Chapter 4

Region Algebra | mplementation

This chapter describes how the region algebra is implemented in LAPIS. The key aspect of the
implementation is the representation chosen for region sets, which has two parts:

e A region rectangle is a rectangle in region space. Region rectangles are a compact way to
represent the result of applying a relational operator to a region.

e Arectangle collection represents a region set as a union of region rectangles. We can draw on
research in computational geometry to find efficient data structures for rectangle collections.

Section 4.6 describes how the basic implementation can be optimized to significantly improve its
performance in special cases that are common in practice.

4.1 Region Rectangles

A region rectangle is a tuple of four integers, (s1, 1, s2, e2), Which represents a set of regions as a
closed rectangle in region space:

(s1,€1,82,e2) = {[s,¢€][s1 <s <saNer <e<enf

Essentially, a region rectangle is a set of regions whose start point and end point must fall into the
specified half-open interval. Figure 4.1 shows some region rectangles corresponding to region sets
in a text string.

A few facts about region rectangles follow immediately from the definition:

e The single region [s, e| corresponds to the region rectangle (s, e, s, e).
e The set of all possible regions €2 in a string of length n is the region rectangle (0,0,n,n).

e One region rectangle is a subset of another, (s1,e1, s2,e2) C (8], €], 5, €5), if and only if
s)<sy<sp<shande| <e; < ey <él.

e One region rectangle intersects another, (s, e, s2,e2) N (87, €}, sh, e5) # 0, if and only if
s1 < sh, 81 < 59,61 < eh,and e] < es.

o1

52 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

end of region

Four score and seven years ago...

Four score and seven years ago...

start of region

Figure 4.1: Region rectangles depicted in a text string and in region space. Region rectangle A is
the set of all regions that contains the word “score”, B is the set of regions that are in the word
“seven”, and C' consists of the single region “years”.

4.1. REGION RECTANGLES 53

end of region overlaps—end b
n
after b
contains b
b
e .
inb
overlaps—start b
s
before b
0
0 n
start of region
b=s, e
beforeb = (0,0,s,s) afterb = (e,e,n,n)
overlaps-startb = (0, s, s,e) overlaps-endb = (s,e,e,n)
containsb = (0,e,s,n) inb = (s,s,¢,¢€)

Figure 4.2: Region relations can be represented by rectangles.

A region rectangle is capable of representing certain region sets very compactly. With only four
integers, a region rectangle can describe a set as large as 2. One particularly interesting kind of
region set can be represented with a region rectangle: the result of a region relation operator. Re-
call from Figure 3.6 that a region space map shows how every region in region space is related to
a given region b. The map has areas for all the fundamental relations: before b, overlaps-startb,
contains b, inb, overlaps-endb, and after b. Each of these areas is the result of applying an alge-
braic operator to the set {b}.

The key insight is that every area in b’s region space map can be represented by a rectan-
gle, as shown in figure 4.2. Some areas are already rectangular (contains b, overlaps-startb, and
overlaps-end b). Other areas (before b, inb, and after b) are triangular, cut by the 45° diagonal. But
even these areas can be represented by a rectangular area, part of which extends below the diago-
nal, as long as the part below the diagonal is implicitly ignored. Thus, the result of applying any
of the six region relation operators to a region [s,] can always be represented by one rectangle.

We can go beyond single regions [s, e], however. Applying a relational operator to any region
rectangle (sq, e1, s2, e2) Will also produce a rectangle. In other words:

54 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

Claim 2. The set of region rectangles is closed under the relational operators before, after,
overlaps-start, overlaps-end, in, and contains.

Figure 4.3 demonstrates a geometric proof of Claim 2.

This closure property is the reason why region rectangles are so useful as a fundamental rep-
resentation. Thanks to the closure property, if a region set A is represented by N rectangles,
then op A can also be represented by N rectangles, for any relational operator op. The closure
property also extends to the derived relational operators that were defined in Chapter 3, including
just-before, just-after, starting, ending, and overlaps. A few of these operators are illustrated in
Figure 4.3.

Region rectangles are also closed under set intersection, since the intersection of two rectangles
is also a rectangle. Region rectangles are not closed under union or difference, however.

4.2 Rectangle Collection

Any region set can be represented by a union of region rectangles. Some examples of rectangle
collections for typical region sets are shown in Figures 4.4-4.6.

A rectangle collection is the fundamental representation for a region set in LAPIS. For now, we
will treat a rectangle collection as an abstract data type representing a set of points in region space.
Points can be queried, added, and removed as axis-aligned rectangles with integer coordinates. A
rectangle collection C supports four operations:

e QUERY(C, r) searches C for all points that lie in the query rectangle r. The result is a stream
of rectangles, not necessarily disjoint, so the same point can be returned more than once in
different rectangles. All points in the rectangle collection are enumerated by QUERY (C, ().

e INSERT(C,r) inserts a rectangle r into C, so that the set of points represented by C' now
includes all the points in r.

e DELETE(C,r) deletes a rectangle » from C, so that the set of points represented by C' no
longer includes any of the points in r.

e CoPY(C') duplicates a rectangle collection, hopefully faster than enumerating its contents
and inserting them into an empty collection.

These operations are extensions of the conventional membership test, insert, and delete operations
for sets. Instead of taking a single element to query, insert, or delete, the operations take a region
rectangle, a set of related elements.

A rectangle collection only needs to represent the region set faithfully, not the particular set
of rectangles that were inserted to create it. A rectangle collection can merge rectangles, split
rectangles, and throw away redundant rectangles, in order to store the collection more compactly
or make queries faster. As a result, QUERY (C, €2) need not return the same set of rectangles that
were inserted into the collection, as long the union of the rectangles returned by QUERY is identical
to the union of the inserted rectangles.

4.2. RECTANGLE COLLECTION

end of region
n

before B

end of region
n

overlaps—stdrt B

n

start of region

end of region

n

start of region

end of region
n

after B

end of region
n

s, s e n

start of region

overlaps—end B

B

end of region

S S =} n

start of region

55

contains B
e e
B
& & inB
% s, n % s, s e, n
start of region start of region
B = (81, €1, S9, 62)
before B = (0,0, s9, $2) after B = (e, e;,n,n)
overlaps-start B = (0, s1, 9, €3) overlaps-end B = (s1,€1,€e9,n)
contains B = (0, e,52,n) inB = (s1,51,¢€2,6)

Figure 4.3: Applying a relational operator to a region rectangle always produces another rectangle.

56 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

flat region set F overlapping region set O

nested region set N

Figure 4.4: Rectangle collections for flat, overlapping, and nested region sets. Each rectangle
covers only a single point. Dashed lines show that each region set meets the desired definition.
Regions in ' must be before or after each other. Regions in O may also overlap-start or overlap-
end. Regions in N may be related by before, after, in, or contains.

4.2. RECTANGLE COLLECTION 57

before F after F

inF contains F

Figure 4.5: Rectangle collections for relational operators applied to the flat region set F' from
Figure 4.4. Each collection contains four rectangles, which may intersect. Dashed lines show the
location of the original region set F.

58

CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

just- before F

just- after F

starting F

\

ending F

Figure 4.6: More relational operators applied to the flat region set /' from Figure 4.4. Dashed lines

show the location of the original region set F'.

4.3. IMPLEMENTING THE REGION ALGEBRA 59

4.3 Implementing the Region Algebra

Now we are ready to implement the algebra operators using rectangle collections. Recall that the
region algebra described in Section 3.5 has the following operators:

o Relational operators: before, after, in, contains, overlaps-start, overlaps-end.
e Set operators: U, N, —.
o lIteration operator: forall.

The relational operators are implemented by Algorithm 4.1. The key line of the algorithm is line 3,
in which the relational operator op is applied to a rectangle, producing another rectangle which is
then inserted into the result. Figure 4.3 shows the rectangle produced by each relational operator.

Algorithm 4.1 RELATION applies a relational operator to a rectangle collection.
RELATION(0p, A)

1 U+ new RECTANGLECOLLECTION

2 for eachr in A

3 doINSERT(U, opr)

4 returnU

Set union, intersection, and difference are implemented by Algorithms 4.2-4.4. Since union
and intersection are commutative, A and B can be passed in any order. UNION and INTERSECTION
are written under the assumption that |A| > | B|, in the sense that enumerating the rectangles in A
takes longer than enumerating the rectangles in B. Thus UNION copies A instead of enumerating
it, and INTERSECTION queries A instead of enumerating it. If the caller can cheaply determine
which collection is larger, then this optimization may save some time.

Algorithm 4.2 UNION finds the union of two rectangle collections.
UNION(A, B)

1 U« CopY(4)

2 for eachr in B

3 dolINSERT(U,r)

4 returnU

Finally, the forall operator is shown in Algorithm 4.5. FORALL iterates through all the rect-
angles in a rectangle collection and applies a function f to every rectangle. Each application of f
returns a stream of rectangles, which are inserted into a new rectangle collection and returned. The
function f takes a rectangle (s1, e1, o, €2) and produces a stream of rectangles that result from ap-
plying the body of the forall expression to every region [s, €] in the rectangle. Although in general
this may require iterating through all pairs [s, e] such that s; < s < sy and e; < e < es, in practice
f can compute a result for the entire rectangle at once. All the uses of forall in the examples in
Chapter 3 behave this way.

