
Appendix A

Pattern Library

This appendix lists the pattern identifiers built into the LAPIS library, describing what each iden-
tifier is designed to match. When an identifier is defined by TC patterns, the TC patterns are
specified afterward.

A.1 Business

Identifiers in the Business namespace are defined by TC patterns in the file USEnglish.tc.

Address

State matches U.S. state names and their two-letter abbreviations.

ZipCode matches 5-digit and 9-digit U.S. zip codes appearing just after a State in an address.

State is either "Alabama" or "Alaska"
...

or "Wisconsin" or "Wyoming"
or word = case-sensitive

either "AL" or "AK"
...

or "WI" or "WY"
ignoring nothing

@ZipCode is Number equal to /\d\d\d\d\d/
ignoring nothing

just after State
ZipCode is flatten either @ZipCode

or @ZipCode
then "-"
then Digits equal to /\d\d\d\d/
ignoring nothing

279

280 APPENDIX A. PATTERN LIBRARY

Date

DayOfMonth matches a numeric day of the month, 1-31, appearing in a date, with optional “th”,
“nd”, or “st” suffix.

DayOfWeek matches the English name of a weekday or its three-letter abbreviation.

LongMonth matches the English name of a month or its three-letter abbreviation.

ShortMonth matches a numeric month, 1-12, appearing in a date.

Month matches either LongMonth or ShortMonth

LongYear matches a four-digit year from either the 20th or 21st centuries

ShortYear matches a two-digit year appearing in a date.

Year matches either LongYear or ShortYear

Date matches a date, which contains at least a month and a year, and optionally a day of the
month, day of the week, and a time.

@DayOfMonth is Number equal to /[12][0-9]|3[01]|0?[1-9]/
ignoring nothing

@DayOfMonth is either @DayOfMonth
or @DayOfMonth

then "th"
ignoring nothing

or @DayOfMonth
then "nd"
ignoring nothing

or @DayOfMonth
then "st"
ignoring nothing

@DayOfWeek is Word equal to either "Sun"
or "Sunday"
or "Mon"
or "Monday"
or "Tue"
or "Tues"
or "Tuesday"
or "Wed"
or "Wednesday"
or "Thu"
or "Thurs"
or "Thursday"
or "Fri"

A.1. BUSINESS 281

or "Friday"
or "Sat"
or "Saturday"

ignoring nothing

@LongMonth is Word equal to either "Jan"
or "January"
or "Feb"
or "February"
...
or "Dec"
or "December"

ignoring nothing

@ShortMonth is Number equal to /1[012]|0?[1-9]/
ignoring nothing

@Month is either LongMonth or @ShortMonth

@LongYear is Number equal to /(19|20)\d\d/
ignoring nothing

@ShortYear is Number equal to /\d\d/
ignoring nothing

@Year is either LongYear or @ShortYear

Date is flatten either
either @LongMonth

then @DayOfMonth
then @LongYear

or @LongYear
then @LongMonth
then @DayOfMonth

or @DayOfMonth
then @LongMonth
then @LongYear

ignoring either Spaces
or Punctuation

or either @LongMonth then @DayOfMonth
or @LongMonth then @LongYear
ignoring either Spaces

or Punctuation

282 APPENDIX A. PATTERN LIBRARY

or either @Month
then @DayOfMonth
then @Year

or @Year
then @Month
then @DayOfMonth

or @DayOfMonth
then @Month
then @Year

ignoring /[-\/]/

or @DayOfWeek
then @LongMonth
then @DayOfMonth
then Time
then Word
then @LongYear
ignoring Spaces

DayOfMonth is @DayOfMonth in Date

DayOfWeek is @DayOfWeek

LongMonth is @LongMonth

ShortMonth is @ShortMonth in Date
not in Time

Month is either LongMonth or ShortMonth

LongYear is @LongYear

ShortYear is ShortYear in Date
not in Time

Year is either LongYear or ShortYear

Money

Money matches a number preceded by a dollar sign

Money is "$" then Number
ignoring nothing

A.1. BUSINESS 283

Number

Number matches a number with optional comma separators and decimal point. Comma sepa-
rators are recognized only up to 999,999,999. A better definition of Number would
use a regular expression, as ScientificNotation does.

ScientificNotation matches a number with optional exponent (E+/-).

@Number is either Digits
or Digits

then ","
then Digits
ignoring nothing

or Digits
then ","
then Digits
then ","
then Digits
ignoring nothing

@Number is either @Number
or @Number

then "." then Digits
ignoring nothing

Number is either @Number
or "-" not just after Word

then @Number
ignoring nothing

ScientificNotation is /-?\d+(\.\d+)?(\s*[Ee][-+]?\d+)?/

PhoneNumber

PhoneNumber matches a 7-digit or 10-digit US phone number separated by dashes.

AreaCode matches the 3-digit area code that starts a 10-digit phone number.

FaxNumber matches a phone number labeled by the word “fax” before or after it.

@PhoneNumber is Number equal to /\d\d\d/
then "-"
then Number equal to /\d\d\d\d/
ignoring nothing

AreaCode is Number equal to /\d\d\d/
ignoring nothing
just before @PhoneNumber

284 APPENDIX A. PATTERN LIBRARY

PhoneNumber is either @PhoneNumber
or AreaCode then "-"

then @PhoneNumber
or AreaCode then @PhoneNumber
or "(" then AreaCode

then ")" then @PhoneNumber
FaxNumber is PhoneNumber

either just after "fax"
or just before "fax"

ignoring either Punctuation
or Spaces

Time

Time matches a 12-hour or 24-hour time specification, with optional seconds and optional
AM or PM.

Time is Number equal to /[012]?\d/
then ":"
then Number equal to /\d\d/
ignoring nothing

Time is either Time
or Time

then ":"
then Number equal to /\d\d/
ignoring nothing

Time is either Time
or Time then Word equal to either "am"

or "pm"
ignoring nothing

Time is either Time
or "midnight"
or "noon"

A.2 Characters

Identifiers in the Characters namespace are defined by the Java class
lapis.parsers.CharacterParser.

