
Chapter 5

Language Theory

One way to study the region algebra is to examine where it fits into the language hierarchy: finite
languages, regular languages, context-free languages, etc. This question is complicated by two
issues. First, the region algebra describes substrings within a string, not the string itself, so it
is necessary to define what is meant by the language recognized by a region algebra expression.
Second, the pure region algebra includes only two ground terms, Ω and ∅. As a result, the class of
languages generated by a pure region algebra expression is relatively trivial. In order to make the
question relevant and interesting, we have to augment the region algebra with additional ground
terms, such as literal strings, regular expressions, and context-free grammars. This is not an artifice,
however; it corresponds to the way the region set algebra is designed to be used in practice, to
combine text structure detected by other parsers, such as regular expressions and context free
grammars.

This chapter establishes the following results:

• The region algebra with only Ω and ∅ as ground terms (and omitting forall) can only recog-
nize the set of all possible regions or the empty set.

• The region algebra with literal strings as ground terms (and omitting forall) can recognize a
strict subset of regular languages called noncounting languages [MP71].

• The region algebra with regular expressions as ground terms can recognize the regular lan-
guages.

• The region algebra with context-free grammar nonterminals as ground terms (and omitting
forall) can recognize a proper superset of the context-free languages, and a subset of the
context-sensitive languages. Whether all context-sensitive languages can be recognized by
the region algebra is still an open question.

5.1 Preliminary Definitions

We begin with some definitions, following the standard conventions used by Hopcroft and Ull-
man [HU79]. Let Σ be a finite set of symbols, or alphabet. Σ∗ is the set of all strings over the
alphabet Σ, including the empty string ε. A language L is a subset of Σ∗. A language class is a
collection of languages.

97

98 CHAPTER 5. LANGUAGE THEORY

We now define some familiar language classes. F is the class of finite languages, i.e. languages
L such that the set L is finite. R is the class of regular languages, where a regular language has
the following recursive definition:

• ∅ (the empty language) and {ε} (the language containing the empty string) are regular;

• {a} for any symbol a ∈ Σ is regular;

• if L and L′ are regular, then L ∪ L′ is regular;

• if L and L′ are regular, then LL′ = {xx′|x ∈ L and x′ ∈ L′} is regular;

• if L is regular, then L∗ = {x1 · · · xn|n ≥ 0 and xi ∈ L} is regular.

• there are no other regular languages.

CFL is the class of context-free languages, which are defined as follows. A context-free grammar
is a four-tuple G = (V, Σ, S, P) where V is a finite set of nonterminals, Σ is a finite set of terminals
(V ∩ Σ = ∅) , S ∈ V is the start symbol, and P is a finite set of productions of the form A → α,
where A is a nonterminal and α is a string of terminals and nonterminals. We write α ⇒G β if
the string β can be obtained from the string α by replacing some nonterminal that appears on the
left side of a production in G by its right side. We write α ⇒∗

G β if β can be obtained from α by
zero or more applications of productions. Then the language generated by a context-free grammar
is L(G) = {x ∈ Σ∗|S ⇒∗

G x}. A language is context-free if it is generated by some context-free
grammar.

Finally, CSL is the class of context-sensitive languages, defined as follows. A context-sensitive
grammar is a grammar G = (V, Σ, S, P) in which productions take the form α → β, where both
α and β are strings of terminals and nonterminals and |α| ≤ |β|. We write γ ⇒G δ if the string
δ can be obtained from the string γ by replacing some string α that appears on the left side of
a production in G by its right side. Extending ⇒G to ⇒∗

G in the usual fashion, we say that the
language generated by a context-sensitive grammar is L(G) = {x ∈ Σ∗|S ⇒∗

G x}, and call a
language context-sensitive if it is generated by some context-sensitive grammar.

It is well-known that F ⊂ R ⊂ CFL ⊂ CSL, where all the inclusions are strict. These
relationships are part of the Chomsky language hierarchy.

A class of languages is closed under some operator if applying the operator to languages in the
class always produces another language in the class. Regular languages are closed under union,
intersection, and complement. Context-free languages are closed under union, but not under inter-
section or complement. Context-sensitive languages are closed under all three operations [Imm88].

5.2 Finite State Transducers

Several proofs about the power of the region algebra will depend on representing algebra operators
as finite state transducers (FST), also called generalized state machines. A finite state transducer
is a a nondeterministic finite state machine in which every transition is labeled not only by an input
symbol, but also by an output string drawn from another, possibly different alphabet. Formally, a
finite state transducer is a tuple M = (Q, Σ, ∆, δ, q0, F) where Q is a set of states; Σ and ∆ are the

5.2. FINITE STATE TRANSDUCERS 99

a/a
start

b/ε

/

b/ε

/

Figure 5.1: A finite state transducer that tests for the letter a and deletes the letter b.

input and output alphabets, respectively; δ is a mapping from Q × Σ to finite subsets of Q ×∆∗;
q0 is the starting state; and F is the set of accepting states. Note that a transition is labeled with an
output string, which may be ε (the empty string).

Figure 5.1 shows a simple transducer as a state diagram. Transition labels take the form a/w,
indicating that the transition occurs (nondeterministically) on input symbol a and emits the output
string w, which may be the empty string ε. For convenience, state diagrams use ∗ to represent
all input symbols that do not already have an explicit transition, and ∗/∗ to represent a transition
that copies the input symbol to the output. Accepting states are indicated by a double circle. The
transducer shown in Figure 5.1 accepts any input string that contains at least one a and emits an
output string with all occurrences of b deleted.

A finite state transducer maps an input string x to an output string y if there is some sequence
of transitions from q0 to a final state in F such that the concatenation of the input symbols is x and
the concatenation of the output strings is y. Formally, define the extended transition function δ∗

mapping Q× Σ∗ to Q×∆∗ as follows:

δ∗(q ε) = {(q, ε)}

δ∗(q, xa) = {(p, w1w2}|∃p
′.(p′, w1) ∈ δ∗(q, x) and (p, w2) ∈ δ(p′, a)}

If L is a language over Σ, the mapping M(L) is the language over ∆ defined by

M(L) = {y|(p, y) ∈ δ∗(q0, x) for some x ∈ L and p ∈ F}

For our purposes, an important property of finite state transducers is that R and CFL are closed
under mapping through an FST:

Theorem 3. If L is a regular (or context-free) language and M is any finite state transducer, then
M(L) is also regular (or context-free).

A proof of Theorem 3 is given by Hopcroft and Ullman [HU79, Theorem 11.1].
Context-sensitive languages are closed under a more constrained form of finite state transduc-

ers. An FST is ε-free if no transition has an output string ε. Then Hopcroft and Ullman also
prove [HU79, Theorem 11.1]:

Theorem 4. If L is context-sensitive and M is an ε-free finite state transducer, then M(L) is
context-sensitive.

