Chapter 3
Region Algebra

The fundamental unit of lightweight structure is a contiguous segment of text, called a region.
Other names for the same concept are runs, substrings, and pieces [KM98]. Many features of
text-processing systems operate on regions:

e Styles. In a word processor, styles like font, color, boldface, italics, underlining, or strikeout
are associated with regions.

e Selection. When a user selects text with a mouse, the selection is a region. The text-insertion
point may also be represented as a zero-length region, i.e., a region whose start point and end
point are identical.

e Hyperlinking. In a web browser, hyperlinks are represented as clickable text regions. The
target of a hyperlink is also a region, either in the same web page or a different page.

e Pattern matching. The result of searching for a pattern in a text editor or browser is a region
that matches the pattern.

e Logical document structure. Chapters, sections, paragraphs, sentences, and words can all
be represented by regions.

e Physical document structure. Pages, frames, columns, and lines can be represented by
regions.

e Language syntax. Expressions and statements in source code and phrases in natural lan-
guage can be represented by regions.

The lightweight structure model is mainly concerned with sets of regions, because a structure
abstraction returns a set of regions. Figure 3.1 shows some examples of region sets.

The goal of this chapter is to develop an algebra for combining sets of regions. The algebra
will enable a number of implementation alternatives and optimizations (Chapter 4), and will serve
as the basis of a user-level pattern language (Chapter 6). The region algebra plays the same role
in lightweight structure that relational algebra does in relational databases: relational algebra is a
formal model of relational data that acts as a target for implementations (database engines) and the
basis of a user-level language (SQL).

23

24 CHAPTER 3. REGION ALGEBRA

Four score and seven years ago Boldface can overlap italics
X {1 1] = : |
(a) (b)
(x+1)(x-1)-x°
i Four score and seven years ago
—
(c) (d)

Figure 3.1: Example region sets. (a) words; (b) styles; (c) expressions; (d) a selection made by a
user.

The applications listed above suggest some properties that need to be captured by the region
algebra:

e Regions may be nested in other regions. In documents, words are completely contained in
a sentence, sentences in a paragraph, and paragraphs in a section. In programs, expressions
are nested in other expressions, as in Figure 3.1(c). Natural language also obeys a nested
structure: noun phrases are nested in verb phrases, and verb phrases in clauses or sentences.

e Regions may overlap other regions. Logical structure can overlap physical structure in
complex ways. For example, sentences and lines often overlap without nesting. Styles may
also overlap, as in Figure 3.1(b).

e Regions may be zero-length. In a text editor, it is often convenient to treat every user
selection as a region, including the text insertion caret that appears between two characters.
Some structuring attributes may also be represented as zero-length regions, such as hyperlink
targets, page breaks, and hyphenation hints.

Since text structure is so varied — nested, overlapping, zero-length — the region algebra should be
capable of representing arbitrary sets of regions. Unfortunately, the size of an arbitrary region set
may be quadratic in the length of the string. For a simple example, consider the set of all regions in
a string of length n. There are n regions starting at the beginning of the string, n— 1 regions starting
after the first character, etc. Thus the total number of regions is > ;i = n(n + 1)/2, which is
O(n?). Quadratic region sets cause problems for efficient implementation. Previous systems have
dealt with this problem by restricting region sets to certain types that are guaranteed to be linear,
sacrificing expressiveness for linear processing.

This chapter?! takes a more general approach, describing an algebra that can combine arbitrary
sets of regions. The general algebra has two main advantages. First, it is very simple, consisting
only of a handful of relational operators, the standard set operators, and an iteration operator. The
simplicity will make it easier to prove its theoretical power in Chapter 5. Previous systems needed
far more operators. Second, supporting arbitrary region sets means that the algebra can combine
structure found by arbitrary parsers. Users of the algebra need not be concerned with whether two
region sets satisfy a particular restriction before combining them. This property helps human users

LPortions of this chapter and the next are adapted from an earlier paper [MM99].

3.1. REGIONS 25

Four_score_and .. poyr_score_and .. Four_scor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 4 5 6 7
s/ l_|\e s” | 1

s characters

e characters

(a (b) (©)

Figure 3.2: Equivalent definitions of a region [s,e]: (a) s and e are offsets from the start of the
string; (b) s and e denote positions between characters, and [s, ¢] is a closed interval; (c) s and e
denote characters, and [s, e] is a half-open interval.

by making it easier to write patterns (Chapter 6). It also helps machine learning agents by making
it easier to define features and hypotheses (Chapters 9 and 10).

The next chapter will consider the question of implementation, showing that the general algebra
can be implemented efficiently.

3.1 Regions

Given a string of length n, a region in the string is denoted by a pair [s, e], where 0 < s < e < n.
The start offset s is the number of characters preceding the region’s start point, and the end offset
e is the number of characters preceding the region’s end point (Figure 3.2(a)). The length of the
region is e — s. If s = e, then the region has zero length, corresponding to a position between
characters instead of a span of characters.

One can interpret a region [s, e] in other ways that are equivalent to the definition above. If the
positions between each character in the string are numbered 0, 1, 2, etc., then [s, e] corresponds to
a closed interval from position s to position e (Figure 3.2(b)). If the characters of the string are
numbered instead, then [s, e] corresponds to the half-open interval from character s to character e
(Figure 3.2(c)). It should be clear that these definitions are all equivalent.

Another common way to describe a one-dimensional interval uses its start offset and length,
instead of its end offset. Still another method, often seen in computational geometry, describes an
interval by its centroid (the average of its start and end offsets) and length [HN83]. | prefer the
definition given above, because it is easier to define relations like before and after if regions are
described by end points rather than lengths.