Token matches runs of non-whitespace characters.

Alphanumeric matches runs of alphanumeric characters (letters or digits).

Digits matches runs of digits.

Letters matches runs of letters.

A.3. ENGLISH 285

LowerCaseLetters matches runs of lowercase letters.

UpperCaseLetters matches runs of uppercase letters.

Punctuation matches runs of punctuation.

Whitespace matches runs of whitespace characters.

Linebreak matches individual linebreak characters.

Spaces matches runs of space characters.

Tab matches individual tab characters.

A.3 English

Identifiers in the English namespace are defined by TC patterns in the file USEnglish.tc.

Sentence

Sentence matches English “sentences” that start with a capitalized word and end with a period,
exclamation point, or question mark.

@EndingPunctuation
is either "." not just after case-sensitive

either "Dr"
or "Mr"
or "Mrs"

or "?"
or "!"

either just before Whitespace
then UppercaseLetters

or ending Paragraph
@StartingWord

is CapitalizedWord
either just after @EndingPunctuation

or starting Paragraph

Sentence is from @StartingWord
to @EndingPunctuation

in Paragraph
contains Spaces

286 APPENDIX A. PATTERN LIBRARY

Word

Word matches runs of alphanumeric characters.

AllCapsWord matches a word which consists entirely of uppercase letters.

CapitalizedWord matches a word starting with uppercase letters.

LowerCaseWord matches a word consisting entirely of lowercase letters.

MixedCaseWord matches a word with both uppercase and lowercase letters, where at least one
uppercase letter occurs strictly inside the word.

Word is Alphanumeric
CapitalizedWord is Word starting UppercaseLetters

ignoring nothing
AllCapsWord is Word equal to UppercaseLetters

ignoring nothing
LowerCaseWord is Word equal to LowercaseLetters

ignoring nothing
MixedCaseWord is Word

contains LowercaseLetters
then UppercaseLetters
ignoring nothing

A.4 HTML

Identifiers in the HTML namespace are defined by the Java class lapis.parser.HTMLParser.

Attribute matches a name-value attribute in an HTML tag.

name-attr matches an attribute named name. For example, href-attr matches the href
attribute in an <a> tag. An identifier of this form is defined for every attribute named
in the HTML 4.0 specification.

AttributeName matches the name part of an attribute (the part before the equals sign, or the
entire attribute if no value is given).

AttributeValue matches the value part of an attribute (the part after the equals sign).

Element matches a complete element, running from its start tag to its matching end tag (if any).

[tagname] matches a complete element named tagname. For example, [body] matches the
part of the document running from <body> to </body>. An identifier of this form
is defined for every tag in HTML 4.0.

Tag matches any tag, which may be either a start tag or an end tag.

A.5. INTERNET 287

StartTag matches any start tag.

<tagname> matches a start tag named tagname. An identifier of this form is defined for every
tag in HTML 4.0.

EndTag matches any end tag.

</tagname> matches an end tag named tagname. An identifier of this form is defined for every
tag in HTML 4.0.

Text matches a run of text between tags.

A.5 Internet

Identifiers in the Internet namespace are defined by TC patterns found in the file
Internet.tc.

EmailAddress matches an email address in conventional user@hostname form.

Hostname matches either an IP address or a domain name.

IPAddress matches an IP address in n.n.n.n form.

RootDomain matches the most common root domain names, such as edu, com, and org.

URL matches a Uniform Resource Locator.

EmailAddress is Token containing "@"
trim off Punctuation

IPAddress is Digits then "."
then Digits
then "."
then Digits
then "."
then Digits
ignoring nothing

RootDomain is Word equal to either "com"
or "edu"
or "gov"
or "mil"
or "org"
...
or "it"
or "fi"

just after "."
ignoring nothing

288 APPENDIX A. PATTERN LIBRARY

Hostname is either IPAddress
or /[\w\-\.]+/

ending "." then RootDomain
URL is from case-sensitive either "http:"

or "ftp:"
or "mailto:"
or "file:"
or "gopher:"
or "news:"
or "nntp:"
or "https:"
or "telnet:"
or "wais:"
or "prospero:"
or "javascript:"

to point just before either Whitespace
or ’"’
or "’"
or ">"

A.6 Java

Some of the identifiers in the Java namespace are defined by the class
lapis.parsers.JavaParser. Others are defined by TC patterns in the file Java.tc.

ActualParameter matches an expression passed as a parameter to a method call.

ActualParameterList matches the parenthesized list of parameters to a method call.

Block matches a block of statements surrounded by curly braces.

Class matches a Java class declaration, including its body.

Comment matches a Java comment, both // style and /*..*/ style.

Constant matches a constant expression, such as a number, character or string literal, or the
identifier null.

Expression matches an expression.

Field matches a variable declaration in a class.

FormalParameter matches the declaration of a method parameter.

FormalParameterList matches the parenthesized list of parameter declarations in a method.

A.7. LAYOUT 289

Identifier matches a user-defined identifier, such as a variable name, method name, or class
name.

Import matches an import statement.

Interface matches a Java interface declaration, including its body.

LocalVariable matches a local variable declaration inside a method.

Method matches a method declaration, including its body.

MethodBody matches the body of a method, surrounded by curly braces.

MethodCall matches an expression that calls a method.

MethodName is Identifier just before FormalParameterList
MethodBody is Block ending Method

ignore nothing
MethodCall is Identifier then ActualParameterList

Statement matches a statement.

Type matches a type, such as a class name or primitive type.

VariableName matches the name of the variable in a variable declaration.

VariableName is Identifier in either field
or localvariable
or formalparameter

not in type
not in expression

A.7 Layout

Identifiers in the Layout namespace are defined by TC patterns, some in the file Layout.tc,
and others in the file HTML.tc.