60 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

Algorithm 4.3 INTERSECTION finds the intersection of two rectangle collections.
INTERSECTION(A, B)

1 U+ new RECTANGLECOLLECTION

2 for eachr inB

3 do for eachr’ in QUERY(A,r)

4 do INSERT(U, ")

5 returnU

Algorithm 4.4 DIFFeRENCE finds the difference between two rectangle collections.
DIFFERENCE(A, B)

1 U« CopY(A)

2 for eachr inB

3 doDELETE(U,r)

4 returnU

Algorithm 4.5 FORALL applies a function f to every rectangle in collection C.
FORALL(A, f)
1 U < new RECTANGLECOLLECTION
for eachr in A
do for each ' in f(r)
do INSERT(U, ")
return U

2
3
4
5

4.4. DATA STRUCTURES 61

4.4 Data Structures

We have reduced the problem of implementing the region algebra to finding an efficient data struc-
ture for a rectangle collection that supports querying, insertion, and deletion. Research in computa-
tional geometry and multidimensional databases has resulted in a variety of suitable data structures.
Samet [Sam90] gives a good survey.

This section describes three classes of spatial data structures that are useful for rectangle col-
lections:

o R-trees divide the rectangle collection recursively. Each leaf of an R-tree is one rectangle in
the collection, and each internal node stores the bounding box of the rectangles in its subtree.
Variants of the R-tree variants use different insertion heuristics to minimize overlap between
nodes, which speeds up query operations.

o Quadtrees divide region space recursively. Each quadtree node covers a fixed area of region
space, and each node has four children, one for each equal quadrant of its area. Variants of
the quadtree differ in how deeply the tree is subdivided and whether rectangles are stored
only in the leaves or in all nodes.

¢ Point-based methods represent each rectangle as a four-dimensional point. The points are
stored in a point data structure, such as a k-d tree, quadtree, or range tree.

Each class of data structure is described below. Discussion will focus on how to implement the
three key operations for rectangle collections: querying for intersections with a rectangle, inserting
a rectangle, and deleting a rectangle. The running time of these operations and the storage cost of
the data structure will also be discussed.

Only one of these data structures is implemented in LAPIS: a variant of the R-tree that I call
an RB-tree.

441 R-Trees

An R-tree [Gut84] is a balanced tree that stores an arbitrary collection of rectangles. The R-tree is
based on the B-tree [CLR92], in that every internal node (other than the root) has between m and
M children for some constants m and M, and the tree is kept in balance by splitting overflowing
nodes and merging underflowing nodes. Each leaf node represents one rectangle in the collection,
and each internal node stores the bounding box of all the rectangles in its subtree. An example
R-tree is shown in Figure 4.7.

Querying for a rectangle in an R-tree uses Algorithm 4.6. The algorithm compares the query
rectangle recursively against the bounding box of each node (T.bbox). If the query rectangle does
not intersect a node’s bounding box, then the node’s subtree is pruned from the search. When the
search reaches a leaf of the tree, it returns the intersection of the query rectangle with the rectangle
stored in the leaf (T.rectangle). For convenience, the pseudocode in Algorithm 4.6 uses the yi el d
keyword from CLU [Lis81] to return each rectangle. Unlike r et ur n, yi el d implicitly saves a
continuation so that the traversal can be resumed at the same point to generate the next rectangle.

Inserting a rectangle into an R-tree is similar to insertion into a B-tree. The new rectangle is
inserted as a leaf. If the leaf’s parent overflows (i.e., has M + 1 children), the parent is split into

62 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

Figure 4.7: An R-tree containing 5 rectangles, A — E.

Algorithm 4.6 QUERY (7', r) traverses an R-tree 7" to find all rectangles that intersect the rectangle
T.
QUERY(T, 1)
if » doesn’t intersect 7'.bbox

then return
if T is leaf

then yield r N T'.rectangle

else for each C' inT.children

do QUERY (C, 1)

o Ol WN

4.4. DATA STRUCTURES 63

A B C D A C B D

Good Bad

Figure 4.8: Different R-trees for the same set of rectangles can have different querying perfor-
mance. A query for rectangle ¢ can avoid visiting the C-D subtree in the R-tree on the left, but it
must visit all nodes in the R-tree on the right.

two nodes, which are then inserted into the grandparent. Overflows propagate up the tree as far as
necessary. When the root overflows, it is split and a new root node is created, increasing the height
of the tree.

Unlike a B-tree, however, an R-tree has no fixed rule for placing rectangles in its leaves. A rect-
angle can be inserted as any leaf without violating the R-tree’s invariant properties. Bad placement
leads to slower querying, however, because the internal nodes’ bounding boxes become larger,
more likely to overlap, and less likely to be pruned from the search. Figure 4.8 shows an exam-
ple. Ideally, good placement should minimize both the area of the nodes and the overlap between
sibling nodes.

Variants of the R-tree differ in the heuristics they use to achieve good placement. Two decisions
are made heuristically. First is the insertion heuristic, which determines where to insert a new
rectangle. Second is the node-splitting heuristic, which partitions the children of an overflowing
node into two new nodes.

The original R-tree proposed by Guttman [Gut84] uses heuristics that minimize the area of
bounding boxes. The insertion heuristic traverses the tree recursively, choosing the node whose
bounding box would be expanded the least (in area) by the new rectangle. Ties are broken by
choosing the node with the smallest area. For the node-splitting heuristic, Guttman offered three
possibilities:

e an exponential heuristic that does an exhaustive search of the 2 possible partitions, search-
ing for the partition that produces the smallest nodes. This heuristic is generally impractical,
but serves as a good baseline for measuring the performance of other heuristics.

64 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

e a quadratic heuristic that chooses two rectangles as seeds and greedily adds the remaining
rectangles to the node whose bounding box needs the least enlargement. The seeds are cho-
sen so that their bounding rectangle R maximizes area (R) — area (seed ;) — area (seed,).
Implementing the second heuristic requires testing all 1/2 possible pairs of seeds.

e a linear heuristic identical to the quadratic heuristic except that the chosen seeds are the
rectangles with maximum separation (in some dimension), which can be computed in O(M)
time.

Guttman’s experiments suggested that the linear heuristic was as good as the other two, but later
experimenters [BKSS90] argue that the quadratic heuristic is superior to the linear heuristic in
many cases.

The R*-tree [BKSS90] uses another set of heuristics. For non-leaf nodes, the R*-tree uses the
same insertion heuristic as the R-tree, minimum area enlargement. For leaf nodes, however, the
R*-tree insertion heuristic chooses the leaf node whose overlap with its siblings would be enlarged
the least. The cost of computing each node’s overlap with its siblings is O(M), so this heuristic
takes O(M?) time. For the node-splitting heuristic, the R*-tree sorts the rectangles separately
along each axis, chooses one axis for splitting, and then splits the sorted list into two groups with
minimum overlap. The sorting axis is chosen to minimize the perimeters of the two groups. This
heuristic is O(MlogM). The R*-tree heuristics were empirically shown to be efficient for random
collections of rectangles [BKSS90].

LAPIS originally used the R*-tree heuristics. Rectangle collections used by the region algebra
are not particularly random, however. They tend to be nonoverlapping and distributed linearly
along some dimension of region space, such as the z-axis, y-axis, or 45° line. For such sets,
a fixed lexicographic ordering of rectangles works just as well and avoids expensive placement
calculations entirely. The revised R-tree data structure in LAPIS, which I call an RB-tree, orders
its leaves lexicographically by (s1, e, s2, e2). Each internal node in an RB-tree is augmented with
a pointer to the lexicographically smallest leaf in its subtree, which allows the insertion heuristic
to find the correct place for a new rectangle among the leaves. (This is equivalent to the way a
conventional B-tree intersperses keys with child pointers in internal nodes.) The node-splitting
heuristic simply divides the children in half, preserving their order.

A rectangle r is deleted from an RB-tree by querying the tree for . Every rectangle that
intersects r is either deleted from the tree outright using the B-tree deletion algorithm, or else split
into one or more new rectangles which are reinserted into the tree. The cases for each kind of
overlap are shown in Figure 4.9.

The time to query an RB-tree in which IV rectangles have been inserted is O(NN) in the worst
case, because the query rectangle may intersect the bounding box of every internal node, even if it
does not intersect any of the leaves. Inserting a rectangle in the tree takes O(log N) time. Deleting
a rectangle must query the tree, so it takes O(NV) time in the worst case. The average case is
better, as the performance measurements in Section 4.7 show; querying, insertion, and deletion are
typically O(log V).

The storage required by an RB-tree containing N rectangles is O(NV).

4.4. DATA STRUCTURES

R S
rectangle to delete rectangle in tree
S2
S
R
S1 S4 R
S3

(a) S encloses R ——» delete S
insertS1, S2, S3, S4

(c) R encloses one side of S —® trim overlap from S
reinsertS if necessary

S2
S1

(e) R and S overlap at corner —» delete S
insertS1, S2

(b) R encloses S —» delete S

S2

S1

(d) S encloses one side of R —» delete S
insertS1, S2, S3

S2

S1

(f) R and S overlap at center —» delete S
insertS1, S2

Figure 4.9: Deleting a rectangle from an RB-tree.

66 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

B C
A
D E
G|H
FI M N
O |P
K LQ S G H I J O P Q R

Figure 4.10: Example of a region quadtree (after Figure 1.1 from Samet [Sam90]).

A € D §
triangular nodes

square node -~ (=

Figure 4.11: A quadtree used as a rectangle collection.