3.2 Region Relations

The algebra is based on three fundamental binary relations among regions:
e [s,¢|before[s',¢'] ifand only ife < s’"and s < &'
e [s,¢e|overlaps-start[s’, ¢'] ifand only if s < s'and e < ¢’

e [s,e|contains[s’ ¢’ ifandonly if s < s’and ¢’ < e

26 CHAPTER 3. REGION ALGEBRA

2 2 F— —a
' ' b
a before b a overlaps- startb a contains b
b after a b overlaps- end a bina

Figure 3.3: Fundamental region relations.

The overlaps-start and contains relations are reflexive, but before is not.2 The before and contains
relations are transitive, but overlaps-start is not. None of the relations are symmetric, so let us
name their inverses as well:

o [s,e]after s/, ¢'] if and only if [s', ¢'] before s, €]
o [s,e]in[s’ €] if and only if [¢', ¢'] contains [s, €]
e [s,e]overlaps-end [s', ¢'] if and only if [/, ¢’] overlaps-start [s, €]

All six relations are illustrated in Figure 3.3. Taken together, the six relations are complete in the
following sense:

Claim 1. For any two regions [s, e] and [s’, €], there exists at least one of the six region relations,
op, such that [s, e] op [/, €/].

The truth of this claim will be more obvious with the help of a two-dimensional, geometric
interpretation of regions, described in the next section.

These relations between regions in a string are similar to the relations between time inter-
vals defined by Allen [AlI83], which is natural because both domains involve intervals in one
dimension. Allen’s temporal relations use strict comparisons, however, so his before is defined as
s, e] before [¢, ¢/] if and only if e < s’. As a result, Allen must also include relations for equality
and adjacency (e.g. [s,e]meets|[s’,¢'] if and only if e = '), for a total of thirteen relations. In
contrast, my formulation allows adjacency and equality to be expressed as Boolean combinations
of the six fundamental relations, as will be seen below in Section 3.6.1. The choice between the
two formulations is largely a matter of taste, however, since all of Allen’s relations can be derived
from my region relations and vice versa.

3.3 Region Space

Region space is a two-dimensional plane in which the x-coordinate is the start of a region and the
y-coordinate is the end (Figure 3.4). A region [s, e] corresponds to the point (s,) in region space.
Strictly speaking, region space does not occupy the entire real plane. Only points with integral
coordinates correspond to regions, and only if they lie in the closed triangular area above the 45°
line, where 0 < s < e <n.

When the string is short, it is often convenient to write the characters of the string along the x
and y axis, as is done in Figure 3.4. Since regions begin and end between characters, the characters

2In fact, before is defined so that no region can be before itself. This is the reason for the second inequality in the
definition, s < s’, which prevents a zero-length region [z, ;] from being before itself.

3.3. REGION SPACE 27

end of region

Four score and seven years ago...
—

S e

Four score and seven years ago...

S start of region
Four score and seven years ago...

Figure 3.4: Region space. A region s, e| corresponds to the point (s, e) in region space. Only
integer-valued points on or above the 45° line are valid regions.

written along the axis actually label the intervals between region endpoints, rather than the region
endpoints themselves.

The upper-left corner of region space corresponds to the region [0, n], which spans the entire
string. Points along the 45° diagonal represent zero-length regions in the string. The most interest-
ing ones are the lower-left corner [0, 0], which corresponds to the start of the string, and the upper
right corner [n, n], which is the end. The length of a region, e — s, is given by its y-distance above
the 45° diagonal. Thus zero-length regions must lie on the diagonal itself, whereas the longest
possible region, the entire string itself, must be the upper-left corner.

The region relations correspond to geometric relationships in region space. Suppose we hold
some region b = [bs, b] fixed, and consider the set of all regions a = [as, a.| such that a before
b. From the definition of before, it must be true that a. < b,. The set of regions a satisfying this
constraint corresponds to the closed triangular area in region space shown in Figure 3.5(a). Parts
(b) and (c) of the same figure show the corresponding closed rectangular areas for a overlaps-start
b and a contains b, respectively.

Extending this analysis to include the three inverse relations after, overlaps-end, and in pro-
duces the region space “map” shown in Figure 3.6. The areas in this map are all closed. Each area
includes its boundary, and adjacent areas intersect on their common boundaries.

The map completely covers region space, the triangular area above the diagonal line. Thus, for
any region a, a must lie in some relation to b (or more than one, if a lies on a boundary between
map areas). A similar map can be drawn for any choice of b. Points lying on the boundary of region
space have degenerate maps, however (Figure 3.7). For example, Figure 3.7(a) shows the map for
a zero-length region b lying on the diagonal. The areas for a overlaps-start b and a overlaps-end b
have shrunk to lines, and the area for a in b has shrunk to the point b itself. The remaining parts of
Figure 3.7 show the maps for other degenerate points in region space. In every case, the degenerate
map still completely covers region space. Thus, a geometric argument suffices to establish Claim 1.
For any pair of regions a, b, it must be the case that « lies in some area op in b’s region space map
because the map covers region space, so a op b.

28 CHAPTER 3. REGION ALGEBRA

end of region

o
&
(%)
8
= b
[.
o i
Four score and seven years ago... § (@)
1 ’ 1 = before b
a b S
o a*
Q i
8 i
3
2 ;
Four score and seven years ago...
start of region
end of region
o
&
&
0]
= b
5
ST ae
—_ 8| overlaps- start b
Four score and seven years ago... ° | (b)
—]
b ()
<]
)
5
o
LL

Four score and seven years ago...
start of region

end of region

a

contains b
b

a
Four score and seven years ago...
b

(©

Four score and seven years ago...

Four score and seven years ago...
start of region

Figure 3.5: Areas of region space representing region relations relative to a fixed region b. The
shaded rectangles represent all regions « satisfying a before b, a overlaps-start b, and a contains b,
respectively.

3.3. REGION SPACE 29

end of region

after b
contains b overlaps—end b

inb
overlaps—start b

before b

start of region

Figure 3.6: Region space map. “op b” labels the set of regions a such that a op b.