Delimiters

CurlyBraces matches a balanced set of curly braces, {...}.

Parentheses matches a balanced set of parentheses, (...).

SquareBrackets matches a balanced set of square brackets, [...].

Parentheses is balances "(" with ")"
SquareBrackets is balances "[" with "]"
CurlyBraces is balances "{" with "}"

290 APPENDIX A. PATTERN LIBRARY

Form

Form matches an HTML form.

Control matches an HTML form control, such as a button or text field.

Button matches an HTML form button.

Checkbox matches an HTML checkbox.

Menu matches an HTML drop-down menu.

RadioButton matches an HTML radio button.

Textbox matches an HTML text field.

Form is [form]
Control is either [input] or [textarea] or [select]
view source

Textbox
is either [input]

contains type-attr
contains either "text"

or "password"
or [input] not containing type-attr
or [textarea]

Button
is [input]

contains type-attr
contains either "button"

or "submit"
or "reset"
or "image"

Menu is [select]
Checkbox

is [input]
contains type-attr contains "checkbox"

RadioButton
is [input] contains type-attr contains "radio"

Image

Image matches an image in a web page

Image is [img]

A.7. LAYOUT 291

Line

Line matches a line in a plain text file.

BlankLine matches a line with nothing but whitespace characters in it.

Break is a synonym for Linebreak.

Line is nonempty from either start of page
or end of linebreak

to either linebreak
or end of page

Break is Linebreak
BlankLine is Line not containing Token

List

List matches an HTML list.

Item matches a single item in a list.

BulletList matches a bulleted list.

Bullet matches a single item in a bulleted list.

NumberedList matches a numbered list.

NumberedItem matches a single item in a numbered list.

DefinitionList matches an HTML definition list.

Term matches a term in a definition list.

Definition matches a definition in a definition list.

List is either [ul]
or [ol]
or [dl]

Item is either [li]
or [dt] then [dd]

BulletList is [ul]
Bullet is [li] in BulletList
NumberedList is [ol]
NumberedItem is [li] in NumberedList
DefinitionList is [dl]
Term is [dt]
Definition is [dd]

292 APPENDIX A. PATTERN LIBRARY

Page

Page matches the entire page or file.

Page is all

Paragraph

Paragraph matches (in plain text) a group of lines separated by blank lines, or (in HTML) a
block-level element, such as [p] or [li]. Paragraph is defined by the Java class
lapis.parsers.SystemParser.

Rule

Rule matches a horizontal rule (<hr> element in HTML).

Rule is [hr]

Table

Table matches an HTML table.

Row matches a row in a table.

Cell matches a cell in a row.

Table is [table]
Row is [tr]
Cell is either [td] or [th]

A.8 Style

Identifiers in the Style namespace are defined by TC patterns found in the file HTML.tc.

Bold matches text in boldface.

Heading matches a heading.

HeadingN matches headings of size N , where N can range from 1-7.

Italic matches text in italics.

Italics is a synonym for Italic.

Link matches a hyperlink.

Target matches a hyperlink target (an element in HTML).

Underlined matches underlined text.

A.8. STYLE 293

Bold is either [b]
or [strong]

Italic is either [i]
or [em]

Italics is Italic
Underlined is [u]

Link is [a] starts <a> contains href-attr
Target is [a] starts <a> contains name-attr

Heading is either [h1]
or [h2]
or [h3]
or [h4]
or [h5]
or [h6]
or [h7]

Heading1 is [h1]
Heading2 is [h2]
Heading3 is [h3]
Heading4 is [h4]
Heading5 is [h5]
Heading6 is [h6]
Heading7 is [h7]

294 APPENDIX A. PATTERN LIBRARY

Appendix B

TC Pattern Operators

This appendix presents an alphabetical list of operators in the TC pattern language. For more
details about the syntax and use of the pattern language, see Chapter 6.

B.1 And

expr1 and expr2

Matches regions that match both expressions. Equivalent to algebra operator ∩ (Section 3.5.1).
See also Section 6.2.15.

B.2 Anywhere After

anywhere after expr

Matches regions anywhere after some match to expr. Equivalent to algebra operator after (Sec-
tion 3.5.2).

B.3 Anywhere Before

anywhere before expr

Matches regions anywhere before some match to expr. Equivalent to algebra operator before
(Section 3.5.2).

B.4 Balanced from-to

balanced from expr1 to expr2

Matches a nested set of regions whose start delimiters match expr1 and end delimiters match
expr2. Equivalent to algebra operator balances (Section 3.6.8).

295

296 APPENDIX B. TC PATTERN OPERATORS

B.5 Case Sensitive

case sensitive expr

Forces literal and regular expression matches inside expr to be case-sensitive.

not case sensitive expr

Forces literal and regular expression matches inside expr to be case-insensitive (the default).
See also Section 6.2.8.

B.6 Contains

contains expr

Matches regions that contain at least one match to expr. Equivalent to algebra operator contains
(Section 3.5.2).

B.7 Either-Or

either expr1 or expr2

Matches regions that match either expr1 or expr2. The either is optional. Equivalent to
algebra operator ∪ (Section 6.2.15).

See also Section 6.2.15.

B.8 End of

end of expr

Matches the end points of regions matching expr. Always returns a set of zero-length regions.
Equivalent to algebra operator end-of (Section 3.6.1).

B.9 Ends

ends expr

Matches regions that end at the same point as expr. Ignores background regions around the end
point. Equivalent to algebra operator ends W (Section 3.6.13).

B.10 Equals

equals expr

Matches regions that match expr. Ignores background regions around both start point and end
point. Equivalent to algebra operator equals W (Section 3.6.13).

B.11. FLATTEN 297

B.11 Flatten

flatten expr

Flattens the regions that match expr, by combining nested and overlapping regions into a single
region. Equivalent to algebra operator flatten (Section 3.6.12).