4.4.2 Quadtrees

A quadtree is a recursive data structure over 2D space. Each quadtree node represents a fixed area
of space. The root node’s rectangle is the entire space. Every node has four children, which divide
the node’s rectangle into four equal quadrants.

The most familiar kind of quadtree is the region quadtree, which is used to represent a set
of points in the plane, such as a shape or a set of pixels in a raster image. A region quadtree is
subdivided until its leaves are all homogeneous — either all points covered by the leaf are included
in the set, or all points are excluded. A single bit in each leaf indicates which is the case. An
example of a region quadtree is shown in Figure 4.10.

A region quadtree can store a rectangle collection by storing the set of points in the union of
the inserted rectangles. The leaves need not be completely homogeneous, however. It is enough
to subdivide until every leaf contains a rectangular set of points (or no points at all). Furthermore,
region space is actually triangular, not square. As a result, quadtree nodes that intersect the 45°
line only need three children, not four. These optimizations produce quadtrees like the one shown
in Figure 4.11.

Querying a quadtree for a rectangle uses the same algorithm as the R-tree (Algorithm 4.6).
One important difference is that a quadtree does not need to store node bounding boxes explicitly,

4.4. DATA STRUCTURES 67

because every node’s bounding box is uniquely determined by its path from the root. Recursive
algorithms like QUERY calculate bounding boxes on the fly as the quadtree is traversed.

Inserting a rectangle into a quadtree uses a similar recursive search for all nodes that intersect
the new rectangle (Algorithm 4.7). If the new rectangle completely covers a quadtree node, then
the node is simply converted to a leaf. Otherwise, if the node is a leaf, INSERT first tries to extend
the leaf’s rectangle to include the new rectangle. If the resulting shape would be nonrectangular,
the leaf is split using SPLIT (Algorithm 4.8), and the new rectangle is inserted into its children.
Node splitting is guaranteed to terminate, because eventually it will reach a 1 x 1 node which is
either inside or outside the new rectangle. After inserting the new rectangle in the children of a
node, the algorithm calls MERGE (Algorithm 4.9) to test whether the node now represents a simple
rectangular area, in which case its children can be discarded and the node converted into a leaf.
SPLIT and MERGE grow and shrink the quadtree to preserve the invariant that nodes are subdivided
only as far as necessary to make every leaf contain a simple rectangular region.

Algorithm 4.7 INSERT (7, r) inserts a rectangle r into a quadtree 7.

INSERT(T', 1)
1 if r doesn’tintersect T.bbox
2 then return
3 ' «—rnT.bbox
4 if v/ = T.bbox
5 then delete children of T
6 T.rectangle «— r’
7 return
8 ifT isleaf
9 then if T.rectangle Ur' is rectangular

10 then T'.rectangle < T.rectangle U r’
11 return

12 else SPLIT(T)

13 for each C in T.children

14 do INSERT(C, 1)

15 MERGE(T)

Algorithm 4.8 SPLIT (7") converts a quadtree leaf into a node with children.
SPLIT(T)

1 create children of T

2 INSERT(T, T.rectangle)

3 T.rectangle < ()

Deleting a rectangle from a quadtree follows the same pattern as insertion. The only difference
is that the query rectangle is subtracted from the tree’s leaf rectangles, instead of added.

The running times of these algorithms depend on the height of the tree, which in turn depends
on the size of region space. In a string of length n, region space has dimension n x n, and any

68 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

Algorithm 4.9 MERGE (7") converts a quadtree node into a leaf if its children are all leaves and
the union of their rectangles is rectangular.
MERGE(T)
r«—
for each C inT.children
do if C' isnotaleaf or r U C.rectangle is not rectangular
then return

r «— rUC.rectangle
delete all children of T°
T.rectangle < r

~NOo Ol h wWwnN -

quadtree over region space has O(log n) height. Querying or deleting a rectangle from the quadtree
takes O(F'log n) time, where F' is the number of leaves in the tree that intersect the query. Inserting
a rectangle takes O(n) time in the worst case, because the quadtree may need to drill down to its
maximum depth (log n) in order to separate two rectangles into different nodes, and drilling down
to maximum depth in one dimension can create up to n nodes in the other dimension (Figure 4.12).
The storage required by a quadtree is O(min(nN, n?)) in the worst case.

This dependency on the size of region space n, rather than just the number of inserted rectangles
N, is an important difference between quadtrees and RB-trees. The bounding box of each quadtree
node is fixed, so a quadtree may be less efficient than an RB-tree at storing a collection of regions
localized to a small part of a long string. On the other hand, the quadtree can completely eliminate
overlaps between rectangles. Quadtrees are not implemented in LAPIS, so comparing the practical
performance of RB-trees and quadtrees is left for future work.

The region quadtree is not the only kind of quadtree that could be used to implement a rect-
angle collection. For example, the MX-CIF quadtree [Sam90] associates each rectangle with the
smallest quadtree node that completely contains it. This raises the question of how to organize the
possibly-large list of rectangles stored on each node. One approach is an unordered list, but a more
interesting approach reduces the dimension of the problem by 1: each rectangle is intersected with
the node’s horizontal and vertical axis, producing two sets of intervals that are stored in a pair of
1-dimensional MX-CIF quadtrees. Another quadtree is the RR quadtree [Sam90], which comes
in two variants. The RR; quadtree splits nodes until each leaf intersects just one rectangle or a
clique, a set of rectangles that are all mutually intersecting. The RR5 quadtree splits until each
leaf intersects a single rectangle or a chain of intersecting rectangles. Unlike the region quadtree,
both MX-CIF and RR quadtrees guarantee to preserve the identities of the inserted rectangles — a
guarantee which is not important for our rectangle collections.

4.4.3 Rectanglesas Points

Another way to look at a rectangle (s1, e1, s2, €2) IS as a point in four-dimensional space. This is
the same change in perspective that led from regions as intervals in a one-dimensional string to
points in two-dimensional region space (Section 3.3).

Representing rectangles as points makes it possible to store a rectangle collection in a data
structure designed for points. In order to implement the QUERY operation, the point data structure

4.4. DATA STRUCTURES 69

Rectangles
extend across [(7]
entire space in | |
y direction

v i
RSN
0 NN
0 &Quadtree must drill down to O(logn) depth n
to separate rectangles in x direction

Figure 4.12: Bad case for a quadtree: two long but closely-spaced rectangles force the quadtree to
drill down to depth O(logn), requiring O(n) quadtree nodes.

70 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

must support range queries. A range query returns all points that lie in a four-dimensional hyper-
rectangle — the Cartesian product of four intervals, one for each dimension. For example, to find
all the 2D rectangles (4D points) that are enclosed by the 2D query rectangle (s1, e1, s2, €2), One
would use the range query [s1, sa] X [e1, 2] X [s1 : $2] X [e1 : ez]. To implement QUERY, which
searches for all the rectangles that intersect the query rectangle, one would use the range query
[—00, 59] X [—00, €9 X [$1,00] X [e1, 0.

A menagerie of data structures have been developed for k-dimensional points with range
queries. Here are a few:

e The k-d tree [Ben75] is a binary tree in which each node stores a point, and each level of the
tree compares a different dimension of a query point with its stored point. For example, in a
2-d tree, nodes at even-numbered depths might compare the x coordinates of the query point
and the stored point, while nodes at odd-numbered depths compare the y coordinate. A new
point is inserted by traversing the tree for the new point’s correct position and adding it as
a leaf. Like binary search trees, the performance of a k-d tree is very sensitive to the order
in which the points are presented. An optimal k-d tree can be built in O(kN log N) time if
all N points are known in advance. Range queries in an optimal k-d tree take O(kN'~1/k)
time in the worst case [LW77]. Since k = 4 for the purpose of this section, this means that
querying takes O(NN3/*) worst-case time.

e A quadtree can also be used to store points. The 2D quadtree described in the previous
section is generalized to £ dimensions by splitting each node into 2% children, one for each
hyperquadrant. Many nodes will not need all 16 children, however, since some parts of
4-dimensional space can never contain a 4D point representing a 2D rectangle.

e The point quadtree[FB74] is a kind of quadtree that provides an adaptive decomposition
of space. Each node stores one point from the set, and the node is split into 2* children
by hyperplanes passing through the stored point (instead of the node’s centroid, as in the
standard quadtree). A point quadtree is like a k-d tree in which each level discriminates on
all k£ dimensions at once, instead of just one dimension at a time. A variant of the point
quadtree chooses an arbitrary point to partition each node, not necessarily a point in the
collection. Points in the collection are stored only in the leaves, which makes them easier
to delete. Range queries in point quadtrees take O(kN'~'/¥) worst-case time, just like k-d
trees [LW77].

e The range tree [BM80] is a data structure designed for good worst-case query performance
at the cost of more storage. A one-dimensional range tree is a balanced binary search tree
with the points stored in leaf nodes. The leaves are linked in sorted order by a doubly-linked
list. A range query [/, h] is done by searching the range tree for a leaf > [, then following
the linked list until reaching a leaf > h. A k-d range tree uses a 1D range tree to index
the x coordinate, and every node of the tree points to a (k — 1)-d range tree indexing the
remaining coordinates of every point in the node’s subtree. The resulting data structure uses
O(Nlog"™* N) storage, and range queries can be satisfied in O(log") time.