100 CHAPTER 5. LANGUAGE THEORY

5.3 Languages Recognized by a Region Expression

Recall that a region is identified by its start and end offsets, so the region y in the string
xyz is described by the pair [|x|, |x| + |y|]. For any region expression E and any string w,
let E/w be the set of regions produced by applying the expression E to w. For example,
"i" just-before "s" /mississippi = {[1, 2], [4, 5]}. Note that the set of regions is a set of loca-
tions in w, not a set of strings, so E/w is not itself a language. The question now is how to
translate from regions to strings, so that the region algebra can be related to the Chomsky language
hierarchy.

Several languages might reasonably be associated with a region expression E:

• The inner language L0(E) is the set of substrings that correspond to the regions matching
E:

L0 = {y|∃y, z.[|x|, |x|+ |y|] ∈ E/xyz}

The inner language captures the matches themselves, but completely omits the context. For
example, the inner language of "i" just-before "s" consists of just one string, i, which is the
same as the inner language of the (semantically quite different) expression "i" .

• The outer language L1(E) is the set of strings w that have at least one match to the expression
E:

L1(E) ≡ {w|E/w 6= ∅}

The outer language represents the context of the matches, but not the locations of the matches
themselves. For example, the outer language of "i" just-before "s" is the regular language
Σ∗{is}Σ∗, which is the same as the outer language of the expression "s" after "i" .

Since neither language fully captures the semantics of the region algebra, it is also useful to define
a language that explicitly indicates the location of a region in context. This language consists of
strings over the extended alphabet Σ∪{[,]}, where the square brackets represent unique delimiters
that do not occur in the underlying alphabet Σ. The square brackets are used to delimit the substring
that matches the region expression.

The region language for a region expression L(E) is therefore defined as

L(E) ≡ {x[y]z|[|x|, |x|+ |y|] ∈ E/xyz}

For example, L("i" just-before "s") = Σ∗{[i]s}Σ∗. Strings in this language include
m[i]ssissippi, miss[i]ssippi, [i]s, and xyz[i]spdq.

The region language is stronger than the inner and outer languages, in the sense that both
the inner language and the outer language can be obtained from the region language. The inner
language is the set of strings inside the square brackets: L0(E) = {y|x[y]z ∈ L(E)}. The outer
language is the region language with the square brackets removed: L1(E) = {xyz|x[y]z ∈ L(E)}.

The region language is also stronger in the sense that its membership in a language class implies
that the inner and outer languages belong to the same class:

Theorem 5. If L(E) is regular (or context-free), then L0(E) and L1(E) are also regular (or
context-free).

5.3. LANGUAGES RECOGNIZED BY A REGION EXPRESSION 101

[/ε
start

*/ε */ε

]/ε

/

Figure 5.2: Finite state transducer M0 maps a region language L(E) to the corresponding inner
language L0(E) by erasing symbols outside the square brackets and the square brackets them-
selves.

[/ε
start

/ */*

]/ε

/

Figure 5.3: Finite state transducer M1 maps a region language L(E) to the corresponding outer
language L1(E) by erasing just the square brackets.

Proof. We will exhibit a finite state transducer M0 that maps L(E) into L0(E), and another trans-
ducer M1 that maps L(E) into L1(E). Thus, by Theorem 3, if L(E) is regular (or context-free),
then L0(E) and L1(E) are also regular (or context-free). The M0 transducer is shown in Figure 5.2.
It accepts any input string with a square-bracketed region, such as x[y]z, and emits only the part
in brackets, y. This has the effect of mapping a region language L(E) to the corresponding inner
language L0(E). The M1 transducer, shown in Figure 5.3, simply erases the square brackets, trans-
forming a string like x[y]z into xyz. It should be clear that this maps the region language L(E) to
its outer language L1(E).

The converse of Theorem 5 is not necessarily true, however, because the inner and outer lan-
guages do not contain enough information. Consider the following grammar:

S → aSb | ε

This grammar matches a context-free language of the form anbn. Let E be the expression a∗b∗ in S.
Then the inner language L0(E) is simply the regular language a∗b∗, but the region language L(E)
is ai[an−ibj]bn−j , which is not regular but context-free.

A similar example shows regularity of the outer language does not imply regularity of the
region language. Consider the grammar

S → aS |Sb |B

B → aBb | ε

102 CHAPTER 5. LANGUAGE THEORY

Let E be the expression B in S. The outer language L1(E) is the set of all strings recognized by the
entire grammar, which is actually the regular language a∗b∗. The region language L(E), however,
corresponds to the language a∗[anbn]b∗, which is not regular but context-free.

5.4 Restricted Algebras

In order to simplify the presentation, it will be helpful to restrict discussion to certain subsets of
the algebra operators. such as relational or set operators. Each subset is denoted by a letter:

• R: the relational operators before, after, in, contains, overlaps-start, and overlaps-end.

• S: the set operators ∪,∩, −, Ω, and ∅.

• A: the forall operator.

The most difficult operator to deal with semantically is forall, because it binds variables. However,
the region algebra presentation in Chapter 3 depended on forall to define then (string concatena-
tion), which is a fundamental operator in other language formalisms like regular expressions and
context-free grammars. When we want to avoid the difficulties of forall but still have access to a
concatenation operator, we will treat then as if it were a primitive operator:

• T : the operator then.

Region algebra expressions may also include ground terms (nullary operators). We consider four
kinds of ground terms in this chapter:

• ∅: no ground terms (other than the set operators Ω and ∅).

• F : strings in a finite language (i.e., literal strings) may be used as ground terms.

• R: regular expressions may be used as ground terms.

• CFL: nonterminals of a context-free grammar may be used as ground terms.

Note that each class of ground terms is a superset of the previous class: regular languages include
finite languages as a special case, and context-free languages include regular languages.

We use these letters to name a subset of the region algebra. The permitted operators are listed,
followed by a subscript indicating the permitted ground terms. For example:

• RS∅ is the class of region algebra expressions using only relational operators (R), set opera-
tors (S), and no ground terms other than Ω and ∅.

• RSTF is the class of expressions using relational operators, set operators, concatenation
(then), and literal strings.

• RSTAR is the class of expressions using any algebra operator and regular expressions as
ground terms. Since then can be defined in terms of forall, this class can also be written
RSAR. I prefer to write RSTA, since it makes it clearer that RSTA is a superset of RST .

5.5. ALGEBRA SEMANTICS 103

Obviously, RSG ⊂ RSTG ⊂ RSTAG for any choice of ground terms G, and P∅ ⊂ PF ⊂ PR ⊂
PCFL for any choice of operators P .