B.12 From-To

from expr1 to expr2

Matches a flat region set consisting of regions that start with a match to expr1 and end with the
next match to expr2. Equivalent to algebra operator fromto (Section 3.6.8).

B.13 Identifier

identifier

Matches the regions matched by the pattern bound to identifier in the pattern library.
See also Section 6.2.3.

B.14 Ignoring

expr1 ignoring expr2

Sets the background set to the regions matching expr2, then evaluates expr1 and returns its
matches.

See also Section 6.2.14.

B.15 In

in expr

Matches regions lie in some match to expr. Equivalent to algebra operator in (Section 3.5.2).

B.16 Is

identifier is expr

Assigns the pattern expr to identifier in the pattern library, and returns the matches to expr.
See also Section 6.2.5.

298 APPENDIX B. TC PATTERN OPERATORS

B.17 Just After

just after expr

Matches regions that lie after and adjacent to some match to expr. Ignores background regions
when testing for adjacency. Equivalent to algebra operator just-after W (Section 3.6.13).

B.18 Just Before

just before expr

Matches regions that lie before and adjacent to some match to expr. Ignores background regions
when testing for adjacency. Equivalent to algebra operator just-before W (Section 3.6.13).

B.19 Literal

"string"
’string’

Matches regions consisting of the literal characters string. Either single or double quotes may
be used to delimit the string.

See also Section 6.2.8.

B.20 Melt

melt expr

Melts the regions that match expr by combining nested, overlapping, or adjacent regions into a
single region. Equivalent to algebra operator melt (Section 3.6.12).

B.21 Nonzero

nonzero expr

Matches regions that match expr and contain at least one character. Equivalent to algebra operator
nonzero (Section 3.6.4).

B.22 Not

expr1 not expr2

Matches regions matching expr1 that do not match expr2. Equivalent to algebra operator −
(Section 6.2.15).

See also Section 6.2.15.

B.23. NTH 299

B.23 Nth

nth expr
nth expr1 in expr2
nth expr1 before expr2
nth expr1 after expr2

The first form matches the nth region in the document that matches expr. The other forms match
the nth match to expr1 that lies in, before, or after each match to expr2.

The “nth” can be written in a variety of ways:

• 1st, 2nd, 3rd, 4th, ...

• first, second, third, ..., tenth

• last, 2nd from last, 3rd from last, ...

• second from last, third from last, ...

Equivalent to algebra operator nth n (Section 3.6.5).

B.24 Or

expr1 or expr2

Matches regions that match either expr1 or expr2. Equivalent to algebra operator ∪ (Sec-
tion 6.2.15).

See also Section 6.2.15.

B.25 Overlaps

overlaps expr

Matches regions that overlap some region matching expr. Equivalent to algebra operator
overlaps (Section 3.6.3).

B.26 Overlaps End Of

overlaps end of expr

Matches regions that overlap the end point of some region matching expr. Equivalent to algebra
operator overlaps-end (Section 3.5.2).

300 APPENDIX B. TC PATTERN OPERATORS

B.27 Overlaps Start Of

overlaps start of expr

Matches regions that overlap the start point of some region matching expr. Equivalent to algebra
operator overlaps-start (Section 3.5.2).

B.28 Prefix

prefix identifier expr

Changes the current namespace to identifier for the scope of expr.
See also 6.2.7.

B.29 Regular Expression

/regexp/

Matches regions that match the regular expression regexp.
See Section 6.2.10 for the regular expression operators supported by LAPIS.

B.30 Start of

start of expr

Matches the start points of regions matching expr. Equivalent to algebra operator start-of (Sec-
tion 3.6.1).

B.31 Starts

starts expr

Matches regions that start at the same point as expr. Ignores background regions around the start
point. Equivalent to algebra operator starts W (Section 3.6.13).

B.32 Then

expr1 then expr2

Matches regions that are the concatenation of a region matching expr1 with a region matching
expr2 that lies after and adjacent to it. Ignores background regions when determining whether
expr1 and expr2 are adjacent. Equivalent to algebra operator then W (Section 3.6.13).

B.33. TRIM 301

B.33 Trim

expr1 trim expr2

Matches regions that match expr1 with an overlapping match to expr2 removed from the start
or end point. Equivalent to algebra operator trim (Section 3.6.14).

B.34 View

view source expr
view rendered expr

Forces literals and regular expressions inside expr to be matched against the HTML source or the
rendered view of a web page. Has no effect on a plain text document.

See also Section 6.2.11.

302 APPENDIX B. TC PATTERN OPERATORS

Appendix C

LAPIS Commands

This appendix lists the script commands recognized by LAPIS, in alphabetical order. Standard Tcl
commands are not included in this appendix; only new commands defined by LAPIS. For more
information about LAPIS scripting, see Chapter 8.

C.1 Back

back [n]

Backs up to the previous document in the page history. The optional argument n is the number of
pages to back up. This command has the same effect as the Back toolbar button.

See also: Section 8.8.

C.2 Calc

calc pattern
[-count]
[-sum]
[-average|-mean|-avg]
[-min]
[-max]
[-stddev]

Calculates statistics on the regions matching pattern. Only numeric regions are included in the
statistics; nonnumeric regions are ignored. The statistics returned depend on which options are
given:

• -count returns the number of numeric regions matching the pattern

• -sum returns the sum

• -average returns the mean of the regions. -mean and -avg are synonyms.

303

304 APPENDIX C. LAPIS COMMANDS

• -min returns the minimum of the matching regions

• -max returns the maximum

• -stddev returns the standard deviation

If only one option is given, then calc returns only the computed value. If multiple options are
given, then calc returns a Tcl list of values in the order the options were given. If no options are
given, calc computes all the statistics and returns a formatted display.

See also: Section 8.1.5.

C.3 Click

click pattern

Clicks on the hyperlink or form control described by pattern. Throws a Tcl exception if pat-
tern does not match exactly one hyperlink or form control.

See also: Section 8.10.