Although the point data structures have provably better asymptotic behavior than R-trees and
quadtrees, using 4D makes the data structures more complicated and significantly increases the

4.5. SPECIALIZED DATA STRUCTURES 71

constant factors. Furthermore, points representing region rectangles are not uniformly distributed
in 4D space. In many rectangle collections generated by the region algebra, the rectangles all share
one or more coordinates, making those coordinates useless for discrimination — but point data
structures give all coordinates equal weight. For these reasons, one would expect 4D point data
structures to perform worse than R-trees or quadtrees on the average. No 4D data structures are
implemented in LAPIS, so this comparison is left for future work.

As a special case, the 2D versions of these point data structures could be used to store rectangle
collections where every rectangle is just a point. Flat, overlapping, and nested region sets all satisfy
this requirement.

4.5 Specialized Data Structures

The rectangle-collection data structures that have been presented to this point — RB-trees,
quadtrees, and 4D point collections — are suitable for storing arbitrary rectangle collections. For
some important kinds of rectangle collections, however, there are simpler data structures.

e A region array is an array of rectangles in lexicographic order. Region arrays can store a
monotonic rectangle collection, in which all rectangle coordinates increase monotonically.
Flat and overlapping region sets are monotonic. Region arrays have guaranteed O(log N+ F)
query time.

e A syntax tree extends the familiar abstract syntax tree by storing a rectangular bounding box
on each node. Syntax trees can be used to store nested region sets.

These data structures are described in more detail in the next two sections.

451 Region Arrays

For some rectangle collections, an RB-tree has too much overhead. In many cases, we can throw
away the internal nodes of the RB-tree, leaving only the leaves, a list of rectangles sorted in lexi-
cographic order. I call the resulting data structure a region array. Eliminating the internal nodes
saves space, but only a constant factor since leaves always outnumber internal nodes. More impor-
tantly, however, it can be shown that a query on a region array always takes O(log N + F') time,
where F' is the number of intersecting rectangles found, which is an improvement over the O(N)
worst-case bound for RB-trees.

A region array can be used whenever the rectangle collection satisfies the following property.
A rectangle collection is monotonic if, when the collection is sorted in increasing lexicographic
order, the coordinates of the rectangles are also sorted in increasing order. In other words, if » and
r" are a pair of rectangles in the collection such that » < 7’ in lexicographic order, then r.s; < 1’.sq,
r.so < 1’89, 61 < rlieq, and r.e; < 1’.e5. Many rectangle collections generated by the region
algebra are monotonic. In particular, all flat and overlapping region sets are monotonic. The
rectangle collection produced by applying a unary relational operator to a flat or overlapping region
set is also monotonic. See Figures 4.4-4.6 for examples of these kinds of rectangle collections.

A nested region set is not monotonic in general, however. Figure 4.4 includes a nested set
which is nonmonotonic. Region arrays cannot be used to store general nested region sets.

72 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

Monotonicity makes it easy to find the bounding box for any contiguous range of a region
array. Suppose a region array A contains N -monotonic rectangles in lexicographic order, so A[1] <
A[2] < --- < A[N]. Because the collection is monotonic, we know that A[1] has the minimum s
and e values of all the rectangles, and A[N| has the maximum values, so the bounding box of the
entire collection is (A[1].s1, A[1].e1, A[N].s3, A[N].es). In general, for any ¢ < j, the bounding
box of Afi ... j]is (A[i].s1, Ali].e1, A[j].52, Alj]-€2).

We can use this fact to query a region array as if it were a binary RB-tree whose internal
nodes are constructed on the fly. Algorithm 4.10 demonstrates this approach. The algorithm is
very similar to the query algorithm for RB-trees (Algorithm 4.6), but bounding boxes and children
are calculated on the fly. This algorithm uses O(log N) space to traverse the region array recur-
sively, however, and it isn’t clear how many bounding boxes may unnecessarily intersect the query
rectangle.

Algorithm 4.10 QUERY (A, 1, j,r) searches a segment of a region array, A[i...j], for all rectangles
that intersect the rectangle r.
QUERY(A,1,j,7)
1 bbox «— (Ali].s1, Ali].e1, A[j].s2, Alj].€2)
2 if r doesn’t intersect bbox
then return
ifi=j
then yield r» N bbox
dse m — [(i+4)/2]
QUERY(A,i,m,)
QUERY(A,m+1,4,7)

0O NO Ok~ W

A better algorithm uses a separate binary search on each coordinate. Recall from Section 4.4.3
that a rectangle intersection query is equivalent to the range query [—oo,7.s5] X [—00,r.€5] X
.51, 00] X [r.e1, 00]. In aregion array, each of these intervals corresponds to a bound on the array
indexes of intersecting rectangles. For example, consider the first interval, which stipulates that
the s; coordinate of an intersecting rectangle must be less than or equal to r.s,. Using a binary
search on the s; coordinates of the region array (which are guaranteed to be in order because the
rectangles are monotonic), find the largest index &, such that A[k,].s; < r.s5. Then A[l... k]
is the set of rectangles that satisfy the first interval. Similar binary searches for the other dimen-
sions find A[1 ...k, satisfying the second interval, A[ks ... N| satisfying the second interval, and
Alky ... N] satisfying the fourth interval. Putting all four constraints together, we find that the
set of intersecting rectangles is precisely the rectangles in A[max(ks, k4) ... min(kq, k2)]. Algo-
rithm 4.11 restates this procedure in pseudocode. This algorithm takes O(log N + F') time and
O(1) working space in all cases.

Region arrays are not designed for dynamic construction, so they do not support the INSERT
operation. To construct a region array, LAPIS accumulates the rectangles resulting from an algebra
operation. After the entire collection has been generated, the rectangles are sorted, and then a single
pass over the collection tests whether the collection is monotonic. If so, the sorted list can be used
directly as a region array. If not, the region array can be converted to an RB-tree by using the
sorted list as a foundation and erecting the tree above it in O(N) time.

4.5. SPECIALIZED DATA STRUCTURES 73

Algorithm 4.11 QUERY (A, r) searches a region array for all rectangles that intersect the rectangle
r, using a binary search on each coordinate.

QUERY (A,)

ki < BINARYSEARCH(A.s1,7.59 +1) — 1
ko < BINARYSEARCH(A.eq,rmeg+ 1) — 1
k3 < BINARYSEARCH(A.s9,7.51)

k4 < BINARYSEARCH(A.eq,1.€1)

for i « max(ks, ky) tomin(ky, ks)

do yield AJi

o Ol WN -

BINARYSEARCH(L, x)
1 do abinary search on array L for value z
2 returntheindex ¢ suchthat L[1...i— 1] <z < L[i...N]

Deleting rectangles from a region array is possible only in certain cases. Deleting entire rectan-
gles is easy, since a rectangle can be removed without affecting the monotonicity of the collection.
A rectangle can be removed from the array in O(1) amortized time by just marking it deleted.
The array is reallocated and compacted only when at least half of its entries have been deleted.
Harder cases arise when deletion would split or shrink a rectangle. Although it might be possible
in some cases to split or shrink the rectangle in such a way that the collection is still monotonic
(and doesn’t require another O(N log V) sort), in general it is necessary to convert the region array
to an RB-tree and then perform the deletion.

A region array of N rectangles takes O(V) space. A region array saves up to a factor of 2
relative to an RB-tree by eliminating the internal nodes. LAPIS saves more space by representing
the rectangles as an array of integers, eliminating the overhead of representing each rectangle as a
Java object (12 bytes per object in Java 1.3). In LAPIS, a region array consumes about 16 bytes per
rectangle, while an RB-tree averages 33 bytes per rectangle (counting the cost of internal nodes,
with the tree’s minimum and maximum branching factors set to 4 and 12, respectively). More space
could be saved by delta-encoding or otherwise compressing the coordinates of the rectangles, at
the cost of increased access time.

452 Syntax Trees

Context-free parsing often produces an abstract syntax tree representing the parse. If this syntax
tree is augmented with the region from which each node was parsed, then the tree can be queried
as if it were a rectangle collection.

In general, a syntax tree can represent any nested region set, not just the output of a context-
free parser. In a syntax tree, any node may store a region, not just the leaves. When a region r
is associated with a node, then the node’s subtree must contain all the regions in the set that are
inr. Nodes may have an arbitrary number of children, sorted in lexicographic order. Some nodes
may have no associated region; such nodes are empty. Empty nodes arise when regions are deleted
from the set. Empty nodes may also be used to ensure that the tree has a constant branching factor.
Every node, empty or not, stores the bounding box of all the regions in its subtree.

74 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

A

B‘:r /\

DA B F
c C D E G
syntax tree
& ; P
A | G
| I S
g
,,,,,, 5o
o Dt
i é G
c
o
A B C D E F
RB- tree

Figure 4.13: Syntax tree and RB-tree representations of a nested region set.

Figure 4.13 shows a syntax tree and an RB-tree for the same nested set. One key difference is
that the syntax tree can store a region in any node, while the RB-tree stores regions only in leaves.
Another difference is the shape of the node bounding boxes. RB-trees pack regions into the leaves
in lexicographic order, without much concern for whether the regions are near each other in region
space. Syntax trees can sometimes achieve more locality by exploiting the nested nature of the
region set.

A syntax tree is queried by Algorithm 4.12. Every node in the syntax tree has two attributes:
T.bbox is the bounding box of the regions in T7s subtree, and T'.region is the region stored in T’
itself. Since the bounding boxes of a node’s children form a monotonic rectangle collection, the
exhaustive search in line 5 can be replaced by a binary search as in region arrays, but this would
help only when nodes have many children.