Not all restrictions will be interesting. This chapter will focus on RST (the region algebra
without forall) and RSTA (with forall), for all the choices of ground terms.

5.5 Algebra Semantics

We can now define the region algebra operators in terms of the region languages they recognize.

Set Operators (S)

The set operators are straightforward. For example, x[y]z is in the language L(E1 ∩ E2) if and
only if it is in both L(E1) and L(E2).

L(E1 ∩ E2) = L(E1) ∩ L(E2)

L(E1 ∪ E2) = L(E1) ∪ L(E2)

L(E1 − E2) = L(E1)− L(E2)

The nullary set operators are defined as follows:

L(Ω) = {x[y]z|x, y, z ∈ Σ∗}

L(∅) = ∅

Relational Operators (R)

The relational operators are similarly straightforward. For example, if x[y]z is in L(E), then for
all u, v, w such that x = uvw, we have u[v]wyz in L(before E).

L(before E) = {v[w]xyz|vwx[y]z ∈ L(E)}

L(after E) = {vwx[y]z|v[w]xyz ∈ L(E)}

L(in E) = {vw[x]yz|v[wxy]z ∈ L(E)}

L(contains E) = {v[wxy]z|vw[x]yz ∈ L(E)}

L(overlaps-start E) = {v[wx]yz|vw[xy]z ∈ L(E)}

L(overlaps-end E) = {vw[xy]z|v[wx]yz ∈ L(E)}

Then Operator (T)

Since we will need then as a primitive operator, we define it:

L(E1 then E2) = {w[xy]z|w[x]yz ∈ L(E1) ∧ wx[y]z ∈ L(E2)}

104 CHAPTER 5. LANGUAGE THEORY

Following the convention in the language theory literature, the expressions in this chapter will omit
the explicit then, representing the concatenation of two region expressions by simple juxtaposition:

E1E2 ≡ E1 then E2

Literal Strings (F)

The region language corresponding to a literal string expression w is the set of all strings that
contain w in square brackets:

L(x) = Σ∗{[w]}Σ∗

Regular Expressions (R)

The region language corresponding to a regular expression R is the set of all strings that contain a
string recognized by R in square brackets:

L(R) = Σ∗{[}L(R){]}Σ∗

Context-Free Grammar Nonterminals (CFL)

Suppose a context-free grammar G has start symbol S and some nonterminal A. Then

L(A) = {x[y]z|S ⇒∗
G xAz ∧ xAz ⇒∗

G xyz}

These definitions are sufficient to prove results about the region algebra without the forall
operator: RST∅, RSTF , RSTR, and RSTCFL. Discussion of forall is postponed to a later section,
since it requires some extra machinery to define its semantics.

5.6 Trivial Ground Terms (RST∅)

We first dispense with a trivial class, RST∅. Algebra expressions of this class can only use Ω
and ∅ as ground terms. Since such an expression has no way to test the symbols of the string,
it must either accept all possible region languages (L(Ω) = {x[y]z|x, y, z ∈ Σ∗}) or none at all
(L(∅) = ∅). Thus the region language class recognized by RST∅ contains precisely two languages,
L(Ω) and L(∅).

Theorem 6. The region languages recognized by RST∅ are L(Ω) and L(∅).

Proof. Proof by structural induction on an algebra expression E.

• Ground terms: only Ω and ∅ are allowed, so an expression consisting of just one term recog-
nizes either L(Ω) or L(∅).

• Relational operators: If L(E) = ∅, then L(before E) = ∅, trivially. So suppose L(E) =
L(Ω). For any string xyz, we must have xyz[] ∈ L(E), so x[y]z ∈ L(before E). Since
xyz was arbitrary, L(before E) = L(Ω). Similar arguments work for after, in, contains,
overlaps-start, and overlaps-end.

5.7. FINITE GROUND TERMS (RSTF) 105

• Set operators: the intersection, union, or difference of any combination of {L(Ω), L(∅)} can
only be L(Ω) or L(∅).

• Concatenation: if either L(E1) or L(E2) is empty, then L(E1E2) is empty. So suppose
L(E1) = L(E2) = L(Ω). For any string xyz, we must have x[y]z ∈ L(E1) and xy[]z ∈
L(E2), so x[y]z ∈ L(E1E2). Since xyz was arbitrary, L(E1E2) = L(Ω).

Corollary 2. The only inner languages and outer languages recognized by RST∅ are Σ∗ and ∅.

This theorem shows that the region algebra is of little use by itself. It depends on other ground
terms, such as literal strings, regular expressions, or context-free grammars, to recognize useful
languages.

5.7 Finite Ground Terms (RSTF)

The next interesting specialization of the region algebra is RSTF , which adds literal strings (in-
cluding the empty string ε) to RST∅. This algebra is more powerful than it looks at first blush.
Suppose the alphabet Σ is {a, b}. The inner language of a simple expression like a in aba is the fi-
nite language {a}, but the inner language of the expression ¬ contains "b" is the infinite language
a∗. (Recall that the unary complement ¬E is equivalent to the set difference Ω − E.) Another
interesting example is

(aΩ) ∩ (Ωb) ∩ (¬ contains aa) ∩ (¬ contains bb)

whose inner language is a(ba)∗b.
The use of contains in these examples is not strictly necessary, because contains E is equivalent

to ΩEΩ. For simplicity, then, we will begin by ignoring the relational operators and considering the
class STF (set operators, concatenation, and literal strings). STF is the region algebra equivalent
of a class of languages that have been well studied, namely star-free regular expressions [MP71].
As the name suggests, a star-free regular expression does not use the Kleene star operator ∗, but it
may use intersection and complement as well as concatenation and union. Formally:

Definition 1. A star-free regular expression has the following recursive definition:

• ∅ (the empty set), ε (the empty string), and a for any a ∈ Σ are star-free regular expressions;

• if R and R′ are star-free regular expressions, then R∪R′, R∩R′, ¬R, and RR′ are star-free
regular expressions;

• there are no other star-free regular expressions.

For convenience, and to parallel the region algebra, we will use Ω in star-free regular expres-
sions to represent the expression ¬∅. Note that Ω matches the set of all possible strings Σ∗ without
having to resort to a star operator.

106 CHAPTER 5. LANGUAGE THEORY

5.7.1 Noncounting Languages (NC)

McNaughton and Papert [MP71] show that the star-free regular expressions recognize a class of
languages they call NC, or “noncounting languages”. NC is a strict subset of the regular lan-
guages. The intuition behind noncounting languages is that a noncounting language must be rec-
ognized without needing to count modulo an integer ≥ 2. For example, (aaa)∗ is not in NC,
because it requires testing whether the length of a string of a’s is a multiple of 3. The language
a∗ba∗ba∗ is in NC, however. Although it requires counting the number of b’s and testing that the
count is exactly 2, this test does not require counting modulo an integer. We can readily find a
star-free regular expression for this language: (¬(ΩbΩ))b(¬(ΩbΩ))b(¬(ΩbΩ)).

