simultaneous editing Manual editing
1 142.9 s [63–236 s] 21.6 s/rec [7.7–65 s/rec]
2 119.1 s [64–209 s] 32.3 s/rec [19–40 s/rec]
3 159.6 s [84–370 s] 41.3 s/rec [16–77 s/rec]

Table 9.1: Time taken by users to perform each task (mean [min–max]). Simultaneous editing is
the time to do the entire task with simultaneous editing. Manual editing is the time to edit 3 records
of the task by hand, divided by 3 to get a per-record estimate.

Simultaneous editing DEED
Task novices expert novices

1 8.4 recs [2.1–12.2 recs] 4.5 recs 67 recs [6.5–220 recs]
2 3.6 recs [1.9–5.8 recs] 1.6 recs 28 recs [7–130 recs]
3 4.0 recs [1.9–6.2 recs] 2.4 recs

Table 9.2: Equivalent task sizes for each task (mean [min–max]). Novices are users in the user
study. Expert is my own performance, provided for comparison. DEED is another PBD system,
tested on tasks 1 and 2 by its author [Fuj98].

9.3. USER STUDIES 247

1. Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning algorithms. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799.
2. Brajnik, G. and Tasso, C. A Shell for developing non-monotonic user modeling systems. Int. J. Human-
Computer Studies 40 (1994), 31-62.
3. Cohen, P.R., Cheyer, A., Wang, M., and Baeg, S.C. An Open Agent Architecture. In Software Agents:
Papers from the AAAI 1994 Spring Symposium, AAAI Press, 1994, pp. 1-8.
4. Corkill, D.D. Blackboard Systems. AI Expert 6, 9 (Sep. 1991), 40-47.
5. Cranefield, S. and Purvis, M. Agent-based Integration of General Purpose Tools. In Proceedings of the
Workshop on Intelligent Information Agents. Fourth International Conference on Information and Knowl-
edge Management, Baltimore, 1995.
6. Finin, T, Fritzson, R., McKay, D. and McEntire, R. KQML A Language and Protocol for Knowledge
and Information Exchange. In Fuchi, K. and Yokoi, T., Eds. Knowledge Building and Knowledge Sharing.
Ohmsha and IOS Press, 1994.
7. Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P. Plans and Behavior in Intelligent Agents, Tech-
nical Report KSL-95-35, Stanford University, 1995.
8. Kosbie, D.S. and Myers, B.A. A System-Wide Macro Facility Based on Aggregate Events: A Proposal.
In Cypher, A., Ed. Watch What I Do: Programming by Demonstration. The MIT Press, Cambridge, Mass.,
1993.
9. Martin, D.L., Cheyer, A., and Lee, G-L. Development Tools for the Open Agent Architecture. In Proceed-
ings of the First International Conference on the Practical Application of Intelligent Agents and Multi-Agent
Technology. The Practical Application Company Ltd., London, April 1996, pp. 387-404.

↓
[Aha 89] Aha, D.W. and Kibler, D. Noise-tolerant instance-based learning algorithms. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1989, pp. 794-799.
[Brajnik 94] Brajnik, G. and Tasso, C. A Shell for developing non-monotonic user modeling systems. Int.
J. Human-Computer Studies 40 (1994), 31-62.
[Cohen 94] Cohen, P.R., Cheyer, A., Wang, M., and Baeg, S.C. An Open Agent Architecture. In Software
Agents: Papers from the AAAI 1994 Spring Symposium, AAAI Press, 1994, pp. 1-8.
[Corkill 91] Corkill, D.D. Blackboard Systems. AI Expert 6, 9 (Sep. 1991), 40-47.
[Cranefield 95] Cranefield, S. and Purvis, M. Agent-based Integration of General Purpose Tools. In Proceed-
ings of the Workshop on Intelligent Information Agents. Fourth International Conference on Information
and Knowledge Management, Baltimore, 1995.
[Finin 94] Finin, T, Fritzson, R., McKay, D. and McEntire, R. KQML A Language and Protocol for Knowl-
edge and Information Exchange. In Fuchi, K. and Yokoi, T., Eds. Knowledge Building and Knowledge
Sharing. Ohmsha and IOS Press, 1994.
[Hayes 95] Hayes-Roth, B. Pfleger, K. Morignot, P. and Lalanda, P. Plans and Behavior in Intelligent Agents,
Technical Report KSL-95-35, Stanford University, 1995.
[Kosbie 93] Kosbie, D.S. and Myers, B.A. A System-Wide Macro Facility Based on Aggregate Events:
A Proposal. In Cypher, A., Ed. Watch What I Do: Programming by Demonstration. The MIT Press,
Cambridge, Mass., 1993.
[Martin 96] Martin, D.L., Cheyer, A., and Lee, G-L. Development Tools for the Open Agent Architecture.
In Proceedings of the First International Conference on the Practical Application of Intelligent Agents and
Multi-Agent Technology. The Practical Application Company Ltd., London, April 1996, pp. 387-404.