30

end of region

overlaps- start b

overlaps-end b

contains b

A

before b
(excludes b itself)

after b

(excludes b itself)

end of region

contains b——3,|

overlaps-end b

overlaps- start b

inb

l—

start of region

after b

before b

contains b
end of region 1

start of region

overlaps-end b after b

overlaps- start b

before b

inb

start of region

CHAPTER 3. REGION ALGEBRA

end of region

contains b
overlaps-end b

inb
overlaps- start b

end of region

after b
(excludes b itself)

overlaps-end b

- A8

start of region

after b

contains b

overlaps- start b———p»|

before b

b

ainb
» .
start of region
contains b inb
overlapi— startb overlaps-end b
»eb

end of region

before b
(excludes b itself)

start of region

Figure 3.7: Degenerate region space maps, for regions b that lie on boundaries of region space.

34. REGION SET TYPES 31

Region space will be used repeatedly to illustrate the discussion of region algebra in this chapter
and the next. Although it may take some effort to shift one’s perspective from intervals along a
one-dimensional string to points and areas in a two-dimensional plane, the rewards are worth it. A
pictorial representation that shows every region as a clearly defined point makes it much easier to
find boundary cases and ensure that a definition or algorithm handles them properly, as we did in
Figure 3.7. Region space will also motivate the implementation of region algebra presented in the
next chapter.

Transforming intervals in one dimension into points in two dimensions is not a new idea; the
technique is well known in computational geometry [PS85] and spatial data structures [Sam90].
Rit [Rit86] presented a two-dimensional map of Allen’s time interval relations that was very similar
to the region space map shown in Figure 3.6, and Kulpa [Kul97] explored the maps that result when
other interval representations are used, such as (centroid, length). However, this work is apparently
the first that applies the transformation to text processing.

3.4 Region Set Types

The region relations can be used to define some important classes of region sets. If A denotes a set
of regions, then:

e A s flat if and only if for every a,b € A, at least one of the following holds: « before b;
aafterb; or a = b.

e Ais nested if and only if for every a,b € A, at least one of the following holds: a before b;
a after b; a inb; a contains b; or a = b.

e A is overlapping if and only if for every a,b € A, at least one of the following holds:
a before b; a after b; a overlaps-start b; a overlaps-end b; or a = b.

From the definitions, it should be clear that A is flat if and only if A is both nested and overlapping.
It also follows directly that if A is flat, nested, or overlapping, then all subsets of A are flat, nested,
or overlapping, respectively.

An example of each kind of region set can be found in Figure 3.1. The words in Figure 3.1(a)
are a flat set, the styles in Figure 3.1(b) are an overlapping set, and the expressions in Figure 3.1(c)
are a nested set. Flat sets and nested sets are generally more common in text structure than over-
lapping sets.

Flat, nested, and overlapping region sets are particularly important because they are always
linear in the length of the string, as the following theorems show.

Theorem 1. If A is an overlapping region set in a string of length n, then |A| < 2n + 1.

Proof. Consider A as a set of points in region space. Sweep a -45° line (s + e = k for all integers
k) across region space, from the lower left corner to the upper right corner. See Figure 3.8. When
the sweep line intersects some point @ € A, then one part of the sweep line lies in containsa
and the other part in ina, but the region space areas for beforea, aftera, overlaps-starta, and
overlaps-end a touch the line only at a, so the sweep line can intersect no other points in A. There-
fore every sweep position of the line intersects at most one region in A. Since there are 2n + 1
sweep positions (£ can range from 0 to 2n), there are at most 2n + 1 regions in A.

32 CHAPTER 3. REGION ALGEBRA

end of region

after a
overlaps—end a

X

overlaps—start a

before a

start of region

Figure 3.8: When a —45° line is swept across an overlapping region set, it can intersect at most
one region at every sweep position, because the rest of the line lies in the off-limits in and contains
areas.

Corollary 1. If Ais a flat set, then |A| < 2n + 1.

This bound is tight, because the set of all length-0 regions [k, k] and length-1 regions [k, k& + 1]
is a flat set of size 2n + 1.

Theorem 2. If A is a nested region set in a string of length n > 0, then |A| < 3n.

Proof. The following argument shows, by induction on n, that if A is a nested set with no zero-
length regions, then |A| < 2n — 1. Since there are at most n + 1 zero-length regions in a string of
length n, it will follow that an arbitrary nested region set can have at most 3n elements.

When n = 1, the only possible nonzero-length region is [0, 1], so |A| < 1 as desired. Now
suppose that all nested sets on strings of length n” < n have at most 2n’ — 1 nonzero-length regions,
and consider a nested set A with no zero-length regions on a string of length » > 1. There are two
cases:

1. [0,n] ¢ A. The following argument shows that there exists some k, 0 < k < n, that
partitions A such that every region in A is either before or after [k, k]. If A is empty, then
this is trivially true. Otherwise, let r be the longest region in A (choosing arbitrarily if there’s
atie). Some endpoint of » must lie strictly between 0 and n (otherwise » = [0, n], which was
previously excluded). Let k& be this endpoint, and assume without loss of generality that £ is
the start of . Because A is a nested set, for any region a € A, at least one of the following
holds:

(@) abeforer, which implies that a before [£, k];

3.5. REGION ALGEBRA 33

(b) aafterr, which implies that « after [k, k];
(c) ainr, which implies that « after [k, k];
(d) acontainsr, which implies that a = r since there is no region in A longer than r;

(e) a = r, which implies that a after [k, k].

Thus [k, k] partitions A into B = {a € A|abefore [k, k|} and C' = {a € A|aafter [k, k]}. B
is a nested set with no zero-length regions on a string of length & < n, and C' is the same kind
of seton a string of length n—k& < n. Therefore |A| = |B|+|C| < (2k—1)+(2(n—k)—1) =
2n — 2.