Formally, the language class NC is defined as follows:

Definition 2. A language L is noncounting if and only if for some n > 0 and all strings u, v, w ∈
Σ∗, uvnw ∈ L if and only if uvn+xw ∈ L for all positive integers x. NC is the class of noncounting
languages.

Using this definition, we can show why (aaa)∗ is not in NC. Suppose there is some n that
satisfies the definition for (aaa)∗, and take u = ε, v = a, and w = ε. If uvnw = an is in the
language, then uvn+1w = an+1 is not in the language. Conversely, if uvnw is not in the language,
then either uvn+1w or uvn+2w is in the language. By contradiction, then, no n exists that can make
(aaa)∗ a noncounting language. Thus NC is a strict subset of the regular languages R.

To illustrate how the definition of NC will be used in proofs, let us prove the analog of Theo-
rem 5 for noncounting languages.

Theorem 7. For any algebra expression E, if the region language L(E) is noncounting, then the
inner language L0(E) and the outer language L1(E) are also noncounting.

Proof. Since L(E) is noncounting, there exists an integer n such that uvnw ∈ L if and only if
uvn+xw ∈ L for all strings u, v, w and positive integers x. The proof will first show that the inner
language L0(E) satisfies the same property. If uvnw ∈ L0(E), then p[uvnw]q ∈ L(E) for some
p, q ∈ Σ∗. We can pump this string to get p[uvn+xw]q ∈ L(E) for any integer x, which implies
that uvn+xw ∈ L0(E). A similar argument shows that uvnw /∈ L0(E) implies uvn+xw /∈ L0(E).
Since u, v, w, and x were arbitrary, we have shown that L0(E) is noncounting.

Proving that the outer language L1(E) is noncounting is slightly harder, but the techniques used
will come in handy for the proofs in the next section. We will show that L1(E) satisfies Definition 2
for the integer 3n, rather than n. Suppose we are given a string uv3nw ∈ L1(E). Since this string
is in the outer language of E, there must be some string in the region language of E that differs
only in that it has a left and right bracket inserted around the matching region; i.e., there must be
some p[q]r ∈ L(E) such that pqr = uv3nw. Any way of splitting uv3nw into three strings p, q,
and r must leave at least vn as a substring of either p, q, or r. Assume without loss of generality
that p contains vn, so that p = p1v

np2. Then we can pump p1v
np2[q]r to get p1v

n+xp2[q]r ∈ L(E),
so p1v

n+xp2qr = uv3n+xw ∈ L1(E). A similar argument shows that uvnw /∈ L1(E) implies
uvn+xw /∈ L1(E), so L1(E) is noncounting.

5.7.2 RSTF = NC

We are now ready to prove that RSTF has the same power as star-free regular expressions. First
we show that the region languages recognized by RSTF are noncounting languages.

5.7. FINITE GROUND TERMS (RSTF) 107

Theorem 8. If L is the region language of an expression in RSTF , then L is noncounting.

Proof. By structural induction on the algebra expressions in RSTF .

• Ground terms. The region languages of all ground terms can be described by star-free regular
expressions: L(Ω) is Ω[Ω]Ω, L(∅) is ∅, and L(w) is Ω[w]Ω.

• Set operators. NC is closed under intersection, union, and complement (since star-free
expressions are likewise closed), so if L(E1) and L(E2) are noncounting, then so are L(E1∩
E2), L(E1 ∪ E2), and L(E1 − E2).

• Concatenation. Suppose L(E1) and L(E2) are noncounting. Then there exist integers n1 > 0
and n2 > 0 satisfying Definition 2 for L(E1) and L(E2), respectively. Let n = max(n1, n2).
The claim is that 2n satisfies Definition 2 for the language L(E1E2). We need to show that
for any strings u, v, w, uv2nw ∈ L(E1E2) if and only if uv2n+xw ∈ L(E1E2) for any x > 0.
Since uv2nw is a string in a region language, it must contain exactly one left and one right
square bracket, in that order. Neither bracket can fall in v2n, which leaves only three cases:

1. Both brackets in u. Write uv2nw = u1[u2]u3v
2nw for some u1, u2, u3. Then

u1[u2]u3v
2nw ∈ L(E1E2) if and only if u1[r]su3v

2nw ∈ L(E1) and u1r[s]u3v
2nw ∈

L(E2) for some rs = u2. Since L(E1) and L(E2) are in NC, we have
u1[r]su3v

2n+xw ∈ L(E1) and u1r[s]u3v
2n+xw ∈ L(E2), which is true if and only

if uv2n+xw ∈ L(E1E2).

2. Both brackets in w. Symmetric to case 1.

3. Left bracket in u, right bracket in w. Write uv2nw = u1[u2v
2nw1]w2. Then

u1[u2v
2nw1]w2 ∈ L(E1E2) if and only if for u1[r]sw2 ∈ L(E1) and u1r[s]w2 ∈ L(E2)

for some rs = u2v
2nw1. Any way of splitting the region must leave at least vn as

a substring of either r or s. Assume without loss of generality that r contains vn,
so r = u2v

nt for some t. Then we can pump vn to vn+x because L(E1) is in NC:
u1[u2v

n+xt]sw2 ∈ L(E1), so uv2n+xw ∈ L(E1E2).

• Relational operators. The proofs for relational operators are similar to the proof for con-
catenation. In each case, L(E) is assumed to be noncounting by the induction hypothesis,
and n is the integer satisfying satisfying Definition 2 for L(E). We show that 3n satisfies
Definition 2 for L(op E).

– before: For uv3nw ∈ L(before E), the crucial case is uv3nw = u1[u2]u3v
3nw. The

other two cases are trivial, like cases 1 and 2 for concatenation. u1[u2]u3v
3nw ∈

L(before E) if and only if u1u2r[s]t ∈ L(E) for some rst = u3v
3nw. Any way of

splitting u3v
3nw into three strings r, s, t must leave at least vn as a substring of r, s, or

t, so we can pump vn to vn+x, giving uv3n+xw ∈ L(before E).

– after: symmetric with before.