4.5. SPECIALIZED DATA STRUCTURES 75

Algorithm 4.12 QUERY (7', r) searches a syntax tree for all regions that intersect the rectangle r.
QUERY (T, 1)
if » doesn’t intersect T'.bbox
then return
if » intersects T.r
then yieddrNT.r
for each C' inT.children
do QUERY(C, 1)

OOl WN B

A new region r can be inserted in a syntax tree by drilling down through nodes that contain r
until finding a node whose children’s bounding boxes are all before or after r, then inserting r in
sorted order among the children. If some child’s bounding box overlaps-start or overlaps-end r,
then the resulting region set will no longer be nested, so the syntax tree must be converted to an RB-
tree. The conversion is done by traversing the syntax tree in lexicographic order (Algorithm 4.13),
from which an RB-tree can be built in O(N) time.

Algorithm 4.13 LEXORDER (T") generates the regions from a syntax tree in lexicographic order.
The algorithm is basically a preorder traversal, except that all descendants of 7" that start at the
same point as 7" must be returned before T itself.
LEXORDER(T)

1 PRrRe(T)

2 PosT(T)

PRE(T)
1 if T isnotaleaf and T'.children|[l].bbox.s; = T.bbox.sy
2 then PRE(T.children[1])
3 if T.region # 0
4 then yield T.region

PosT(T)
1 if T isnotaleaf and T'.children|[l].bbox.s; = T.bbox.sy
then POST(T.children[1])
for each C' in T.children such that C.bbox.s; > T.bbox.s;
do LEXORDER(C)

o b~ wiN

A region can be deleted from a syntax tree by removing it from its node (i.e., setting 7".region
to ()) and updating its ancestors’ bounding boxes. If a subtree becomes completely empty, with no
regions associated with any of its nodes, it can be pruned from the tree.

Syntax trees are not currently implemented in LAPIS.

76 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

4.6 Optimizations

The basic region algebra implementation should now be clear. A region set is stored in a rectangle
collection data structure, such as an RB-tree or a region array. Algebra operators combine the re-
gion sets by applying relational operators to rectangles, intersecting rectangle collections, merging
rectangle collections, or deleting rectangles from a rectangle collection.

The basic implementation can be tweaked in many ways to improve its performance. The
following optimizations are discussed in this section:

e Trimming mutually-intersecting rectangles in a rectangle collection.

Generating rectangle collections in lexicographic order wherever possible to avoid sorting.

Doing set operations on collections of single-point rectangles using a sorted merge in O(N +
M) time.

Intersecting rectangle collections by traversing both trees in tandem.

Doing set operations on quadtrees by traversing both trees in tandem.

Intersecting rectangle collections using the optimal plane-sweep algorithm.

Some of these optimizations are implemented in LAPIS, but others are left for future work.

4.6.1 Trimming Overlaps

Query performance is dramatically reduced when many of the rectangles in a collection intersect
each other. For example, as shown in Figure 4.5, the before, after, and contains operators produce
rectangle collections in which all N rectangles are mutually intersecting. Querying one of these
rectangle collections, even with a small query rectangle, may produce up to O(N) rectangles as a
result.

This problem can be addressed by trimming rectangles when they are inserted into the col-
lection, in order to eliminate as much overlap as possible between the new rectangle and existing
rectangles. Figure 4.14 illustrates the trimming heuristics:

1. If the new rectangle is completely enclosed by some rectangle already in the collection, then
the new rectangle is not inserted (Figure 4.14(a)).

2. If some rectangle in the tree is completely enclosed by the new rectangle, then the enclosed
rectangle is deleted from the tree (Figure 4.14(b)).

3. If some existing rectangle encloses one whole side of the new rectangle, then the overlapping
part is subtracted from the new rectangle (Figure 4.14(c)).

4. If the new rectangle encloses a side of an existing rectangle, then the existing rectangle is
trimmed and reinserted (Figure 4.14(d)).

4.6. OPTIMIZATIONS 77

R S

new rectangle to insert rectangle already in collection

BN s

S R
(a) S encloses R —» don't insert R (b) R encloses S —¥ delete S
S R S R
(c) S encloses one side of R —® trim overlap from R (d) R encloses one side of S —® trim overlap from S

reinsert S if necessary

2

W

(e) R and S overlap at corner —p trim overlap from R
on 45-deg line (plus as much area
below 45-deg line
as needed to keep R
rectangular)

Figure 4.14: Heuristics for reducing overlap in a rectangle collection.

5. If the new rectangle and the old rectangle intersect at a corner which is cut by the 45° line
of region space, then the overlapping part is subtracted from the new rectangle, along with
enough area below the 45° line to keep it rectangular (Figure 4.14(e)).

Not all overlaps can be eliminated by these heuristics, since rectangles can still overlap at a corner
away from the the 45° line, or through the center, but these heuristics help reduce overlap in the
common cases produced by the region algebra.

Trimming all rectangles against each other might take O(N?) time in general, since each rect-
angle must be queried against the rest of the collection. LAPIS takes a simpler approach that works
well for rectangle collections produced by the region algebra. After generating a list of rectangles
and sorting them lexicographically, LAPIS makes a single pass through the sorted list, trimming
each pair of rectangles. The effects of the heuristics on some common rectangle collections are
shown in Figure 4.15.

78

CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

e
before F before F, after trimming
]
—» »
contains F contains F, after trimming

Figure 4.15: Rectangle collections after reducing overlap.

4.6. OPTIMIZATIONS 79

4.6.2 Preserving Lexicographic Order

Most of the cost of constructing an RB-tree or a region array is sorting the rectangle collection. If
we can guarantee that the process generating the rectangles generates them in sorted order, then
the sorting step can be omitted, and the RB-tree or region array can be built in O(V) time.

Literal string matching and regular expression matching are two processes that naturally gener-
ate regions in lexicographic order. Each of these processes does a left-to-right scan over the string,
generating all matches that start at position 7 before considering position i + 1.

Context-free parsing does not naturally generate regions in lexicographic order. For example,
consider parsing the expression a + b with conventional left-to-right, shift-reduce parsing. The
parser first shifts a onto its stack. It then reduces a to an Expression nonterminal and emits a as a
region for the Expression region set. Next, the parser shifts + and b, reduces b to an expression and
emits b as an Expression region, and then finally reduces Expression+Expression and emits a + b
as an Expression region. The resulting stream of regions — a, b, a + b — is not in lexicographic
order, because a + b should precede b lexicographically.

Nevertheless, a context-free parser can produce a sorted stream of regions in O(N) time if it
first creates a syntax tree representing the parse. The tree is then scanned using Algorithm 4.13 to
produce the region set in lexicographic order.

Applying a relational operator like in, contains, starting, or ending to a monotonic rectangle
collection in lexicographic order always produces its result in lexicographic order. In fact, the
result is itself a monotonic rectangle collection, as the following argument shows. Take any two
rectangles » < r’ in the monotonic rectangle collection. Because of monotonicity, every coordinate
of r is less than or equal to the corresponding coordinate of /. Applying any relational operator op
to r produces a new rectangle op r that just rearranges the coordinates of r (possibly substituting O
or n for some coordinates). This fact can be verified in Figure 4.3. Thus every coordinate of opr is
less than or equal to the corresponding coordinate of opr’, so opr < opr’ lexicographically and
opr and opr’ are monotonic. As a consequence, a relational operator can be applied to a region
array simply by copying the region array and replacing each rectangle » with opr. Alternatively,
the relational operator can be implemented lazily by a wrapper that applies op only when a rectan-
gle is requested from the array. It takes only O(1) time to apply the wrapper. LAPIS uses the lazy
approach.

In general, the intersection, union, and difference operators do not necessarily generate their
results in lexicographic order. One important case in which they do is when one or both operands
is a collection of one-point rectangles. This case is described in the next section.

4.6.3 Point Collections

A point collection is a rectangle collection consisting entirely of one-point rectangles (s, e, s, e).
Technically, any rectangle collection can be converted to a point collection by exploding its rect-
angles into individual points, but in general this would result in a quadratic explosion in the size
of the collection. I will restrict the use of the term point collection to region sets that are naturally
represented as single points. For example, nested, flat, and overlapping region sets are point col-
lections. Unions of (a small number of) point collections are also naturally represented as point
collections. The intersection or difference of a point collection and any other rectangle collection
is always a point collection.

80 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

The intersection, union, or difference of two point collections can be found in linear time by
traversing both collections simultaneously in lexicographic order. Algorithm 4.14 illustrates how
intersection is done. Union and difference are similar. Not only does this algorithm take only
O(M + N) time, compared to O(M log N) average time for set operations on general rectangle
collections, but the result is guaranteed to be in lexicographic order.