C.4 Count

count pattern

Returns the number of matches to pattern.

C.5 Delete

delete pattern

Deletes all regions matching pattern. Synonym for omit.
See also: Section 8.1.3.

C.6 Doc

doc [string]

Returns the current document

doc string [-type type]

Sets the current document to string. With -type, the document is created with content type
type. Possible content types are text and html. Without this argument, the content type is
guessed from the content of string, defaulting to text if no valid HTML tags are found.

See also: Section 8.12.

C.7. ENTER 305

C.7 Enter

enter pattern value

Sets all form fields matching pattern to the value value.

• For text fields, value is a string which is entered in the field.

• For menus and lists, value is the name of the selected value.

• For radio buttons and checkboxes, value should be one of the following: on, off, yes,
no, true, false, 0, 1.

See also: Section 8.10.

C.8 Exec:

exec:command

Runs command as an external program.
See also: Section 8.6.

C.9 Extract

extract pattern
[-startswith start]
[-endswith end]
[-separatedby sep]
[-as type]

Extracts all regions matching pattern.

• -startswith prints start before each extracted region.

• -endswith prints end after each extraction region.

• -separatedby prints sep between each pair of regions (after the previous region’s end
and before the next region’s start).

• -as converts the extracted regions to type, which may be either text or html.

See also: Section 8.1.1.

C.10 File:

file:filename

Loads the file named filename and returns it as the current document.
See also: Section 8.3.

306 APPENDIX C. LAPIS COMMANDS

C.11 Forward

forward [n]

Goes forward to the next document in the page history. The optional argument n is the number of
pages to go forward. This command has the same effect as the Forward toolbar button.

See also: Section 8.8.

C.12 Ftp:

ftp://hostname/pathname

Retrieves a file by FTP and returns it as the current document.
See also: Section 8.3.

C.13 History

history

Prints the page history to standard output. This command is designed for the LAPIS typescript
shell (lapis -tty), which would otherwise have no other way to show the history.

See also: Section 8.8.

C.14 Http:

http://hostname/pathname

Retrieves a web page by HTTP and returns it as the current document.
See also: Section 8.3.

C.15 Insert

insert pattern string

Inserts string at all points matched by pattern. Synonym for replace.
See also: Section 8.1.4.

C.16 Keep

keep pattern [-outof recordpattern]

Keeps only records matching pattern and deletes the rest.

• -outof specifies a record set rather than inferring it from pattern.

See also: Section 8.1.3.

C.17. OMIT 307

C.17 Omit

omit pattern

Deletes all regions matching pattern.
See also: Section 8.1.3.

C.18 Parse

parse parser

Binds the patterns described by parser into the pattern library. The parser can be one of three
possibilities:

• a filename ending in .tcl, which is interpreted as a script of Tcl commands;

• a filename ending in .tc, which is interpreted as a file of TC patterns;

• the name of a Java class implementing lapis.Parser. The class is loaded, an instance is
created, and its bind method is called.

See also: Section 8.6.

C.19 Property

property [-get] name

Returns the value of the property named name on the current document.

property -set name value

Sets the name property to value.

property -list

Returns a Tcl list of the property names defined on the current document.
See also: Section 8.13.

308 APPENDIX C. LAPIS COMMANDS

C.20 Relocate

relocate
[-base url]
[-override]

Adds the HTML element <base href=url> to the current document. The url is obtained as
follows:

1. From the -base argument, if specified.

2. From the base property of the current document, if any.

3. From the url property of the current document, if any.

If none of these can be found, relocate makes no change to the current document. If the cur-
rent document already has a <base> element, relocate does nothing unless the -override
option forces it to replace the existing <base>.

See also: Section 8.13.

C.21 Replace

replace pattern template

Replaces all regions matching pattern with template. The template may include embedded
pattern substitutions surrounded by curly braces.

See also: Section 8.1.4.

C.22 Save

save [filename]
[-backup extension]

Saves the current document to filename, or to the file the current document was loaded from if
no filename is specified.

If the file already exists, the old contents are backed up to filename~ by default. The -
backup option changes the backup extension from ~ to extension. If extension is the
empty string, backup is disabled.

C.23 Show

show [-brief] [-all]

Prints the content of the current document to standard output. This command is designed for use
in the LAPIS typescript shell (lapis -tty) and for scripts run from the command line.

C.24. SORT 309

• -brief displays at most a fixed number of lines, half from the start of the document
and half from the end. The number of lines displayed is controlled by the Tcl variable
lapis::displayLimit, which defaults to 25. This is the default when show is called
interactively.

• -all displays the entire document. This is the default when show is used in a script.

C.24 Sort

sort pattern
[-by keypattern]
[-order [reverse] dictionary|numeric|unicode|random]

Sorts the regions matching pattern.

• -by specifies a sort key in each record. If no -by option is specified, the entire record is
used as a sort key.

• -order specifies the sort order. Default is dictionary.

Multiple sort keys may be specified with multiple -by and -order arguments.
See also: Section 8.1.2.

C.25 Submit

submit [-form formpattern]
[-button buttonpattern]

Submits a web form in the current page.

• -form specifies the form to submit. If -form is omitted, the first form in the page is used.

• -button specifies the button that should be pressed to submit the form. If no -button
argument is given, the first button of type submit is pressed.

See also: Section 8.10.

310 APPENDIX C. LAPIS COMMANDS

Bibliography

[AKW88] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming
Language. Addison-Wesley, 1988.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, November 1983.

[And73] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[App02] Hypercard 2.4.1. http://www.apple.com/hypercard/, 2002.

[AS95] Eric Z. Ayers and John T. Stasko. In Proceedings of the 4th International World Wide
Web Conference (WWW4), pages 259–270, 1995.

[Aut02] Autocad. http://www.autodesk.com/, 2002.

[Bad99] Greg J. Badros. JavaML: A markup language for java source code. In Ninth Interna-
tional World Wide Web Conference, 1999.