– overlaps-start: There are two nontrivial cases. When uv3nw = u1[u2]u3v
3nw, the

string is in L(overlaps-start E) if and only if u1r[s]t ∈ L(E) for some rst = u2u3v
3nw

(where |r| < |u2| and |rs| > |u2|). Any way of splitting u2u3v
3nw into three strings

108 CHAPTER 5. LANGUAGE THEORY

r, s, t must leave at least vn as a substring of s or t, so we can pump vn to vn+x,
giving uv3n+xw ∈ L(overlaps-start E). For the other hard case, where uv3nw =
u1[u2v

3nw1]w2, we must have u1r[s]t ∈ L(E) for some rst = u2u3v
3nw. Again, any

way of forming r, s, t must leave at least vn as a substring of s or t, so we can pump vn

to vn+x and get uv3n+xw ∈ L(overlaps-start E)

– overlaps-end: symmetric with overlaps-start.

– in: There are two nontrivial cases. When uv3nw = u1[u2]u3v
3nw, the string is in

L(in E) if and only if p[qu2r]s ∈ L(E) for some pq = u1 and rs = u3v
3nw. Any

way of forming r and s must leave at least vn in one of them, so we can pump to get
uv3n+xw ∈ L(in E). The other hard case, when uv3nw = uv3nw1[w2]w3, is symmet-
ric.

– contains: Only one nontrivial case: when uv3nw = u1[u2v
3nw1]w2, the string is in

L(contains E) if and only if u1r[s]tw2 ∈ L(E) for some rst = u2v
3nw1. Any way

of forming r, s, and t must leave at least vn in one of them, so we can pump to get
uv3n+xw ∈ L(contains E).

Corollary 3. The inner and outer languages of an expression in RSTF are noncounting.

The previous theorem showed that every language recognized by RSTF is noncounting. It is
trivial to show the converse, that every noncounting language is recognized by some expression in
RSTF .

Theorem 9. If L is noncounting, then L is the inner language of some expression in RSTF .

Proof. There is some star-free regular expression that recognizes L. Every star-free regular ex-
pression corresponds directly to an algebra expression in STF whose inner language is the same,
and every algebra expression in STF is also in RSTF .

5.8 Regular Ground Terms (RSTR)

We now move up to a stronger set of ground terms: regular expressions. Note that allowing regular
expressions as ground terms in the region algebra does not mean that we allow regular expression
operators anywhere in the expression. In particular, the Kleene star operator ∗ is not permitted to
have any non-regular operators, such as ∩, −, or in , in its scope. The other regular expression
operators, union and concatenation, are also algebra operators in RSTR, so this restriction does
not apply to them. For example, these expressions are in RSTR:

a∗ before b∗

(a ∪ b)∗ in (a∗b∗)∗

but these are not:

(a before ab)∗

(aΩ ∩ Ωb)∗

5.9. CONTEXT-FREE GROUND TERMS (RSTCFL) 109

This restriction mirrors the LAPIS implementation, which uses regular expressions only as ground
terms. It would be interesting to make the Kleene star a full-fledged region algebra operator —
and, in fact, the theorems proved in this section imply that the Kleene star would not change the
recognition power of RSTR, since it is regular — but its precise definition and implementation is
left as future work.

RSTR trivially recognizes all regular languages, because it includes regular expressions as a
subset:

Theorem 10. If L is regular, then L is the inner language of some expression in RSTR.

The harder proof goes in the other direction: that every language recognized by RSTR is
regular.

Theorem 11. If L is the region language for some expression in RSTR, then L is regular.

Proof. As usual, the proof proceeds by structural induction on algebra expressions in RSTR.

• Ground terms. The ground terms all produce regular sets: L(Ω) is Σ∗[Σ∗]Σ∗, L(∅) is ∅, and
L(r) is Σ∗[r]Σ∗.

• Set operators. Regular sets are closed under intersection, union, and complement, so if
L(E1) and L(E2) are regular, then so are L(E1 ∩ E2), L(E1 ∪ E2), and L(E1 − E2).

• Relational operators. Represent each algebra operator op by a finite state transducer (FST)
mapping L(E) to L(op E). The FSTs are shown in Figure 5.4. For example, the FST for
before accepts input strings of the form vwx[y]z and produces all possible output strings of
the form v[w]xyz. Thus, the image of L(E) under this FST is L(before E). By Theorem 3,
if L(E) is regular, then L(op E) is also regular for all relation operators op.

Corollary 4. The inner language and outer language of any expression in RSTR are regular.

The corollary follows from Theorem 5.

5.9 Context-Free Ground Terms (RSTCFL)

We now come to the strongest variant of the region algebra under discussion in this chapter: algebra
expressions with context-free grammar nonterminals as ground terms, RSTCFL.

It should be noted that, unlike string literals and regular expressions, a grammar nonterminal
implicitly constrains the context in which it can match. For example, consider the grammar

S → aS |Sb |A

A → cde

Although the nonterminal A matches a literal string cde, the algebra expression A is not equivalent
to the literal expression cde. A can only match a region when the entire string can be derived from
the grammar. Thus L(A) includes [cde] and aaa[cde]bb, but not bb[cde]a.

110 CHAPTER 5. LANGUAGE THEORY

start
ε /[

/ */*

]/ε

/

[/ε

/ */*

ε /]before

maps vwx[y]z → v[w]xyz for all strings v, w, x, y, z

start ε /[

/ */*

]/ε

/

[/ε

/ */*

ε /]after

maps v[w]xyz → vwx[y]z for all strings v, w, x, y, z

start
ε /[

/ */*

]/ε

/

[/ε

/ */*

ε /]overlaps−
start

maps vw[xy]z → v[wx]yz for all strings v, w, x, y, z

start
ε /[

/ */*

]/ε

/

[/ε

/ */*

ε /]overlaps−
end

maps v[wx]yz → vw[xy]z for all strings v, w, x, y, z

start
ε /[

/ */*

]/ε

/

[/ε

/ */*

ε /]
in

maps vw[x]yz → v[wxy]z for all strings v, w, x, y, z

start
ε /[

/ */*

]/ε

/

[/ε

/ */*

ε /]contains

maps v[wxy]z → vw[x]yz for all strings v, w, x, y, z

Figure 5.4: Finite state transducers for the relational operators.

5.9. CONTEXT-FREE GROUND TERMS (RSTCFL) 111

Nevertheless, since any literal string or regular expression can be represented by a context-free
grammar G, literal and regular ground terms can be represented by a grammar nonterminal ground
term (the start symbol of G), so RSTCFL contains all the expressions in RSTF and RSTR.

Theorem 12. If L is context-free, then L is the inner (and outer) language of some expression in
RSTCFL.

Proof. Since L is context-free, there is some context-free grammar G = (V, Σ, S, P) such that
L = L(G). Then the algebra expression S is the desired expression, since L0(S) = L(G) and
L1(S) = L(G).