Figure 9.20: Task 1: put author name and year in front of each citation in a bibliography [Fuj98].

248 CHAPTER 9. SELECTION INFERENCE

<DT>Conceptual Graphs
<DT>Distributed Artificial Intel-
ligence
<DT>Intelligent Interfaces
<DT>KIF
<DT>KQML
<DT>Software Agents
<DT>Telescript

↓
;; Conceptual Graphs
congra: mailto:cg@cs.umn.edu
;; Distributed Artificial Intelligence
dai: mailto:DAI-List@ece.sc.edu
;; Intelligent Interfaces
ii: mailto:ii_chi@acm.org
;; KIF
kif: mailto:kif@cs.stanford.edu
;; KQML
kqml: mailto:kqml@cs.umbc.edu
;; Software Agents
swagent: mailto:agents@cs.umbc.edu
;; Telescript
tscript: mailto:tscript@brownvm.brown.edu

Figure 9.21: Task 2: reformat a list of mail aliases from HTML to plain text [Fuj98].

Cardinals 5, Pirates 2.
Red Sox 12, Orioles 4.
Tigers 3, Red Sox 1.
Yankees 7, Mets 3.
Dodgers 6, Tigers 4.
Brewers 9, Braves 3.
Phillies 2, Reds 1.

↓
GameScore[winner ’Cardinals’; loser ’Pirates’; scores[5, 2]].
GameScore[winner ’Red Sox’; loser ’Orioles’; scores[12, 4]].
GameScore[winner ’Tigers’; loser ’Red Sox’; scores[3, 1]].
GameScore[winner ’Yankees’; loser ’Mets’; scores[7, 3]].
GameScore[winner ’Dodgers’; loser ’Tigers’; scores[6, 4]].
GameScore[winner ’Brewers’; loser ’Braves’; scores[9, 3]].
GameScore[winner ’Phillies’; loser ’Reds’; scores[2, 1]].

Figure 9.22: Task 3: reformat a list of baseball scores into a tagged format [Nix85].

9.3. USER STUDIES 249

for a given user. Since manual editing time increases linearly with record number, and simul-
taneous editing time is roughly constant or only slowly increasing, simultaneous editing will be
faster whenever the number of records is greater than the equivalent task size. Note that the av-
erage equivalent task size is not necessarily equal to the ratio of the average editing times, since
E[S/M] 6= E[S]/E[M].

As Table 9.2 shows, the average equivalent task sizes are small. In other words, the average
novice user works faster with simultaneous editing if there are more than 8.4 records in the first
task, more than 3.6 records in the second task, or more than 4 records in the third task.2 Thus
simultaneous editing is an improvement over manual editing even for very small repetitive editing
tasks, and even for users with as little as 10 minutes of experience. Some users were so slow at
manual editing that their equivalent task size is smaller than the expert’s, so simultaneous editing
benefits them even more.

Simultaneous editing also compares favorably to another PBD system, DEED [Fuj98]. When
DEED was evaluated with novice users on tasks 1 and 2, the reported equivalent task sizes averaged
67 for task 1 and 28 for task 2, roughly an order of magnitude larger than simultaneous editing.
The variability of equivalent task sizes across users was also considerably greater for DEED.

Another important aspect of system performance is inference accuracy. Each incorrect infer-
ence forces the user to make at least one additional action, such as selecting a counterexample or
providing an additional positive or negative example. In the user study, users made a total of 188
selections that were used for editing. Of these, 158 selections (84%) were correct immediately,
requiring no further examples. The remaining selections needed either 1 or 2 extra examples to
generalize correctly. On average, only 0.26 additional examples were needed per selection.

Unfortunately, users tended to overlook slightly-incorrect inferences, particularly inferences
that selected only half of the hyphenated author “Hayes-Roth” or the two-word baseball team
“Red Sox”. As a result, the overall error rate for simultaneous editing was slightly worse than
for manual editing: 8 of the 24 simultaneous editing sessions ended with at least one uncorrected
error, whereas 5 of 24 manual editing sessions ended with uncorrected errors. If the two most
common selection errors had been noticed by users, the error rate for simultaneous editing would
have dropped to only 2 of 24. These observations led to the idea of outlier finding, which is covered
in Chapter 10.

After doing the tasks, users were asked to evaluate the system’s ease-of-use, trustworthiness,
and usefulness on a 5-point Likert scale. These questions were also borrowed from Fujishima
[Fuj98]. The results, shown in Figure 9.23, are generally positive.

9.3.2 Selection Guessing Study

The second study was designed to evaluate the usability of selection guessing on repetitive editing
tasks. In order to compare selection guessing with simultaneous editing, the overall design of the
study was the same as the first study, except that users used selection guessing to perform tasks.
Unfortunately, not all the tasks of the first study can be performed with selection guessing. Tasks
1 and 3 require counted patterns for some of their selections (e.g., first CapitalizedWord

2These estimates are actually conservative. Simultaneous editing always preceded manual editing for each task,
so the measured time for simultaneous editing includes time spent thinking about and understanding the task. For the
manual editing part, users had already learned the task, and were able to edit at full speed.