[Ben75] Jon L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, September 1975.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R*-tree: an efficient and robust access method for points and rectangles. In ACM
SIGMOD International Conference on Management of Data, pages 322–331, 1990.

[BL84] Vic Barnett and Toby Lewis. Outliers in Statistical Data. Wiley, 2nd edition, 1984.

[Bla01] Alan F. Blackwell. Swyn: A visual representation for regular expressions. In Your
Wish is My Command: Giving Users the Power to Instruct Their Software. Morgan
Kauffman, 2001.

[BLLJ98] Bert Bos, Hakon Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2
(CSS2) specification. Technical Report http://www.w3.org/TR/REC-CSS2/, W3C,
1998.

[BM80] Jon L. Bentley and Hermann A. Maurer. Efficient worst-case data structures for range
searching. Acta Informatica, 13(2):155–168, 1980.

311

312 BIBLIOGRAPHY

[Bru97] Amy Bruckman. MOOSE Crossing: Construction, Community, and Learning in a
Networked Virtual World for Kids. PhD thesis, Masschusetts Institute of Technology
Media Lab, May 1997.

[BYN96] Ricardo A. Baeza-Yates and Gonzalo Navarro. Integrating contents and structure in
text retrieval. ACM SIGMOD Record, 25(1):67–79, 1996.

[Car72] Lewis Carroll. The Jabberwocky. Through the Looking-Glass and What Alice Found
There, 1872.

[CC97] Charles L. A. Clarke and Gordon V. Cormack. On the use of regular expressions
for searching text. ACM Transactions on Programming Languages and Systems,
19(3):413–426, May 1997.

[CCB95] Charles L. A. Clarke, Gordon V. Cormack, and F. J. Burkowski. An algebra for struc-
tured text search and a framework for its implementation. The Computer Journal,
38(1):43–56, May 1995.

[CLR92] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1992.

[Cov96] Robin Cover. Dsssl – document style semantics and specification language. Technical
Report 10179:1996, ISO/IEC, 1996.

[Cre97] Roger F. Crew. ASTLOG: a language for examing abstract syntax trees. In Proceed-
ings of the USENIX Conference on Domain-Specific Languages, 1997.

[Cyp93] Allen Cypher. Eager: Programming repetitive tasks by demonstration. In Allen
Cypher, editor, Watch What I Do: Programming by Demonstration, pages 205–218.
MIT Press, 1993.

[Dan92] Dan R. Olsen, Jr. Bookmarks: An enhanced scroll bar. ACM Transactions on Graph-
ics, 11(3):291–295, July 1992.

[DAW98] Anind K. Dey, Gregory A. Abowd, and Andrew Wood. CyberDesk: a framework
for providing self-integrating ubiquitous software services. In Proceedings of the
International Conference on Intelligent User Interfaces (IUI ’98), pages 47–54, 1998.

[DE95] Chris DiGiano and Mike Eisenberg. In Symposium on Designing Interactive Systems
(DIS ‘95), pages 189–197, 1995.

[DeJ98] Jacl and Tcl Blend. http://www.scriptics.com/software/java, 1998.

[DMO01] Steve DeRose, Eve Maler, and David Orchard. Xml linking language (xlink) version
1.0. Technical Report http://www.w3.org/TR/xlink/, W3C, 2001.

[Ede80] Herbert Edelsbrunner. Dynamic data structures for orthogonal intersection queries.
Rep. F59, Univ. Graz, Institute fur Informationsverarbeitung, 1980.

BIBLIOGRAPHY 313

[FB74] Raphael A. Finkel and Jon L. Bentley. Quad trees: a data structure for retrieval on
composite keys. Acta Informatica, 4(1):1–9, 1974.

[FGK93] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: a modeling language
for mathematical programming. Duxbury Press, 1993.

[Fin80] Craig A. Finseth. Theory and practice of text editors, or, a cookbook for an EMACS.
Technical Memo 165, MIT Lab for Computer Science, May 1980.

[Fre98] Dayne Freitag. Machine Learning for Information Extraction in Informal Domains.
PhD thesis, Computer Science Department, Carnegie Mellon University, November
1998.

[Fuj98] Yuzo Fujishima. Demonstrational automation of text editing tasks involving multiple
focus points and conversions. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI ’98), pages 101–108, 1998.

[GAM96] William G. Griswold, Darren C. Atkinson, and Collin McCurdy. Fast, flexible syn-
tactic pattern matching and processing. In Proceedings 4th Workshop on Program
Comprehension, pages 144–153, 1996.

[GDCG90] Sharon L. Greene, Susan J. Devlin, Philip Cannata, and Louis M. Gomez. No IFs,
ANDs, or ORs: a study of database querying. International Journal of Man-Machine
Studies, 32(3):303–326, 1990.

[GG83] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language.
Prentice-Hall, 1983.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[GPP71] Ralph E. Griswold, James F. Poage, and Ivan P. Polonsky. The SNOBOL4 Program-
ming Language. Prentice-Hall, 1971.

[GT87] Gaston H. Gonnet and Frank W. Tompa. Mind your grammar: a new approach to
modelling text. In Proceedings of the ACM Conference on Very Large Databases
(VLDB ’87), pages 339–345, 1987.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[Gut84] Antonin Guttman. R-tree: a dynamic index structure for spatial searching. In ACM
SIGMOD International Conference on Management of Data, pages 47–57, 1984.

[Han71] Wilfred J. Hansen. User engineering principles for interactive systems. In AFIP
Conference proceedings, Fall joint computer conference, pages 523–532, 1971.

[HH92] William C. Hill and James D. Hollan. Edit wear and read wear. In Proceedings of
ACM Conference on Human Factors in Computing Systems (CHI ’92), pages 3–9,
1992.

314 BIBLIOGRAPHY

[HN83] Klaus Hinrichs and Jürg Nievergelt. In Proceedings of the WG’83 International Work-
shop on Graph-theoretic Concepts in Computer Science, pages 100–113, 1983.