2. [0,n] € A. Then A — {[0, n]} satisfies Case 1, so |A| < 2n — 1.
U

The 3n bound for nested sets is also tight. Given a string of length n = 2%, form a complete
binary tree whose leaves are the n characters in the string. The 2n — 1 nodes in the tree correspond
to 2n — 1 nested regions. Adding n + 1 zero-length regions gives a nested set with 3n elements.

Theorems 1 and 2 imply that any flat, nested, or overlapping region set on a string of length
n has O(n) regions. Other text-processing systems take advantage of this fact by restricting all
operations to flat, nested, or overlapping region sets. For example, most regular expression libraries
return only a flat set of matches — finding the leftmost, longest match to the regular expression,
and resuming the search for more matches after each match. Therefore, even though the regular
expression a* matches every region in the string aaaa, most regular expression libraries return
only the single region aaaa. Similarly, Proximal Nodes [NBY95] handles only nested sets, and
GC-lists [CCB95] handles only overlapping sets.

Unlike these other pattern languages, the region algebra presented in the next section makes no
special distinction among flat, nested, and overlapping sets. To achieve an efficient implementation
of the region algebra, however, it will be important to optimize for these kinds of sets, because they
are very common in practice.

3.5 Region Algebra

This section defines the region algebra. The algebra consists of a set of operators that take zero or
more region sets as arguments and produce a region set as a result.

3.5.1 Set Operators

The algebra uses the familiar operators for intersection, union, and set difference:

ANB = {rlre Anre B}
AUB = {rlre Avre B}
A—B = {rlre AANr ¢ B}

34 CHAPTER 3. REGION ALGEBRA

end of region

S
%) in Word
n
5 .
? Word\T
[}
>
Four score and seven years ago... 3 .
—t I iF 11— té
Word o °
O I
)
@
S
o
L

Four score and seven years ago...
start of region

Figure 3.9: The result of in Word depicted in region space. The isolated points make up the Word
region set. The shaded areas are in Word.

In addition, the algebra defines operators for the set of all possible regions in the string and the
empty set.

Q = {[s,e]J0<s<e<n}
0

= {}

Technically) is redundant, since it could be expressed by © — €.

3.5.2 Relational Operators

The fundamental operators of the region algebra are unary operators that extend each of the funda-
mental region relations over a set:

before B = {a € Q|3b € B.abeforeb}
after B {a € Q|3b € B.aafterb}
overlaps-start B = {a € Q|3b € B.aoverlaps-startb}
overlaps-end B {a € Q|3 € B.aoverlaps-end b}
contains B {a € Q|3b € B.acontainsb}
inB = {acQ3be B.ainb}

For example, the result of applying the operator in to a region set B is the set of all regions that lie
in at least one region in B.

Region space offers a handy representation for showing the results of region algebra operators.
In region space, a region set corresponds to a set of points in the plane. Figure 3.9 shows the result
of in Word, where Word is the set of all word regions in the string. Notice that in Word is just
the union, across all regions w €Word, of the region space map areas corresponding to in{w}.
Specifically, in Word is the union of the triangles below and to the right of each point in Word.

3.6. DERIVED OPERATORS 35

In other systems [CC97, CCB95, GT87, NBY95], operators like in are defined as binary oper-
ators:

AinB = {a€ A|3b e B.ainb}

In the region algebra, relational operators are defined as unary operators instead. Since the region
algebra includes operators for set intersection and for the set of all regions €2, the binary and unary
definitions are equivalent:

AinB = ANn(inB)
inB = QinB

In this dissertation, A in B will frequently appear as syntactic shorthand for A N (in B).

Unary operators have some advantages. First, they offer a compact description of a predicate,
such as (before A U after B) N inC, without mentioning the region set to which the predicate
applies. Predicates will be very useful for representing features of regions for machine learning.
Second, unary operators can eliminate redundancy in some expressions. Where (A before B) U
(A after C') must mention A twice, the unary equivalent AN (before B U after C') mentions A only
once. When A is a complicated expression, the notational savings can be significant. Third, unary
operators will simplify the implementation description presented in Chapter 4.

The set difference operator A— B also has a unary equivalent =B = {a € Q|a ¢ B}. Hereafter,
the unary version —B will occasionally be used as shorthand for (2— B, but the advantages of unary
complement over binary difference do not seem as substantial.

3.5.3 Iteration Operator

The last operator in the algebra iterates through a region set and applies an expression to each
region in the set. The iteration operator is written forall (a : A). f(a), where A is a region set, a is
a variable of type region set that takes on the singleton value {r} for every region r in A, and f(a)
IS an expression in the region algebra with « as a free variable. Formally, forall is defined as:

forall (a : A). f(a) = | f({r})

reA

Many uses of the iteration operator will be seen in the examples in the next section.

3.6 Derived Operators

To illustrate how the region algebra can be used, we now define some higher-level pattern matching
operators in terms of the basic algebra. The user-level pattern language described in Chapter 6
includes many of these operators as primitives.

3.6.1 Adjacency

The intersections of the fundamental region relations correspond to boundary cases in which region
endpoints touch. For example, the relation just-before is the intersection of the relations before and

36 CHAPTER 3. REGION ALGEBRA

overlaps-start. Some care must be taken when applying these intersections to region sets, however.
We can’t simply define just-before as

just-before A = before A N overlaps-start A (incorrect)

If A contains more than one region, this definition would allow regions that are before one region
in A and overlaps-start a different region in A. For example, suppose the set A consists of the two
underlined regions below:

Supercalifragilistic

Using the definition above, just-before A would correctly include the region Super because it lies
before and overlaps-start the underlined region cal i . Likewise, just-before A would correctly
include Super cal i f ragi , which is before and overlaps-start the underlined region | i st . Yet
the definition above would also match Super cal , because it is before | i st and overlaps-start
cal i . Super cal is clearly not adjacent to either of the underlined regions. In order to represent
adjacency properly, we need to constrain the definition so that before and overlaps-start are only
intersected when they refer to the same region in A.