Thus we have CFL ⊂ RSTCFL. Unlike RSTR, which could recognize no languages outside
R, RSTCFL is stronger than CFL.

Theorem 13. There exists an expression in RSTCFL whose inner language and outer language
are not context-free.

Proof. Consider the two languages L1 = anbnc∗ and L2 = a∗bncn, recognized by the following
grammars:

S1 → X1C1

X1 → aX1b | ε

C1 → cC1 | ε

S2 → A2Y2

A2 → aA1 | ε

Y1 → bY1c | ε

Although both L1 and L2 are context-free, their intersection L1 ∩ L2 = {anbncn} is not context-
free [HU79, Example 6.1]. Yet L1 ∩ L2 is the inner (and outer) language of the region algebra
expression S1 ∩ S2.

Since RSTCFL is strictly larger than CFL, one might ask whether it is included in the context-
sensitive languages, CSL. The answer is in the affirmative:

Theorem 14. If L is the region language of an expression in RSTCFL, then L is context-sensitive.

Proof. By structural induction on expressions in RSTCFL.

• Ground terms. L(Ω) and L(∅) are clearly context-sensitive. So suppose the expression is a
nonterminal A in some context-free grammar G = (V, Σ, S, P). We will form a new context-
free grammar G′ = (V1∪V2, Σ∪{[,]}S1, P

′) which puts square brackets around occurrences
of A in its derivation, so that L(G′) is the region language of A. For every nonterminal N in
the original grammar G, G′ contains two nonterminals, N1 and N0. Intuitively, every N1 will
expand to a string containing square brackets, and every N0 will expand to a string containing
no square brackets. For every production N → α in the original grammar, form all possible
productions N1 → α1 by adding the subscript 1 to one nonterminal in α and 0 to all other

112 CHAPTER 5. LANGUAGE THEORY

start

/ */*/a

a/a

[/a

/

/b

b/b

a/b
b/a

[/b

repeated for
all symbols in ∑

b/[

a/[
a/

a/a

a/]

b/

b/b

b/a
a/b

b/]

repeated for
all symbols in ∑

]/b

]/a

Figure 5.5: An ε-free FST for in.

nonterminals, and all productions N0 → α0 by adding the subscript 0 to all nonterminals
in α. Finally, add the production A1 → [A0]. The resulting grammar derives a string x[y]z
if and only if the original grammar derives xAz and thence xyz, so L(G′) = L(A). Since
L(G′) is context-free, it is obviously context-sensitive.

• Set operators. Context-sensitive languages are closed under union, intersection, and com-
plement. (Closure under union is well-known [HU79], but closure under intersection and
complement is a relatively recent result [Imm88].) Thus if L(E1) and L(E2) are context-
sensitive, then so are L(E1 ∩ E2), L(E1 ∪ E2), and L(E1 − E2).

• Relational operators. Each relational operator can be represented by a finite state transducer,
as shown in Figure 5.4. However, the FSTs shown in the figure incorporate ε transitions,
and context-sensitive languages are only closed under ε-free FSTs (Theorem 4). However,
each of the FSTs can be transformed into an equivalent ε-free FST by replicating states to
remember symbols consumed but not yet emitted (or vice versa). At most two symbols must
be stored at any time, so the set of states is still finite. For example, Figure 5.5 shows the
ε-free FST for the in operator. As a result, if L(E) is context-sensitive, then L(op E) is also
context-sensitive for any relational operator op.

It remains an open question whether all context-sensitive languages can be recognized by
RSTCFL.

5.10. THE FORALL OPERATOR (RSTAR AND FRIENDS) 113

5.10 The forall Operator (RSTAR and friends)

The arguments thus far have allowed only RST — algebra expressions containing relational op-
erators, set operators, and concatenation. It remains to deal with the forall operator. The principal
complication of forall is that it binds variables, so that the meaning of an expression E depends not
only on E itself but on the bindings assigned to the free variables in E. As a result, the semantics
of E will no longer be a set of strings, but instead a function mapping the bindings of its free
variables to the set of strings it recognizes. This function takes a particular form, namely an n-way
regular relation.

Before defining regular relations, let us illustrate the technique with a simple special case:
expressions with only one free variable. To be precise, whenever forall (α : E1) . E2 occurs in the
expression, E2 contains no occurrence of forall. Many of the uses of forall in Chapter 3 satisfy this
restriction, particularly the adjacency and overlapping relational operators.

In forall (α : E1) . E2, the expression E2 contains a single free variable α that is bound to each
region matching E1. In terms of languages, the region language L(forall (α : E1) . E2) is the set
of strings generated by E2 when α is bound to each string in the region language L(E1). Thus, the
expression E2 acts as a transducer which takes a string bound to α as input and produces a match
to E2 as output. When E2 is a simple relational expression like before α, then it is easy to see
that it is actually a finite state transducer. (Finite state transducers for the relational operators were
given in Figure 5.4.) We will see that the same property extends to all operators in the algebra: for
any expression E2 with only one free variable, E2 is a finite state transducer. The region language
recognized by the forall expression, L(forall (α : E1) . E2), is the language recognized by E1

mapped through the finite state transducer for E2. By Theorem 3, therefore, if L(E1) is regular,
context-free, or context-sensitive, then L(forall (α : E1) . E2) is likewise regular, context-free, or
context-sensitive.

The following sections extend this technique to an arbitrary number of free variables by intro-
ducing n-way regular relations.

5.10.1 N-way Regular Relations

Regular relations, also called rational relations in the algebra literature, extend the concept of reg-
ularity to Cartesian products of languages. The development here follows Kaplan & Kay [KK94].

First we give some preliminary definitions. An n-way string relation is a set of n-tuples of
strings over some alphabet Σ. Equivalently, an n-way string relation is a subset of the n-way
Cartesian product Σ∗ × · · · × Σ∗. We write a tuple of strings as < x1, . . . , xn >. For the n-tuple
of empty strings, we write εn =< ε, . . . , ε >. String concatenation is extended over n-tuples as
follows: if x1, . . . xn and y1, . . . , yn are strings, then

< x1, . . . , xn >< y1, . . . , yn >≡< x1y1, . . . , xnyn >

The concatenation of two relations is the pairwise concatenation of their elements:

R1R2 ≡ {< x1y1, . . . , xnyn > | < x1, . . . , xn >∈ R1 and < y1, . . . , yn >∈ R2}

Exponentiation of an n-way relation is defined as expected:

R0 ≡ {εn}

Ri ≡ Ri−1R

114 CHAPTER 5. LANGUAGE THEORY

The Kleene star R∗ is defined as ∪∞
i=0R

i.
Regular relations are defined recursively as follows:

• ∅ and {< x1, · · · , xn >} for any < x1, · · · , xn >∈ Σ∗ × · · · × Σ∗ are regular relations;

• if R and R′ are regular relations, then RR′, R ∪R′, and R∗ are regular relations;

• there are no other regular relations.