Algorithm 4.14 INTERSECTION(CY, Cs) intersects two point collections by traversing them in
lexicographic order.
INTERSECTION(CY, Cs)

1 U < new RECTANGLECOLLECTION

2 pp < firstpointin C;

3 pg « firstpointin Cs

4 whilep; # 0 and py # 0

5 doifp,=ps

6 then INSERT(U, py)

7 p1 < next pointin C;
8 po < next pointin Cs
9 elseif p; < po

10 then p; < next pointin C;
11 else p, — nextpointin Cy
12 returnU

Set operations involving point collections are more predictable (in the worst case) than set
operations on general rectangle collections. We can exploit this fact by transforming an algebra
expression into an equivalent expression that applies intersection, union, or difference to point col-
lections instead of arbitrary rectangle collections, as much as possible. For example, the expression

Line N ((starts "From:" U starts "Sender:" U contains "cmu.edu") (4.1)

refers to four point collections: Line and the three quoted literals. In this expression, the union
operators combine arbitrary rectangle collections generated by the unary relational operators starts
and contains. The equivalent expression

((Line N starts "From:") U (Line N starts "Sender")) U (Line N contains "cmu.edu™) (4.2)

ensures that every union involves a point collection. In general, if we denote an expression known
to return a point collection by P and other expressions by E, the transformation is described by
the following rules, applied repeatedly until none match:

PN(E1UE,) — (PNE;)U(PNE)y)
P—-FE — P—(PNE)

This transformation does not necessarily improve performance, however. In the example given,
suppose that Line is much larger than the other region sets (“From”, “Sender”, “cmu.edu”). Then

4.6. OPTIMIZATIONS 81

expression 4.2, which queries the Line region set three times, may actually run slower than the
expression 4.1, which combines the three literals before querying Line. LAPIS does not apply the
transformation automatically. An expert user might use it, however, to optimize the performance
of a pattern.

Other pattern-matching systems, such as Proximal Nodes [NBY95] and WebL [KM98], can
perform set operations only on point collections. The pattern languages in these systems are con-
strained (primarily by the absence of unary relational operators) so that only patterns like 4.2 can
be written.

4.6.4 Reordering Operands

For commutative operators like intersection and union, the implementation is free to change the
order of operands. LAPIS uses this fact to optimize both AN B and A U B. The intersection
operator enumerates the rectangles in the smaller collection and queries each rectangle against the
larger collection. The union operator uses CopPy to duplicate the larger collection (which never
takes more than linear time, and so can be faster than rebuilding it) and then inserts rectangles from
the smaller collection into the larger.

Optimizing the intersection operator also optimizes the binary relational operators, since they
are implemented using intersection. Consider the expression:

Sentence contains "Gettysburg"

In a typical document, Sentence would have far more matches than "Gettysburg", so it would be
faster to enumerate the matches to "Gettysburg™ and query them against the Sentence region set.
Since the internal representation of this expression is

Sentence N contains "Gettysburg"

this optimization happens automatically. The intersection operator observes that
contains "Gettysburg" contains fewer rectangles than Sentence, so it queries
contains "Gettysburg" against Sentence.

The same optimization works for the complementary expression

"Gettysburg" in Sentence

LAPIS still queries the smaller region set derived from "Gettysburg" against the larger region set
derived from Sentence, but this time it returns "Gettysburg" regions instead of Sentence regions.
Note that, since Sentence is a flat region set, in Sentence can be computed from Sentence in O(1)
time by placing a wrapper around it, as described in Section 4.6.2.

46,5 Tandem Traversal

The simple algorithm for A N B (Algorithm 4.3) takes each rectangle in B and traverses A recur-
sively to find the intersections. | call this algorithm iterative intersection. The iterative algorithm
takes no advantage of the fact that B is also a tree, hopefully organizing its rectangles with some
locality. Tandem intersection exploits this by traversing both A and B simultaneously.

82 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

The tandem intersection algorithm is shown in Algorithm 4.15. The key line is line 1, which
tests whether the bounding boxes of the entire trees A and B intersect. If their bounding boxes
do not intersect, then we know that none of the rectangles stored in A can possibly intersect the
rectangles stored in B. Thus, a single comparison high in the tree may be able to eliminate many
comparisons at the leaves.

If the bounding boxes of A and B intersect after all, then the algorithm recursively drills into
either A or B. The algorithm drills into A only if A’s bounding box encloses B’s bounding box,
or B has no children; otherwise it drills into B.

Algorithm 4.15 TANDEMINTERSECTION finds the intersection of two tree-shaped rectangle col-
lections by traversing both trees at the same time.
TANDEM(A, B)
1 if A.bbox doesn’tintersect B.bbox
then return
if A and B are leaves
then yield A.rectangle N B.rectangle
elseif A.bbox O B.bbox or B is a leaf
then for each C' in A.children
do TANDEM(C, B)
else for each C' in B.children
do TANDEM(A, C)

OO NO O~ WwdN

Tandem intersection is not guaranteed to be faster than iterative intersection. In the worst case,
tandem intersection may do more work, because it can compare nodes of A with any node of B,
while iterative intersection only compares nodes of A with leaves of B. However, the extra work is
bounded by at most a factor of 2, as the following argument shows. We will compare the number
of recursive calls made by tandem intersection with the number of recursive calls made by iterative
intersection. Recall that the iterative intersection of A and B calls QUERY (A,) for all rectangles
r € B. The following lemma relates the number of TANDEM calls to the number of QUERY calls:

Lemma 1. For any two tree nodes A and B, if TANDEM(A, B) is called during a tandem inter-
section of two rectangle collections, then for all rectangles » € B, QUERY (A, r) is called in the
iterative intersection of the same collections.

Proof. By induction on the depth of recursion. For the top-level call to TANDEM(A, B), A is the
root of the tree, so iterative intersection must also start by calling QUERY (A, r) for all rectangles
r € B. For the induction step, we assume the hypothesis true for a call to TANDEM at recursion
depth k&, then show that the hypothesis is true for any recursive call it makes at recursion depth
k + 1. There are four cases, corresponding to the conditions tested by Algorithm 4.15:

o A.bboxN B.bbox = (. In this case, tandem intersection makes no recursive calls to TANDEM,
so there is nothing to prove.

e Abbox O B.bbox. In this case, tandem intersection recursively calls TANDEM(C, B) for
every child C' of A. From the induction hypothesis, we know that iterative intersection calls

4.6. OPTIMIZATIONS 83

QUERY (A, r) for every r € B. Since r C B.bbox C A.bbox, each of these QUERY calls
must call QUERY (C, r) for all children C' of A as well, so the hypothesis is proved for depth
kE+1.

e B is aleaf. Like the previous case, tandem intersection drills into A. But there is only one
rectangle in B, namely B itself. Thus, by the induction hypothesis, iterative intersection
calls QUERY (A, B). Since A.bbox and B.bbox intersect, QUERY (A, B) must recursively
call QUERY (C, B) for all children C of A, so the hypothesis is proved for depth £ + 1.

e Otherwise, tandem intersection drills into B, recursively calling TANDEM(A, C') for every
child C' of B. Since the induction hypothesis implies that QUERY (A, r) is called for all
r € B, and C'is a subtree of B, we trivially have QUERY (A, r) for all » € C. Thus the
hypothesis is proved for depth k& + 1.

0

Using Lemma 1, an amortized analysis shows that tandem intersection makes no more than
twice as many calls to TANDEM as iterative intersection would make to QUERY. We will charge
the cost of calling TANDEM (A, B) (not including its recursive calls) to all the QUERY (A, r) calls
made with the rectangles in the leaves of B. Lemma 1 guarantees that all these QUERY calls are
made. The share of the cost assigned to QUERY (A, r) is proportional to the depth of r in the tree,
so that if BB has branching factor m at every node and r is stored at depth d, then r is charged 1/m¢
of the cost. Since every leaf of B contains a rectangle, the sum of these costs is 1. Turning the
analysis around to look at it from the perspective of a QUERY call, QUERY (A, r) may be charged
for some part of a TANDEM(A, B) call for each B on the path from r to the root. If the minimum
branching factor of the tree is m, then the cost charged to QUERY (A,) is at most

1 1 1 m
1+—+—2+—3+"'<
m m m

m—1

which is at most 2 if m > 2. Thus the sum of the costs charged to the QUERY calls is at most twice
the number of QUERY calls. Since this total cost is the same as the number of TANDEM calls, there
can be at most twice as many TANDEM calls as QUERY calls.

So even in the worst case, tandem intersection is at most a factor of two worse than iterative in-
tersection. In the average case, however, tandem intersection takes only O(V), as the performance
measurements in Section 4.7 show. This is significantly better than the N log N average-case time
for iterative intersection. LAPIS uses tandem intersection exclusively.

Tandem intersection can be applied to any tree-like rectangle collection, including RB-trees,
quadtrees, region arrays, and syntax trees. Since not all leaves in a quadtree contain a rectangle,
however, the amortized analysis does not work for quadtrees, so tandem intersection on a quadtree
may be more than a factor of 2 worse than iterative intersection. The next section discusses a form
of tandem traversal specialized to quadtrees.

Tandem intersection also works when A and B are different data structures. For example, an
RB-tree can be tandem-intersected with a region array or a syntax tree.

84 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

4.6.6 Quadtree Traversal

Quadtrees are particularly amenable to tandem traversal, because every quadtree decomposes re-
gion space in exactly the same way. To intersect two quadtrees A and B whose bounding boxes
are the same, it suffices to recursively intersect only the four pairs of corresponding children,
A.childrenli] with B.childrenli], as i ranges from 1 to 4. Algorithm 4.16 shows how this is done.
As long as A and B are not leaves, QUADTREEINTERSECT traverses them in tandem. Whenever
one tree reaches a leaf, the algorithm copies the other tree and calls INTERSECTWITH to intersect
the leaf’s rectangle with all the nodes in the other tree. When both functions return from their
recursive traversal, they call MERGE (Algorithm 4.9) to test whether the intersected children can
be merged into one node containing a single rectangle. The time to run the overall algorithm is
proportional to the number of nodes in the quadtrees, which is O(min(nN, n?)) in the worst case.