[HN86] Nico Habermann and David Notkin. Gandalf: Software development environments.
IEEE Transactions on Software Engineering, 12(12):1117–1127, December 1986.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM
Journal of Computing, 17(5):935–938, 1988.

[Jak99] Jakarta Project. http://jakarta.apache.org/regexp/, 1999.

[Jav00] JavaCC. http://www.webgain.com/products/java_cc/, 2000.

[JB97] David Jackson and Michael A. Bell. String-pattern matching in a visual programming
language. Journal of Visual Languages and Computing, 8(5-6):545–561, 1997.

[JK96] Jani Jaakkola and Pekka Kilpelainen. Using sgrep for querying structured text files.
Report C-1996-83, University of Helsinki, Department of Computer Science, 1996.

[Joh75] Stephen C. Johnson. Computing Science Tech. Rep. 32, AT&T Bell Labs, Murray
Hill, NJ, 1975.

[Kay01] Michael Kay. Xsl transformations (xslt) version 2.0. Technical Report
http://www.w3.org/TR/xslt20/, W3C, 2001.

[KDE02] KDE desktop environment. http://www.kde.org/, 2002.

[KK94] Ronald Kaplan and Martin Kay. Regular models of phonological rule systems. Com-
putational Linguistics, 20(3):331–378, 1994.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Eu-
ropean Conference on Object-Oriented Programming (ECOOP), 1997.

[KM93] Pekka Kilpelainen and Heikki Mannila. Retrieval from hierarchical texts by partial
patterns. In Proceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 214–222, 1993.

[KM98] Thomas Kistler and Hannes Marais. WebL – a programming language for the web.
In Proceedings of the 7th International World Wide Web Conference (WWW7), 1998.

[KN98] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers
in large datasets. In Proceedings of the 24th International Conference on Very Large
Databases (VLDB), pages 392–403, 1998.

[KP84] Brian W. Kernighan and Rob Pike. The UNIX Programming Environment. Prentice-
Hall, 1984.

BIBLIOGRAPHY 315

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley,
1999.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-
Hall, 2nd edition, 1988.

[Kru97] Bruce Krulwich. Automating the internet: Agents as user surrogates. IEEE Internet
Computing, 1(4):34–38, 1997.

[Kul97] Zenon Kulpa. Diagrammatic representation for a space of intervals. Machine Graph-
ics and Vision, 6(1):5–24, 1997.

[KWD97] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence (IJCAI), pages 729–737, 1997.

[Les75] Michael E. Lesk. Lex – a lexical analyzer generator. Computing Science Tech.
Rep. 39, AT&T Bell Labs, Murray Hill, NJ, 1975.

[LH95] Jurgen Landauer and Masahito Hirakawa. Visual AWK: a model for text processing
by demonstration. In Proceedings of the 11th International IEEE Symposium on
Visual Languages ’95, pages 267–274, 1995.

[Lis81] Barbara Liskov. CLU Reference Manual. Springer-Verlag, 1981.

[LNW98] Henry Lieberman, Bonnie A. Nardi, and David Wright. Grammex: Defining gram-
mars by example. In Proceedings of Human Factors in Computing Systems (CHI 98),
pages 11–12, 1998.

[Lut00] Mark Lutton. Report on hacker altering mit grades: Not! comp.risks, 20(84), March
2000.

[LW77] Der-Tsai Lee and C.K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and quad trees. Acta Informatica,
9(1):23–29, 1977.

[LWDW01] Tessa Lau, Steven Wolfman, Pedro Domingos, and Daniel S. Weld. Learning repeti-
tive text-editing procedures with SMARTedit. In Henry Lieberman, editor, Your Wish
Is My Command: Giving Users the Power to Instruct Their Software, pages 209–226.
Morgan Kaufmann, 2001.

[Lyx02] Lyx – the document processor. http://www.lyx.org/, 2002.

[Mac91] Ian MacLeod. A query language for retrieving information from hierarchic text struc-
tures. The Computer Journal, 34(3):254–264, 1991.

[Mau94] David Maulsby. Instructible Agents. PhD thesis, Department of Computer Science,
University of Calgary, 1994.

[MB98a] James R. Miller and Thomas Bonura. From documents to objects: An overview of
LiveDoc. SIGCHI Bulletin, 30(2):53–58, 1998.

316 BIBLIOGRAPHY

[MB98b] Robert C. Miller and Krishna Bharat. SPHINX: a framework for creating personal,
site-specific web crawlers. Computer Networks and ISDN Systems, 30(1–7):119–130,
1998.

[MC74] Robert Morris and Lorinda L. Cherry. Computer detection of typographical errors.
Technical Report 18, Bell Laboratories, July 1974.

[McC81] Edward M. McCreight. Priority search trees. Tech Report CSL-81-5, Xerox PARC,
1981.

[Mic02] Microsoft. Complete tasks quickly with Smart Tags in Office XP.
http://office.microsoft.com/assistance/2002/articles/oQuickSmartTags.aspx, 2002.

[Min92] Sten Minor. Interacting with structure-oriented editors. International Journal of
Man-Machine Studies, 37(4):399–418, 1992.

[MM97] Robert C. Miller and Brad A. Myers. Creating dynamic world wide web pages by
demonstration. Technical Report CMU-CS-97-131 (and CMU-HCII-97-101), CMU
School of Computer Science, May 1997.

[MM99] Robert C. Miller and Brad A. Myers. Lightweight structured text processing. In
Proceedings of the 1999 USENIX Annual Technical Conference, pages 131–144, June
1999.

[MM00] Robert C. Miller and Brad A. Myers. Integrating a command shell into a web browser.
In USENIX 2000 Annual Technical Conference, pages 171–182, June 2000.

[MM01a] Robert C. Miller and Brad A. Myers. Interactive simultaneous editing of multiple text
regions. In Proceedings of the 2001 USENIX Annual Technical Conference, pages
161–174, June 2001.