Every regular n-way relation is recognized by an n-tape finite state transducer, a generalization of
the finite state transducer defined in Section 5.2. Every transition in an n-tape finite state transducer
is labeled with n symbols, which may be either symbols in Σ or the empty string ε. Formally, a
finite state transducer is a tuple M = (Q, Σ, δ, q0, F) where Q is a set of states; Σ is the alphabet;
δ is a mapping from Q× (Σ∪ {ε})× · · · × (Σ∪ {ε}) to finite subsets of Q; q0 is the starting state;
and F is the set of accepting states.

It is easy to show that regular relations are closed under a number of operations:

• union R ∪R′;

• concatenation RR′;

• Kleene star R∗;

• product R × R′ = {< x1, . . . , xn, y1, . . . , ym > | < x1, . . . , xn >∈ R and <
y1, y2, . . . , ym >∈ R′};

• join R join R′ = {< x1, . . . , xn, y2, . . . , ym > | < x1, . . . , xn >∈ R and <
xn, y2, . . . , ym >∈ R′}

• composition R ◦ R′ = {< x1, . . . , xn−1, y2, . . . , ym > | < x1, . . . , xn >∈ R and <
xn, y2, . . . , ym >∈ R′}. Note that composition is like a join where the common compo-
nent xn is removed.

Regular relations are also closely related to regular languages. The projection πi(R) = {xi| <
x1, . . . , xn >∈ R}. If L is a regular language, then the 1-relation < L >= {< x > |x ∈
L} is a regular relation. The image of L under a regular relation R, written R/iL = {<
x1, . . . , xi−1, xi+1, . . . , xn > | < x1, . . . , xn >∈ R and xi ∈ L}, is also a regular relation. In
particular, R/iΣ

∗ deletes the ith component of a n-way regular relation R to produce an n−1-way
regular relation.

Regular relations are not, in general, closed under intersection and difference. For example,
consider the two regular relations R1 =< ε, b >∗< a, c >∗ and R2 =< a, b >∗< ε, c >∗. The
relation R1 consists of tuples of the form < an, b∗cn >, and relation R2 is < an, bnc∗ >, so the
intersection R1 ∩ R2 is < an, bncn >. This relation cannot be regular because its projection bncn

is not regular.
Closure under intersection and difference is vital if we want to use regular relations for region

algebra semantics. Fortunately, Kaplan and Kay show that a useful subclass of regular relations
is closed under these operations. A same-length relation is a relation R such that for every <
x1, . . . , xn > in R, |x1| = · · · = |xn|. Same-length regular relations are closed under:

5.10. THE FORALL OPERATOR (RSTAR AND FRIENDS) 115

• intersection R ∩R′;

• difference R−R′;

• union R ∪R′;

• concatenation RR′;

• Kleene star R∗;

• join R join R′;

• composition R ◦R′;

• image with a regular language R/iL.

Same-length regular relations are not closed under product R × R′, however, since a tuple in R
may be paired with a tuple in R′ of a different length.

5.10.2 Algebra Semantics With forall

We are now ready to give semantics for region expressions with variables. Assume that all variables
in an expression are distinct, so that every forall operator binds a unique variable. It is trivial to
rewrite the expression with fresh variables to make this the case. Let V be the set of variables that
can be used in a region expression, and v ∈ V ∗ be a string of variables. For a string of bound
variables v and a region expression E whose free variables can all be found in v, let Rv(E) denote
the |v|+ 1-way relation defined as follows:

Rv(E) ≡ { < x1[y1]z1, . . . , xn[yn]zn, x[y]z > |

[|x|, |xy|] ∈ E/xyz when each vi is bound to the region [|xi|, |xiyi|]

and xiyizi = xyz for all i}

For any tuple in Rv(E), the first |v| components represent the regions bound to variables, and the
|v|+ 1st component is the region matching the expression E.

Using this definition, we can write the region language L(E) recognized by a region expression
that contains variables. Assuming E has no free variables (but possibly bound variables), then

L(E) = π1(Rε(E))

i.e., the projection of the 1-relation Rv(E) where no variables are bound.
An important constraint in the definition of Rv(E) is that for every tuple <

x1[y1]z1, . . . , xn[yn]zn, x[y]z > in Rv(E), it must be the case that x1y1z1 = · · · = xnynzn = xyz.
In other words, the n bound variables and the output must all refer to regions in the same string,
xyz. A tuple that satisfies this constraint will be called well-formed. For convenience in later
definitions, we let ∆ ≡ {x[y]z|xyz ∈ Σ∗} be the set of all well-formed region strings, and

∆n ≡ {< x1[y1]z1, . . . , xn[yn]zn > |xiyizi = w for some w and all i}

be the set of all well-formed region tuples. It is always the case that Rv(E) ⊂ ∆|v|+1.

116 CHAPTER 5. LANGUAGE THEORY

Lemma 2. ∆n is a same-length regular relation.

Proof. By definition ∆n is a same-length relation, because every string in a tuple has length |w|+2.
The proof that ∆n is regular goes by induction on n. The 1-way relation ∆1 =< ∆ > is regular
because the language ∆ is regular. The 2-way relation ∆2 is regular because it is the union of the
six 2-way regular relations before, after, in, contains, overlaps-start, and overlaps-end described
by the finite state transducers shown in Figure 5.4. (Claim 1 implies that the union of the six binary
region relations gives all possible relations between regions.) For n > 2, ∆n = ∆n−1 join ∆2, so by
the induction hypothesis and closure of same-length regular relations under join, ∆n is regular.

The next section will show that Rv(E) is also a same-length regular relation for expressions E
in RSTAR.

The semantics of all region algebra operators, including forall, can be written in terms of
Rv(E). We omit concatenation, since it was shown in Chapter 3 that concatenation can be defined
in terms of forall.