The correct definition uses forall to iterate through the regions in A, applying the intersection
to one region at a time:

just-before A = forall (a : A) . before a N overlaps-starta

The other adjacency operators are defined similarly:

just-after A = forall (a : A). after a N overlaps-end a
starts-contains A = forall (a : A). containsa N overlaps-end a
ends-contains A = forall (a : A). containsa N overlaps-start a
starts-inA = forall (a : A). ina N overlaps-starta
ends-inA = forall (a: A). inaN overlaps-enda

These relations correspond to the lines between adjacent areas in the region set map, as shown in
Figure 3.10.

Another useful relation simply tests whether regions have the same start point or end point,
regardless of containment:

starts A = starts-contains A U starts-in A
ends A = ends-contains A U ends-in A

starts A is the set of all regions that start at the same place as some region in A, regardless of
which region contains which. Note that it isn’t necessary to use forall in this case, because we’re
taking the union of the relations, not the intersection.

Two more intersections are also of interest:

start-of A = forall (a: A). beforean ina
end-of A = forall (a: A). afteran ina

These operators always produce zero-length regions.

3.6. DERIVED OPERATORS 37

end of region

just—after b
ends—contains b .
ends—in b
starts—contains p
b ¥\‘ b
—_
just—before b p—— p———just-after b
starts—in b p———— inb
starts—in
——— ends—inb T end—of b
starts—contains b } |
l i ends—contains b
start-of b | | end-of b
just—before b
start of region
start—of b

Figure 3.10: Adjacency operators.

3.6.2 Strictness

Excluding adjacency from each fundamental relation produces a set of strict operators:

strict-before A = forall (a : A). beforea — overlaps-start a
strict-after A = forall (a : A). aftera — overlaps-end a
strict-inA = forall (a: A). ina — overlaps-starta — overlaps-end a
strict-contains A = forall (a : A). containsa — overlaps-starta — overlaps-end a
strict-overlaps-start A = forall (a : A). overlaps-starta — beforea — ina — containsa
strict-overlaps-end A = forall (a : A). overlaps-end a — aftera — ina — containsa

These relations are equivalent to using strict inequalities in the definitions of the fundamental
relations.

3.6.3 Overlap

Two operators are useful for describing regions that overlap:
touchesA = forall (a: A). (2 — strict-before a) — strict-after a
overlaps A = forall (a: A).(Q2 — beforea) — aftera

Intuitively, a touches b if a and b touch anywhere, even if only at the endpoints. Thus, for example,
a just-before b implies a touches b. In contrast, the stronger relation a overlaps b requires that a and
b have at least one character in common, if a and b are nonzero-length regions. If either a or b
has zero length, then either the regions must be identical or else one region must strictly contain
the other. Figure 3.11 shows the areas for touches and overlaps in region space. overlaps plays an
important role in many algorithms in a text-processing system. For example, a display rendering
algorithm has to render every region that overlaps the region showing in the window.

38 CHAPTER 3. REGION ALGEBRA

Figure 3.11: touches and overlaps.

max A——»e

—
\ °
AN
|>,< 7
2 .
(X+1)(x-1)=x1 ~~ od
A N el ‘T'
r 1 T 1 ><
N
mnA F— —— H g
+
max A | i | ! X
N

(x+1)(x-1)=x%1
Figure 3.12: min and max.

3.6.4 Minand Max

Two operators are useful for finding the outermost and innermost regions in a region set:

maxA = forall(a: A).a— in(A—a)
minA = forall (a: A).a — contains (A — a)

max A returns the regions in A that are not in any other region in A. Similarly, min A returns the
regions in A that contain no other region in A. In region space, min A consists of the points in A
closest to the diagonal, and max A consists of the points farthest from the diagonal (Figure 3.12).

Applied to the set of all regions §2, min and max enable definitions of the region spanning the
entire string and the set of zero-length regions:

entire-text = max
zero-length = minQ

It is often useful to omit zero-length regions from a result, so the nonzero operator is explicitly
defined for this purpose:
nonzero A = A — zero-length

3.6. DERIVED OPERATORS 39

end of region end of region

after b after b
contains b overlaps-end b | contains b overlaps-end b |

b b

overlaps-start b inb overlaps- start b inb
greater-than b ——————»!

less-than b ——»

before b before b

start of region start of region

Figure 3.13: Region space areas for less-than and greater-than.

3.6.5 Counting

Counting is a common operation in structure manipulation. One may need to find the last line in a
page, or the first argument of a function call.

Counting requires a total ordering on regions. We will use the conventional lexicographic
ordering, so that [s, e] < [¢', ¢'] if and only if either s < s” or both s = s’ and e < ¢’. This ordering
can be represented by region relations as follows:

less-than A = forall (a : A). (beforea U overlaps-starta U containsa) — overlaps-end a
greater-than A = forall (a : A) . (aftera U overlaps-enda U ina) — overlaps-starta
Figure 3.13 shows that these definitions produce the conventional lexicographic ordering, in the
sense that less-thanb corresponds to the set of points lexicographically less than point b, and
greater-than b is the set of points lexicographically greater than b.

Now we can define first and last, a pair of operators that return the first and last region in a set

by lexicographic ordering:

first A = forall (a: A).a — greater-than (A — a)

last A = forall (a: A).a — less-than (A —a)
first A is the region that is not greater than any other region in A; last A region is the region that
is not less than any other region in A. Unlike min and max, which may return more than one
region, first and last return exactly one region (technically a singleton region set), as long as A is
nonempty. If A is empty, then first and last return the empty set.

Using these operators, we can define a family of operators that return the nth region, counting
either from the beginning or the end of the region set. The operators that count forward are defined
recursively as follows:

nth;A = firstA
nth,.,A = first(Agreater-than nth,A)

Negative subscripts count backwards:

nth_;A = lastA
nth _,41)A = last(Aless-than nth _, A)

40 CHAPTER 3. REGION ALGEBRA

of max- span A
<) A
A
g
>
Four score and seven years ago...)
A 4 , (b =
3 A,
max- span A | g
e AGD
o
®
3
LL

Four score and seven years ago...