[MM01b] Robert C. Miller and Brad A. Myers. Outlier finding: Focusing human attention on
possible errors. In Proceedings of User Interface Software and Technology (UIST
2001), November 2001. To appear.

[MM02] Robert C. Miller and Brad A. Myers. Multiple selections in smart text editing. In
Proceedings of the Sixth International Conference on Intelligent User Interfaces (IUI
2002), pages 103–110, 2002.

[MN96] Gail C. Murphy and David Notkin. Lightweight lexical source model extraction.
ACM Transactions on Software Engineering and Methodology, 5(3):262–292, 1996.

[MP71] Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.

[MSC+86] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H. Howard,
David S. H. Rosenthal, and F. Donelson Smith. Andrew: a distributed personal com-
puting environment. Communications of the ACM, 29(3):184–201, March 1986.

BIBLIOGRAPHY 317

[Mye93] Brad A. Myers. Tourmaline: Text formatting by demonstration. In Allen Cypher, ed-
itor, Watch What I Do: Programming by Demonstration, pages 309–322. MIT Press,
1993.

[Mye94] Brad A. Myers. User Interface Software Tools. http://www.cs.cmu.edu/
~bam/toolnames.html, 1994.

[Mye98] Brad Myers. Natural programming: Project overview and proposal. Technical Report
CMU-CS-98-101, Carnegie Mellon University School of Computer Science, January
1998.

[NBY95] Gonzalo Navarro and Ricardo A. Baeza-Yates. A language for queries on structure
and contents of textual databases. In Proceedings of the ACM Conference on Infor-
mation Retrieval (SIGIR ’95), pages 93–101, 1995.

[Nix85] Robert Nix. Editing by example. ACM Transactions on Programming Languages
and Systems, 7(4):600–621, October 1985.

[NMW98] Bonnie A. Nardi, James R. Miller, and David J. Wright. Collaborative, programmable
intelligent agents. Communications of the ACM, 41(3):96–104, 1998.

[Omn99] Omnimark. http://www.omnimark.com/, 1999.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Pap91] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 3rd edition, 1991.

[Pik87] Rob Pike. The text editor sam. Software Practice and Experience, 17(11):813–845,
1987.

[Pik94] Rob Pike. Acme: a user interface for programmers. In Proceedings of the USENIX
1994 Winter Technical Conference, pages 223–234, 1994.

[PK97] Milind S. Pandit and Sameer Kalbag. The selection recognition agent: instant access
to relevant information and operations. In Proceedings of the International Confer-
ence on Intelligent User Interfaces (IUI ’97), pages 47–52, 1997.

[PM96] John F. Pane and Brad A. Myers. Usability issues in the design of novice program-
ming systems. Technical Report CMU-CS-96-132, Carnegie Mellon School of Com-
puter Science, August 1996.

[PM00] John F. Pane and Brad A. Myers. Tabular and textual methods for selecting objects
from a group. In Proceedings of VL 2000: IEEE International Symposium on Visual
Languages, pages 157–164, September 2000.

[PRM01] John F. Pane, Chotirat Ratanamahatana, and Brad A. Myers. Studying the language
and structure in non-programmers’ solutions to programming problems. International
Journal of Human-Computer Studies, 54(2):237–264, February 2001.

318 BIBLIOGRAPHY

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: an Intro-
duction. Springer-Verlag, 1985.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[Rit86] Jean-Francois Rit. Propagating temporal constraints for scheduling. In Proceedings of
the Fifth National Conference on AI (AAAI-86), pages 383–388. Morgan Kaufmann,
1986.

[RT89] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator: A System for
Constructing Language-Based Editors. Springer-Verlag, 1989.

[Sam90] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[Sch99] Gary L. Schaps. Compiler construction with ANTLR and java. Dr. Dobb’s Journal,
March 1999.

[SK98] Atsushi Sugiura and Yoshiyuki Koseki. Internet Scrapbook: Automating web brows-
ing tasks by demonstration. In Proceedings of User Interface Software and Technol-
ogy (UIST 98), pages 9–18, 1998.

[ST92] Airi Salminen and Frank W. Tompa. PAT expressions: an algebra for text search.
Report OED-92-02, University of Waterloo Centre for the New Oxford English Dic-
tionary and Text Research, 1992.

[Sta81] Richard M. Stallman. In ACM SIGPLAN SIGOA Symposium of Text Manipulation,
pages 147–156, 1981.

[TRH81] Tim Teitelbaum, Thomas Reps, and Susan Horwitz. The why and wherefore of the
cornell program synthesizer. In Proc ACM SIGPLAN SIGOA Symposium on Text
Manipulation, pages 8–16, 1981.

[VGB92] Michael L. Van De Vanter, Susan L. Graham, and Robert A. Ballance. Coherent user
interface for language-based editing systems. International Journal of Man-Machine
Studies, 37(4):431–466, 1992.

[W3C00] W3C. Extensible markup language (XML) 1.0. http://www.w3.org/TR/2000/REC-
xml-20001006, October 2000. second edition.

[Wat82] Richard C. Waters. SIGPLAN Notices, 17(7):39–46, 1982.

[WCS96] Larry Wall, Tom Christensen, and Randal L. Schwartz. Programming Perl. O’Reilly,
2nd edition, 1996.

[WM92] Sun Wu and Udi Manber. Agrep – a fast approximate pattern searching tool. In
Proceedings of the Winter USENIX Technical Conference, pages 153–162, 1992.

BIBLIOGRAPHY 319

[WM93] Ian H. Witten and Dan Mo. TELS: Learning text editing tasks from examples. In
Allen Cypher, editor, Watch What I Do: Programming by Demonstration, pages 183–
204. MIT Press, 1993.

[Woo81] Steven R. Wood. Z — the 95% program editor. In Proc ACM SIGPLAN SIGOA
Symposium on Text Manipulation, pages 1–7, 1981.