250 CHAPTER 9. SELECTION INFERENCE

very hard

somewhat
hard

neutral

somewhat
easy

very easy

0 2 4 6 8

How easy was it to use?

very
untrustworthy

somewhat
untrustworthy

neutral

somewhat
trustworthy

very
trustworthy

0 2 4 6 8

How much did you trust it to do the right thing?

very unlikely

somewhat
unlikely

neutral

somewhat
likely

very likely

0 2 4 6 8

Would you use it for your own tasks?

Figure 9.23: User responses to questions about simultaneous editing.

Figure 9.24: The Selection Guessing dialog box used in the user study.

in Line). These patterns can be inferred by the simultaneous editing algorithm, but not by the
selection guessing algorithm. As a result, the selection guessing study used only task 2.

As was the case in the previous study, the user interface of selection guessing mode was slightly
different when the study was performed. The selection guessing dialog was a popup window rather
than a pane, and the controls were arranged somewhat differently, although all the same features
were available. Figure 9.24 shows the dialog box used in the study.

Procedure

Five users were found by soliciting campus job newsgroups (cmu.misc.jobs and
cmu.misc.market). All were college undergraduates with substantial text-editing experience
and varying levels of programming experience (1 described their programming experience as “lit-
tle,” 3 as “some,” and 1 as “lots”). Users were paid $5 for participation.

As in the previous study, users learned about selection guessing by reading a tutorial and trying
the examples. The tutorial led the user through one example task (Figure 9.19). The tutorial part
lasted less than 10 minutes for all users.

After the tutorial, each user performed one task in selection guessing mode (Task 2, Fig-
ure 9.21), and then repeated the first three records of the task in manual selection mode. Users
were instructed to work carefully and accurately at their own pace.

Results

Four out of five users were able to complete the task entirely with selection guessing. The fifth
user also completed the task, but only by exiting selection guessing mode at one point, doing a
troublesome part with manual editing, and then resuming selection guessing to finish the task.

9.3. USER STUDIES 251

Task Selection guessing Manual editing
2 426.0 s [173–653 s] 43.0 s/rec [32–52 s/rec]

Table 9.3: Time taken by users to perform the task (mean [min–max]). Selection guessing is the
time to do the entire task with selection guessing. Manual editing is the time to edit 3 records of
the task by hand, divided by 3 to get a per-record estimate.

Selection guessing Simultaneous editing DEED
Task novices expert novices expert novices

2 9.3 recs [4.7–15.7 recs] 2.3 recs 3.6 recs [1.9–5.8 recs] 1.6 recs 28 recs [7–130 recs]

Table 9.4: Equivalent task sizes (mean [min–max]) for task 2, comparing selection guessing, si-
multaneous editing, and DEED. Novices are users in a user study. Expert is my own performance,
provided for comparison.

Aggregate times for selection guessing and manual editing are shown in Table 9.3. The times
for selection guessing include the detour into manual editing made by one user.

The same analysis as the first study is used to compute the equivalent task size for doing this
task with selection guessing. The results are shown in Table 9.4. For comparison, the table also
includes the equivalent task sizes for the same task in the simultaneous editing study and the DEED
study. Selection guessing is not as fast as simultaneous editing on this task, but still outperforms
DEED.

One reason that selection guessing was slower is less accurate inference. Of the 51 selections
used for editing in the selection guessing study, only 34 (67%) were inferred correctly from one
example. By comparison, in the simultaneous editing study, all selections on task 2 were inferred
correctly from one example.

In selection guessing, an incorrect inference can be corrected in three ways: giving another
positive example, giving a negative example, or selecting an alternative hypothesis. To judge the
user cost of inference, then, we must measure the number of actions needed to create a selection,
where an action is either giving an example or clicking on an alternative hypothesis. On average,
2.73 actions were needed to create each selection used for editing in selection guessing, compared
to 1 action per selection in simultaneous editing.

After the study, users evaluated selection guessing’s ease-of-use, trustworthiness, and useful-
ness on a 5-point Likert scale. The results, shown in Figure 9.25, are considerably more mixed
than for simultaneous editing.

very hard

somewhat
hard

neutral

somewhat
easy

very easy

0 2 4 6 8

How easy was it to use?

very
untrustworthy

somewhat
untrustworthy

neutral

somewhat
trustworthy

very
trustworthy

0 2 4 6 8

How much did you trust it to do the right thing?

very unlikely

somewhat
unlikely

neutral

somewhat
likely

very likely

0 2 4 6 8

Would you use it for your own tasks?

Figure 9.25: User responses to questions about selection guessing.

252 CHAPTER 9. SELECTION INFERENCE