Ground Terms

The ground terms include literal strings w, regular expressions r, and context-free grammar non-
terminals A. A ground term ignores the bound variables and returns the region language L(E).
However, the entire relation Rv(E) must still satisfy the constraint that all strings in a tuple are
identical (modulo the positions of the square brackets). Since ∆n expresses this constraint, we can
write Rv(E) for ground terms E as follows:

Rv(w) = ∆|v|+1 join < L(w) >

Rv(r) = ∆|v|+1 join < L(r) >

Rv(A) = ∆|v|+1 join < L(A) >

Set Operators

The set operators are straightforward:

Rv(E1 ∩ E2) = Rv(E1) ∩Rv(E2)

Rv(E1 ∪ E2) = Rv(E1) ∪Rv(E2)

Rv(E1 − E2) = Rv(E1)−Rv(E2)

Rv(Ω) = ∆|v|+1

Rv(∅) = ∅

Relational Operators (R)

The relational operators are represented as 2-way finite state transducers in Figure 5.4, which are
equivalent to 2-way string relations. Let R(op) be the 2-way relation for op. Then we can write
each Rv(op E) as a composition as follows:

5.10. THE FORALL OPERATOR (RSTAR AND FRIENDS) 117

Rv(before E) = Rv(E) ◦R(before)

Rv(after E) = Rv(E) ◦R(after)

Rv(in E) = Rv(E) ◦R(in)

Rv(contains E) = Rv(E) ◦R(contains)

Rv(overlaps-start E) = Rv(E) ◦R(overlaps-start)

Rv(overlaps-end E) = Rv(E) ◦R(overlaps-end)

Forall Operator

Finally we consider the forall operator. The expression forall (α : E1) . E2 evaluates E1 and binds
a new variable α which is added to the variable subscript v when evaluating E2. In detail, Rv for
this expression is

Rv(forall (α : E1) . E2) = { < x1[y1]z1, . . . , xn[yn]zn, x[y]z > |

< x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα >∈ Rv(E1)

and < x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα, x[y]z >∈ Rvα(E2)}

We will want to show that this is a same-length regular relation, so let us rewrite it as a combination
of Rv(E1) and Rvα(E2) using operators under which same-length regular relations are closed.
Starting with the well-formed n+1-way relation Rv(E1), we extend it to a same-length n+2-way
relation by joining it with ∆2:

Rv(E1) join ∆2 = { < x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα, x[y]z >

< x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα >∈ Rv(E1)

and xiyizi = xyz}

This expression represents the bound variables vα allowed by E1. To find the result of E2 given
those bindings, we intersect with Rvα(E2) to get

(Rv(E1) join ∆2) ∩Rvα(E2) = { < x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα, x[y]z > |

< x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα >∈ Rv(E1)

and < x1[y1]z1, . . . , xn[yn]zn, xα[yα]zα, x[y]z >∈ Rvα(E2)}

Finally, we apply /|v|+1∆ to delete the α component of the relation so that the result is a n+1-way
relation omitting the bound variable α, as required. Thus

Rv(forall (α : E1) . E2) = ((Rv(E1) join ∆2) ∩Rvα(E2))/|v|+1∆

5.10.3 RSTAR = R

Now we are ready to show that Rv(E) is a same-length regular relation, which will lead immedi-
ately to the result that RSTAR recognizes exactly the class of regular languages.

118 CHAPTER 5. LANGUAGE THEORY

Theorem 15. Rv(E) is a same-length regular relation for all expressions E in RSTAR.

Proof. By structural induction on E.

• Ground terms. For a regular expression r, Rv(r) = ∆|v|+1 join < L(r) > is a same-length
regular relation because ∆n is same-length regular, < L(r) > is regular and trivially same-
length, and same-length regular relations are closed under join. Likewise, Rv(Ω) = ∆|v|+1

and Rv(∅) = ∅ are same-length regular.

• Set operators. Same-length regular relations are closed under intersection, union, and differ-
ence.

• Relational operators. For each operator op, R(op) is a same-length regular relation, and
same-length regular relations are closed under composition, so Rv(op E) = Rv(E)◦R(op)
is same-length regular.

• Forall operator. Since Rv(forall (α : E1) . E2) = ((Rv(E1) join ∆2)∩Rvα(E2))/|v|+1∆, and
same-length regular relations are closed under join, intersection, and deletion of a compo-
nent, Rv(forall (α : E1) . E2) is same-length regular.

Corollary 5. If L is the region language for some expression E in RSTAR, then L is regular.

Proof. L = L(E) is a projection of the regular relation Rε(E), so L is regular.

5.10.4 Open Questions: RSTA∅, RSTAF , RSTACFL

We have seen that adding the forall operator to the region algebra over regular expressions does not
affect its power. Like RSTR, RSTAR recognizes the class of regular languages, no more, no less.
What about the other algebra specializations: no ground terms, finite ground terms, or context-free
ground terms? Does forall affect their power?

Adding forall to RST∅ clearly expands the set of region languages that can be recognized —
not a hard job considering that RST∅ can only recognize L(Ω) and ∅. For example, forall enables
the definition of operators like zero-length, which matches only the zero-length regions in a string,
and nth nA, which matches the nth region matching A. Combining these operators produces the
expression

ends nth n+1zero− length

which matches only regions containing exactly n + 1 zero-length regions, i.e., regions of length
n. Since RSTA∅ offers no way to test the characters of the string, however, it seems plausible
that RSTA∅ recognizes a class of region languages that depends only on the location of the square
brackets and not on the symbols in the string. As a conjecture, RSTA∅ might recognize the set
of region languages L such that for any substitution function h : Σ → Σ that preserves [and],
h(L) = L. Characterizing this language class precisely and proving that RSTA∅ recognizes it is
left as future work.

Whether RSTAF recognizes only noncounting languages, like RSTF does, is also an open
question. The reader may have noticed that the proof techniques for RSTF were substantially

5.11. SUMMARY 119

F

NC

R

CFL

CSL

RSTA
F

RSTA
CFL

RST
CFL

= RSTA
R

 = RST
F

Figure 5.6: Summary of relationships among language classes.

different from RSTR and RSTCFL, primarily because noncounting languages are not closed under
mapping through an arbitrary finite state transducer. The regular languages are the smallest lan-
guage class that is closed under FST mapping [HU79, Lemma 11.1]. Since NC ⊂ R, we could
not use finite state transducers to show that RSTF recognizes NC. As a result, the regular rela-
tion machinery developed for showing that RSTAR recognizes R will not help to decide whether
RSTAF recognizes NC.

Finally, we consider RSTACFL. We know that CFL is a strict subset of RSTACFL, but is
RSTACFL a subset of CSL? I believe it is, but resolving the question would require developing
some additional theoretical machinery which is left as future work.

5.11 Summary

The important relationships between the region algebra variants discussed in this chapter and the
the language classes of the Chomsky language hierarchy are summarized in Figure 5.6. In the
figure, solid arrows denote proper inclusion between language classes, e.g., R ⊂ CFL. Dashed
arrows denote inclusion which is not known to be proper. For example, it is trivial that RSTF ⊆
RSTAF , but it is not known whether RSTF = RSTAF . The dashed arrows represent open
problems, as do missing lines, such as the relationship between CSL and RSTACFL.

120 CHAPTER 5. LANGUAGE THEORY