Figure 3.14: max-span operator in region space.

Note that when n > | A|, both counting operators return the empty set.

Counting is often done relative to a context: the first word after a colon, or the last sentence
in a paragraph. To represent context for counting, we can define a family of operators nth ,, op,
where op is a unary operator:

nth,Aop B = forall (b: B). nth,(Aopb)

For example, nth ;Word in Sentence returns the fourth word in every sentence.

3.6.6 Span
The span of two regions a and b is the region r such that starts-contains a and r ends-contains b:
Aspan B = starts-contains A N ends-contains B

However, the span operator usually generates too many regions to be useful. The next few sections
define more useful subsets of span.
The max-span operator returns the span of a set of regions with itself:

max-span A = max (Aspan A)

max-span A returns the smallest region containing every region in A, if A is nonempty; otherwise
it returns the empty set. In region space, max-span A corresponds to the upper left corner of the
smallest bounding box containing A, as shown in Figure 3.14.

3.6.7 Concatenation
The then operator concatenates adjacent regions:
Athen B = forall (a : A). forall (b : B just-aftera).aspanb

This operator corresponds to the conventional definition of string concatenation. A region belongs
to Athen B if and only if it consists of a region in A concatenated with a region in B.

3.6. DERIVED OPERATORS 41

3.6.8 Ddimiters

The upto operator returns the span of each region in A with the first region in B after it:
Aupto B = forall (a : A). forall (b : first (B aftera)).aspanb

For example, "/*" upto "*/" would match C comments.
The related operator backto spans each region in A with the last region in B preceding it:

Abackto B = forall (a : A). forall (b : last (B beforea)).aspanb

In most C programs, "*/" backto "/*" would match the same regions as "/*" upto "*/". If some
comment contained more than one occurrence of “/*”, which is permitted in C, then these expres-
sions would return different region sets, because backto scans from the end delimiter.

Upto and backto may return overlapping sets, so neither operator is particularly useful when
the start delimiter is identical to the end delimiter, as is the case for quotation marks. Suppose
QuoteMark matches the four quotation marks in this string:

The word "zeitgeist" means "spirit of the time."

Then the expression QuoteMark upto QuoteMark actually matches three overlapping regions:
"zeitgeist"”, " means ", and "spirit of the time." The backto operator produces the same result.

Getting the region set we want, with just “zeitgeist” and “spirit of the time”, requires a left-to-
right scan that alternates between starting delimiters and ending delimiters, never using the same
quote mark twice. The counting operator nth,, can do such a scan, but only to a finite extent. To
illustrate, suppose we had the operators odd and even, where odd QuoteMark returns the odd-
numbered quote marks (first, third, fifth, etc.) and even returns the even-numbered ones. Then the
expression odd QuoteMark upto even QuoteMark would produce the desired region set. Since
QuoteMark is a flat set, odd (QuoteMark upto QuoteMark) would also work.

Unfortunately, defining odd and even in terms of nth,, requires an infinite union. Odd is the
limit, as n goes to infinity, of the following recursive definition:

odd;A = firstA
odd,,» = odd,AU nth, A

In fact, it can be shown (Chapter 5) that the region algebra with literal string matching alone cannot
generate the quoted region set we want, because a region algebra expression cannot count modulo
a number. Since the hypothetical odd and even operators count modulo 2, they cannot be expressed
by a (finite) region algebra expression.

LAPIS solves this problem with the pattern operator fromto, which is defined not by an algebra
expression, but by an algorithm. The FROMTO0 procedure (Algorithm 3.1) takes two arguments: a
region set of starting delimiters L, and a region set of ending delimiters R. The procedure iterates
through L and R in left-to-right order, matching a delimiter from L with the closest following
delimiter from R and returning the span of the two delimiters. The procedure then continues with
the next L delimiter after the spanned region, so that the resulting region set is always flat.

The region algebra cannot represent balanced delimiters either, where starting delimiters are
matched with ending delimiters to generate a hierarchy of nested regions. Balanced parentheses

42 CHAPTER 3. REGION ALGEBRA

Algorithm 3.1 FROMTO returns a flat region set by spanning from each region in L to the closest
following region in R.
FROMTO(L, R)
1 C«0
2 |« firstL
3 r « first Rafter!
4 whiler #0
5 doC « CuU(lspanr)
6
7
8

| — first L afterr
r « first R after!
return C

are an example of this kind of delimiter. For balanced delimiters, LAPIS introduces the balances
operator, which is defined by the BALANCE procedure (Algorithm 3.2). Like FROMTO, BALANCE
takes a set of starting delimiters L and a set of ending delimiters R. The start delimiters in L are
pushed onto the stack until an end delimiter from R is encountered. Line 10 guarantees that every
end delimiter used by the procedure lies after its matching start delimiter, every start delimiter
lies after its parent region’s start delimiter, and every end delimiter lies after its children’s end
delimiters. As a result, the output of the entire procedure is a nested region set.

Algorithm 3.2 BALANCE returns a nested region set formed by matching opening delimiters from
L with closing delimiters from R.
BALANCE(L, R)

1 C«10
2 S« new STACK()
3 r« first(LUR)
4 whiler #0
5 do ifr € Rand not EMPTY(S)
6 then ¢ < Pop(S)
7 C — CU(gspanr)
8 elseifr e L
9 then PUSH(S,)
10 r «— first(L U R) afterr
11 returnC

3.6.9 Hierarchies

Hierarchical structure is a particularly common type of text structure. Logical document structure,
natural language phrase structure, and programming language syntax are all hierarchical. In most
text-processing systems, hierarchical structure is represented by a syntax tree created by parsing
the text with a grammar. In the region algebra, hierarchical structure is represented by a nested
region set.