Algorithm 4.16 QUADTREEINTERSECT finds the intersection of two quadtrees by tandem traver-
sal.
QUADTREEINTERSECT(A, B)
1 if A.children =
then U — CopPYB
INTERSECTWITH(U, A.rectangle)
elseif B.children = ()
then U «— CopY A
INTERSECTWITH(U, B.rectangle)
else U «— new QUADTREE
fori< 1 to4
do U.childrenli] < QUADTREEINTERSECT(A.childrenli], B.childrenli])
MERGE(U) return U

O 00 NO Ul WwWwiN

(BN
o

INTERSECTWITH(A,)

1 ifrn Abbox # 0

2 then if A.children = ()

3 then A.rectangle « r N A.rectangle
4 else for each C' in A.children

5 do INTERSECTWITH(C, 1)

6 MERGE(A)

Similarly, tandem traversal can can be used for the union or difference of two quadtrees. These
algorithms save time relative to the general union and difference algorithms, which used INSERT
and DELETE, because the cost of traversing the tree to insert (or delete) a rectangle is amortized
over all the rectangles to be processed.

4.6.7 Plane-Sweep Intersection

Finding the intersections in a collection of rectangles is a well-studied problem in computational
geometry. Traditionally, the rectangle-intersection problem is formulated as follows: given a col-

4.6. OPTIMIZATIONS 85

active rectanglesf new rectangle

sweep line

Figure 4.16: The plane-sweep intersection algorithm (after Preparata & Shamos [PS85], Figure
8.29).

lection of V axis-aligned rectangles, find all intersecting pairs of rectangles. The classic text by
Preparata and Shamos [PS85] gives an optimal, O(N log N + F')-time solution to this problem,
where F' is the number of intersections found. This section briefly outlines this algorithm, then
describes how it can be used for region algebra intersection.

The algorithm uses the plane-sweep technique, passing a vertical sweep line through the rect-
angles from left to right (Figure 4.16). The sweep line stops at every z-coordinate of a rectangle,
either its left side or its right side. The algorithm maintains a set of active rectangles, which are the
rectangles currently intersecting the sweep line. When the left side of a rectangle is encountered
by the sweep line, the rectangle is added to the active set. When its right side is encountered, it is
deleted from the active set.

The active set is used to detect rectangle intersections. When a rectangle is added to the ac-
tive set, the algorithm checks whether the new rectangle’s y-interval intersects the y-interval of a
currently-active rectangle. If so, then the rectangles are reported as an intersecting pair. In order
to make this search fast, the active set’s y-intervals are stored in an interval tree, a data structure
that allows intervals to be inserted and deleted in O(log V) time, and handles range queries in
O(log N + F') time. The interval tree was discovered independently by Edelsbrunner [Ede80] and
McCreight [McC81]. See Preparata & Shamos [PS85] for more details.

To find the intersections in a collection of N rectangles, the plane sweep algorithm needs
O(Nlog N) preprocessing time to separately sort the xz-coordinates of the rectangles for the
plane sweep and the y-coordinates for initializing the interval tree. The plane sweep itself takes
O(Nlog N + F) time, so the overall time is O(N log N + F'). Preparata and Shamos prove that
this time is optimal for a decision-tree algorithm (i.e., one that only makes comparisons between
rectangle coordinates).

For the region algebra, we want to solve a slightly different problem: given two collections of
rectangles A and B, find all intersecting pairs (a, b) such thata € A and b € B. One solution is to

86 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

combine both collections, A U B, marking each rectangle according to whether it came from A or
B (or both). Then find the intersecting pairs in the union and discard all but the (a, b) pairs. The
problem with this approach is that finding and reporting the self-intersections, (a,a’) and (b, b'),
may dominate the running time of the algorithm, making it O(N?) in the worst case.

Instead, we maintain two active sets, one for A and one for B. The sweep line passes across the
union of both collections. When an A rectangle becomes active, its y-interval is tested against B’s
active set to find intersecting pairs, but then inserted into A’s active set. Vice versa for B. If the two
collections have size M and N respectively, then this algorithm takes O((M + N)log(M + N))
time to sort the z-coordinates of both collections together for the plane sweep. Querying to find
the F" intersecting pairs takes O(M log N + N log M + F') time, inserting and deleting rectangles
from active sets takes O(M log M + N log N). The overall time is O((M + N) log(M + N) + F).

LAPIS does not implement the plane-sweep algorithm, so comparing its performance in prac-
tice is left for future work.

4.6.8 Counting, Min, and Max

Some of the operator definitions given in Chapter 3 are infeasible to implement directly, since they
seem to require large intermediate results (e.g. forming A — {a} for every region a € A). This
section describes how a few of the more important operators can be implemented efficiently in
practice.

The first operator returns the first region in a region set in lexicographic order. The definition
of this operator given in Section 3.6.5 would be very slow to implement:

first A= forall (a: A).a— > (A —a)

In practice, first is trivial to implement on a rectangle collection sorted in lexicographic order, like
an RB-tree or region array. The result is the lower-left corner of the first rectangle in the collection.

The general counting operator nth returns the nth region in a region set. This operator is much
harder to optimize, because the lexicographic order of regions does not necessarily correspond to
the lexicographic ordering of the rectangles (Figure 4.17). Although the problem could be solved
by a plane-sweep technique, LAPIS takes the simpler approach of defining nth only for point
collections, so that the nth region always corresponds to the nth rectangle. Nested, overlapping,
and flat region sets (and intersections, differences, and unions thereof) are always point collections,
so this is not a serious limitation. Applying nth to a non-point rectangle collection raises an
exception in LAPIS.

The max and min operators return the outermost and innermost regions in a set

maxA = forall(a: A).a— in(A—a)
minA = forall(a: A).a— contains (A — a)

LAPIS implements max by finding the max of each rectangle in A, which is just the rectangle’s
upper-left corner [sq, e5], then querying the collection for contains [sy, e5] to check that no other
regions contain it. Min is implemented similarly.

4.7. PERFORMANCE 87

7 12

6 11

5 10
2 4 9
1 8

Figure 4.17: The lexicographic ordering of regions has no simple relationship with lexicographic
ordering of rectangles. Finding the nth region in a rectangle collection may require jumping back
and forth between rectangles.

Data structure | Region sets Query Insert Delete Space
RB-tree any O(N) O(log N) O(N + F) O(N)
quadtree any O(F'logn) O(n) O(F'logn) O(min(nN,n?))
4D-tree any O(N3/* + F) O(log N) O(log N + F) O(N)

4D range tree any O((logN)? +F) O((logN)3) O((logN)?+F) O(N(log N)?)

regionarray | monotonic O(log N + F) O(log N) O(log N + F) O(N)

syntax tree nested O(log N + F) O(log N) O(log N + F) O(N)

Table 4.1: Rectangle-collection data structures. /V is the number of rectangles in the collection, F’
is the number of rectangles found by a query or affected by a deletion, and » is the length of the
string. Boldface indicates that the data structure is implemented in LAPIS.

4.7 Performance

The rectangle-collection data structures and algorithms discussed in this chapter are summarized
in Tables 4.1-4.5. A boldfaced entry indicates that the data structure or algorithm is implemented
in LAPIS. Some data structures are appropriate only to certain kinds of region sets. The type
hierarchy of region sets is summarized in Figure 4.18.

These tables only give the worst-case time for each operation. To study the average case, the
performance of the LAPIS implementation was measured directly with two experiments. The first
experiment tested each algebra operator on random region sets of increasing size, in order to see
how individual operators scale. The second experiment applied real patterns (the patterns from the
LAPIS library) to a set of real documents (web pages, source code, and plain text), in order to gain
a sense for how region algebra operators perform in practice.

88 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

]

region set

monotonic

) point collection
rectangle collection

overlapping nested
region set region set

flat
region set

Figure 4.18: Hierarchy of region set types.

Expression Time Result

op RB-tree O(NlogN) RB-tree

op quadtree O(min(nN,n?)) quadtree
op region array O(N) region array

Table 4.2: Unary relational operators, such as in, contains, just-before, just-after, etc.

Expression Time Result
RB-tree N RB-tree (tandem) O(MN + FlogF) RB-tree
RB-tree N RB-tree (plane-sweep) | O((M + N)log(M + N) + F) RB-tree
quadtree N quadtree O(min(nN,n?)) quadtree
point RB-tree N region array O(Mlog N) point RB-tree
point RB-tree N point RB-tree O(M + N) point RB-tree

Table 4.3: Set intersection.

4.7. PERFORMANCE 89

Expression Time Result
RB-tree U RB-tree O((M + N)log(M + N)) RB-tree
quadtree U quadtree O(min(nN,n?)) quadtree

point RB-tree U point RB-tree O(M + N) point RB-tree

Table 4.4: Set union.

Expression Time Result
RB-tree — RB-tree O(MN?) RB-tree
quadtree — quadtree O(min(nN, n?)) quadtree

point RB-tree — region array O(Mlog N) point RB-tree
point RB-tree — point RB-tree O(M + N) point RB-tree

Table 4.5: Set difference.

4.7.1 Random Microbenchmarks

The first experiment tested LAPIS against randomly-generated region sets. No documents were
needed for this experiment. Since region sets are just sets of integer pairs, they can be generated at
random without reference to any document.

Region sets were generated in such a way in such a way that expected number of intersections
between any two region sets of size N would be O(V). Two kinds of region sets were generated:
flat and nested. Random flat region sets were generated by first choosing 2N small lengths /;
uniformly from 0. . .9, then using the lengths to create a set of 2/V endpoints p; = 2:1 l;, then
connecting each pair of endpoints [p;, pe; 1] to create a flat set of N regions. Two flat sets of
size N generated with this approach would share N /100 regions on the average. A random nested
region set was generated by first generating 2.V endpoints as for flat region sets, then proceeding in
sorted order through the endpoints, making a uniform decision at each point whether to open a new
parent (pushing the point on a stack), close the current parent (popping from the stack), or make a
leaf (consuming both the point and its next point to produce a region). When one alternative was
impossible (e.g. the stack was empty, or only enough points remained to close the stack), only the
possible alternatives were chosen uniformly. This process produced nested region sets that shared
N/200 regions on the average. Flat region sets were stored in a region array, and nested region sets
in an RB-tree.

The timing tests were performed in LAPIS, compiled with Jikes 1.06 and running under Java
1.3.0 with the HotSpot just-in-time compiler, on an 850 MHz Pentium 111 running Linux. To limit
interference from the garbage collector, the tests were run with 128MB of preallocated heap stor-
age, and the garbage collector was forced to run synchronously before every test. Startup effects,
such as class loading, just-in-time compiling, and instruction cache warmup, were eliminated by
running each sequence of tests twice and keeping only the results of the second. Every test was
repeated at least three times or for at least 1 second, whichever took longer, and the average value
was reported.

The tests applied each algebra operator to random region sets of varying size. The results are
shown in Figures 4.19-4.22. In each graph, the z-axis is the number of rectangles in one operand,
N, on a logarithmic scale. The y-axis is the cost per input rectangle, computed by dividing the
running time 7" by the number of rectangles N .

usec/rectangle

usec/rectangle

CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

7 ; ; . ——rr
just-after nested —+—
just-before nested ---<---
contains nested --:---
k o
6 - . T
inflat ---o---
jus .
just-before flat ----&---
5 i
4t]
3r 4

1000 10000 100000 1e+06
number of rectangles (N)

Figure 4.19: Relational operators applied to random region sets of size V.

18 T ——— T ———
(in flat) and (in flat) ——
a

N o B P BN S WY . o S WA BN S T N SR A 7
0 L L L PR | L L L PR S | L L PR RS
1000 10000 100000 1e+06

number of rectangles (N)

Figure 4.20: Intersection of random region sets of size N.

4.7. PERFORMANCE

45 . — . —_—
(in flat) or (in flat) —+—
flat or flat #--x---

20 nested or nested ---*--- |

35 —

30 —

k)
D
g 25 D e i]
o 20 | o Ke¥ee- R -
g —§;’:3§":’%“3§777§§ %
15 E
10 E
5 - -
0 L L PR S S | L L PSS S | L L P S S
1000 10000 100000 1e+06
number of rectangles (N)
Figure 4.21: Union of random region sets of size V.

35 . ——— . ———rr
(in flat) - (in flat) ——
nested - nested ---x---

flat - (in flat) ------

30 L flat - flat -

25 —

5]
S 20 E
c
8 |
8]
g
2 e
g 15 X,,,X"‘X’/%/ .
AXK’*”*"’X"EX/—X/
LT
Vo
10 VRNV) _ .
S KK KooK Rk o B AN SRE B
St R SO B s B S
5 - -
0 L L L L PR | L L L L PR | L L L L PR
1000 10000 100000 1e+06

number of rectangles (N)

Figure 4.22: Difference of random region sets of size N.

92 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

The slope of the line indicates an operator’s asymptotic behavior as NV increases. When 7' =
O(N), the line is flat (I//N = k). When 7' = O(N log N), the line has constant slope (I'//N =
klog N). When T' = O(N'*) for some ¢ > 0, the line has an exponential shape (/N =
k2slogN).

Figure 4.19 shows some representative relational operators. Most of the relational operators
behave like O(V). The only exception is just-after nested, which produces its output rectangles in
unsorted order, requiring O(N log N) time to sort them. Relational operators on a flat set (stored
in a region array) are considerably faster than relational operators on a nested set (stored in an
RB-tree), because the region-array operator produces a simple wrapper around the region array
that takes no extra space.

Intersections are more complicated (Figure 4.20). The bottom two lines in the graph (flat and
flat, nested and nested) show that intersections between point collections take linear time. The
top two lines (flat and (in flat) and (in flat) and (in flat)) are much more complicated, because
sometimes the result set doesn’t require sorting and sometimes it does. The cost per rectangle
varies between a constant lower bound and a logarithmic upper bound.

Set union and set difference operators (Figure 4.21 and 4.22) increase like O(N log V).

4.7.2 Realistic Benchmarks

The second experiment measured the time to evaluate all the TC patterns in the LAPIS library
against real documents. The LAPIS library contains 82 TC patterns, which compile into 478 region
algebra operators. These TC patterns include concepts like Nunber, Li ne, Sent ence, Ti ne,
Dat e, PhoneNunber, Zi pCode, URL, and Enai | Addr ess, among others. A complete list
of the named patterns in the library can be found in Appendix A. The library also contains three
parsers (HTML, Java, and Characters), but the running time of the parsers was excluded from the
measurements because the parsers are written in Java and do not use the region algebra.
Three sets of documents were used in the test:

e 339 Java source files from the LAPIS source code, ranging in size from 1 KB to 211 KB;

e 158 HTML web pages from the LAPIS distribution and other sources, ranging from 1 KB to
235 KB;

e 63 outputs of I s -1 for various directories on a Linux workstation, ranging from 1 KB to
134 KB.

For each document, the total time to match all the TC patterns was measured, using the same
techniques described in the previous section. The total number of input region rectangles processed
by pattern operators was also recorded. The results are shown in Figures 4.23-4.25. In each graph,
the z-axis is the total number of rectangles processed by all the patterns, on a logarithmic scale,
and the y-axis is the cost per input rectangle, computed by dividing the total running time by the
total number of rectangles. Each point represents a single document. The graphs suggest that
the typical region algebra operator in these patterns takes between 3 and 6 psec per rectangle on
realistic data, which is in the same ballpark as the microbenchmarks from the previous section. No
upward trend is detectable as documents grow larger.

4.7. PERFORMANCE

usec/rectangle

usec/rectangle

8 T T T
7 - -

"

N
6 ﬁ;& + ++ + + s T + 7]
L . N
5| ++igi +++ ++ ﬂj 4ot * ++i i
Y # +
A5 + 5 + + ++ ++# A

*% * ﬁ#* acf Do T + 7

4 K #i+ s s AF +++++++ I I |
P + +

3 - -
2 - -
l - -
0 L L P L L P L L P L L L
1000 10000 100000 1e+06 1le+07

number of rectangles (N)

Figure 4.23: Performance of LAPIS library patterns on Java source files.

8 T T T
7k .
6 + —
+
+ + +
+
E +
5L o ti ot . .
% 4 L + +
++ -+ +
P + + 4+
++#ﬁ+ + + + 4 - + e
R + o4t +
4r + #% Fos ot ¥ 7
A " *
3 - -
+
2 - -
l - -
0 L L PR | L L PR | L L PR | L L L
1000 10000 100000 1le+06 1le+07

number of rectangles (N)

Figure 4.24: Performance of LAPIS library patterns on HTML web pages.

93

94 CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

7 - -
6 - -
+
5 - -
k) +
g f}:i b +
§ 4r gﬁﬁ% + * L 7
= + ++ F
3 fii ST * *
g + FE +,
3 - -
2 - -
1 - -
0 L L L 1 L L L 1 L L L 1 L L L
1000 10000 100000 1le+06 le+07

number of rectangles (N)

Figure 4.25: Performance of LAPIS libraryonl s -1 outputs.

To get a sense for performance in terms of document size, Table 4.6 shows the pattern match-
ing rate for each kind of benchmark document, computed by dividing the size of the document
in kilobytes by the total running time on that document in seconds. From the table, a typical li-
brary pattern is matched at a rate of roughly 1,500 KB/sec. By comparison, the Jakarta regular
expression package [Jak99] matches a simple word pattern (\ w+) at roughly 750 KB/sec on the
same hardware, compiler, and virtual machine. One possible reason for TC’s faster performance
is that most TC patterns process only a few regions relative to the size of the file, whereas a reg-
ular expression tests every character. Another possible reason is that the Jakarta package is not
fully optimized, although it is the fastest Java regular expression matcher I have found. It would
be interesting to compare the performance of region algebra expressions with regular expressions
directly, using equivalent patterns in each language. A proper comparison would require using the
fastest regular expression package available, however, which would certainly be written in C or
C++. The region algebra implementation would also have to be rewritten in a higher-performance
language to make the comparison fair, so this possibility remains future work.

4.7. PERFORMANCE

95

Documents All patterns in library

Per pattern

Per operator

Java source files 21.5 KB/sec (+2.7)
HTML web pages | 20.6 KB/sec (+£2.0)
| s -1 output 17.6 KB/sec (+1.6)

1,760 KB/sec (4+220)
1,690 KB/sec (+160)
1,440 KB/sec (+130)

10,300 KB/sec (+1300)
9,850 KB/sec (+960)
8,410 KB/sec (£760)

Table 4.6: Pattern matching rate for the benchmark documents (mean =+ standard deviation). All
patterns in library is the rate at which all TC patterns in the library are matched. Per pattern is
the average rate for each of the 82 patterns. Per operator is the average rate for each of the 478

operators in the patterns.

96

CHAPTER 4. REGION ALGEBRA IMPLEMENTATION