3.6. DERIVED OPERATORS 43

end of region

descendant-of b

ancestor-of b———]

start of region

Figure 3.15: descendant-of and ancestor-of.

For capturing ancestry relations, neither in nor strict-in is quite right. For example, a + b is a
hierarchical structure of three expressions: a, b, and a+b. We would like to express the relationship
that @ and b are descendants of a + b. Both @ and b are in a + b, but so is a + b itself, so in does not
describe the descendant relation. Yet neither a nor b is strict-in a + b, because the start of a (end
of b) coincides with the corresponding point of a + b. This problem can be fixed by defining a new
pair of operators:

descendant-of B = forall (b: B).(inb) —b
ancestor-of B = forall (b: B).(containsb) — b

In region space, these operators correspond to in and contains with a corner removed, as shown
in Figure 3.15. Note that descendant-of and ancestor-of do not specify the hierarchy of interest.
They are defined as unary predicates, so that ancestor-of b matches any region that could be an
ancestor of b. The hierarchy of interest is specified by intersection. For example, Statement N
ancestor-of b returns the statements that are ancestors of b, Method N ancestor-of b returns the
method definitions, and Line N ancestor-of b returns the lines. Thus, each use of a hierarchy
operator can refer to a different hierarchy. This is an important difference from other systems,
which support one and only one syntax tree. Furthermore, b need not be an exact member of the
hierarchy in question — it need not correspond exactly to a piece of Java syntax, for example, or
to a line. A sloppy selection made by the user, or a partial literal string match, is a sufficient entry
point into a hierarchy.

Applying min and max to the hierarchy operators, one obtains the parent, child, root, and leaf
relationships:

Achild-of B = max (A descendant-of B)

Aleaf-of B = min (Adescendant-of B)
Aparent-of B = min (Aancestor-of B)
Aroot-of B = max (A ancestor-of B)

44 CHAPTER 3. REGION ALGEBRA

Unlike descendant-of and ancestor-of, these operators must be binary. The hierarchy must be
specified in order to find the min and max of ancestors and descendants.

3.6.10 Before/After with Restricted Range

One drawback of before and after as pattern-matching operators is that they match too many re-

gions. before B matches anywhere in the string as long as it lies before at least one region in B.

This means that all but the last region in B is irrelevant; before B is equivalent to before last B.
Frequently we want to restrict the range of the search to some region set C".

before-in (B,C) = forall(c¢: C). forall(b: Binc). beforebN inc
after-in(B,C) = forall (c¢: C). forall (b: Binc). afterbn inc

before-in (B, C') matches any region that is before some B region but still in the same C' region.
For example, before-in ("@", EmailAddress) would match any region preceding the “@” in an
email address.

Other structured text query languages [NBY95, KM98] restrict before and after even further
to return only the closest match before or after each region in B. This concept can be represented
by applying first and last. For example, here is how the Proximal Nodes [NBY95] syntax and
semantics for before and after would be expressed in the region algebra:

Abefore B(C') = last(Abefore-in(B,(C))
Aafter B(C) = first(Aafter-in(B,C))

3611 Split

Awk [AKW88], Perl [WCS96] and other text-processing languages include a function for splitting
a string into parts. In awk, for example, every line is split automatically into fields by a delimiter
pattern, which is whitespace by default. Awk also provides the spl i t function to split any string
into pieces separated by a delimiter pattern. The standard C library includes st r t ok, which splits
a string into pieces separated by one or more delimiter characters.

Splitting can be represented in the region algebra as follows. Suppose D is a set of delimiter
regions. For convenience, we’ll name the complement of overlaps:

separated-by D = Q2 — overlaps D

separated-by D matches any region that doesn’t overlap a delimiter in D. Figure 3.16 shows the
region space areas. We can split the entire string around the delimiters D by applying max to the
result of separated-by :

split D = max (separated-by D)

It is also useful to split another set of regions by the delimiters:
Asplit D = forall (a : A). max (ina N separated-by D)

For example, awk’s behavior of splitting lines into fields can be obtained with the expression Line
split Whitespace, where Whitespace matches a contiguous run of space and tab characters.

3.6. DERIVED OPERATORS 45

separated- by D

appl e
banana
coconui...
D H— —

apple
banana
coconuit...

appl e
banana
coconui...

Figure 3.16: separated-by D.

When two delimiters are adjacent, split returns the zero-length region between them. The
spl it functions in Perl and awk follow the same semantics. The st rt ok function in ANSI
C never returns empty strings, skipping over multiple adjacent delimiters instead. A simple way
to describe this alternative semantics uses the nonzero operator to remove all zero-length regions
from the result:

split-nonzero D = nonzero (split D)

A more subtle definition takes advantage of the fact that overlaps D is always a superset of
D. Thus its complement, separated-by D, never includes an element of D, so splitD =
max (separated-by D) cannot include a delimiter either. If we enlarge the set of delimiters to
include the (zero-length) start points and end points of every delimiter in D, then split will not
return any zero-length regions. Applying the in operator is a simple way to do this, giving the
equivalent definition

split-nonzero D = split in D

Figure 3.17 shows how split and split-nonzero differ.

3.6.12 Flatten

Some text manipulations require a flat region set. For example, deleting or sorting a set of regions
in a string is complicated if regions can nest or overlap. For such tasks, it makes sense to convert
the set into a flat region set first.

Nested region sets can be flattened by applying max or min. The former operator returns the
roots of the hierarchy, and the latter returns the leaves. Intermediate levels can be obtained by
applying child-of or parent-of. For example, max (A child-of A) returns all the children of the
roots.

An arbitrary region set can be flattened by replacing each group of overlapping regions with the
region spanning the group. This operator, flatten, can be described with two applications of split.
split A matches regions that span the gaps of A — characters that are not covered by any region
in A. So split split A matches the regions between the gaps. The only problem with split split A

46 CHAPTER 3. REGION ALGEBRA

split- nonzero D

end of region

Four score and seven years ago...
D f 1
—_
split D
— I —

split- nonempty D
— —

Four score and seven years ago..

Four score and seven years ago...
start of region

Figure 3.17: split and split-nonzero.

is that it always includes the zero-length regions that start and end the entire string. We have to
adjust the definition of flatten to exclude those two points if A lacks them:

flatten A = ('split split A) — ((start-of entire-text U end-of entire-text) — A)

If two regions in A are merely adjacent, not overlapping, then flatten A does not combine them,
because split A leaves a zero-length region between the two regions that causes split split A to re-
turn the two regions separately. It is sometimes useful to coalesce adjacent regions as well as over-
lapping regions. To do that, we just replace the innermost application of split with split-nonempty :

melt A = (split split-nonempty A) — ((start-of entire-text U end-of entire-text) — A)

The difference between flatten and melt can be seen in Figure 3.18.

3.6.13 Ignoring Background

It is often useful to weaken the adjacency test in such a way that two regions are considered
adjacent as long as they are only separated by irrelevant characters. Call these irrelevant characters
the background. The appropriate background depends on the pattern and the string to which it is
applied. When searching for phrases in natural language, for example, a good background would
be whitespace and punctuation. When searching for statements or expressions in source code, the
background might be whitespace and comments. When searching an HTML or XML document, a
good background might be whitespace and tags. Background can make many pattern expressions
simpler.

The adjacency operators described in Section 3.6.1 can be extended to include a background
parameter, which is just a set of regions 1. Recalling the definition of just-before and just-after,

just-before A = forall (a : A). beforea N overlaps-starta
just-after A = forall (a : A). after a N overlaps-starta

3.6. DERIVED OPERATORS 47

end of region

o
&
0
Four score and seven years ago... b,
Al i [{ | | <1>{
I i c
— (O]
>
A
flatten A —— — - !
— &8 |
o b4
s
)
melt A t —
>3
o
LL

Four score and seven years ago...
start of region

Figure 3.18: flatten creates a flat set by combining overlapping regions into a single region. melt
combines not only overlapping regions but also adjacent regions.

we can extend these definitions to ignore at most one intervening occurrence of a region from W:

just-before y A = forall (a : A). beforea N (overlaps-starta U overlaps-start (W overlaps-starta))
just-after y A = forall (a : A). aftera N (overlaps-starta U overlaps-start (17 overlaps-start a))

To allow an arbitrary number of intervening or partial background regions, we can melt the
background regions (i.e. use melt!V as the background parameter). Figure 3.19 illustrates
just-before y and just-after y .

Similar background-sensitive definitions can be given for other adjacency operators:

starts-containsyy A = forall (a : A). containsa N (overlaps-end a U overlaps-end (W overlaps-starta))
ends-containsyy A = forall (a : A). containsa N (overlaps-starta U overlaps-start (1 overlaps-end a))
starts-inyy A = forall (a: A). inan (overlaps-starta U overlaps-end (11 overlaps-starta))
ends-iny A = forall (a: A). ina N (overlaps-enda U overlaps-start (17 overlaps-end a))

Operators defined in terms of the adjacency operators can also be made background-sensitive:

starts;y A = starts-contains v A U starts-iny A
endsyyA = ends-contains A U ends-inyr A

Background is also helpful in operators that depend on adjacency, such as then. Here is a
background-sensitive version of then:

Atheny B = forall (a : A). forall (b: B just-after yya).aspanb

Background can also be used to weaken set intersection, so that two regions are considered
equal if one can be obtained from the other by trimming or adding background characters. We
start by defining equals A = forall (a : A). startsa N ends a, which is just the identity function.

48 CHAPTER 3. REGION ALGEBRA

end of region

O: just—afterw b
& W,
Four score and seven years ago... 2
(]
> "
b — c by . ®
just—before,, b
S
W = - - - H 9; W'
e
& We
o
o
Bl Ve
5
o
LL

Four score and seven years ago...
start of region

Figure 3.19: just-before and just-after y .

But using the background-sensitive versions of starts and ends produces a background-sensitive
equality test:

equals A = forall (a : A). starts ya N endsya

Figure 3.20 shows the regions produced by equals y A.

A pattern would use A equals B instead of A N B in order to allow weak equality between
regions in A and B. Weak equality is particularly useful for comparing regions from different
hierarchies, such as physical and logical layout, or regions produced by different parsers. Weak
equality also improves usability. For example, weak equality allows a user’s selection to match a
piece of Java syntax even if it does not start and end at the precise character positions identified by
the Java parser, as long as the differences are limited to background characters.

3.6.14 Trim

Many string manipulation libraries include functions that remove whitespace from the start or end
of a string. One example is the t r i mmethod in j ava. | ang. St ri ng, which trims whitespace
from both ends of the string. Perl also includes chonp, which removes a linebreak from the end
of a string. We can generalize these routines with a region algebra expression which trims the ends
of a set of regions.

Trim-left and trim-right are binary operators that trim the left or right end of each region in A to
remove at most one overlapping occurrence of a “whitespace” region from 1. To trim an arbitrary
number of whitespace regions, just use a melted region set for /. The trim operators are defined
as follows:

Atrim-right W = forall (a : A). (start-ofa) upto (end-of « U W overlaps-end a)
Atrim-leftWW = forall (a : A) . (end-of a) backto (start-of « U W overlaps-start a)

For example, the effect of Perl’s chonp can be obtained by Line trim-right Linebreak.

3.6. DERIVED OPERATORS 49

end of region

equaIsW a .

start of region

Figure 3.20: equalsy a matches any region that can be obtained from « by adding or removing
characters in WV

Trim applies both trim-left and trim-right:
AtrimW = (Atrim-right W) trim-left W/

So the t ri mmethod of j ava. | ang. St ri ng can be obtained by trim Whitespace.

50

CHAPTER 3. REGION ALGEBRA

